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Table 1.—Resources of Mammoth coal, in millions of short tons

B.—Calculated according to kriging method
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Table 2.—Proximate, ultimate, and associated analyses of 11 samples of Mammoth coal, compared with Powder River Table 3.—Major- and minor-oxide and trace-element compositions of the laboratory ash of eight coal samples from the Mammoth coal,
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4These analyses are reported in Woolsey and others (1917, p. 53).
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6Derived from Swanson and others (1978, table 31B). “Powder River region” of Swanson and others is from Trumbull (1960), and is approximately equivalent to the Powder River basin.

INTRODUCTION

The Mammoth coal bed is of subbituminous A to high-volatile C
bituminous apparent rank, averaging 12.5 ft thick and underlying an area
of 85 mi?. It lies about 1,000 ft above the base of the Tongue River
Member of the Paleocene Fort Union Formation, as defined by Woolsey
and others (1917), in south-central Montana’s Bull Mountain basin (figs. 1
and 2). Part A of this Coal Investigations series includes maps showing the
outcrop, structure, cross sections, and isopachs of partings of the
Mammoth coal bed (Connor, 1988). This part, part B, contains maps
showing the geographic location of the boundaries between Mammoth
coal splits, isopachs of the splits, and the overburden thickness, and tables
showing coal resources and coal quality. The outcrop and locality map of
part A is also included here. Available data for all drill holes and most
surface localities have been entered in the NCRDS (National Coal
Resources Data System) of the U.S. Geological Survey, Reston, VA 22092,
and have been published by C. W. Connor and L. R. H. Biewick (USGS
Open-File Report 89-6).

SPLITS OF MAMMOTH COAL BED

The Mammoth coal bed is made up of three splits, separated by two
partings of fluvial origin that range from less than an inch to more than 50
ft thick. The three splits were designated in part A of this series as, from
base to top, Mammoth 1, Mammoth 2, and Mammoth 3. Mammoth 3 is
equivalent to the Rehder split of earlier authors (Woolsey and others,
1917). Where these splits join they are designated Mammoth 1+2,
Mammoth 2+3, and Mammoth 1+2+3. This is diagrammed in figure 3.
Note that geographic boundaries between the various combinations of
splits are not drawn where the splits diverge, but (for resource calculation
purposes) are drawn where the thickness of a parting exceeds the
thickness of either the overlying or underlying coal split. Data points used
in determining these boundaries, the outcrop line, and the isopachs are
shown in figure 4, and the map locations of the boundary lines and the
200- and 500-ft overburden lines are shown in figure 5.

ISOPACHS OF SPLITS

The splits of the Mammoth coal bed are isopached in figures 6A-F.
Because the splits can be identified beyond the arbitrary boundaries
described above, they are isopached as far beyond those boundaries as
they can be recognized (dotted lines). Each of these maps displays all the
data points used in constructing that particular map.

The average thicknesses of the Mammoth coal splits, to the nearest
half foot, are as follows: Mammoth 1, 5.5 ft; Mammoth 2, 3 ft; Mammoth 3,
2.5 ft; Mammoth 1+2, 9 ft; Mammoth 243, 7.5 ft; Mammoth 1+2+3,
135 ft

Two interesting features that suggest the controls on the thicknesses
might be pointed out. The uppermost split, Mammoth 3 (fig. 6C), overlies
a thick parting that has been identified as channel and overbank splay
deposits (Connor, 1988). As Mammoth 3 is thickest on the flanks of this
deposit (the two long northwest-trending areas more than 2.5 ft thick) and
thins over the top of the channel (the linear less than 2-ft-thick area
between the thicker areas), and as the configuration and position of the
thinner area closely coincides with the thickest (center) part of the
underlying channel deposit, environmental control is strongly suggested.

Structural control is suggested in two other isopach maps. Mammoth
isopachs generally trend northwest, but in the south-central part of the
region, in the southeast corner of the area of Mammoth 1+2 (fig. 6D) and
in the southern two-thirds of Mammoth 1+2+3 (fig. 6F), the trend is
northeast. This is the area that contains the thickest coal. The existence of
a growth fault is suggested, but it is equally possible that the trend change
is an artifact of data distribution.

COAL RESOURCES

The Mammoth coal is commonly oxidized on outcrop, but roadcut
exposures of this and other coals in the Bull Mountains give evidence that
oxidation has generally progressed only a few tens of feet to a hundred
feet or so from the surface. Because coal loss due to oxidation is probably
minor, it is not taken into consideration in resource estimates.

