Circular 1375
AbstractThe U.S. Geological Survey Forecast Mekong project is providing technical assistance and information to aid management decisions and build science capacity of institutions in the Mekong River Basin. A component of this effort is to produce a synthesis of the effects of dams and other engineering structures on large-river hydrology, sediment transport, geomorphology, ecology, water quality, and deltaic systems. The Mississippi River Basin (MRB) of the United States was used as the backdrop and context for this synthesis because it is a continental scale river system with a total annual water discharge proportional to the Mekong River, has been highly engineered over the past two centuries, and the effects of engineering have been widely studied and documented by scientists and engineers. The MRB is controlled and regulated by dams and river-engineering structures. These modifications have resulted in multiple benefits including navigation, flood control, hydropower, bank stabilization, and recreation. Dams and other river-engineering structures in the MRB have afforded the United States substantial socioeconomic benefits; however, these benefits also have transformed the hydrologic, sediment transport, geomorphic, water-quality, and ecologic characteristics of the river and its delta. Large dams on the middle Missouri River have substantially reduced the magnitude of peak floods, increased base discharges, and reduced the overall variability of intraannual discharges. The extensive system of levees and wing dikes throughout the MRB, although providing protection from intermediate magnitude floods, have reduced overall channel capacity and increased flood stage by up to 4 meters for higher magnitude floods. Prior to major river engineering, the estimated average annual sediment yield of the Mississippi River Basin was approximately 400 million metric tons. The construction of large main-channel reservoirs on the Missouri and Arkansas Rivers, sedimentation in dike fields, and protection of channel banks by revetments throughout the basin, have reduced the overall sediment yield of the MRB by more than 60 percent. The primary alterations to channel morphology by dams and other engineering projects have been (1) channel simplification and reduced dynamism; (2) lowering of channel-bed elevation; and (3) disconnection of the river channel from the flood plain, except during extreme flood events. Freshwater discharge from the Mississippi River and its associated sediment and nutrient loads strongly influence the physical and biological components in the northern Gulf of Mexico. Ninety percent of the nitrogen load reaching the Gulf of Mexico is from nonpoint sources with about 60 percent coming from fertilizer and mineralized soil nitrogen. Much of the phosphorus is from animal manure from pasture and rangelands followed by fertilizer applied to corn and soybeans. Increased nutrient enrichment in the northern Gulf of Mexico has resulted in the degradation of water quality as more phytoplankton grow, which increases turbidity and depletes oxygen in the lower depths creating what is known as the “dead zone.” In 2002, the dead zone was 22,000 square kilometers (km2), an area similar to the size of the State of Massachusetts. Changes in the flow regime from engineered structures have had direct and indirect effects on the fish communities. The navigation pools in the upper Mississippi River have aged, and these overwintering habitats, which were created when the pools filled, have declined as sedimentation reduces water depth. Reproduction of paddlefish may have been adversely affected by dams, which impede access to suitable spawning habitats. Fishes that inhabit swift-current habitats in the unimpounded lower Mississippi River have not declined as much as in the upper Mississippi River. The decline of the pallid sturgeon may be attributable to channelization of the Missouri River above St. Louis, Missouri. The Missouri River supports a rich fish community and remains relatively intact. Nevertheless, the widespread and long history of human intervention in river discharge has contributed to the declines of about 25 percent of the species. The Mississippi River Delta Plain is built from six delta complexes composed of a massive area of coastal wetlands that support the largest commercial fishery in the conterminous United States. Since the early 20th century, approximately 4,900 km2 of coastal lands have been lost in Louisiana. One of the primary mechanisms of wetland loss on the Plaquemines-Balize complex is believed to be the disconnection of the river distributary network from the delta plain by the massive system of levees on the delta top, which prevent overbank flooding and replenishment of the delta top by sediment and nutrient deliveries. Efforts by Federal and State agencies to conserve and restore the Mississippi River Delta Plain began over three decades ago and have accelerated over the past decade. Regardless of these efforts, however, land losses are expected to continue because the reduced upstream sediment supplies are not sufficient to keep up with the projected depositional space being created by the combined forces of delta plain subsidence and global sea-level rise. |
First posted June 6, 2012 For additional information contact: Part or all of this report is presented in Portable Document Format (PDF); the latest version of Adobe Reader or similar software is required to view it. Download the latest version of Adobe Reader, free of charge. |
Alexander, J.S., Wilson, R.C., and Green, W.R., 2012, A brief history and summary of the effects of river engineering and dams on the Mississippi River system and delta: U.S. Geological Survey Circular 1375, 43 p.
Abstract
Introduction
A Brief History of River Engineering in the Mississippi River Basin
A Summary of the Effects of River Engineering and Dams on the Mississippi River System and Delta
Summary
References Cited