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TIMING AND EFFECT OF DETACHMENT-RELATED
POTASSIUM METASOMATISM ON 40Ar/39Ar AGES

FROM THE WINDOUS BUTTE FORMATION
GRANT RANGE, NEVADA

By William E. Brooks and Lawrence W. Snee

ABSTRACT

Interpretation of K-Ar and 40Ar/39Ar dates from highly 
altered, potassium-metasomatized rocks at detachment 
faults in the Southwestern United States is difficult. The 
effects of added potassium, indicated by rock analyses with 
excessive K2O, and elevated temperature, indicated by reset 
K-Ar and fission-track dates from upper- and lower-plate 
rocks at detachment faults, are implicit thermal and chemical 
problems in the interpretation of potassium-dependent dates.

In order to resolve these problems, comparative study 
of volcanic rocks that (1) are well-defined regionally and 
structurally, (2) have well-constrained regional chemistry 
and geochronology, and (3) have correlative metasomatized 
and unaltered sections must be made. The Windous Butte 
ash-flow tuff is one of several potassium-metasomatized 
volcanic units at Ragged Ridge, in the upper plate of a com­ 
plicated detachment fault zone in the northern Grant Range. 
It is a calc-alkalic, rhyolitic to dacitic ash-flow tuff, and its 
Oligocene age is well constrained at 31.4-31.2 Ma.

At Ragged Ridge, which is 3-4 km from the detach­ 
ment zone, the Windous Butte is potassium metasomatized 
(>9.0 weight percent K2O and <1.0 weight percent Na2O). 
At Stone Cabin Ridge, 7 km southeast of Ragged Ridge, the 
Windous Butte is unaltered (4-5 weight percent K2O and 
2-3 weight percent Na2O).

In order to constrain timing of the alteration and deter­ 
mine the effect of K-metasomatism on potassium-dependent 
mineral dates, feldspar and biotite separates from two sites at 
Ragged Ridge and two sites at Stone Cabin Ridge were dated 
by the 40Ar/39Ar thermal release method. X-ray diffraction 
(XRD) analyses indicate that adularized sanidine is present 
in Ragged Ridge separates and only sanidine is present in 
Stone Cabin Ridge separates. Sanidine spectra from Stone 
Cabin Ridge are not disturbed and have plateau dates of 
31.3±0.1 Ma and 31.2±0.1 Ma. Spectra for adularized sani­ 
dine from Ragged Ridge show apparent argon loss with

stairstep patterns that indicate growth of adularia as late as 
-20 Ma. Biotite dates from Ragged Ridge (two dates of 
31.5±0.1 Ma) and Stone Cabin Ridge (31.7±0.1 Ma and 
31.5±0.1 Ma) are slightly disturbed, but plateau dates are 
concordant. This indicates that temperatures associated with 
the alteration did not exceed 280°C. Disturbed spectra from 
adularized sanidine from potassium-metasomatized rocks at 
Ragged Ridge are interpreted to indicate that alteration 
occurred at -20 Ma in response to detachment and associated 
hydrothermal circulation of potassium-rich brines.

Results of this study are applicable to the interpretation 
of 40Ar/39Ar dates from incipiently to pervasively potassium 
metasomatized upper-plate volcanic rocks at three detach­ 
ment faults in Arizona.

INTRODUCTION

Potassium metasomatism is a widespread geochemical 
phenomenon that has affected Tertiary volcanic rock chem­ 
istry at detachment faults, in calderas, in fossil geothermal 
sites, and in lacustrine environments in New Mexico, Ari­ 
zona, California, Utah, Colorado, and Nevada. Metasoma­ 
tism is generally described as the transformation of one 
mineral or rock into another of different chemical composi­ 
tion (Lindgren, 1912). Potassium metasomatism, which may 
be incipient to pervasive, is indicated by rock analyses with 
excessive K2O content, anomalously low Na2O content, and 
absence of high-potassium minerals such as leucite, analcite, 
or nepheline.

Interpretation of K-Ar and fission-track dates from 
potassium-metasomatized rocks in the detachment setting is 
equivocal because added potassium and elevated tempera­ 
ture affect these geochronologic methods. Chemical and 
40Ar/39Ar studies of potassium-metasomatized and unal­ 
tered ash-flow tuff from the Windous Butte Formation, in 
the northern Grant Range, Nevada, are herein compared.
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The regionally extensive, well-described, ash-flow tuff of 
the Windous Butte Formation, which is potassium metaso- 
matized near a detachment at Ragged Ridge and unaltered 
at Stone Cabin Ridge, is an ideal volcanic unit with which 
to examine the effects of potassium metasomatism on 40Ar/ 
39Ar data. Results of this study document the chemical and 
thermal effects associated with detachment-related potas­ 
sium metasomatism on potassium-dependent geochrono- 
logic methods in the Grant Range and are applicable to 
other detachment settings.

PREVIOUS WORK

Rock chemistry of volcanic and, to a lesser extent, sed­ 
imentary rocks from the upper plate of numerous detachment 
faults at core complexes in the Southwestern United States 
has been affected by potassium metasomatism (Chapin and 
Glazner, 1983; Lindley and others, 1983; Brooks, 1986; 
Chapin and Lindley, 1986; Brooks, 1988; Roddy and others, 
1988; Spencer and others, 1989; Hollocher and others, 
1994). Chemical effects of potassium metasomatism are not 
restricted to the detachment setting; this type of alteration, 
which is economically significant in the caldera setting 
(Scherkenbach and Noble, 1984; Sander and Einaudi, 1990), 
is apparent in analyses of volcanic rocks from calderas 
(Ratte and Steven, 1967; Bethke and others, 1985; Shawe 
and Lepry, 1985; Sawyer and others, 1989), from silicic tuffs 
deposited in lacustrine environments (Sheppard and Gude, 
1965, 1973; Chapin and Lindley, 1986), and from fossil geo- 
thermal activity (Nusbaum and Grant, 1987). Areas that have 
been affected by detachment-related potassium metasoma­ 
tism in Arizona are readily distinguished on a potassium aer- 
oradioactivity map (Pitkin and others, 1994). These maps 
may serve as part of an exploration strategy by defining areas 
of detachment-related hydrothermal alteration with potential 
for associated mineral occurrences. The distribution of 
potassium-metasomatized rocks in the upper plate of detach­ 
ment faults and development of sedimentary basins (Brown 
and Schmidt, 1991) in association with core complexes in 
extensional terrane suggests that peculiar hydrothermal 
regimes were generated at or near detachment-core complex 
localities (Kerrich and others, 1986).

GEOCHRONOLOGIC PROBLEMS OF
POTASSIUM-METASOMATIZED

VOLCANIC ROCKS

Our interpretation of 40Ar/39Ar mineral dates and spec­ 
tra from potassium-metasomatized and unaltered ash-flow 
tuff of the Windous Butte Formation from the Grant Range, 
Nevada (fig. 1), is an important step in dating detachment- 
related metasomatism and documenting the thermal and

chemical effects associated with detachment faulting. The 
40Ar/39Ar thermal release method is a powerful dating tool 
that also provides information on the thermal history of the 
mineral separate. Because of this thermal sensitivity, this 
method has been used in structural studies, such as direct dat­ 
ing of mylonite (West and Lux, 1993).

The effects of potassium metasomatism include (1) 
rock analyses with suspiciously high K2O, and (2) discor­ 
dant and reset K-Ar, fission-track, and whole-rock dates in 
response to elevated temperatures associated with circulat­ 
ing potassium-rich fluids. Armstrong (1970) recognized this 
problem and advised exclusion of a 26.2-Ma (K-Ar method, 
biotite) date from a compilation of Needles Range Formation 
dates because the sample showed the effects of potassium 
metasomatism ("* * * matrix and plagioclase having been 
converted to potassium feldspar, the biotite being enriched in 
potassium." Armstrong, 1970, p. 218). He interpreted the 
date to indicate the time of metasomatism (see sample 81, 
table 3, Armstrong, 1970) and not the time of eruption. Arm­ 
strong's study strongly indicates cautious and critical inter­ 
pretation of K-Ar dates from metasomatized volcanic rock as 
indicative of time of emplacement.

Megascopically, potassium metasomatism of upper- 
plate volcanic rocks may be indicated by a brick-red color of 
mafic volcanic rocks (silicic volcanic rocks rarely show 
anomalous color), by oxidation of some mafic minerals, by 
alteration of feldspars to clay, and by the presence of barite 
and calcite veinlets. Microscopically, potassium metasoma­ 
tism is indicated by patchy growth of adularia on plagioclase 
or sanidine and by spotty growth of calcite and adularia in 
the groundmass.

The chemical effects of potassium metasomatism, 
which may be incipient to pervasive, are indicated by anom­ 
alously high K26 content (as much as 12-13 weight per­ 
cent), anomalously low Na2O content (<1.0 weight percent), 
and a K2O:Na2O>2 (this ratio may be as much as 38 in the 
Harcuvar Mountains; see table 1) in intermediate to silicic 
volcanic rocks. These same rocks would normally be 
expected to contain 3-5 weight percent K2O, 3-5 weight 
percent Na2O, and K2O:Na2O<2. Alone, the high potassium 
content of the analysis might indicate a primary alkalic rock; 
however, likely phases for the excess potassium, such as leu- 
cite, analcite, and nepheline, are not present. TiO2 , rare earth 
elements (REE), Nb, Zr, Y, Th, and U are not changed dur­ 
ing metasomatism at the Socorro, N. Mex., potassium anom­ 
aly (Lindley and others, 1983; Chapin and Lindley, 1986). In 
pervasively metasomatized volcanic rock at the Picacho 
Peak detachment fault, Zr, Rb, and As concentrations 
decrease, as does K2O, with greater distance from the sur­ 
face trace of the detachment; these same rocks are incipi- 
ently metasomatized some 4 km from the detachment 
(Brooks, 1985, 1987).

Until now, the thermal and chemical effects of detach­ 
ment-related potassium metasomatism on K-Ar mineral and 
whole-rock dates from metasomatized volcanic rocks in the
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Figure 1. Location map of Grant Range area, Nevada.

upper plates of detachment faults were suspect. This resulted 
in broadly bracketed ages of volcanic rocks and timing of 
detachment-related metasomatism (Brooks, 1986; Spencer 
and others, 1989). For example, at Picacho Peak, Arizona, 
alteration of the volcanic rocks was considered (Shafiqullah 
and others, 1976), but effects of the metasomatism on K-Ar 
dates were poorly understood. Therefore, dates from those 
rocks were interpreted to indicate the age of the volcanism, 
and chemical analyses were interpreted to indicate primary 
alkalic magmatic composition (Shafiqullah and others, 
1976). The use of potassium content of unaltered volcanic 
rocks was critically tested as a valid mechanism (Carr and 
others, 1979) for reconstruction of Tertiary subduction 
geometry (Lipman and others, 1972). However, analyses of 
altered rocks at Picacho Peak were wrongly included in Ter­ 
tiary subduction modeling by Rowell and Edgar (1983).

