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Figure 2. Regional structure-contour map showing top of Lance (Hell Creek) For-
mation (base of Tullock Member of Fort Union Formation). Map by C. T. Pierson from
unpublished borehole data (dots) of N. M. Denson. Contour interval is 400 ft.
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Figure 3. Regional isolith map showing cumulative thickness of Tullock Member
sandstone in Powder River Basin (modified from Lewis and Hotchkiss, 1981). Con-

tour interval is 100 ft.
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aquifers and coal zones in the subsurface. The Tullock
Member ranges in thickness from 113 m (370 ft) in the
northwestern part of the basin to 439 m (1,440 ft) in the
southeast (appendix 1).

The Tullock overlies the Upper Cretaceous and locally
Paleocene Hell Creek Formation in Montana and the equiv-
alent Lance Formation in Wyoming. It underlies the Lebo
Member of the Fort Union Formation in both States (fig. 4).
The three members of the Fort Union Formation are difficult
to distinguish from one another everywhere in the basin
owing to changes in lateral facies or contact relationships.

Pertinent regional studies of the Tertiary stratigraphy of
the Powder River Basin are found in Denson and Pipiringos
(1969), Lewis and Hotchkiss (1981), Ayers and Kaiser
(1984), Flores and Ethridge (1985), and Ayers (1986). The
Lance Formation was named by Stone and Calvert (1910).
Brown (1907) named the “Hell Creek beds” and Thom and
Dobbin (1924) assigned the Hell Creek to the Lance Forma-
tion as its lower member. In 1923, the Tullock Member was
named for outcrops on Tullock and Sarpy Creeks, Treasure
County, Mont., by Rogers and Lee (1923). They divided the
Lance Formation into two parts: an upper coal-bearing mem-
ber named the Tullock Member and a lower, undifferentiated
part that contained no coal. Simpson (1937), using land-
mammal biostratigraphy, assigned beds that were the true
dinosaur-bearing Hell Creek to the Cretaceous; he desig-
nated as Tertiary the overlying beds that contained no dino-
saurs but did contain mammals of Tertiary type. He also
supported the acceptance of the Paleocene as a separate Ter-
tiary epoch distinct from the Eocene. However, until the
early 1940°s it remained uncertain whether the Tullock
Member was Late Cretaceous or Paleocene in age. Dorf
(1942) assigned a Paleocene age to the Tullock Member on
the basis of fossil flora of typical Paleocene Fort Union
aspect by correlation from the nearby Gillette coal field.
Related Tertiary studies conducted in the Lance Creek area
for the purpose of classifying public lands and evaluating
possible economic coal fields include Shaw (1909), Win-
chester (1912), Dobbin and others (1957), Sharp and Gib-
bons (1964), Denson (1974), and Denson and others (1978).

Underlying the Tullock Member are the nonmarine,
mostly Upper Cretaceous Lance (Wyoming) and Hell Creek
(Montana) Formations. The Lance is characterized by thick
sandstone, carbonaceous shale, sandy shale, siltstone, and
mudstone, its lithologic character varying greatly from place
to place. In the northern part of the Powder River Basin, the
Hell Creek was deposited in alluvial plain and large-scale
fluvial systems. In much of the rest of the basin, the units are
characterized by numerous dark carbonaceous shale beds
and thin coal seams, indicating deposition in ephemeral
lakes and peat swamps or mires in interfluve areas. In the
type area of the Lance Formation, located in the southeastern
part of the Powder River Basin, ceratopsian dinosaur
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Figure 4. Generalized stratigraphic chart for the latest Creta-
ceous and early Tertiary, Powder River Basin, Wyo. and Mont.,
showing formations, members, and palynostratigraphic zones.
Zones are from Nichols and Ott (1978) and Nichols and others
(1982).

remains and important Lancian land mammals (Clemens,
1963) were found.

The contact of the Tullock Member with the underlying
Lance and Hell Creek Formations in the Powder River Basin
is gradational through a predominantly shaley interval, but
there are coal zones in the interval in many places. Tullock
sandstone bodies do not differ greatly from those in the
Lance and Hell Creek Formations except that they are yel-
lowish, thinner, and more lenticular, and they contain no
conglomeratic layers. The lithologic base of the Tullock
Member in the Powder River Basin is close to, but only in
some places coincident with, the Cretaceous-Tertiary (K-T)
time boundary. The biostratigraphically defined boundary is
characterized in the Powder River Basin by abrupt disap-
pearances of characteristic Upper Cretaceous palynofloral
species and changes in the relative abundances of major
groups within the palynoflora (Nichols and Brown, 1989b;
Nichols and others, 1992). The formation contact is charac-
terized by the “lowermost persistent coal bed” or a subtle
color change from greenish of the Lance Formation to yel-
lowish of the Tullock Member (Rogers and Lee, 1923). A
unique clay layer at the K-T boundary, first decribed by Orth
and others (1981) as found in nonmarine rocks in the Raton
Basin, N. Mex., has been found in three places in the Powder
River Basin. The boundary clay layer contains an anomalous
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concentration of iridium, shock-metamorphosed minerals,
and sparse goyazite spherules (Bohor and others, 1987;
Wolfe and Izett, 1987; Nichols and others, in press). The
abrupt disappearance of characteristic palynofloral species
defines the K-T boundary, but neither the clay layer, nor the
change in color, nor the lowermost persistent coal bed
provides reliable markers for identifying the time line in the
absence of biostratigraphic evidence. In the Tullock
reference section of the northwestern Powder River Basin,
the K-T boundary is about 4.3 m (14 ft) below the lowermost
persistent coal bed of Rogers and Lee (1923) and 3.3 m
above the color change (Brown and Nichols, 1988).

In the Lance type area in the southeastern Powder River
Basin, Simpson (1929) collected, described, and interpreted
new specimens of Lance mammals. This work on the mam-
mal faunas was then enlarged and detailed by Clemens
(1963), who placed the formation contact at the base of the
first persistent coal bed above the highest dinosaur bones.
Leffingwell (1970), searching for a reliable means of identi-
fying the boundary, restudied Clemens’ section and found a
change in palynomorph assemblages from Cretaceous to
Tertiary about 9.5 m (31 ft) below Clemens' contact. Bohor
and others (1987) precisely located the change in palyno-
morph assemblages 47 cm below a thin coal bed near the
area studied by Leffingwell (1970).

