Data Series 601
AbstractDuring the 21st century, sea-level rise is projected to have a wide range of effects on coastal environments, development, and infrastructure. Consequently, there has been an increased focus on developing modeling or other analytical approaches to evaluate potential impacts to inform coastal management. This report provides the data that were used to develop and evaluate the performance of a Bayesian network designed to predict long-term shoreline change due to sea-level rise. The data include local rates of relative sea-level rise, wave height, tide range, geomorphic classification, coastal slope, and shoreline-change rate compiled as part of the U.S. Geological Survey Coastal Vulnerability Index for the U.S. Atlantic coast. In this project, the Bayesian network is used to define relationships among driving forces, geologic constraints, and coastal responses. Using this information, the Bayesian network is used to make probabilistic predictions of shoreline change in response to different future sea-level-rise scenarios.
|
First posted November 2011
For additional information contact: Part or all of this report is presented in Portable Document Format (PDF); the latest version of Adobe Reader or similar software is required to view it. Download the latest version of Adobe Reader, free of charge. |
Gutierrez, B.T., Plant, N.G., and Thieler, E.R., 2011, A Bayesian network to predict vulnerability to sea-level rise: data report. U.S. Geological Survey Data Series 601, available at: https://pubs.usgs.gov/ds/601.
Abstract
Introduction
Development of the Bayesian Network
Bayesian Networks
The THK99 Dataset
Mapping Bayesian Network Predictions
Geospatial Data
Metadata
Acknowledgments
References Cited