Detachment faults are commonly associated with meta- 
morphic core complexes in Oligocene-Miocene extensional- 
terrane that extends from Mexico, where a "detachment"

setting was first described (Lindgren, 1888), through south­ 
western Arizona (Rehrig and others, 1980; Rehrig and Rey­ 
nolds, 1980), into Nevada (Snoke and Lush, 1984; Fryxell, 
1988; Lund and others, 1991), and Canada (Axen and others, 
1993). K-Ar and fission-track dates from lower-plate rocks 
at detachment faults at several "Precambrian-appearing" 
core complexes in Arizona are mid-Tertiary. These data are 
interpreted to indicate a profound, regional, mid-Tertiary 
thermal and chemical disturbance (Davis, 1977; Rehrig and 
Reynolds, 1980). K-Ar dating of detachment faults and 
mylonites in the Whipple Mountains, California, and in the 
Buckskin Mountains, Arizona, indicated that lower-plate 
ages decrease toward the detachment and indicated a thermal 
event associated with detachment (Martin and others, 1980). 
On the basis of K-Ar studies in the Whipple Mountains, 
Davis and others (1982) interpret 15.9 Ma as the upper limit 
for detachment faulting. In the Grant Range, a Miocene ther­ 
mal event has similarly affected and reset K-Ar dates from 
the lower-plate Cretaceous Troy Granite, which has a U-Pb
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Table 1. Compilation of chemical analyses of volcanic rocks from the upper plate of detachment faults at Picacho Peak, Harcuvar Moun­ 
tains, and Trigo Mountains, Arizona.

[FeTOi indicates total iron reported as FeiO^.  , not reported. v, vitrophyre; K , potassium metasomatized. PP-2, uncorrected for volatiles (Brooks, 1986), is a recollection of 
UAKA 75-29 (Shafiqullah and others, 1976). PP-9, uncorrected for volatiles (Brooks, unpub. data), is a recollection of UAKA 73-141 (Shafiqullah and others. 1976). HM-1 un­ 
corrected (Brooks, 1988). E-191B and E-191D recalculated (Brooks, 1984). E-210 uncorrected (Brooks, 1984). TG-8 uncorrected (Brooks, unpub. data) is a recollection of K-Ar 
no. 8 (Weaver, 1982)]

Locality Picacho Peak
Field no. PP-2K 
Rock type Andesite 
Latitude 32°39'53"N. 
Longitude 111°23'24"W.

SiO2
A1203
FeTO3
Fe203
FeO
MgO
CaO
Na2O
K2O
TiO2
P2O5
MnO

LOI 900°C
H20+
H2O^

K20:Na20

56.6
14.5
7.3
-
 

0.6
3.5
0.8
11.0
1.1
0.9
0.3
2.5
 
_

13.7

PP-9 
Dacite

32°32'57"N. 
111°27'53"W.

64.2
15.5
4.6
-
 

1.72
3.47
3.80
4.43
0.69
0.45
0.08
0.68
 
__

1.2

HM-1K 

Ash-flow tuff 
34°04'44"N. 

113°14'39"W.

63.0

9.3
1.3
-
 

0.3
9.6
0.2
7.6
0.1
0.1
0.1
8.0
 
__
38

Harcuvar Mountains
E-191BV 

Ash-flow tuff
34°00'56"N. 

113°06'55"W.

70.0

16.0
2.9
-
 

0.8
2.4
5.0
2.3
0.4
0.1
0.1
6.1
-
 

0.46

E-191DK 

Ash-flow tuff
34°01'40"N. 

113°07'50"W.

68.6

14.8
--

2.6
0.1
0.3
0.6
0.4
12.0
0.5
0.1
 
-

0.7
0.1
30.0

E-210 
Dacite 

34°13'39"N. 
113°10'48"W.

67.5
14.2
3.03
-
-

0.91
3.47
3.64
4.26
0.39
0.19
0.05
1.80

--
 

1.2

Trigo Mountains 
TG-8K 

Ash-flow tuff
33°02'15"N. 

114°30'40"W.

68.7
13.4
1.72
-
-

0.72
1.22
1.49
7.25
0.22
0.05
O.02
4.75
-
 

4.9

date of 86.5 Ma (zircon) (D. Walker, University of Kansas, 
unpub. data) and a Rb/Sr isochron of 70.2 Ma (Fryxell, 
1984), as well as K-Ar dates of 22.5 Ma (biotite) and 24.7 
Ma (muscovite) (Armstrong, 1970). These reset ages are 
herein interpreted to indicate reheating of the Troy Granite, 
which is not metasomatized (table 2), during the Miocene at 
approximately the same time that the dates from the ash-flow 
tuff of the Windous Butte Formation were similarly dis­ 
turbed. Reset K-Ar dates at detachment faults in the Colo­ 
rado River region, California, Arizona, and Nevada, 
indicated that the detachment mechanism affected the K-Ar 
isotopic system in both upper-plate and lower-plate rocks; 
the degree of resetting increases toward the detachment fault 
(Martin and others, 1981). In the Harcuvar Mountains, Ari­ 
zona (fig. 2), this detachment-related thermal and chemical 
disturbance is indicated in upper-plate ash-flow tuff by dis­ 
cordant K-Ar (23.9 Ma, biotite) and fission-track (18.6 Ma, 
zircon) ages (Brooks and Marvin, 1985) and a whole-rock K- 
Ar date of 17.3 Ma (Scarborough and Wilt, 1979) (table 3). 
Normally, dates from quenched volcanic rock, such as ash- 
flow tuff, should be concordant. In the absence of unaltered 
correlative rock in the Harcuvar Mountains and the known 
resetting of K-Ar ages near other detachment faults (Martin 
and others, 1981), the K-Ar mineral age should be assumed 
to indicate a minimum age of the volcanic rocks.

Table 2. Chemical analyses of the Troy granite, Grant Range, 
east-central Nevada.

[Major oxides (weight percent, uncorrected for volalites) and trace elements (ppm) de­ 
termined by ICP methods at ACT LABS. Wheat Ridge, Colo. LOI, loss on ignition at 
925°C]

Locality 
Field no. 
Latitude 
Longitude

SiO2
A1203
Fe203
MgO
CaO
Na20
K2O
TiO2
P->O 5
MnO
LOI

Total

Ba
Sr
Y
Sc
Zr

Troy Granite
95B5 

38°21'00"N. 
115°35'15"W.

71.4

14.63

1.7
0.39

1.9
3.69
3.49
0.21
0.1
0.03
0.83

98.36

1,317
717

7
2

119

91KL53 
38°20'44"N. 

115°35'15"W.

70.89
15.47

1.72
0.43
2.24
3.73
3.32
0.21
0.01
0.03
1.12

99.24

1,318
778

6
2

137
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Table 3. Published ages of potassium-metasomatized upper-plate volcanic rocks at detachment 
faults at Picacho Peak, Harcuvar Mountains, and Trigo Mountains, Arizona.

Date Mineral Method Reference

Picacho Peak

20.7 Ma Whole rock K-Ar Shafiqullah and others (1976),
sample no. UAKA 75-29 

16.6 Ma Zircon Fission-track Brooks (1986)
Harcuvar Mountains

23. 9 Ma 
18. 6 Ma 
18.3 Ma 
17.3 Ma

Biotite 
Zircon 
Apatite 
Whole rock

K-Ar 
Fission-track 
Fission-track 
K-Ar

Brooks and Marvin (1985) 
Brooks and Marvin (1985) 
Brooks and Marvin (1985) 
Scarborough and Wilt (1979)

Trigo Mountains

24. 9 Ma Biotite K-Ar Weaver (1982)

113°07'30"

HARCUVAR 
MOUNTAINS

p 

34° 
02' 
30"

Q

0 1 MILE
Q
TV 
p 

0 1 KILOMETER 

(From Brooks, 1988)

EXPLANATION
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191 B,D

Figure 2. Location map of Harcuvar Mountains area, Arizona.

REGIONAL SETTING OF THE 
WINDOUS BUTTE FORMATION

The Windous Butte Formation, in the northern Grant 
Range, is an ideal volcanic unit with which to test the effects 
of potassium metasomatism on dates from correlative altered 
and unaltered rock. Field, analytical, and geochronologic 
data on the Windous Butte (Cook, 1965; Scott, 1965) are all 
well constrained. The Windous Butte is a widespread 
(17,000 km2 , Best and others, 1989), Oligocene (30.4 Ma, 
K-Ar method, Armstrong, 1970; 31 Ma, K-Ar method, 
Gromme and others, 1972; 31.4-31.2 Ma, 40Ar/39Ar

method, A. Deino, Human Origins Lab, oral commun., 
1993), calc-alkaline, dacitic to rhyolitic, biotite-sanidine (± 
smoky quartz) (Phillips, 1989) ash-flow tuff that erupted 
from the central Nevada caldera complex (Ekren and others, 
1971). In the Grant Range, alteration of the Windous Butte 
and other volcanic units at Ragged Ridge was first recog­ 
nized and called incipient hydrothermal alteration by Scott 
(1965). These volcanic units were reinterpreted by Brooks 
and others (1994) to have been altered by detachment-related 
potassium metasomatism.

Ash-flow tuff of the Windous Butte Formation and 
several other metasomatized volcanic units dip 50°-80° 
at Ragged Ridge, in the northern Grant Range
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Table 4. Chemical analyses of ash-flow tuff from the Windous Butte Formation.

[Major oxides (weight percent, uncorrected for volatiles) determined by X-ray spectroscopy analysts J.S. Mee and D.F. 
Siems. FeTO3 indicates total iron reported as Fe2C>3. LOI, loss on ignition at 925°C. Rb, Sr, Y, Zr, Nb, and Ba analyses (parts 
per million) determined on an energy dispersive analyzer, 109Cd source and 95Am source (Ba only) by K. Woodburne. Error is 
10 percent of ppm listed or ±6 (Rb), ±5 (Sr), ±4 (Y), ±3 (Zr), ±3 (Nb), and ±10 (Ba), whichever is greater. v , indicates 
vitrophyre; K, potassium metasomatized]

Locality
Lab no.
Field no.
Latitude
Longitude

Si02
A1203
FeTO3
MgO
CaO
Na20
K20
TiO2
P2O5
MnO

LOI
Rb
Sr
Y
Zr
Nb
Ba
K2O:Na2O

Ragged Ridge
D-503374

91B1K
38°41'23"N.

115°26'21"W.

70.9

12.7
1.69
0.32
1.10
0.82
9.25
0.23
0.07
0.04
1.87

260
139

19
98

9
724

11.3

D-503375
91B2K

38°41'19"N.
115°26'25"W.