In the southwestern Powder River Basin, Wolfe and Izett
(1987) reported a K-T boundary clay layer in the Teapot
Dome area (see the measured section for the Teapot Dome
area, pl. 3, this report). Nichols and Brown (1989a) discov-
ered a fourth K-T boundary site that contained a very high
concentration of iridium and shocked quartz. This site is
described in detail by Nichols and others (in press). The
boundary clay layer and abrupt change in palynomorph
assemblages occurs together at the base of the lowermost
persistent coal bed in the Sussex area. This is the only loca-
tion in the basin where the coal bed, the K-T boundary layer,
and the abrupt change in composition of palynomorph
assemblages are congruent,

The contact of the Tullock Member with the overlying
Lebo Member was first described from its occurrence in the
Crazy Mountains 201 km (125 mi) west of the Tullock type
area (Stone and Calvert, 1910). The Lebo of the northern
Powder River Basin is generally represented by dark-gray to
olive-gray shale containing rare beds (as thick as 3 m, or 10
ft) of gray arkosic sandstone. Many calcareous paleosol hori-
zons are present in the Lebo as indicated by discontinuous
but distinctive zones of white banding. Somie coal beds, a
few thicker than 0.5 m (2 ft), occur in the Lebo and form clin-
ker horizons in the southern Powder River Basin. The Lebo
Member ranges in thickness from 152 m (499 ft) in the
northwestern basin to about 518 m (1,700 ft) in the south-
western basin (Law, 1975; Lewis and Hotchkiss, 1981). In
outcrop, the Lebo is represented by rolling grassland inter-
rupted by small areas of badlands.

L6  Evolution of Sedimentary Basins—Powder River Basin

METHODS OF STUDY

Methods of study included well-log analysis, outcrop
observations and data from measured sections, palynological
investigations, and petrologic analyses of selected thin-
sections from sandstone beds of the Tullock.

Analysis of Log Profiles

This study emphasizes subsurface data because of the
generally poor quality of outcrop of the Tullock Member in
the Powder River Basin. The objectives of the subsurface
analyses were to identify and correlate basin-wide facies of
the Tullock (pls. 1-3). The subsurface data helped in selec-
tion of specific outcrop sites for field studies. The basal con-
tact of the Tullock Member was identified in selected logs,
which were then arranged in four subsurface transects ori-
ented perpendicular to the inferred paleoslope of Cherven
and Jacob (1985). The subsurface transects were selected by
analysis of the isolith map of Lewis and Hotchkiss (1981);
where the individual sandstone beds as determined from
well-log interpretation are added together cumulatively and
the total percent sand shown by contours. In this study, the
four transects were located along the highest total percent
sand. However, the isolith contours do not necessarily repre-
sent a single thick, continuous sandstone body, but rather
overall percent sand in the section irrespective of individual
bed thickness.

Published studies of the subsurface by Curry (1969,
1971), Lewis and Hotchkiss (1981), and Ayers (1986) served
as useful guides for study of the Tullock. Logs penetrating
the Tullock showed spontaneous potential and short normal-
induction resistivity calibrated for oil and gas exploration.
The fast sond speed used for this type of exploration cannot
accurately detect the highly variable lithologic changes typ-
ical of continental systems. No gamma logs are available for
rocks younger than Cretaceous.

The well-log signature used to mark the base and top of
the Tullock is a wide separation between components of the
short normal-induction curve of the resistivity trace. The
base of the Tullock within each transect, as determined by
log signature, is assigned a common datum elevation. Uncer-
tainties about the absolute elevations of surfaces on which
the Tulllock was deposited and lack of subsurface geochro-
nologic control during the accumulation of Tullock sedi-
ments in the Powder River Basin makes it difficult to
establish a subsurface datum that reliably reflects pre-
Tullock topography.

The lower and upper contacts of the Tullock Member in
outcrop do not coincide with the subsurface contacts. The
lithologic contacts as shown by the well logs represent only
the boundaries between fine-grained strata and sandstone
bodies of high porosity and permeability that serve as fresh-
water aquifers. Coal beds mark the base and top of the



Tullock in outcrop, but coal beds are not accurately identifi-
able in the subsurface in the absence of gamma logs. No
cores, cuttings, or lithologic logs are available for the Tul-
lock interval of the Powder River Basin. A type log was gen-
erated showing well-log signatures that identify the Tullock
Member in the Powder River Basin (fig. 5).

There is no separation of components of the resistivity
curve between the log signatures for the Lebo Member
above, or the Lance Formation below, the Tullock. In con-
trast, logs of the Tullock show a wide separation of compo-
nents in the resistivity curve and this is related to the
presence of freshwater. A diagrammatic lithologic section
was derived from the interpretation of each log showing rock
type and relative amounts of inferred channel sandstone and
overbank mudstone. The resolution of the subsurface analy-
ses was limited by sparse areal log coverage, which proved
inadequate in detailing fluvial geometry. The subsurface
transects supplement the regional Powder River Basin
framework studies developed by Fox (1988) and Crysdale
(1990).

Outcrop Studies and Sampling

The field data for this study consisted of observations and
measurements from measured sections in four selected sites
correlated directly to adjacent subsurface log profile
transects (fig. 6): the northwestern Powder River Basin
(Tullock Creek), the northeastern Powder River Basin (Little
Powder River), the southeastern Powder River Basin (Lance
Creek), and the southwestern Powder River Basin (Teapot
Dome).

The stratigraphic interval studied includes the uppermost
part of the Lance and Hell Creek Formations, the Tullock
Member, and the lowermost part of the overlying Lebo
Member of the Fort Union Formation. Stratigraphic sections
were measured with a Brunton compass, Jacob’s staff,
Abney level, and steel tape. Sedimentary structures offering
reliable paleocurrent trends were rare, but, where possible,
measurements were made from axes of large trough cross-
beds. These data are shown on the graphic logs of the mea-
sured sections (figs. 11, 14, 18, and 23). Although limited
exposure prevented more than one measurement per set and,
at most, three to five measurements per exposure, I consider
the paleocurrent data to be reliable.