Resources reported in table 1A were calculated according to
guidelines in U.S. Geological Survey Circular 891, “Coal resource
classification system of the U.S. Geological Survey” (Wood and others,
1983). According to that currently standard USGS method, “measured”

resources lie within a radius of 1/4 mi from a data point, “indicated”
resources lie between 1/4 and 3/4 mi from a data point, “inferred”
resources lie between 3/4 and 3 mi from a data point, and “hypothetical”
resources lie beyond 3 mi from a data point. Although these categories
suggest different degrees of certainty in reported values, that certainty
cannot be quantified.

By way of contrast, in the kriging method of resource analysis (well
described in Mousset-Jones, 1980), tonnage estimates can have confidence
limits attached at any desired confidence level—a very desirable attribute.
Resources for the Mammoth coal bed have already been reported using
that statistical method (Pierce and others, 1983). The estimates according
to the kriging method are included here (table 1B) but in a different format
than in the original publication, for convenience in comparison with the
standard USGS results.

Tonnages based on the two resource estimation methods are for the
most part similar (last column, tables 1A and 1B). The totals for Mammoth
1, Mammoth 2, Mammoth 1+2, and Mammoth 14243, as well as the
grand total for the Mammoth, are within 2-5 percent of each other. The
Mammoth 2+3 totals are within 11 percent. The Mammoth 3 totals differ
by 32 percent, for some unknown reason. Comments in the rest of this
section refer only to the standard USGS estimates in table 1A.

Coal tonnages are reported by split and location in categories
according to qualitative degree of certainty, thickness, and overburden.
Thickness categories (net coal, partings excluded) are 2.5-5 ft, >5-10 ft,
and >10-20 ft. Coal less than 2.5 ft thick is excluded. Overburden
categories are 0-200 ft, >200-500 ft, and >500 ft. The coal weight used
in the calculations was 1,770 short tons per acre-foot.

Total tonnage for the Mammoth coal bed is estimated at 1.1 billion
short tons. Total “measured” resources are 361 million short tons,
“indicated” resources are 551 million short tons, and “inferred” resources
are 183 million short tons. Tonnages by split and split combinations are, in
millions of short tons: Mammoth 1, 121; Mammoth 2, 30.8; Mammoth 3,
46.2; Mammoth 1+2, 434; Mammoth 2+3, 108; and Mammoth 1+2+3,
357. Tonnages by thickness categories are: 2.5-5 ft, 142 million short
tons; >5-10 ft, 491 million short tons; and >10-20 ft, 462 million short
tons.

Tonnages by overburden category require some explanation. The
overburden lines (fig. 5) were drawn relative to the top of the whole
Mammoth package (that is, from the top of Mammoth 3, Mammoth 2+3,
and Mammoth 1+2+3; see diagram, fig. 3), so resource estimates
tabulated by overburden category are best for those splits. There is
somewhat more overburden above the other three splits, but this can be
ignored for Mammoth 1 and Mammoth 2 because the extra overburden
amounts to less than 20 ft over most of their areas. Mammoth 142,
however, has an extra 30-50 ft of overburden over much of its area (the
channel sandstone discussed and isopached in part A), so some of its
tabulated resources actually belong in the next thicker overburden
category. Total Mammoth resources as reported by overburden category
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Figure 1.—Location of Mammoth coal bed, south-central Montana.
Bull Mountain coal field and Powder River basin and Williston
basin boundaries drawn at K-T (Cretaceous-Tertiary) boundary.
Modified from American Association of Petroleum Geologists
(1972).

! Calculated using weighted average for each locality.

From Hatch and Swanson (1977, table 6B). “Powder River region” of Hatch and Swanson is from Trumbull (1960), and is approximately equivalent to the Powder River basin.

are: 603 million short tons under 0-200 ft of overburden, 372 million
short tons under >200-500 ft of overburden, and 120 million short tons
under >500 ft of overburden. Maximum overburden is about 800 ft, in the
central parts of the two largest 500-ft overburden closures.

The township with the greatest resources is T. 6 N, R. 27 E., with 435
million short tons. Other townships with large resources, 140-180 million
shorttons, are T.6 N, R. 28 E, T.7N,,R.26 E.,and T. 7 N., R. 27 E. The
other four townships underlain by the Mammoth coal bed each have less
than 100 million short tons.