70.7
13.4

1.97
0.32
0.45
0.80
9.84
0.28
0.08
0.02
1.34

273
111

11
109

10
720

12.3

Stone Cabin Ridge
D-503376

91B3 V
38°39'54"N.

115°21'13"W.

71.9
13.4

1.30
0.24

1.62
3.12
4.65
0.16
0.05
0.05
2.47

202
222

17
89
12

378

1.5

D-503377
91B4

38°39'55"N.
115°21'0"W.

71.6
13.5
2.18
0.43
1.77
2.26
5.62
0.29
0.08
0.03
1.51

178
306

16
117

12
940

2.5

approximately 4 km from a complicated west-dipping 
detachment fault zone (Lund and Beard, 1987; Lund and 
others, 1987; Lund and others, 1991; Lund and Beard, 
1992; Lund and others, 1993) At Stone Cabin Ridge, 
about 10 km southeast of Ragged Ridge, the Windous 
Butte dips 25°-40° E. and is unaltered.

At Ragged Ridge, potassium metasomatism is indicated 
by K2O content of 9.2-9.8 weight percent and Na2O content 
of 0.8 weight percent (table 4). K2O content of 4.6-5.6 
weight percent and Na2O content of 2.2-3.1. weight percent 
at Stone Cabin Ridge (table 4) are comparable to average 
regional (unaltered) Windous Butte K2O content of 4.9 
weight percent and average Na2O content of 3.1 weight per­ 
cent for 30 analyses compiled by Phillips (1989).

GEOCHEMICAL DATA- 
ANALYTICAL METHODS

In order to determine the effect of potassium metasom­ 
atism on mineral dates and constrain timing of this alteration, 
rock samples from two altered sites at Ragged Ridge and two 
unaltered sites at Stone Cabin Ridge were analyzed by sev­ 
eral methods. These sites were chosen and resampled for 
this study based on K2O and Na2O data for the respective

sites presented in Scott (1965). Feldspar and biotite sepa­ 
rates from volcanic rocks at these four sites were dated by the 
40Ar/39Ar thermal release method.

Major oxide analyses in table 4 were obtained by X-ray 
fluorescence techniques in the analytical laboratories of the 
U.S. Geological Survey (USGS) in Denver, Colo.; analytical 
methods, accuracy, and precision are described by Taggart 
and others (1987). Trace-element content (table 4) was 
determined by energy-dispersive X-ray spectroscopy (Elsass 
and duBray, 1982) using 109Cd and 241Am sources; accuracy 
and precision of these analyses are described by Sawyer and 
Sargent (1989). Major-oxide and trace-element analyses in 
table 2 were obtained by combined INAA (instrumental neu­ 
tron activation analysis) and ICP (inductively coupled 
plasma mass spectrometry) methods. 1 Description of analyt­ 
ical techniques is available upon request. Microprobe analy­ 
ses (table 5) and beam scans (fig. 3) were performed on a 
JEOL 8900 electron microprobe at USGS laboratories in 
Denver, Colo. Boron analyses (table 6) were obtained by de- 
arc emission spectrometry in the analytical laboratories of 
the USGS in Menlo Park, Calif. This method is described by 
Golightly and others (1987).

1 Analyses performed by ACTLABS, 11485 W. 1-70 Frontage Road 
N., Wheat Ridge, CO 80033.
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Table 5. Electron microprobe analyses of adularized sanidine from potassium-metasomatized sample 91 Bl from Ragged Ridge, Granl 
Range, Nevada.

[See figure 3. Sample location coordinates shown in table 4. Analyses shown below in weight percent]

Element

Na-,0
Si02
FeO
A12O3
MgO
K2O
CaO
TiO2

Adularized sanidine 
(yellow-red 

on figure 35")

0.09
65.23

0.0
18.34
0.0

16.72
0.0
0.0

0.98
64.76

0.27
17.99
0.0

14.84
0.20
0.01

0.13
65.16

0.04
18.18
0.0

16.40
0.0
0.0

Average of 8 
adularia analyses 

(Deer, Howie, and
Zussman, 1971)

1.29
64.53

0.25
18.99
0.11

14.50
0.22
0.0

Sanidine 
(yellow-blue 
on figure 35)

2.93
66.00

0.06
18.83
0.0

12.36
0.13
0.01

2.99
65.75

0.06
18.68
0.0

12.37
0.14
0.01

Average of 7 
sanidine analyses 

(Deer, Howie, and
Zussman, 1971)

3.7
64.86
tr

19.19
tr

10.6
0.6
tr

40Ar/39Ar AGE SPECTRUM DATA- 
SAMPLE PREPARATION AND 

ANALYTICAL METHODS

Feldspar and biotite separates from metasomatized vol­ 
canic rocks at Ragged Ridge and unaltered rocks at Stone 
Cabin Ridge were obtained from 4-5 kg of crushed and 
sieved rock sample using magnetic, heavy-liquid, and hand- 
picking (biotite) techniques. After repeated, dilute heavy-liq­ 
uid treatment to remove plagioclase and quartz from the 
potassium feldspar concentrates, the potassium feldspar con­ 
centrate was analyzed on a Philips PW 1840 X-ray diffracto- 
meter in USGS laboratories in Denver, Colo., to determine 
structural state and contamination. Interpretation of X-ray 
diffraction peaks indicated that the potassium feldspar con­ 
centrate from Ragged Ridge contained inseparable adularia 
and sanidine as adularized sanidine (micrometer-sized adu­ 
laria incipiently replacing sanidine) and minor quartz. Dif­ 
fraction peaks indicated that the potassium feldspar 
concentrate from Stone Cabin Ridge contained only sani­ 
dine. Samples from the Arizona localities received similar 
laboratory preparation and XRD identification in order to 
obtain and identify a feldspar (adularized plagioclase) con­ 
centrate for analysis.

In studies of timing of hydrothermal activity in the 
Bodie mining district, California, Silberman and Chester- 
man (1988) used K-Ar analyses of centimeter-sized adu­ 
laria. However, the micrometer sized adularia common to 
metasomatized volcanic rocks at the Socorro anomaly 
(Chapin and Lindley, 1986), and at detachment faults else­ 
where, is difficult to separate due to the alteration of 
groundmass and feldspars.

Mineral separates were analyzed using the 40Ar/39Ar 
age spectrum technique, a variant of the conventional 
K/Ar method. Age spectrum diagrams for samples ana­ 
lyzed in this study are shown in figures 4 and 5, and 
abbreviated 40Ar/39Ar data and production ratios are 
listed in tables 7 and 8, respectively. A summary of the 
dates is given in table 9.

Table 6. Low-level boron analyses of upper-plate volcanic rocks 
from detachment faults at the Grant Range. Nevada, and Picacho 
Peak, Harcuvar Mountains, and Trigo Mountains, Arizona.

[Determined by X-ray spectroscopy T. Fries, analyst, USGS, Menlo Park, Calif. 
v, vitrophyre; K, potassium metasomatized]

Location

Grant Range, Nevada
Ragged Ridge

Stone Cabin Ridge

Picacho Peak, Arizona
Harcuvar Mountains, Arizona

Trigo Mountains, Arizona

Sample no.

91B1 K
91B2K
91B3V
91B4
PP-2K

HM-1 K
E-191BV
E-191DK

TG-8K

B (ppm) 1

37
44
28
16
57
26
28
16
12

boron average 5 ppm (mafic) to 10 ppm (silicic) 
(Turekian and Wedepohl, 1961).

A mineral separate of unknown age and a mineral stan­ 
dard of known age were irradiated at the USGS TRIGA reac­ 
tor in Denver, Colo., following techniques described by 
Dalrymple and others (1981) to produce 39Ar from 39K by 
neutron bombardment. After irradiation, the 40ArRacii0genic/ 
39Arpotass j um ratios of sample and standard were determined. 
Standard techniques were employed to produce 40Ar/39Ar 
spectra as described by Shubat and Snee (1992), Snee 
(1982), and Snee and others (1988).

The isotopic composition of argon was measured at the 
USGS in Denver, Colo., using a MAP215 series rare-gas 
mass spectrometer made by Mass Analyzer Products Lim­ 
ited. Abundances of five argon isotopes (40Ar, 39Ar, 38 Ar, 
37Ar. and 36Ar) were measured in each sample. Argon was 
released from the samples in 6-18 temperature steps; abbre­ 
viated results are listed in table 7. Radiogenic 40Ar (40ArR) 
is total 40Ar derived from natural radioactive decay of 40K 
after all corrections from non-decay-derived 40Ar, including
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Figure 4. 40Ar/39Ar age spectrum diagrams from the Grant Range, east-central Nevada. Definition of 39Ar^ is discussed in the text.

Figure 3 (facing page). A, Electron microprobe photomicro­ 
graph of adularized and cracked sanidine from 91B1, Ragged 
Ridge locality (sample coordinates are shown in table 4). Sani­ 
dine composition (12.36-12.37 weight percent K2O and 2.93-2.99 
weight percent Na2O) is indicated by dark background, and adu- 
laria composition (14.8-16.72 weight percent K2O and 0.09-0.98 
weight percent Na2O) is indicated by light zone along crack near 
horizontal cross hair. Analyses are given in table 5. 5, Electron 
microprobe beam scan of same area shown in A showing potassi­ 
um sites. Adularized sanidine zone (along crack) is yellow-red 
and has high K2O and low Na2O. Sanidine composition is indi­ 
cated by the yellow-blue zone, which has normal K2O and Na2O 
content. Analyses are given in table 5.
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atmospheric 40Ar and 40K-derived 40Ar, have been made. 
K-derived 39Ar ( 39ArK ) is total 39Ar derived from the epi- 
thermal neutron-induced reaction 39K(n,p)39Ar after correc­ 
tions for non-39 K-derived 39Ar, including 42Ca-derived 
39Ar, are made. F is the quantity resulting from the division 
of radiogenic 40Ar by the amount of K-derived 39Ar. Quan­ 
tities for radiogenic 40Ar and K-derived 39Ar are given in 
volts of signal measured on a Faraday detector by a digital 
voltmeter. These quantities can be converted to moles, using 
the mass spectrometer sensitivity at time of measurement of 
9.736xlO~ 13 moles argon per volt of signal. The detection 
limit for argon at the time of this experiment was 2xlO~ 17 
moles. The measured 40Ar/39Ar ratio used for mass discrim­ 
ination correction is 299.5.

Samples were irradiated in multiple irradiation pack­ 
ages for times ranging from 20 to 100 hours at 1 megawatt in 
the USGS TRIGA reactor in Denver. The J-value for each 
sample was determined from adjacent standards; errors in 
the calculated J-value were determined experimentally by 
calculating the reproducibility of multiple monitors. Correc­ 
tions for the irradiation-produced, interfering isotopes of 
argon were made by measuring production ratios for the 
interfering isotopes of argon produced in pure K2SO4 and 
Cap2 irradiated simultaneously with the samples of this 
study. Those production ratios, as determined from four 
measurements of each salt, are given in table 8.