In general, outcrops are unconsolidated and discontinu-
ous, preservation of sedimentary structures is poor, lateral
trends of lithofacies are difficult to follow, and less than 30
percent of the total vertical section is exposed. It was not
possible to measure closely spaced sections or to describe
higher resolution, three-dimensional facies relationships in
detail. Terminology for thickness of beds follows McKee
and Weir (1953), and that for stratification and bedding fol-
lows Blatt and others (1980). Graphic logs of the measured
sections in each of the four areas illustrate lithofacies types,
architectural elements, and inferred depositional environ-

ments. Lithofacies classification (fig. 7) was adapted from
Allen (1965) and Miall (1985). Eleven lithofacies were
identified.

Megafossils are not abundant in the Tullock Member, but
palynomorphs are, and palynological analysis proved useful
for biostratigraphy in this study. Sampling for palynology
included 146 samples from 16 localities. Locations of sec-
tions and samples for palynological data are listed in appen-
dix 3. Detailed analyses are presented in Nichols and Brown
(1992). In addition to the samples from the Tullock Member,
about 50 samples were collected from the underlying Hell
Creek and Lance Formations and a few from the overlying
Lebo Member of the Fort Union Formation.

Although identifying the source of Tullock clastic sedi-
ments was not the primary objective of this study, the study
included reconnaissance sampling for petrologic analysis.
Changes in sandstone mineral composition reflecting dis-
tance and timing of uplifts that bounded the basin were plot-
ted using the K-T boundary as a time line. Nine thin sections
were prepared from samples collected from measured sec-
tions in three of the four study areas in the Powder River
Basin: the northwestern, southwestern, and southeastern.
Samples from the three areas were taken from channel sand-
stone of the lower, middle, and upper parts of the Tullock
Member. Localities of thin section samples in the measured
sections are noted in appendix 2. Figure 8 shows the vertical
and lateral compositional changes as determined from thin-
section analyses (Hansley and Brown, in press).

Tullock sandstone is very friable; large samples were col-
lected and all required impregnation with epoxy. The thin
sections were then stained with sodium cobaltinitrate to aid
in identification of potassium feldpar and with Alizarin Red-
S to aid in identification of calcite. The Gazzi-Dickinson
method of point counting was used for determination of pet-
rographic modes because fine-grained sandstone predomi-
nates and the method maximizes information regarding
source rocks in tectonically active terranes (Dickinson,
1970; Ingersoll and others, 1984). Greater than 300 point
counts were performed on each thin section to determine
modal mineralogy, and 100 point counts were performed on
each thin section to determine grain size and sorting.

DESCRIPTIONS OF THE
FOUR STUDY AREAS

Northwestern Powder River Basin—
Tullock Creek and Lodgegrass Areas

The Tullock Member was named by Rogers and Lee
(1923) and a reference section established from exposures in
Tullock Creek and Sarpy Creek in Treasure County, Mont.,
in the northwestern Powder River Basin. Recent studies in
the area include Thom and others (1935), Lewis and Roberts
(1978), Mapel and Griffith (1981), Kanizay (1986), and

Tullock Member, Fort Union Formation, Wyoming and Montana L7
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4\ ‘&\ FR Rooted zones or rhizoliths suggesting possible soil horizons RHIZOLITH

Figure 7. Architectural elements and associated lithofacies codes for Tullock Member, indicating sedimentary structures and
environmental interpretations (using classification system of Miall, 1985).

Robinson and Van Gosen (1986). Figure 9 shows the loca-
tions of measured sections and the subsurface transect for the
northwestern part of the basin.

Five partial sections of the Tullock Member were mea-
sured and paleocurrent trends determined in this area
(Brown, 1985). These sections were also sampled for
palynological zonation and age determinations (appendix 3,
this report; Nichols and Brown, 1992). The Tullock ranges in
thickness from 113 m (371 ft) to 236 m (774 ft) in this part
of the Powder River Basin (appendix 1). In outcrop, isolated
sandstone bodies form large buttes and rim rocks (fig. 10),
but much of the area is either grassland in the lowlands or
ponderosa pine forest at higher altitudes,

According to outcrop criteria, the basal contact of the
Tullock Member is considered to be the base of the lower-
most persistent coal bed, which is about 0.5 m (1.6 ft) thick,
and is associated with a subtle color change in the siltstone
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and shale from olive green in the Hell Creek to buff yellow
in the Tullock Member (Rogers and Lee, 1923). Palynologi-
cal analyses (Nichols and Brown, 1992) of the Tullock
sequence at Burnt Creek place the K-T boundary in a mud-
stone more than 4 m (13 ft) below coal bed A of Rogers and
Lee (Brown and Nichols, 1988). Sandstone samples for pet-
rologic analyses of the lower part of the Tullock Member
were collected at the Reno Creek section on the Crow Indian
Reservation. The upper contact of the Tullock Member with
the Lebo Member in the northwestern Powder River Basin is
marked by a thin, persistent sandstone that weathers to a
dark-brown, well-defined rimrock.

Analysis of well logs suggests that the Tullock in this
area comprises more than 70 percent fine-grained material
of inferred overbank origin and less than 30 percent sand-
stone interpreted as fluvial channel deposits (Tullock Creek
and Lodgegrass transect shown on plate 1). Estimates of































































aggradation exceeds the rate of migration of the bed form
and is associated with fluvial flood deposits characterized by
rapid deposition of sediment from suspension.