The possibility of roof problems in mining should be considered
particularly for Mammoth 142, which is overlain by channel and splay
deposits that are in turn overlain by Mammoth 3. Horne and others (1977,
p. 89, 96-99) have demonstrated that “where splay deposits occur
directly over a minable coal, are less than 20 ft (6 m) thick, and have a rider
coal or extensively rooted zone over the top of the splay, severe roof
problems may be encountered during mining.” About half of Mammoth
1+2 meets these criteria, and that area may be delineated by overlaying
the Mammoth 1+2 map (fig. 6D) with the isopach of the channel and splay
deposits (“upper parting”) in part A of this series.
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Figure 2.—Stratigraphic position of the Mammoth coal bed and other
relatively persistent coal beds in the Bull Mountain coal field.
Modified from Woolsey and others (1917).
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COAL QUALITY

Based on analyses of 11 samples at six localities (table 2), the
Mammoth coal contains an average (arithmetic mean) of 31.8 percent
volatile matter, 7.1 percent ash, and 0.8 percent sulfur, about half of which
is pyritic and half organic. Its apparent rank is subbituminous A to high-
volatile C bituminous, as the heat of combustion on an as-received, moist,
mineral-matter-free basis ranges from 10,580 to 12,080 Btu/Ib and
averages 11,260 Btu/Ib. Vitrinite reflectance values of 0.4-0.5 percent
(Daniel, 1982) on coal samples from the same localities as the first four
localities listed on table 2 indicate the same range in apparent rank
reported here. The relationship of vitrinite reflectance to coalification
stages is discussed in Davis (1978) and summarized on table 4 of that
publication.

The Mammoth coal of the Bull Mountain basin is of higher quality
than Powder River basin coals deposited at about the same time, before
the individual basins formed. Mammoth coal is of higher apparent rank
(Powder River region coals are, on the average, subbituminous C), and the
sulfur content is about half that of the Powder River region coal (table 2,
last row). Furthermore, trace-element analyses of eight Mammoth coal
samples from four localities (tables 3 and 4), when compared with Powder
River region coal samples (last row, both tables), show that the Mammoth
samples have about half as much of the commonly considered potentially
toxic B, F, Mo, Pb, and Se. Toxicity hazards from environmental con-
centrations of these elements are discussed in Gough and others (1979).
There may be fewer such hazards with the Mammoth coal than with the
Powder River region coals. Only two elements occur in the Mammoth
samples in considerably greater concentration than in the Powder River
region (in fact, they are three to four times more abundant): Nb and Zr. The
larger amounts of these elements, probably held in the heavy minerals,
may be due to the Mammoth coal bed area having been closer to early
Tertiary sources of volcanic ash than the Powder River area. Nb and Zr are
unlikely environmental hazards.
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EXPLANATION

Outcrop—Drawn on base of Mammoth coal bed

Quadrangle identifier—Prefix for drill-hole locality and
surface locality numbers. For example, the complete
locality number for drill-hole US24 in quadrangle A4—
(Gage) is A4-US24. See “Index to Quadrangle Names.”
These complete numbers are the point identifiers
recorded in NCRDS (National Coal Resources Data
System, U.S. Geological Survey, Reston, VA 22092)

® Drill-hole locality—Data for all drill-hole localities have
been entered in NCRDS

Drill-hole locality number—Combined with quadrangle
identifier elsewhere in report to designate complete
locality number.

Locality number

US1 to US24
1to 23

C5-

83D

Date
1978, 1979

Source

U.S. Geological Survey
Burlington Northern
Railroad

Consolidation Coal
Company

1975, 1976
24 to 95
1970?

27A-Z to 94A-Z Louisiana Land and

Exploration Co. 1979, 1981

X Surface locality—Data for C. W. Connor outcrop localities
characterized as merely “ash” or “bloom” or “weathered
coal” have not been entered in NCRDS. All other surface
locality data have been entered. Note: B4—-C78 and B4—
C79 are small strip mines

C5  Surface locality number—Combined with quadrangle iden-
tifier elsewhere in report to designate complete locality
number.

Locality number

C1 to C59

Date
1978, 1979

Source
C. W. Connor field

notes

Bulletin 647 (Woolsey
and others, 1917).
Most localities re-
covered and verified
by C. W. Connor
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Figure 4.—OQutcrop and locality map, Mammoth coal bed.
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Outcrop—Drawn on base of Mammoth coal bed

——— — Split boundary—Defining areas of Mammoth coal splits used
for resource calculations. Dashed where projected
beyond outcrop. The boundary between split areas is not
where splits diverge but where a parting exceeds the
thickness of the split either above or below. See figure 3

Split designations—Showing which Mammoth coal splits

occur within each bounded area. See figure 3. Note that
some splits are included in two areas
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