Corrections were made for additional interfering iso­ 
topes of argon produced from irradiation of chlorine using 
the method described by Roddick (1983). Measured quanti­ 
ties of 37Ar and 39Ar were corrected for radioactive decay, 
and the 39Ar/37Ar ratios were corrected for this decay as well 
as for interfering argon isotopes. By multiplying the 39Ar/ 
37Ar ratios by 0.5, the relative approximate K/Ca distribu­ 
tion of the samples may be obtained. Error estimates for 
apparent ages of individual temperature steps were assigned 
by using the equations of Dalrymple and others (1981); how­ 
ever, the equations were modified to allow the option of 
choosing the larger of separately derived errors in the F- 
value either a calculated error or an experimental error 
determined from the reproducibility of identical samples. 
Age plateaus were determined by comparing contiguous gas 
fractions using the critical test of Dalrymple and Lanphere 
(1969), and the error was determined using the equations of 
Dalrymple and others (1981).

INTERPRETATION OF 
GRANT RANGE 40Ar/39Ar DATA

Age spectra for the feldspar and biotite separates from 
the ash-flow tuff of the Windous Butte Formation are sum­ 
marized in figure 4 and table 7. Biotite spectra from Ragged 
Ridge (potassium metasomatized) and Stone Cabin Ridge 
(unaltered) are slightly disturbed, and dates range from 
31.68±0.01 Ma to 31.47+0.1 Ma. These dates are comparable
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Figure 5. 40Ar/39Ar age spectrum diagrams from Picacho Peak, 
Harcuvar Mountains, and Trigo Mountains, Arizona. Definition of 

r^ is discussed in the text.
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to the regional age of 31.4-31.2 Ma (40Ar/39Ar method, A. 
Deino, Human Origins Lab, oral commun., 1993). Biotite 
dates from Ragged Ridge (31.5±0.1 Ma, 31.5±0.1 Ma) and 
Stone Cabin Ridge (31.7±0.1 Ma, 31.5±0.1 Ma) are all 
slightly disturbed, but plateau, or preferred, dates are concor­ 
dant and indicate that temperatures associated with potassium 
metasomatism did not exceed 280°C, Some argon loss is indi­ 
cated. Age-spectra and locality references for each of the sam­ 
ples analyzed by the 40Ar/39Ar thermal release method from 
the Grant Range, Nevada, and Arizona localities are compiled 
in table 7.

Sanidine spectra from Stone Cabin Ridge are not dis­ 
turbed and have plateau dates of 31.3±0.1 and 31.2±0.1 Ma 
and are comparable with the regional age of 31.4-31.2 Ma 
(40Ar/39Ar method, A. Deino, Human Origins Lab, oral 
commun., 1993). Spectra for adularized sanidine from 
Ragged Ridge show apparent argon loss with stairstep pat­ 
terns that indicate growth of adularia as late as -20 Ma. The 
disturbed spectra from adularized sanidine from Ragged 
Ridge indicate that potassium metasomatism occurred some­ 
time after 31 Ma and continued until -20 Ma. This alteration 
is interpreted to be related to detachment and associated cir­ 
culation of potassium-rich fluids.

This time period, 31 to 20 Ma, brackets detachment 
faulting in the Grant Range. It is significant that this is also 
the same time frame during which a thermal event affected 
the Cretaceous Troy Granite, which has a Rb/Sr isochron of 
70.2 Ma (Fryxell, 1984) in the southern Grant Range. Biotite 
and muscovite from this Cretaceous pluton gave reset early 
Miocene K-Ar ages of 22.5 Ma and 24.7 Ma, respectively 
(Armstrong, 1970).

ADULARIZED SANIDINE

The difficulties of separating micrometer-sized adularia 
for dating and the knowledge that sanidine and plagioclase 
had been incipiently altered to adularia required use of the 
electron microprobe in order to determine the effect of this 
alteration on mineral chemistry. By using a beam scan, sites 
with excess potassium were defined. Lindley and others 
(1983) showed that metasomatic feldspar (adularia) has a 
composition of 90-100 percent orthoclase (Or) and a struc­ 
tural state approximating orthoclase, which is anomalous as 
a primary mineral in volcanic rocks.

For our study, several feldspar phenocrysts were ana­ 
lyzed on the microprobe, all of which had sanidine composi­ 
tion. However, one grain showed a crack and a subtle shade 
of dark gray along the crack (fig. 3A). Subsequent analysis of 
the dark- and light-gray zones showed distinctive adularia 
(dark gray) and sanidine compositions (light gray) (fig. 3A 
and table 5). A beam scan of the same area for potassium 
showed the potassium concentration to be higher along the 
crack (indicative of adularia composition) than away from 
the crack (sanidine composition). A beam scan for sodium

showed the sodium concentration to be lower along the crack 
(indicative of adularia composition) and higher away from 
the crack (sanidine composition).

The adularia is present in metasomatized rocks as 
micrometer-sized crystals (Chapin and Lindley, 1986) in the 
groundmass and as incipient alteration of feldspar. Because 
the sanidine grain is not jacketed by adularia, which would 
be indicated by step-like exterior-to-interior-of-grain adular- 
ization, we infer that the potassium-rich zone along the crack 
indicates preferential movement of potassium-rich fluids 
along a preexisting microfracture in the mineral grain.

CONCLUSIONS FROM 
THE GRANT RANGE STUDY

Listed below are conclusions that resulted from this 
study of the potassium metasomatized Windous Butte For­ 
mation in the Grant Range. These conclusions are significant 
to interpretation of dates from detachments in Arizona and 
will be referred to, by number, in the later discussion of Ari­ 
zona localities.

1. Potassium metasomatism, for which evidence was 
considered to be sparse in the northern Basin and 
Range (Glazner and Bartley, 1990), is now docu­ 
mented in the Grant Range (Brooks and others, 1994; 
this study) and elsewhere (Brooks and others, 1995a, 
1995b; Brooks, Thorman, Snee, and others, 1995) in 
the northern Basin and Range.

2. Biotite dates are unaffected by potassium metasoma­ 
tism 4 km from the detachment zone near Ragged 
Ridge. Therefore, temperatures of the hydrothermal 
fluids, 4 km from the surface trace of the detachment 
zone, were less than 280°C, the resetting tempera­ 
ture of biotite.

3. Sanidine dates from metasomatized rock near the 
detachment at Ragged Ridge are disturbed. The 
hydrothermal fluids that contributed excess potas­ 
sium to the Ragged Ridge rocks moved along a 
detachment that was opened sometime after 31 Ma 
(age of the Windous Butte) and was closed to those 
fluids at about 20 Ma.

4. Biotite dates from the Cretaceous Troy Granite, 
southern Grant Range, are reset to 23-25 Ma. Paral­ 
lel resetting of this lower-plate Cretaceous granite 
and Oligocene volcanic rocks, in the upper plate, to 
late Oligocene-early Miocene indicates that the ther­ 
mal regime associated with mylonitization and the 
migration of hydrothermal fluids was sufficient 
enough at depth during the late Oligocene-early 
Miocene to reset biotite (>280°C) and muscovite in 
the Cretaceous Troy Granite (Armstrong, 1970). The 
potassium-rich hydrothermal fluids rose, cooled 
somewhat, but were still hot enough to reset and alter 
the sanidine in permeable upper-plate Oligocene vol­ 
canic rocks near the detachment at Ragged Ridge. 
Temperatures associated with mylonitization might 
range from 300°-700°C (Naruk, 1984).
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Table 7. Abbreviated 40Ar/39Ar age-spectrum data for volcanic rocks from the upper plate of detachment faults in the Grant Range, 
Nevada, and Picacho Peak, Harcuvar Mountains, and Trigo Mountains, Arizona.

[See text for explanation of ArR, Ar^, and F. Leaders (--) indicate quantity not calculated ( Ar below dectection limit)]

T> 40 * ^0 * ^0 /37 40 < ^Qtemperature, ATR ^K F Ar/ Ar ATR Arj^ Apparent age 
_____(°C)_______________________________________________(percent)_____(percent)_____and error (Ma)___

RAGGED RIDGE,

___________________________________GRANT RANGE, NEVADA___________________________________ 
Sample 91B1/62/DD37; potassium-metasomatized Windous Butte Formation; 50.7 mg biotite; measured ^Ar/^Ar = 298.9; plateau 
date = 31.53±0.08 Ma; J-value = 0.00781±0.1 percent (1 a); lat 38°41'23"N., long 115°26'21"W.

600 0.44038 0.27969 1.575 28.91 42.3 3.7 22.05±0.16
700 0.73951 0.35597 2.077 20.16 46.7 4.7 29.03±0.09
750 1.19876 0.52979 2.263 70.58 79.8 7.1 31.60±0.13
800 1.90434 0.84282 2.259 68.60 88.4 11.2 31.56±0.06
850 2.06510 0.91010 2.269 159.76 91.7 12.1 31.69±0.07
900 1.93042 0.85494 2.258 100.04 89.1 11.4 31.54±0.07
950 1.51533 0.66904 2.265 44.61 84.6 8.9 31.63±0.15

1,000 1.77537 0.78561 2.260 88.32 80.6 10.5 31.56±0.05
1,050 2.42733 1.08034 2.247 53.34 79.3 14.4 31.38±0.05
1,100 1.82916 0.81312 2.250 19.70 78.4 10.8 31.42±0.06
1,300 0.88147 0.39311 2.242 12.45 77.3 5.2 31.32±0.11

TOTAL GAS 2.223 31.06±0.08

Sample 91B1/63/DD37; potassium-metasomatized Windous Butte Formation; 57.8 mg adularized sanidine; measured ^Ar/^Ar = 
298.9, preferred date = 29.81±0.05 Ma; J-value = 0.007687±0.1 percent (1 a); lat 38°41'23"N., long 115°26'21"W.

2.5 0.1 6.38±5.54
54.7 1.4 19.54±0.31
86.4 2.7 20.36±0.05
89.4 3.4 22.35±0.12
68.3 3.2 24.18±0.09
85.2 2.7 25.33±0.17
91.5 2.7 26.41±0.19
94.4 3.2 28.10±0.11
93.8 3.8 28.54±0.20
94.2 4.1 29.37±0.14
95.2 6.6 29.43±0.07
95.6 8.5 29.47±0.07
95.8 9.5 29.61±0.07
95.4 12.6 29.82±0.05
93.4 17.2 29.81±0.05
91.4 14.8 29.38±0.05
81.0 2.5 28.34±0.19
79.0 1.1 29.24±0.21

28.46±0.10

Sample 91B2/65/DD37; potassium-metasomatized Windous Butte Formation; 56.4 mg biotite; measured ^Ar/^Ar = 298.9; plateau
date = 31.57±0.07 Ma; J-value = 0.007825±0.1 percent (1 a); lat 38°41'23"N., long 115°26'25"W.