The geometry of the sandstone bodies provides evidence
for channel migration. Friend (1983) reported that fixed
channels cause formation of laterally restricted and highly
elongated sand ribbons that are usually isolated in finer
grained sediment. The fact that Tullock channels are filled
with fine to medium sand but are surrounded by mudstone,
siltstone, and very fine grained sand deposits suggests a
mixed load system carrying a high suspended load. Addi-
tionally, Tullock channel-form sandstone bodies have steep
sides, concave-upwards bases, flat tops (lacking alluvial
ridges), and cross sections that are probably close to that of
the original channel. Some Tullock sandstone bodies are
thin, solitary, flat-based tabular bodies of fine to medium
sand containing only planar crossbeds, current ripples or
climbing-ripple lamination, features that are commonly
attributed to crevasse splay deposition in meandering rivers.
These units are interpreted to be small-scale crevasse splays
(O'Brien and Wells, 1986) that overflowed the sides of the
channel and spread over floodplain wetlands composed of
silt, mud, and vegetation. In outcrop, the splay sediments are
small thin wedges that pinch out within tens of meters and
are less than 2 m (7 ft) thick. Avulsion and resultant crevasse
splay deposits provide important clues to the character of a
fluvial system (Coleman, 1969). Channel migration and
development of anastomosed streams seem to be dominated
by erosion of cohesive, vegetated banks, and by aggradation
by bar construction within channels (Smith, 1976). Lack of
prominent alluvial ridges is due to the predominance of clay,
silt, and fine sand in the overbank fraction and presence of
bank vegetation that prevents coarse-grained bedload sedi-
ment from washing onto the floodplain surface. Lateral
accretion surfaces suggesting point bar forms and a greater
sinuosity (McGowan and Gamner, 1970) are rare in the
Tullock, but this may be an artifact of preservation, inade-
quate exposure, and a system that is dominated by silt and
mudstone.

Types of Fluvial Systems

Leopold and Wolman (1957) first distinguished fluvial
channel morphologies as braided, meandering, and straight.
The vertical succession of sedimentary structures in the
Tullock shows classic fining-upward sequences character-
izing meandering systems (Allen, 1970). Sandstone body
geometry and basal erosion surfaces, type and distribution
of sedimentary structures, upward decrease in scale of sedi-
mentary structures, consistently unidirectional paleoflows,
terrestrial vegetation assemblages, and presence of coal
beds indicate that the Tullock Member was deposited in a
continental fluvial environment. Crowley (1983) modeled

processes of downstream movement of large sediment
pulses as bar forms having diagnostic vertical sequences of
sedimentary structures, and he documented the influence of
sinuosity and nonerodible banks on bed form size and
geometry. Conclusions based on sinuosity and processes of
sediment movement applied to Tullock geometry and bed
forms suggest bankfull depths equal to paleochannel thick-
ness, low fluvial gradient, low sinuosity, highly stable veg-
etated banks and lenticular channel form. Haszeldine
(1983) studied a large elongate fluvial bar that was part of a
system of low-sinuosity, fine-grained sandstone bodies that
traversed a coalfield. Facies in this bar were dominated by
tabular planar crossbed sets. Similar (but poorly exposed)
sequences of tabular planar crossbed sets in the Tullock
Member show a similar vertical hierarchy of bed forms,
grain-size distribution, and decreasing thickness of cosets.
Bernard and others (1970) studied a meandering alluvial
system dominated by silt and fine sand in the Brazos River,
southeastern Texas. They noted that natural levee sedi-
ments are difficult to distinguish from the uppermost point-
bar sediments and that abandoned channel fills consisted
principally of laminated clay and silt. The deposits ranged
from a few feet to approximately 40 ft thick and usually
occupied positions within the upper two-thirds of point-bar
sequences. Stewart (1983) reported an example of clay-
stone and siltstone point bars from ancient channel systems
carrying predominantly suspended loads on mature, low-
gradient flood plains. They are characterized by sequences
that generally fine upward, have small-scale crossbedding,
and range in thickness from 2 to 10 m (7 to 33 ft) thick.
Similar sedimentary features in the Tullock suggest similar
suspended-load point-bar systems.

Sedimentary features and geometry of Tullock sediments
suggest anastomosed river systems (Schumm, 1968; Smith,
1976; Smith and Putnam, 1980; Smith and Smith, 1980;
Rust, 1981; Smith, 1983). Anastomosed channel systems
occur in temperate as well as in arid climates (Rust, 1981),
and they result mainly from a local reduction in gradient,
promoting river aggradation (Smith and Smith, 1980). Sedi-
mentary structures and facies relationships in the Tullock
contain features found in both intermontane and plains
settings (Smith, 1983).

Smith and Smith (1980) and Smith and Putnam (1980)
proposed models for anastomosing fluvial facies that include
some features applicable to braided and meandering sys-
tems. Principal features of anastomosing systems are stable,
laterally confined channels, rapid aggradation, and associ-
ated wetland and overbank complexes. Based on the associ-
ation between surface morphology and subsurface analyses,
stable, laterally confined channels, rapid aggradation, and
associated wetland complexes are also predominant in Tul-
lock sedimentation. Smith (1983) found that anastomosing
river systems are associated with deposition in foreland
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basin tectonic regimes provided that uplift and basin subsid-
ence were nearly synchronous in time. Johnson (1984)
reported that in a rapidly subsiding basin there is a decrease
in grain size and stream-flow capacity, an increase in the
fine-grained component toward a mud-dominated system,
and an increase in channel bank stability. A comparison of
features of these systems with Tullock sedimentation pat-
terns suggests initiation of alluvial disequilibrium as Lara-
mide tectonics began.

TECTONICS AND PALEOGEOGRAPHY

The Cretaceous Sevier orogeny in the Western United
States was characterized by folding and thrusting of older
strata eastward over their foreland (Armstrong, 1968). The
loading of the crust triggered subsidence and the formation
of a foreland basin to the east that accomodated the Western
Interior Seaway (Burchfiel and Davis, 1975; Dickinson and
Snyder,1978; Jordan, 1981). Initiation of the Washakie
uplift and Beartooth Mountains and the arching of the
Granite Mountain, Laramie, and Hartville highs
(Merewether and Cobban, 1985) began in the Late Creta-
ceous. This Laramide deformation commenced in western
and southwestern Wyoming before marine deposition had
ended in northeastern Wyoming and affected timing and
migration of local sedimentation patterns in the Powder
River Basin (Blackstone, 1981; Gries, 1983; Merewether
and Cobban, 1985; Brown, 1985, 1987; Brown and Nichols,
1989). Structural basins such as the Powder River Basin
formed concurrently with the uplifts through Eocene time
but at different times in different places (Tweto, 1975, 1980;
Dickinson and others, 1988). Previous studies have sug-
gested that the structural development of the Powder River
Basin and bounding Bighorn uplift began in early middle
Paleocene time and continued through late Eocene time
(Coney, 1972; Blackstone, 1975, 1986; Gries, 1983). The
present study suggests an earlier initiation of the Bighorn
uplift.