41.8 5.6 23.11±0.15
58.0 8.1 29.99±0.05
82.6 14.8 31.58±0.05
88.3 12.0 31.57±0.07
91.1 14.0 31.57±0.08
89.9 10.1 31.56±0.08
82.2 7.4 31.47±0.07
78.7 7.1 31.40±0.07
82.0 9.2 31.29±0.07
80.8 7.2 31.14±0.10
80.4 4.0 31.24±0.11
62.5 0.5 32.45±0.79

30.89±0.08

450
500
550
600
650
700
750
800
850
900
950

1,000
1,050
1,100
1,150
1,200
1,250
1,400

TOTAL GAS

0.00271
0.22043
0.45421
0.63684
0.63560
0.56274
0.58293
0.74352
0.90320
1.00881
1.60938
2.09067
2.32708
3.13352
4.26258
3.61250
0.59186
0.27842

0.00587
0.15559
0.30765
0.39266
0.36206
0.30598
0.30382
0.36409
0.43536
0.47253
0.75210
0.97562
1.08102
1.44521
1.96648
1.69106
0.28735
0.13098

0.461
1.417
1.476
1.622
1.755
1.839
1.919
2.042
2.075
2.135
2.140
2.143
2.153
2.168
2.168
2.136
2.060
2.126

2.069

25.91
 
39.60
26.25
 
25.92
109.67
 
 
69.77
77.98
98.39

136.67
66.73
141.00
211.80
44.10
15.91

600
700
750
800
850
900
950

1,000
1,050
1,100
1,150
1,300

TOTAL GAS

0.77343
1.45779
2.81130
2.26853
2.64267
1.91054
1.39486
1.33743
1.73083
1.33653
0.75150
0.10178

0.46947
0.68043
1.24584
1.00583
1.17118
0.84717
0.62018
0.59609
0.77400
0.60066
0.33662
0.04388

1.647
2.142
2.257
2.256
2.256
2.255
2.249
2.244
2.236
2.225
2.232
2.320

2.207

36.71
56.87
97.38

167.13
 

195.39
73.93
78.37
55.36
17.43
8.91
4.41
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Table 7. Abbreviated 40Ar/39Ar age-spectrum data for volcanic rocks from the upper plate of detachment faults in the Grant Range, 
Nevada, and Picacho Peak, Harcuvar Mountains, and Trigo Mountains, Arizona Continued.

Temperature, ^ATR 39Ai"K F 39Ar/37Ar 4°ArR 39Arjc Apparent age 

_____(°C) (percent)_____(percent)_____and error (Ma)
Sample 91B2/72/DD37; potassium-metasomatized Windous Butte Formation; 69.6 mg adularized sanidine; measured 40Ar/36Ar = 
298.9; preferred date = 25.22±0.06 Ma; J-value = 0.007792±0.1 percent (1 a); lat 38°41'23"N., long 115°26'25"W.

650
750
800
850
900
950

1,000
1,100
1,200
1,300
1,400

TOTAL GAS

1.43579
3.10552
1.35437
0.75949
0.53851
0.60390
0.66278
2.02647
3.54389
2.48629
0.10871

1.01356
1.91115
0.79309
0.42671
0.29613
0.31827
0.34490
1.02676
1.73457
1.27482
0.06203

1.417
1.625
1.708
1.780
1.819
1.897
1.922
1.974
2.043
1.950
1.753

1.807

166.18
175.16
223.34
188.06
227.55
167.32
219.53
182.81
181.13
186.52
66.06

86.9
92.5
96.3
96.3
93.9
95.0
95.4
96.6
95.9
94.8
79.2

11.0
20.8

8.6
4.6
3.2
3.5
3.7

11.2
18.8
13.9
0.7

19.80±0.03
22.70±0.04
23.85±0.06
24.85±0.14
25.38±0.14
26.48±0.07
26.81±0.09
27.53±0.04
28.49±0.06
27.21±0.04
24.47±0.77

25.22±0.06

STONE CABIN RIDGE, 
GRANT RANGE, NEVADA

Sample 91B3/64/DD37; Windous Butte Formation; 54.8 mg biotite; measured 40Ar/36Ar = 298.9; plateau date = 31.70±0.07 Ma; J- 
value = 0.007821±0.1 percent (1 a); lat 38°39'54"N., long 115°21'13"W.

600 0.04982 0.02671 1.865 11.36 13.9 0.3 26.12±2.57
700 0.53263 0.22544 2.363 18.08 37.3 2.7 33.03±0.11
750 1.47713 0.64620 2.286 43.89 78.2 7.6 31.97±0.08
800 2.31769 1.02646 2.258 79.12 89.8 12.1 31.58±0.07
850 1.97175 0.87527 2.253 64.19 92.3 10.3 31.51±0.05
900 2.14499 0.95137 2.255 57.17 91.5 11.2 31.53±0.09
950 2.46710 1.07949 2.285 11.86 87.6 12.7 31.96±0.06

1,000 3.07340 1.35733 2.264 30.55 79.1 16.0 31.67±0.05
1,050 3.44321 1.51827 2.268 39.47 73.6 17.9 31.72±0.05
1,100 1.38257 0.60967 2.268 13.05 77.8 7.2 31.72±0.12
1,300 0.37554 0.16638 2.257 3.69 79.4 2.0 31.57±0.23

TOTAL GAS 2.268 31.71±0.08

Sample 91B3/71/DD37; Windous Butte Formation; 65.8 mg sanidine; measured 40Ar/36Ar - 298.9; plateau date = 31.31±0.05 Ma; J-
value = 0.007775±0.1 percent (1 a); lat 38°39'54"N., long 115°21'13"W.

43.8 1.8 28.15±0.22
91.6 4.7 30.91±0.15
96.7 11.8 31.36±0.08
97.9 9.5 31.59±0.05
98.2 11.7 31.29±0.05
98.3 15.2 31.33±0.05
98.4 17.5 31.26±0.05
98.5 17.1 31.35±0.05
97.9 7.0 31.43±0.07
96.4 2.5 31.53±0.15
90.3 1.1 31.75±0.12

31.28±0.06

700
800
900
950

1,000
1,050
1,100
1,150
1,200
1,250
1,400

TOTAL GAS

0.46627
1.30936
3.34175
2.70743
3.29465
4.28674
4.92618
4.84085
1.97691
0.70446
0.32332

0.23048
0.58904
1.48151
1.19143
1.46407
1.90274
2.19139
2.14713
0.87449
0.31063
0.14159

2.023
2.223
2.256
2.272
2.250
2.253
2.248
2.255
2.261
2.268
2.283

2.250

14.08
37.71
42.68
26.82
62.53

148.70
102.08
90.58
68.81
32.66

19386.07
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Table 7. Abbreviated 40Ar/39Ar age-spectrum data for volcanic rocks from the upper plate of detachment faults in the Grant Range, 
Nevada, and Picacho Peak, Harcuvar Mountains, and Trigo Mountains, Arizona   Continued.

Temperature, 40ArR 39ArK F 39Ar/37Ar
(°C)

4°ArR

(percent)

Sample 91B4/63/DD37; Windous Butte Formation; 56.5 mg biotite; measured 40Ar/36Ar = 298.
value = 0.007815±0.1 percent (1 a); lat 38°39'55"N., long 115°21'0"W.

600 0.53754 0.25577 2.102 17.23
700 0.88183 0.41496 2.125 12.30
750 1.05621 0.46700 2.262 27.60
800 1.90004 0.87785 2.275 79.31
850 2.63622 1.16567 2.262 42.88
900 2.23572 0.98929 2.260
950 1.43974 0.63905 2.253 39.85

1,000 0.97410 0.43206 2.255 31.83
1,050 1.37826 0.61268 2.250 22.32
1,100 1.54470 0.68845 2.244 12.71
1,300 1.78155 0.79068 2.253 10.97

TOTAL GAS 2.245

52.5
65.0
89.4
94.1
96.5
96.6
92.6
86.6
85.1
84.4
87.3

Sample 91B4/69/DD37; Windous Butte Formation; 66 mg sanidine; measured 40Ar/36Ar = 298.
value = 0.007766±0.1 percent (1 a); lat 38°39'55"N., long 115°21'0"W.

500 0.02736 0.01276 2.145
600 0.06070 0.02835 2.141
700 0.22217 0.09964 2.230
800 0.50963 0.22929 2.223 12.15
900 0.91368 0.40771 2.241 14.76
950 1.06648 0.47452 2.247

1,000 1.30884 0.58137 2.251 30.28
1,050 1.53061 0.68170 2.245 49.75
1,100 1.81365 0.80667 2.248 45.48
1,150 2.89460 1.28960 2.245
1,200 1.99318 0.88679 2.248 40.49
1,250 0.40892 0.18187 2.248 8.40
1,450 0.35240 0.14882 2.388 0.45

TOTAL GAS 2.248

21.0
64.6
34.4
91.2
94.1
95.7
97.2
97.3
97.2
96.8
96.3
92.1
97.1

39ArK

(percent)

,9; plateau date =

3.5
5.7
6.4

12.0
15.9
13.5
8.7
5.9
8.4
9.4

10.8

,9; plateau date =

0.2
0.5
1.7
3.9
7.0
8.1

10.0
11.7
13.8
22.1
15.2
3.1
2.6

Apparent age
and error (Ma)

31.51±0.07Ma;J-

29.39±0.28
29.71±0.07
31.61±0.16
31.79±0.09
31.61±0.07
31.58±0.07
31.49±0.05
31.51±0.14
31.44±0.05
31.36±0.07
31.49±0.05

31.37±0.08

31.21±0.10Ma;J-

29.80±4.30
29.75±1.60
30.97±0.69
30.87±0.21
31.13±0.11
31.22±0.13
31.27±0.12
31.19±0.14
31.23±0.09
31.18±0.05
31.22±0.05
31.23±0.45
32.87±0.35

31.22±0.14

PICACHO PEAK, ARIZONA

Sample PP-2/42/DD13; potassium-metasomatized andesite; 136.2 mg adularized plagioclase; measured ^Ar/36^
date = 22.26±0.10 Ma; J-value = 0.007524±0.25 percent (1 a); lat 32°39'53"N.,

400 0.13982 0.09002 1.553 9095.67
500 0.28441 0.16657 1.707
600 1.53336 0.93440 1.641
650 1.29348 0.78590 1.646
700 3.64654 2.20744 1.652
750 2.83129 1.70814 1.658
800 2.09397 1.27242 1.646
850 1.71430 1.03682 1.653
900 0.88056 0.53039 1.660
950 1.16209 0.70893 1.639

1,000 1.27171 0.76662 1.659
1,050 1.50092 0.91167 1.646
1,100 1.92686 1.16858 1.649
1,150 3.11582 1.88844 1.650
1,200 1.53890 0.90997 1.691
1,250 0.15316 0.07422 2.064 3021.76
1,450 0.07752 0.02797 2.772 1143.43

TOTAL GAS 1.657

r = 298.9; preferred
longlll°23'24"W.

5.5
25.2
76.4
88.5
90.5
95.2
93.9
92.9
91.0
88.2
87.6
86.1
81.8
71.2
64.8
65.4
64.7

0.6
1.1
6.2
5.2

14.5
11.2
8.4
6.8
3.5
4.7
5.0
6.0
7.7

12.4
6.0
0.5
0.2

20.96±0.52
23.03±0.30
22.14±0.08
22.20±0.11
22.28±0.06
22.36±0.08
22.20±0.08
22.30±0.06
22.40±0.29
22.11±0.08
22.38±0.10
22.21±0.07
22.24±0.08
22.26±0.06
22.81±0.07
27.79±1.09
37.24±1.71

22.35±0.09
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Table 7. Abbreviated 40Ar/39Ar age-spectrum data for volcanic rocks from the upper plate of detachment faults in the Grant Range, 
Nevada, and Picacho Peak, Harcuvar Mountains, and Trigo Mountains, Arizona Continued.

Temperature, 40ArR 39ArK F 39Ar/37Ar 40ArR 39ArK Apparent age 

_____(°C)_____ _______ __ __ (percent) (percent) and error (Ma)___
Sample PP-9/37/DD13; dacite; 64.6 mg biotite; measured ^Ar/^Ar = 298.9; preferred date = 22.19±0.12 Ma; J-value =
0.007462±0.25 percent (1 a); lat 32°32'57"N., long 111°27'53"W.

500 0.01390 0.01009 1.377 551.63 2.1 0.2 18.44±0.79 
600 0.03401 0.03579 0.950 - 13.4 0.7 12.75±1.62
700
750
800
850
900
950

1,000
1,050
1,100
1,250

TOTAL GAS

0.15643
0.22180
0.67592
0.68370
1.04850
1.26258
0.61484
0.85563
1.05661
1.35655

0.11560
0.13886
0.40353
0.40633
0.62288
0.75331
0.37353
0.51424
0.64038
0.81332

1.353
1.597 31220.12
1.675
1.683
1.683
1.676
1.646
1.664
1.650
1.668

1.653

27.9
47.1
71.3
83.4
86.1
85.8
77.7
76.8
79.0
81.4

2.4
2.9
8.4
8.4

12.9
15.6
7.7

10.7
13.3
16.8

18.12±0.50
21.38±0.41
22.41±0.14
22.51±0.20
22.52±0.11
22.42±0.09
22.02±0.22
22.26±0.08
22.08±0.09
22.3H0.08

22.12±0.15

HARCUVAR MOUNTAINS, ARIZONA

Sample HM-1/41/DD13; potassium-metasomatized ash-flow tuff; 86.2 mg adularia; measured 40Ar/36Ar = 298.9; (no plateau) total 
gas date = 15.98±0.08 Ma; J-value = 0.007482±0.25 percent (1 a); lat 34°04'44"N., long 113°14'39"W.

500
700
750
800
850
900

1,000
1,050
1,100
1,200
1,450

TOTAL GAS

0.14146
0.97816
0.40599
0.26355
0.26045
0.32729
0.38714
0.44891
0.64052
3.63211
5.46525

0.09619
0.85044
0.35245
0.23266
0.22377
0.28869
0.33734
0.39953
0.55343
3.03100
4.50706

1.471
1.150
1.152
1.133
1.164
1.134
1.148
1.124
1.157
1.198
1.213

1.190

3252.26
 
 
 
 
 
 
 
 
-
-

10.6
34.5
51.1
51.2
54.5
55.4
64.3
67.7
68.0
50.5
40.3

0.9
7.6
3.1
2.1
2.0
2.6
3.0
3.6
4.9

27.0
40.2

Sample E-191D/38/DD13; potassium-metasomatized ash-flow tuff; 45.8 mg biotite; measured 40Ar/36Ar = 298,
24.29±0.20 Ma; J-value = 0.007473±0.25 percent (1

500
600
650
700
750
800
850
900
950

1,000
1,050
1,150
1,300

TOTAL GAS

0.03796
0.07078
0.06517
0.06797
0.16404
0.21386
0.35225
0.33721
0.35930
0.41758
0.83776
2.09008
0.68164

0.03416
0.05440
0.05004
0.05077
0.09622
0.11972
0.19723
0.18604
0.19835
0.22942
0.45721
1.15681
0.36924

a); lat 34
1.111
1.301
1.302
1.339
1.705
1.786
1.786
1.813
1.812
1.820
1.832
1.807
1.846

1.780

°01'40"N.,long
 
 

2879.79
2219.44

 
24724.77

 
 
 
 
 
~
-

;113°07'50"W.
3.4

19.8
25.2
21.5
34.8
54.8
67.9
65.6
59.0
67.9
80.7
84.9
79.3

1.1
1.7
1.6
1.6
3.0
3.7
6.2
5.8
6.2
7.2

14.3
36.2
11.5

19.74±0.52
15.46±0.07
15.48±0.19
15.23±0.18
15.64±0.26
15.24±0.22
15.42±0.15
15.10±0.14
15.55±0.16
16.10±0.06
16.29±0.05

15.98±0.08

,9; plateau date =

14.92±1.75
17.46±0.46
17.47±0.92
17.96±1.42
22.84±0.54
23.92±0.52
23.92±0.27
24.27±0.31
24.26±0.30
24.37±0.19
24.53±0.10
24.19±0.08
24.72±0.17

23.84±0.24
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Table 7. Abbreviated 40Ar/39Ar age-spectrum data for volcanic rocks from the upper plate of detachment faults in the Grant Range, 
Nevada, and Picacho Peak, Harcuvar Mountains, and Trigo Mountains, Arizona Continued.

Temperature, 40ArR 39ArK F 39Ar/37Ar "^AfR 39ArK Apparent age 
_____(°C)________________________________________________(percent)_____(percent)_____and error (Ma) 
Sample E-191D/40/DD13; potassium-metasomatized ash-flow tuff; 64.6 mg adularized plagioclase; measured 40Ar/36Ar = 298.9; 
plateau date = 22.06±0.12 Ma; J-value = 0.007515±0.25 percent (1 a); lat 34°01'40"N., long 113°07'50"W.

600 0.08924 0.07144 1.249 - 25.5 2.1 16.86±0.96
700 0.24587 0.20064 1.225 14406.51 34.3 5.9 16.54±0.20
750 0.25461 0.21945 1.160 11846.66 30.4 6.5 15.66±0.21
800 0.30008 0.20104 1.493 174648.08 55.2 6.0 20.12±0.34
850 0.30395 0.18161 1.674 - 69.9 5.4 22.55±0.42
900 0.28863 0.17120 1.686 56704.03 71.7 5.1 22.71±0.34
950 0.39459 0.22955 1.719 528585.96 74.1 6.8 23.16±0.27

1,000 0.37341 0.21825 1.711 2902.80 72.5 6.5 23.05±0.40
1,050 0.52139 0.30718 1.697 85524.14 73.9 9.1 22.87±0.11
1,100 0.55186 0.33800 1.633 - 76.0 10.0 22.00±0.15
1,150 1.43298 0.87430 1.639 - 68.1 25.9 22.08±0.09
1,200 0.36431 0.21510 1.694 - 55.4 6.4 22.82±0.34
1,250 0.12734 0.07402 1.720 1691.16 40.3 2.2 23.17±0.71
1,300 0.04776 0.02554 1.870 1048.04 29.4 0.8 25.18±3.07
1,350 0.05295 0.02597 2.039 - 37.3 0.8 27.44±2.01
1,450 0.05760 0.02093 2.752 2888.10 50.5 0.6 36.93±2.14

TOTAL GAS 1.602 21.59±0.28

Sample E-191B/36/DD13; ash-flow tuff vitrophyre; 43.6 mg biotite; measured 40Ar/36Ar = 299.6; plateau date - 24.02±0.20 Ma; J- 
value = 0.007425±0.25 percent (1 a); lat 34°00'56"N., long 113°06'55"W.

500 0.01587 0.01819 0.872 - 5.4 0.5 11.64±3.62
600 0.01313 0.01564 0.840 - 8.3 0.5 11.21±4.41
700 0.02718 0.01708 1.591 736.67 11.7 0.5 21.19±3.24
750 0.06091 0.03447 1.767 - 21.3 1.0 23.52±1.12
800 0.11774 0.06278 1.875 10090.38 60.1 1.9 24.95±0.69
850 0.28257 0.15775 1.791 - 76.6 4.7 23.84±0.51
900 0.28481 0.15697 1.814 14600.85 80.6 4.7 24.14±0.28
950 0.82579 0.45632 1.810 - 84.9 13.6 24.08±0.11

1,000 1.01218 0.55843 1.813 - 84.6 16.7 24.12±0.09
1,050 1.05034 0.58082 1.808 - 82.3 17.4 24.06±0.12
1,100 1.25013 0.69534 1.798 - 81.4 20.8 23.92±0.11
1,150 0.79491 0.44175 1.799 -- 79.9 13.2 23.94±0.15
1,300 0.30529 0.15208 2.007 12055.71 75.4 4.5 26.69±0.33

TOTAL GAS 1.805 24.01±0.26

Sample E-210/35/DD13; dacite; 70.7 mg biotite; measured 40Ar/36Ar = 298.9; plateau date = 21.72±0.13 Ma; J-value =
0.007477±0.25 percent (1 a); lat 34°13'39"N., long 113° 10'48"W.

5.5 0.5 11.41±4.05
9.9 1.3 7.73±0.91

29.7 2.8 15.52±0.33
39.6 3.8 18.96±0.23
66.3 6.2 21.17±0.09
79.3 10.5 21.80±0.14
83.8 11.8 22.17±0.10
84.6 15.6 21.75±0.17
83.4 15.5 21.77±0.15
86.1 14.8 21.65±0.13
79.9 16.0 21.5U0.13
42.0 1.1 18.59±0.52

21.17±0.21

500
600
700
750
800
850
900
950

1,000
1,050
1,250
1,450

TOTAL GAS

0.02199
0.04146
0.18122
0.30166
0.54833
0.94890
1.08934
1.40794
1.40286
1.33292
1.43141
0.08560

0.02591
0.07215
0.15681
0.21345
0.34727
0.58355
0.65877
0.86778
0.86403
0.82564
0.89220
0.06180

0.849
0.575
1.156
1.413
1.579
1.626
1.654
1.622
1.624
1.614
1.604
1.385

1.579

1077.34
3027.37

 
8046.79

15527.20
 
 
-
 
 
 

914.34



CONCLUSIONS FROM THE GRANT RANGE STUDY 17

Table 7. Abbreviated 40Ar/39Ar age-spectrum data for volcanic rocks from the upper plate of detachment faults in the Grant Range, 
Nevada, and Picacho Peak, Harcuvar Mountains, and Trigo Mountains, Arizona Continued.