The present-day Bighorn Mountains consist of a large
doubly plunging anticline that has a topographically high
core of exposed Precambrian crystalline basement rocks.
They are part of a major Laramide foreland uplift and were
deformed by compression into a broad arc convex to the
east. Vertical deformation of the Bighorn Mountains com-
menced with initial uplift on the north end of the block,
then doming to form an anticlinal structure, and consequent
unroofing from north to south of Paleozoic and Mesozoic
strata in early middle Paleocene time (Blackstone, 1981;
Gries, 1983). West-to-east lateral tectonic stress was con-
centrated in the central Bighorn anticline, which conse-
quently failed and began to override the Powder River
Basin along west-dipping reverse faults. The Powder River
foreland basin axis deepened and lengthened north to south.
As the uplift of the Bighorn Mountains progressed, long
east-west faults developed along regional lineaments that
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mark zones of major discontinuity in the basement. The
central Bighorn block began to overthrust eastward, form-
ing the incipient Piney salient and deforming the Sussex
and Teapot Dome areas. The final tectonic configuration of
the Bighorn uplift and the adjacent foreland basin was not
achieved until early Eocene time (Gries, 1983).

Integrating previous structural studies with preliminary
studies of petrology and paleocurrent directions (Brown and
Hansley, 1989; Hansley and Brown, in press; fig. 8, this
report) provided additional details on the uplift sequence of
the Bighorn Mountains and formation of the adjacent
Powder River foreland basin. The structural evolution is
depicted in a series of paleogeographic maps that suggest
possible source areas for Tullock sediments and probable
basinal paleocurrent directions (fig. 33).

Tullock sandstone varies in composition from lithic
arkose, to feldspathic litharenite, to sublitharenite (Hansley
and Brown, in press). Analyses of petrologic data gathered
from sandstone from the lowermost part of the Tullock in the
northwestern Powder River Basin just above the K-T bound-
ary show a predominance of unstable, large carbonate clasts
derived from the unroofing and stripping of Paleozoic and
Mesozoic strata from the rising Bighorn Mountains (figs. 8
and 33). Many carbonate clasts, in fact, contained silicified
crinoid stems. Sediment that contained greater than 10 per-
cent carbonate grains was dispersed by paleostreams to the
east and southeast in the northern Powder River Basin. In
contrast, sediment in the lowermost part of theTullock in the
southern part of the basin contains less than 1 percent car-
bonate grains. Within the Tullock Member sandstone bodies,
the proportion of unstable grains (feldspar, rock fragments,
glauconite, and carbonate) decreases to the east with
increased lateral distance from the influence of the rising
Bighorn Mountains. Vertical compositional changes reflect
the unroofing of successively older rocks from the Bighorn
uplift. Where igneous rock fragments predominate, they
were probably transported from uplifts to the south (Laramie
Mountains, Granite Mountains, and Hartville uplift) along
the east margin of the basin toward the north and northeast.

Sandstone from the middle part of the Tullock shows
abundant igneous rock fragments and minerals suggesting
derivation of materials from the unroofing of plutons of
quartz diorite and quartz monzonite in the central Bighorns
(figs. 8 and 33). Additionally, hornblende and actinolite-
tremolite in sandstone in the southwestern part of the basin
may have been derived from amphibolite in the Laramie-
Medicinebow uplifts south of the Powder River Basin.
Paleostreams flowed predominantly to the east and northeast
basinwide.

Sandstone from the upper part of the Tullock contains
abundant igneous rock fragments and metamorphic minerals
suggesting continued unroofing and erosion of gneiss and
other metamorphic rocks from the Bighorn Mountains (figs.
8 and 33). The Powder River Basin downwarping along the
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as derived from structural, petrologic, and sedimentologic data.

axis continued to widen and deepen, and paleostreams con-
tinued to flow predominantly to the east and northeast basin-
wide.

Palynology provides insights for the sedimentary history
of the Tullock Member. Carbonaceous zones and coal beds
are present in the lower, but not the lowermost, Paleocene in
the northwestern part of the basin. Tullock-style deposition
did not begin until sometime after earliest Paleocene in that
area. In contrast, coal beds are present in the Lance Forma-
tion in the southeastern part of the basin, and the Lance-
Tullock contact is transitional in that area (Clemens, 1963;
Leffingwell, 1970). This evidence suggests that swampy
depositional environments expanded from the southeast to
the northwest across the basin in Tullock time (Nichols and
Brown, 1992). The palynologically defined K-T boundary,
which is a time line, shows that the formation contact is time-
transgressive from southeast to northwest across the basin. A
likely control on early Paleocene paleocenvironments is a

temporary readvance of the Cannonball sea (Nichols and
Brown, 1990). The readvance gradually raised base level and
tended to pond the slowly flowing streams in the region of
the Powder River Basin (Nichols and Brown, 1989b; 1990),
promoting peat accumulation. The inferred anastomosing
style of fluvial systems in the Tullock Member is evidence
for arise in base level.

CONCLUSIONS

Sediments of the Tullock Member indicate infilling of a
Laramide intracratonic foreland basin, and the K-T time
line provides temporal control for the timing and distribu-
tion of these sedimentation events. Improved temporal con-
trol derived from palynological analysis has allowed
interpretation of the mode and rate of development of early
Paleocene sedimentation patterns in the Powder River
Basin. Earliest Paleocene doming in the area of the future
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Bighorns generated subsidence in the adjacent north-south-
trending foreland depression. Sedimentation and subsidence
continued until the end of Eocene time, the future axis of
greatest subsidence being parallel and proximal to the Big-
horn uplift. Associated Paleocene-Eocene basin-fill clastic
rocks have a maximum thickness of about 6,560 ft (2,000
m) in the west and south. The infilling Tullock clastic sedi-
ments merged eastward with distant delta-plain systems
containing aggrading distributary channels that flowed into
the Cannonball epicontinental sea (Cherven and Jacob,
1985).