Temperature, Ar ArR 39ArK 39Ar/37Ar

(percent) (percent)
Apparent age 

and error (Ma)

TRIGO MOUNTAINS, ARIZONA

Sample TG-8/39/DD13; potassium-metasomatized ash-flow tuff; 60.5 mg biotite; measured "^Ar/^Ar = 298.9; plateau date = 
23.01±0.10 Ma; J-value = 0.007535±0.25 percent (1 a); lat 33°02'15"N., long 114°30'40"W.

750
1,025
1,125
1,175
1,250
1,450

TOTAL GAS

0.17077
2.14488
4.35601
1.00778
0.19108
0.08422

0.11285
1.25936
2.55881
0.58955
0.11582
0.05433

1.513
1.703
1.702
1.709
1.650
1.550

1.696

24359.07
 
 
 

6816.02
3168.34

28.0
81.0
80.7
78.9
56.5
47.5

2.4
26.8
54.6
12.6
2.5
1.2

20.45±0.55
23.00±0.09
22.99±0.07
23.09±0.15
22.29±0.60
20.95±1.81

22.91±0.13

Table 8. Production ratios for interfering isotopes of argon produced during irradiation.

[DD13 and DD37 indicate reactor run numbers]

(36Ar/37Ar)Ca

DD13 2.69x10^ 
DD37 2.80x10^ 
Approximate 

errors ±0.01x10^

(39Ar/37Ar)Ca

7.08x10^ 
6.94x10^

±0.03x10^

(38Ar/37Ar)Ca

2.90xlO-5 

3.67xlO-5

±0.18xlO-5

(4°Ar/39Ark

8.76xlO-3 

8.99xlO-3

±0.4xlO-3

(37Ar/39Ar)K

1.39xl(T* 
1.49X10"4

±0.6x10^

(38Ar/39Ar)K

1.30xlO-2 

1.31xlO-2

±0.01 xlO~2

Table 9. Summary of 40Ar/39Ar age spectrum data for volcanic rocks from the Grant Range, 
Nevada, and Picacho Peak, Harcuvar Mountains, and Trigo Mountains, Arizona.

[aft, ash-flow tuff; and, andesite; dac, dacite; bio, biotite; san, sanidine; ad, adularia; ad-san, adularized sanidine; ad-plag, adular- 
ized plagioclase. Tp, plateau date. Tpf, preferred date for disturbed spectrum. Np, no plateau. v, vitrophyre; K, potassium meta- 
somatized. All analyses performed at U.S. Geological Survey, Denver. Chemical analyses available in tables 1 and 2; published 
ages for Arizona localities are in table 4]

Sample 
no.

Rock Mineral Apparent age (Ma) Character of 
and error (1 CT) spectrum

Windows Butte Formation, Ragged Ridge, Grant Range, Nevada
91B1 K 

91B2K

aft 

aft

bio 3 1 .53±0.08 Tp; 91.5% of total 39ArK 
ad-san 29.81±0.05 Tpf; 29.8% of total 39ArK 
bio 31.57+0.07 Tp; 85.8% of total 39ArK 
ad-san 25.22+0.6 Tpf; 30.0% of total 39ArK

Windows Butte Formation, Stone Cabin Ridge, Grant Range, Nevada
91B3V 

91B4

aft 

aft

bio 3 1 .70+0.07 Tp; 87.4% of total 39ArK 
san 31.31+0.5 Tp; 61. 5% of total 39ArK 
bio 31. 5 1+0.07 Tp; 72. 5% of total 39ArK 
san 31.21+0.10 Tp; 81.0% of total 39ArK

Picacho Peak, Arizona

PP-2 
PP-9

and 
dac

ad-plag 22.26±0. 10 Tpf; 91.6% of total 39ArK 
bio 22. 19±0. 12 Tpf; 93.8% of total 39ArK

Harcuvar Mountains, Arizona
HM-1 K 
£-1910*

E-191BV 

E-210

aft 
aft

aft 
dac

ad 15.98±0.08 Np 
bio 24.29±0.2 Tp; 69.6%oftotal 39ArK 
ad-plag 22.06±0.12 Tpf; 35.9%oftotal 39ArK 
bio 24.02±0.2 Tp; 91.0% of total 39ArK 
bio 2 1 .72+0. 1 3 Tp; 90.5% of total 39ArK

Trigo Mountains, Arizona
TG-8K aft bio 23.01+0.10 Tp; 94.0% of total 39ArK
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INTERPRETATION OF 40Ar/39Ar DATA
FROM THREE DETACHMENTS

IN ARIZONA

Interpretation of K-Ar and fission-track dates from 
potassium-metasomatized rocks along detachment faults in 
Arizona was problematic because of the known effects of 
added potassium and elevated temperatures (Armstrong, 
1970; Martin and others, 1981). Also, absolute dating of vol- 
canism at localities in Arizona by K-Ar or 40Ar/39Ar meth­ 
ods is hindered by the absence of unaltered correlative rock. 
Therefore, conclusions from the Grant Range study can be 
applied to the interpretation of these dates. Feldspar descrip­ 
tions below are based on petrography and X-ray diffraction 
analysis of the separate.

PICACHO PEAK

On the basis of >11 weight percent K^O content of the 
andesites at Picacho Peak, alteration was suspected (fig. 6, 
table 1), but Shafiqullah and others (1976) nonetheless con­ 
cluded that the analyses were indicative of primary alkalic 
composition. They interpreted the uniformity of hornblende 
(22.2 Ma) and whole-rock dates (22.3 Ma) to preclude alter­ 
ation of the rocks at a time significantly later than eruption.

In contrast, we interpret the uncomplicated spectrum of 
adularia from PP-2 (figs. 5, 6) to indicate introduction of 
adularia and pervasive hydrothermal replacement of plagio- 
clase by adularia during detachment (Rehrig and Reynolds, 
1980). On the basis of conclusion number 3 from the Grant 
Range study and proximity (1-2 km) of this sample (PP-2) 
to the surface trace of the detachment fault, we interpret our 
date of 22.26 Ma as the time when the detachment was 
finally closed to circulation of hydrothermal fluids. Because 
correlative, unaltered samples of the andesite at Picacho 
Peak are not known, volcanism cannot be directly dated, but 
it is inferred to be older than 22 Ma. Duration of detachment 
cannot be bracketed.

The spectrum from biotite (PP-9) from a dacite dome in 
the Samaniego Hills, 8 km south of Picacho Peak (fig. 6), 
gave an uncomplicated date of 22.19 Ma (fig. 5). Due to ero­ 
sion and faulting, the dacite has an unknown structural and 
stratigraphic relationship to the andesite and the date of 
22.19 Ma only confirms local early Miocene dacitic volcan­ 
ism in the area.

HARCUVAR MOUNTAINS

Potassium metasomatism of an unnamed ash-flow tuff, 
first dated at 17.3 Ma (Scarborough and Wilt, 1979) and later 
at 18.3-23.9 Ma (table 3; see also Brooks and Marvin, 1985), 
was initially recognized in the Harcuvar Mountains, Arizona

(fig. 2), by Brooks (1984, 1988). Mapping and subdivision 
of the volcanic units in the eastern Harcuvar Mountains was 
done by Reynolds and Spencer (1984), and further studies by 
Roddy and others (1988) described detachment, associated 
mineralization, and the thermal regime (>300°C) during 
detachment.

We interpret the uncomplicated spectrum from adularia 
from pervasively potassium metasomatized (K2O:Na2O = 
38, table 1) ash-flow tuff sample HM-1 (fig. 5) to indicate a 
minimum age of the metasomatism (15.98 Ma). And, on the 
basis of conclusion number 3 from the Grant Range work, 
we infer that this adularia date indicates the end of detach­ 
ment-related metasomatism and closure of the hydrothermal 
system in the Harcuvar Mountains. This sample was 
obtained <3 m above the surface trace of the detachment 
(Brooks, 1988).

An uncomplicated spectrum from biotite from unal­ 
tered basal vitrophyre sample E191B (fig. 5), collected 
approximately 10 km southeast of the detachment, indicates 
the age of the base of the ash-flow tuff to be 24.02 Ma. Inter­ 
pretation of this date as the age of eruption of the ash-flow 
tuff is supported by lack of potassium metasomatism of this 
sample (table 1) and distance (10 km) from the Harcuvar 
detachment. This is corroborated by Grant Range conclusion 
number 2. Therefore, detachment in the Harcuvar Mountains 
is interpreted to have taken place after emplacement of the 
ash-flow tuff (24 Ma) and terminated at -16 Ma, the mini­ 
mum age of the adularia introduced during detachment.

Biotite and adularized plagioclase from potassium- 
metasomatized sample E191D (12 weight percent K2O, 
table 1), which is stratigraphically higher than E191B, pro­ 
vide more information about detachment in the Harcuvar 
Mountains. The biotite separate gave a date of 24.29 Ma (fig. 
5, table 7) with no plateau somewhat older than the 24.02 
Ma date from the vitrophyre. This supports the interpretation 
that the date of 24 Ma is reliable as the age of the unit. This 
interpretation is also supported by conclusion number 2 of 
the Grant Range study. The adularia spectrum from sample 
E191D (fig. 5), however, is disturbed and has a rough plateau 
date of 22.06 Ma. Thus, we interpret that incipient adulariza- 
tion of the plagioclase began sometime after 24.29 Ma and 
continued until 16-18 Ma. Metasomatism of the volcanic 
units above the vitrophyre indicates a more permeable nature 
of the non-vitrophyric units.

The spectrum from biotite from sample E210, from an 
unaltered dacite flow 16 km northeast of the detachment, 
gave a plateau date of 21.72 Ma (fig. 5, table 7). The distance 
of this outcrop from the detachment and lack of alteration 
(conclusion 2 from the Grant Range) indicates that this date 
is reliable as the age of the dacite flow. This date confirms 
early Miocene volcanism in the area that was younger than 
ash-flow-producing volcanism. This flow is unaffected by 
thermal regimes that occurred during the detachment.
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Figure 6. Location map of Picacho Peak area, Arizona.

TRIGO MOUNTAINS

Detachment faulting and associated mineralization 
were identified in the Trigo Mountains of southwest Arizona 
(fig. 7) by Garner and others (1982), and volcanic rocks in 
the area were dated (K-Ar method) by Weaver (1982). Due 
to this structural setting, we suspected and confirmed potas­ 
sium metasomatism of these rocks (table 1).