The geometry of sandstone bodies and basal erosion sur-
faces, type and distribution of sedimentary structures,
upward decrease in scale of sedimentary structures, consis-
tent unidirectional stream flows, terrestrial vegetation
assemblages, and presence of coal beds indicate that the Tul-
lock Member was deposited in a continental fluvial environ-
ment. Channel deposits (making about one-third of the
sequence) contain mainly trough and tabular planar cross-
bedded, and climbing-ripple-laminated sandstone; reactiva-
tion surfaces, liquefaction fronts, and structures resulting
from soft-sediment deformation are also common, suggest-
ing episodic rapid deposition, saturation of sediments, and
high watertable. Fine-grained overbank rocks (making up
about two-thirds of the sequence) show color mottling and
contain plant, wood, and coal fragments, obscure bedding or
no apparent internal structure, and thin coal beds.

In the Tullock, geometry, sediment movement, and bed
forms suggest bankfull depths equal to paleochannel thick-
ness, low fluvial gradient, low sinuosity, highly stable vege-
tated banks, and lenticular channel form. Natural leevee
sediments are difficult to distinguish from the uppermost
point-bar sediments in the Tullock, and abandoned channel
fills consist principally of laminated clay and silt. Tullock
claystone and siltstone point bars are characterized by
sequences that generally fine upward and small-scale cross-
bedding, and they range in thickness from 2 to 10 m (7 to 33
ft). They result from channel systems carrying predomi-
nantly suspended loads on mature low-gradient flood plains.
Movement of mud-dominated sediment through Tullock flu-
vial channels was principally by downstream aggradation
resulting in construction of bars, and by build up of the
floodplain through overbank flooding, which deposits
mainly suspended-load material. The bar forms are domi-
nated by tabular planar crossbed sets in which grain size
fines upward and cosets decrease in thickness.

Sedimentary features and geometry of the Tullock sedi-
ments suggest deposition in anastomosed fiver systems.
Presence of unstable carbonate clasts in the lowermost part
of the Tullock in the northwestern basin suggests the begin-
ning of doming and stripping of Paleozoic and Mesozoic
strata from the area of the future Bighorn Mountains. Con-
temporaneously, coal-forming environments indicated by
carbonaceous zones and coal beds spread from the southeast
to the northwest across the basin in early Paleocene time. A
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likely control of peat accumulation was a temporary read-
vance of the Cannonball sea (a part of the Western Interior
Seaway), which raised base level and locally reduced the
gradient in the southeastern part of the basin. The reduced
gradient promoted river aggradation, ponding, and swamp
formation, and created anastomosing river systems having
low sinuosity.
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APPENDIX 1. WELL LOGS USED IN CONSTRUCTION OF SUBSURFACE TRANSECTS OF THE POWDER
RIVER BASIN, WYOMING AND MONTANA

Well- Thickness of
log Location Tullock Member of
No. Fort Union

Formation
NORTHWESTERN POWDER RIVER BASIN—
TULLOCK CREEK AND LODGEGRASS AREAS

Sheridan County, Wyo.
1 Sec.35(6), T.58 N, R.84W. 236 m (775 ft)
2 Sec. 27 (13), T.58 N,, R. 84 W. 208 m (681 ft )

Bighorn County, Mont.
3 Sec.27(4), T, 95, R 39 E. 198 m (650 ft )
4 Sec. 16 (11), T.9S,R. 39 E. 206 m (675 ft )
5 Sec.33(7), T.8S., R. 39 E. 195 m (640 ft )
6 Sec.35(1), T.7S., R.39E. 165 m (540 ft)
7 Sec. 23 (16), T. 7S., R. 39 E. 149 m (490 ft )
8 Sec.2(8), T.7S., R. 39E. 128 m (420 ft)
9 Sec. 25 (16), T. 6 S., R. 39 E. 162m (530 ft )
10 Sec. 36 (16), T.5 S, R. 39 E. 113 m (370 ft)
11 Sec. 36 (16), T.4 S, R. 39 E. 143 m (470 ft)
12 Sec.19(6), T.2S., R 40 E. 122 m (400 ft)

NORTHEASTERN POWDER RIVER BASIN—
LITTLE POWDER RIVER AREA

Campbell County, Wyo.
1 Sec.25(5), T.56 N,R.73W. 158 m (518 ft)
2 Sec.23(2), T.56 N, R.73W. 206 m (676 ft )
3 Sec.11(4), T.56 N, R.73W. 168 m (550 ft)
4 Sec.1(12), T.56 N, R. 73 W. 227 m (745 ft)
5 Sec. 36 (14), T.57N,R.73W. 210 m (690 ft)
6 Sec.25 (14), T.57TN.R.73W.  221'm (725 ft)
7 Sec.23(2), T.57TN,R.BW.  232m (760 ft)
8 Sec.13(12), T.S7N, R.T3W.  232m (760 ft)
9 Sec. 11 (16), T.57N,, R. 73 W. 274 m (900 ft)
10 Sec.12(4), T.57TN,R.73W. 213 m (700 ft)
1 Sec.36 (13), T.58 N, R. 3W. 152 m (500 ft)
12 Sec.26 (16), T.58 N, R. 3 W.  172:m (565 ft)
13 Sec. 22 (13), T.58 N, R. 73 W. 186 m (610 ft)

Powder River County, Mont.

14 Sec. 32 (4), T.9S., R.50 E. 192 m (630 ft)
15 Sec. 16 (13), T.9S., R. 50 E. 125 m (410 ft)
16 Sec.8(9), T.9S,,R.50E. 152 m (500 ft)
17 Sec.5(13), T.9S.,, R.50E. 152 m (500 ft)
18 Sec.33(7), T.8S.,R.S0E. 152 m (439 ft)
19 Sec.29 (4), T.8 S., R. SO E. 171 m (560 ft)
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Well- Thickness of
log Location Tullock Member of
No. Fort Union