A biotite separate from potassium-metasomatized ash- 
flow tuff (7.25 weight percent K2O, table 1) in the Trigo 
Mountains gave an uncomplicated spectrum with an age of 
23.01 Ma (sample TG-8, fig. 5). The K-Ar date on biotite 
from this location is 24.9 Ma (Weaver, 1982). Due to incipi­ 
ent potassium metasomatism (K2O:Na2O = 4.9, table 1), 
which resulted in marginal alteration, an adularia separate 
could not be obtained. Therefore, the 40Ar/39Ar biotite date



20 TIMING AND EFFECT OF POTASSIUM METASOMATISM ON 40Ar/39Ar AGES, GRANT RANGE, NEVADA

of 23.0 Ma indicates early Miocene ash-flow volcanism, 
refinement of a K-Ar date and, in the absence of dates from 
correlative rock, indicates that detachment-related metasom­ 
atism in the Trigo Mountains occurred after 23 Ma.

DISCUSSION OF MODELS FOR
DETACHMENT-RELATED

POTASSIUM ENRICHMENT

Although the chemical effects of potassium metasoma­ 
tism on volcanic rocks from calderas, at fossil geothermal 
sites, in lacustrine settings, and at detachments are analyti­ 
cally similar, no universal model satisfactorily explains the 
origin of the potassium-bearing fluids. Any model for detach­ 
ment-related potassium metasomatism must also explain the 
thermal phenomenon of reset dates at detachments.

Chapin and Lindley (1986) propose a basin-brine 
model to explain the excess potassium in volcanic rocks at 
the Socorro, N. Mex., potassium anomaly. Based on their 
oxygen isotope studies, they conclude that potassium meta­ 
somatism can originate from (1) equilibration with waters 
enriched in heavy oxygen at temperatures of 250°-350°C, or 
(2) reaction with meteoric waters at temperatures of 
30°-80°C. Their conclusions are based on geologic evidence 
from saline-lake environments, and they prefer a low-tem­ 
perature regime (30°-80°C) and propose application of this 
model to potassium metasomatism in the detachment setting. 
We disagree with application of this brine model to the 
detachment setting because temperatures indicated by 
Chapin and Lindley (1986) are insufficient to reset dates that 
are well documented at several detachments (Martin and oth­ 
ers, 1981; Brooks, 1986).

The structural setting of the Socorro potassium anom­ 
aly includes cauldrons, rift terrane, and early-rift clastic to 
playa deposits (Chapin and Lindley, 1986); however, it lacks 
a detachment fault. Therefore, the structural setting of the 
Socorro potassium anomaly is distinct and different than the 
structural setting of the Grant Range (Lund and Beard, 1987; 
Lund and others, 1987; Lund and others, 1991; Lund and 
Beard, 1992; Lund and others, 1993), Picacho Peak (Briscoe, 
1967; Rehrig and Reynolds, 1980), the Harcuvar Mountains 
(Reynolds and Spencer, 1984), and the Trigo Mountains 
(Weaver, 1982), where a complicated regional detachment 
was mapped.

Tuffs that have undergone potassium metasomatism 
(12-16 weight percent K^O) in the lacustrine environment 
also have elevated boron (0.58-0.97 6263) (Sheppard and 
Gude, 1965). Boron enrichment commonly takes place in 
closed basins under arid conditions (Christ, 1969; Orris, 
1992). Boron enrichment might be useful in evaluation of the 
low-temperature brine model as applied to potassium-meta- 
somatized volcanic rocks of the Grant Range. Therefore, 
metasomatized rocks from Ragged Ridge and unaltered

rocks from Stone Cabin Ridge were analyzed for boron. 
Potassium-metasomatized ash-flow tuff of the Windous 
Butte Formation at Ragged Ridge has boron content that is 
higher (37^44 ppm) than unmetasomatized rock at Stone 
Cabin Ridge (16-28 ppm) (table 6). However, the somewhat 
elevated boron content, which might be interpreted to sup­ 
port the Chapin and Lindley (1986) brine model, can also be 
explained by (1) direct addition of boron, which is common 
in hydrothermal fluids (CRC Handbook of Chemistry and 
Physics, 1985), or (2) boron that is admixed from the upper 
meteoric reservoir (Kerrich and Rehrig, 1987) as the hydro- 
thermal fluids moved up the detachment pathway and inter­ 
sected a closed lacustrine basin.

Evidence for hydrothermal alteration, with a meteoric 
component, of upper-plate volcanic rocks at detachments is 
compelling. At Picacho Peak, Kerrich and Rehrig (1987) 
and Kerrich (1988) use oxygen isotopes and concluded that 
two fluid reservoirs were involved in alteration of the lower- 
and upper-plate rocks. Their studies show an upward transi­ 
tion from high to low temperatures and from ductile creep to 
brittle fracturing. They also describe hydraulic breccias and 
an interface of deep fluids with a shallow surface reservoir. 
The brine model of Chapin and Lindley (1986) does not 
account for those features nor does it explain the Miocene 
thermal regime that reset the Cretaceous Troy Granite and 
the Oligocene Windous Butte Formation in the Grant Range 
to late Oligocene or early Miocene ages. Because the biotite 
from the granite was reset, we infer that temperatures at 
depth must have exceeded 280°C (the resetting temperature 
of biotite). The 31-Ma ash-flow tuff of the Windous Butte 
Formation at Ragged Ridge has sanidine that was adularized 
from 31-20 Ma by fluids that were cooler than 280°C 
(biotite dates from adularized Ragged Ridge samples were 
not reset). This parallel resetting can be accomplished by a 
circulating, upward-cooling, hydrothermal system, but not 
by a low-temperature (30°-80°C) lacustrine brine system.

A regional hydrothermal model (Bartley and Glazner, 
1985; Glazner and Bartley, 1989) best explains detachment- 
related potassium metasomatism at locations in the Mojave 
Desert, California, and provides a mechanism for reset K-Ar 
(Martin and others, 1980), fission-track (Brooks, 1986), and 
40Ar/39Ar dates (this study). Such a system also provides an 
appropriate means of transferring Au, As, Zr, and other types 
of mineralization (Brooks, 1985; Rehrig and Kerrich, 1986), 
such as argentiferous galena and sphalerite (Naruk, 1984). 
The hydrothermal model does not imply a pluton beneath 
each detachment.

The brine model of Chapin and Lindley (1986), which 
conflicts with the hydrothermal model, is not valid in the 
Mojave, California, study areas because (1) lacustrine sedi­ 
mentary rocks of the proper age are missing, and (2) the brine 
model does not account for upward-terminating, jasper-filled 
breccia zones that served as conduits for the potassium-rich 
fluids (Glazner and Bartley, 1989). Similarly, temperatures 
of the brine model (30°-80°C) of Chapin and Lindley (1986)
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Figure 7. Location map of Trigo Mountains area, Arizona.

are inadequate to explain the well-documented and 
widespread reset biotite K-Ar dates at detachments. Temper­ 
atures in excess of 280°C are needed. However, resetting of 
dates would occur in response to the estimated 300°-700°C 
temperatures of mylonitization at the Swansea and Copper 
Penny, Arizona, detachments (Naruk, 1984).

Further support of a hydrothermal model is based on 
fluid-inclusion studies by Beane and others (1986) on min­ 
eralized detachments. Their work indicates homogeniza- 
tion temperatures of 150°-225°C and 200°-325°C for two 
mineral assemblages; these temperatures are hotter than 
temperatures used in definition of the brine model. Simi­ 
larly, for the Harcuvar Mountains and the Picacho Peak 
localities, Rehrig and Kerrich (1986) cite geochemical and

oxygen-isotopic evidence that indicates a magmatic- 
metamorphic signature for fluids responsible for the meta- 
somatic alteration with temperatures of 300°-350°C. Simi­ 
larly, ore mineralogy and fluid-inclusion studies support a 
primary hydrothermal source for the mineralizing event at 
the detachement-related Bannock propect in California 
(Saunders, 1996).

At the Harcuvar Mountains detachment, hydrothermal 
evidence also includes the presence of psilomelane, a 
potassium-rich type of manganese generally derived from 
thermal waters from depth (Hewett and others, 1963); this 
mineral is reported at the Harris claims near the detachment 
(Farnham and Stewart, 1958; Keith and others, 1983). This 
implies middle Tertiary (Keith and others, 1983)
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hydrothermal mineralization coeval with potassium-rich 
hydrothermal fluids that caused potassium metasomatism.

A fossil geothermal system is the mechanism for alkali 
(potassium) metasomatism of the Wah Wah Springs tuff in 
southwestern Utah (Nusbaum and Grant, 1987). Oxygen 
isotope and chemical studies show that metasomatism at 
Creede resulted from interaction of the intracaldera tuffs 
with deeply circulating ground water that resulted in alter­ 
ation of phenocrystic and groundmass feldspars to more Or- 
rich compositions (Bethke and others, 1985).

Fluid-inclusion studies of a currently active meteoric- 
hydrothermal system in the Grant Canyon and Bacon Flat oil 
fields, west of the Grant Range, indicate homogenization 
temperatures of 117°C and 121°C, respectively (Hulen and 
others, 1991, 1994). On the basis of comparison with other 
geothermal systems in the Basin and Range, these workers 
conclude that the Grant Canyon-Bacon Flat system is prob­ 
ably no older than 2.5 Ma.

CONCLUSIONS

Evidence for potassium metasomatism in the northern 
Basin and Range is now documented in the Grant Range. 
Our work shows that 40Ar/39Ar dates on biotite from potas- 
sium-metasomatized Windous Butte Formation at Ragged 
Ridge, 4 km from the surface trace of the detachment in the 
Grant Range, are concordant with regional Windous Butte 
Formation dates. Biotite dates from metasomatized rocks at 
this distance or greater are insensitive to the thermal effects 
of metasomatism and are, therefore, reliable indicators of the 
age of volcanism. The temperatures of hydrothermal fluids 
that contributed excess potassium (as adularia) did not 
exceed the resetting temperature of biotite (280°C). How­ 
ever, independent evidence (Armstrong, 1970) of reset-to- 
Miocene ages from the Cretaceous Troy granite suggests that 
these temperatures were greater at depth.

Effects of potassium metasomatism on feldspars range 
from incipient to pervasive. At Ragged Ridge, northern 
Grant Range, the sanidine dates from metasomatized rock 
near the detachment are disturbed, and XRD studies show 
that the sanidine has been adularized. Adularization took 
place in response to detachment-related potassium metaso­ 
matism some time after 31 Ma (the age of the Windous 
Butte Formation) and terminated at about 20 Ma. We infer 
that the detachment fault zone that contributed the potas­ 
sium-rich fluids was closed to circulation in the early 
Miocene (20 Ma). Our chemical and geochronological 
studies of correlative potassium-metasomatized and unal­ 
tered rocks in the Grant Range are fundamental to compar­ 
ative study of the effects of metasomatism on potassium- 
dependent dating methods. Application of conclusions from 
this study permits more accurate understanding of isotopic 
dating of metasomatism and metasomatized rocks else­ 
where in the Basin and Range.
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