Formation
SOUTHEASTERN POWDER RIVER BASIN—
LANCE CREEK AREA
Converse County, Wyo.
1 Sec.4(9), T.37N,, R. 69 W. 372 m (1,220 ft)
2 Sec.28(1), T.38 N, R. 69 W. 439 m (1,440 ft)
3 Sec. 21 (4), T.38 N,, R. 69 W. 408 m (1,340 ft)
4 Sec. 16 (3), T.38 N, R. 69 W. 415 m (1,360 ft)
5 Sec. 8 (11), T. 38 N, R. 69 W. 424 m (1,390 ft)
6 Sec.5(7), T.38 N, R. 69 W. 393 m (1,290 ft)
7 Sec.33(13), T.39N,,R.69W. 399 m (1,310 ft)
8 Sec.32(3), T.39N,R. 69 W. 378 m (1,240 ft)
9 Sec.16 (13), T.39N,, R. 69 W. 405 m (1,330 ft)
10 Sec. 15 (6), T.39 N., R. 69 W. 418 m (1,370 ft)
11 Sec. 15 (4), T.39N,, R 69 W. 350 m (1,150 ft)
12 Sec. 12 (4), T.39N,,R. 69 W. 344 m (1,130 ft)
13 Sec.10 (1), T.39N, R. 69 W. 366 m (1,200 ft)
14 Sec.4 (15), T.39 N, R. 69 W. 378 m (1,240 ft)
15 Sec. 4 (7), T.39N,, R. 69 W. 338 m (1,110 ft)
16 Sec.4(3), T.39N,,R. 69 W, 378 m (1,240 ft)
17 Sec.33(15), T.40N,, R.69W. 372 m (1,220 ft)
18 Sec.33 (1), T.40N,, R. 69 W. 366 m (1,200 ft)
19 Sec. 28 (11), T.40 N,, R. 69 W. 360 m (1,180 ft)
SOUTHWESTERN POWDER RIVER BASIN—
TEAPOT DOME AREA
Natrona County, Wyo.
1 Sec.22(9), T.40N,R. 77 W. 306 m (1,005 ft)
2 Sec. 15 (2), T.40N,, R. 77 W. 299 m (980 ft)
3 Sec. 10 (11), T.40N,R.77W.  265m (870 ft)
4 Sec. 34 (15), T.41N,, R. 77W. 251 m (825 ft)
Johnson County, Wyo.
5 Sec.27(6), T.41 N, R. 77 W. 284 m (930 ft)
6 Sec.22(4), T.41N,R. 77T W. 277 m (910 ft)
7 Sec.9(4), T.41N,, R. 77 W. 302m (990 ft)
8 Sec.3(7), T.41 N, R. 77 W. 290 m (950 ft)
9 Sec. 28 (16), T.42N.,,R. 77W. 241 m (790 ft)
10 Sec.22(13), T.42N,R. 77W. 216 m (710 ft)
11 Sec. 28 (4), T.43N,R. 77 W. 283 m (930 ft)
12 Sec. 15(5), T.43N., R. 77W. 332 m (1,090 ft)




APPENDIX 2. SAMPLE LOCALITIES FOR THIN-SECTION STUDIES TO DETERMINE PROVENANCE OF

SANDSTONE IN THE TULLOCK MEMBER OF THE FORT UNION FORMATION, POWDER RIVER BASIN,
WYOMING AND MONTANA

[*, heavy-mineral separations]
Lowermost part of the Tullock Member:

T-1 SE1/4SW1/4SW1/4 sec. 36, T. 4 N, R. 35 E., Hope Ranch 7.5-minute quadrangle, Treasure County, Mont.

(East Burnt Creck section); fine-grained, friable sandstone, about 45 m (148 ft) above the palynological
K-T boundary, on East Burnt Creek, a tributary to Tullock Creek.

*88LC-1  NWI1/4SE1/4 sec. 8, T. 39 N, R. 65 W. Dixon Ranch 7.5-minute quadrangle, Niobrara County, Wyo. (Lance

Creek section); fine-grained, friable sandstone, about 7 m (23 ft) above the K-T basal coal on South
Snyder Creek.

88LC-2 NWI1/4NE1/4 sec. 8, T.39 N, R. 65 W., Garland Draw 7.5-minute quadrangle, Niobrara County, Wyo.

(Lance Creek section); fine-grained, friable sandstone, about 1.2 m (4 ft) above the K-T basal coal on
South Snyder Creek.

88LC-3 NW1/4NE1/4 sec. 8, T. 39 N, R. 65 W., Garland Draw 7.5-minute quadrangle, Niobrara County, Wyo.

(Lance Creek section); fine-grained, friable sandstone, about 0.6 m (2 ft) above the K-T basal coal in
South Snyder Creek.

*88TEA-1  SE1/4NW1/4 sec. 23, T. 38 N, R. 77 W,, Gillam Draw East 7.5-minute quadrangle, Converse County, Wyo.,
(Teapot Dome section); fine-grained, friable sandstone 12 m (40 ft) above the K-T boundary clay layer.
*88CRO-1  SW1/4sec. 12, T. 4 S, R. 36 E., Thompson Creek NW 7.5-minute quadrangle, Big Horn County, Mont.

(Crow Indian Reservation section); fine-grained, friable sandstone 9 m (30 ft) above the basal coal and
K-T boundary clay layer.

Middle part of the Tullock Member:

*88LEV-1 SE1/4SW1/4 sec. 27, T. 39 N, R. 66 W, Calf Draw 7.5-minute quadrangle, Niobrara County, Wyo. (Lance

Creek section); fine-grained, friable sandstone, from lowest exposed sandstone below road at Leverette
Butte, at base of total section of 44.0 m (144.5 ft).

*88LEV-2 SE1/4SW1/4 sec. 27, T. 39 N, R. 66 W., Calf Draw 7.5-minute quadrangle, Niobrara County, Wyo. (Lance
Creek section); fine-grained, friable sandstone, from sandstone exposed at top of Leverett Butte.
*88SUS-1 SW1/4SE1/4 sec. 3, T. 42N, R. 79 W, Sussex 7.5-minute quadrangle, Johnson County, Wyo. (Sussex

section); coarse-grained, friable sandstone, about 10 m (33 ft) up from saddle between B.M. Hill and
hill just to the north.

Uppermost part of the Tullock Member:

*88LC-4  SWI1/4NW1/4 sec. 3, T. 38 N, R. 67 W, Pinnacle Rocks 7.5-minute quadrangle, Niobrara County, Wyo.
(Lance Creek section); fine-grained, friable sandstone in about middle of a 15.2-m (50-ft) thick
transition zone with overlying Lebo Member Cow Creek.

*88LC-5  NW1/4SW1/4 sec. 35, T. 39 N, R. 67 W, Pinnacle Rocks 7.5-minute quadrangle, Niobrara County, Wyo.
(Lance Creek section); fine-grained, friable sandstone at roadcut on Cow Creek Road just below

transition zone between Tullock Member and Lebo Member on Cow Creek. Grab sample, no
measured section here.

*88TEA-2 SE1/4SE1/4 sec. 24, T. 38 N, R. 77 W, Seven L Creek East 7.5-minute quadrangle, Converse County, Wyo.

(Teapot Dome section); fine-grained, friable sandstone, about 6 m (20 ft) below transitional contact
with Lebo Member marked by clinker.

Tullock Member, Fort Union Formation, Wyoming and Montana L41



APPENDIX 3. SAMPLE LOCALITIES FOR PALYNOLOGICAL ANALYSIS AND AGE DETERMINATIONS,
POWDER RIVER BASIN, WYOMING AND MONTANA

[Analyses by D.J. Nichols. The samples, organic residues, and microscope slides are filed by their paleobotany locality (PL) number in the U.S. Geological

Survey paleontology and stratigraphy laboratory in Denver, Colo.]

PL No. Stratigraphic unit Age

PL No. Stratigraphic unit Age

East Burnt Creek: SE1/4SW1/4SW1/4 Sec. 36, T.4 N, R.35E,,
Treasure County, Mont., Hope Ranch 7.5-minute quadrangle, on
East Burnt Creek, a tributary to Tullock Creek

Sussex: SW1/4SE1/4 sec. 3, T. 42 N,, R. 79 W,, Johnson County,
Wyo., Sussex 7.5-minute quadrangle

D6936-A through G Hell Creek Late
Formation Cretaceous

D6936~H through K Hell Creek Paleocene
Formation

D6936~L through N Tullock Member  Paleocene

East Beaver Creek: Near center NE1/4NE1/4 sec. 34, T. 4 N, R.
37 E., Treasure County, Mont., Minnehaha Creek North 7.5-
minute quadrangle, on East Beaver Creek road

D7299-A through G = Lance Formation Late
Cretaceous
D7299-J through R Tullock Member  Paleocene
D7299-AA through  Lance Formation Late
PP Cretaceous
D7299-QQ Tullock Member  Paleocene
D7299-PPP Tullock Member  Paleocene

D6937-A through R Tullock Member  Paleocene

Jacobs Coulee 1: NW1/4NW1/4NW1/4 sec. 15, T.5N,R.35E,,
Treasure County, Mont., Eldering Ranch 7.5-minute quadrangle;
along abandoned road in Jacobs Coulee

Teapot Dome: SE1/4NW1/4 sec. 23, T. 38 N,, R. 77 W,, Converse
County, Wyo., Gillam Draw East 7.5-minute quadrangle, in gully
SW of road

D6940-A through H  Tullock Member  Paleocene

D7300-A through H  Lance Formation Late
Cretaceous
D7300-1 througll R Tullock Member  Paleocene

D6940-AA through Tullock Member Paleocene
BB

Jacobs Coulee 2: SW1/4NE1/4 sec. 2, T. 5 N, R. 35 E,, Treasure

County, Mont., Eldering Ranch 7.5-minute quadrangle; roadcut on

abandoned road in Jacobs Coulee

Reno Creek: SW1/4 sec. 12, T. 4 S,, R. 36 E., Big Horn County,
Mont., Thompson Creek NW 7.5-minute quadrangle, in bluffs
north of Reno Creek on Crow Indian Reservation

D6941-A and B Hell Creek Late
Formation Cretaceous

Dry Creek: NW 1/4NW1/4NE1/4 sec. 6, T. 56 No., R. 69 W.,
Campbell County, Wyo., Bowman Hill 7.5-minute quadrangle, in
bluff on cut bank of Dry Creek

D7411-A through C  Hell Creek Paleocene
Formation
D7411-D through K Tullock Member  Paleocene

D7000-A through F Tullock Member  Paleocene

Cow Creek 1: SW1/4NW1/4 sec. 3, T. 38 N,, R. 67 W,, Niobrara
County, Wyo., Pinnacle Rocks 7.5-minute quadrangle, in cut bank
of Cow Creek

Trail Creek 1: NE1/4NE14NW1/4 sec. 11. T. 57 N, R. 70 W.,
Campbell County, Wyo., Mitten Butte 7.5-minute quadrangle, in
bluff on north side of road

D7418-A and B Lebo Member Paleocene

D7001-A and B Tullock Member  Paleocene

Cow Creek 2: NW1/4SW1/4 sec. 35, T. 39 N, R. 67 W,, Niobrara
County, Wyo., Pinnacle Rocks 7.5-minute quadrangle, on
northwest side of Cow Creek Road

Trail Creek 2: NE1/4NW1/4NW1/4 sec. 11, T. 57 N, R. 70 W.,
Campbell County, Wyo., Mitten Butte 7.5-minute quadrangle, in
gully on south side of road

D7419 Tullock Member  Paleocene

Leverett Butte: Center of SW1/4SW1/4 sec. 27, T. 39 N, R. 66 W,,
Niobrara County, Wyo., Calf Draw 7.5-minute quadrangle

D7002 Tullock Member  Paleocene

D7421-A through H  Tullock Member _ Paleocene

Lance Creek 1: SE1/4SW1/4SE1/4 sec. 5, T.38 N,, R. 65 W,,
Niobrara County, Wyo., Dixon Ranch 7.5-minute quadrangle

D7100-A through C Tullock Member _ Paleocene

South Snyder Creek: SW1/4NW1/4NE1/4 sec. 8, T. 39 N, R. 65
W.,, Niobrara County, Wyo., Garland Draw 7.5-minute
quadrangle, in gully on north side of road

Lance Creek 2: SW1/4SW1/4SE1/4 sec. 5, T. 38 N,, R. 65 W,,
Niobrara County, Wyo., Dixon Ranch 7.5-minute quadrangle

D7137-A through D Lance Formation Late
Cretaceous

D7137-E throughJ  Tullock Member  Paleocene

Lance Formation Late
Cretaceous

D7422-C Lance Formation Paleocene

D7422-D through F Tullock Member  Paleocene

D7422-A and B
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