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Abstract

The former Blaine Naval Ammunition Depot located 
immediately southeast of Hastings, Nebraska, was an ammuni-
tion facility during World War II and the Korean Conflict. 
Waste-management practices during operation and decommis-
sioning of the former Depot resulted in soil and ground-water 
contamination. Ground-water models have been used by the 
U.S. Army Corps of Engineers to provide information on the 
fate and transport of contaminants on the former Depot site. 
During September 2003, the U.S. Geological Survey, in coop-
eration with the U.S. Army Corps of Engineers, Kansas City 
District, conducted a pilot study to collect two-dimensional 
direct-current resistivity data on the site along six profiles near 
existing monitoring wells. The inversion results of field data 
from five of the six two-dimensional direct-current resistivity 
profiles display distinct electrical stratigraphy consistent with 
three resistivity units (low resistivity, high resistivity, and low 
resistivity). These three resistivity units correlate with rock-
stratigraphic or hydrogeologic units described prior to this 
study. To interpret the resistivity profiles, additional data 
extending through the lower confining unit into the underlying 
Niobrara Formation could be used with the existing data to con-
struct forward models for data analysis and interpretation.

Introduction

The Blaine Naval Ammunition Depot (referred to herein-
after as former NAD site) located immediately southeast of 
Hastings, Nebr. (fig. 1), was an active facility for loading, 
assembling, and packing ammunition during World War II and 
the Korean Conflict. Waste-management practices during the 
operation of the former NAD site and during the decommission-
ing process resulted in contamination of soil and ground water 
(U.S. Environmental Protection Agency, 2004). The former 

NAD site later became part of the Hastings Ground Water Con-
tamination Site, which was added to the U.S. Environmental 
Protection Agency’s National Priorities List in 1986. In 1987, 
the U.S. Army Corps of Engineers (USACE) began the Reme-
dial Investigation/Feasibility Study (RI/FS) of the former NAD 
site (Shaw Environmental, Inc., 2004). The RI/FS characterized 
the nature and extent of contamination at the former NAD site, 
developed and evaluated remedial action alternatives that 
addressed potential risk, and complied with regulatory require-
ments. Studies generated from the RI/FS have been used by the 
USACE to produce ground-water-flow models that provide 
information on the fate and transport of contaminants at the 
former NAD site (IT Corporation, 2002).

The reliability of any ground-water-flow model is depen-
dent, in part, on the quality and quantity of data available in a 
study area. Borehole logs, including geologist descriptions and 
geophysical data, often are used in conjunction with regional 
bedrock topology and outcrop observation to define layers in 
ground-water-flow models that reflect the scale and geometry 
of the aquifer under study (Merry and others, 2003). In hetero-
geneous aquifers, lack of subsurface data is a substantial limita-
tion to model results and one of the common sources of model 
error (Konikow and Bredehoeft, 1992).

Additional information on the aquifer system can be 
obtained by installing wells or test holes, collecting ground-
water samples for chemical analysis, examining borehole logs, 
or conducting aquifer tests, but drilling additional wells and per-
forming aquifer tests can be time-consuming and expensive. An 
alternative approach is to combine non-intrusive surface geo-
physical methods with a drilling and ground-water sampling 
program to provide additional aquifer-system information at a 
lower cost. Surface geophysical data can be used to interpret 
elevations of geologic or hydrogeologic units between wells or 
boreholes, vertical and horizontal distributions of hydrologic 
properties in the aquifer system, and vertical and horizontal 
locations of contaminant plumes (Stanton and others, 2003). 
By conducting a two-dimensional direct-current (2D–DC) 
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Figure 1. Approximate boundary of the former Blaine Naval Ammunition Depot site. 
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resistivity surface geophysical survey in an area where bore-
holes are present, resistivity data can be compared to geologic, 
hydrogeologic, or water-quality data (from boreholes) to deter-
mine if there is a relation between these units and units of resis-
tivity. Once a relation is established, 2D–DC resistivity surveys 
can be used to extend the depth, thickness, and information 
obtained from boreholes or can be used as an exploratory tool 
in areas where few or no borehole data are available. During 
September 2003, the U.S. Geological Survey (USGS), in coop-
eration with the USACE, Kansas City District, conducted a 
pilot study to collect 2D–DC resistivity data on the former NAD 
site along six profiles near existing monitoring wells. 

Purpose and Scope

The purpose of this report is to describe the methods and 
results of a 2D–DC resistivity surface geophysical survey con-
ducted in September 2003 on the former NAD site. Borehole 
resistivity data collected in selected boreholes and inversion 
results of six profiles of 2D–DC resistivity data are docu-
mented. The inversion results and the borehole geologic and 
geophysical data that were collected or used in the study were 
input into a three-dimensional (3D) database of the former 
NAD site.

Hydrogeology

The High Plains aquifer lies beneath most of the former 
NAD site and comprises the Pleistocene alluvial deposits and 

the Miocene Ogallala Formation (Keech and Dreeszen, 1968). 
The surface geophysical investigation of the former NAD site 
was conducted in two areas where the Ogallala Formation is not 
present.

The Niobrara Formation of Cretaceous-age limestone and 
chalk lies at the base of the High Plains aquifer (IT Corporation, 
2002). The Niobrara Formation is overlain by unconsolidated 
Pleistocene deposits. The lower part of the unconsolidated 
Pleistocene deposits, consisting of silt and clay, is considered to 
be the local lower confining unit at the former NAD site. Thick-
ness of the lower confining unit ranges from 0 to 150 feet. The 
upper part of the unconsolidated Pleistocene deposits is a 
sequence of sand and gravel that ranges from 200 to 300 feet in 
thickness and forms the Pleistocene alluvial aquifer, the pri-
mary source of drinking water in the Hastings area. Some areas 
of the Pleistocene alluvial aquifer on the former NAD site con-
tain layers of clay and silt. In some places these clay and silt lay-
ers are as thick as 11 feet and serve as a local confining unit 
within the Pleistocene alluvial aquifer. About 50 feet of loess 
deposits overlie the Pleistocene sand and gravel (Shaw Envi-
ronmental Inc., 2004). 

For the purposes of the ground-water-flow model, the 
subsurface beneath the former NAD site in the ground-water 
feasibility study report (IT Corporation, 2002) is divided as fol-
lows (fig. 2): unsaturated zone, Pleistocene alluvial aquifer 
(unconfined part) (model layer 1), upper confining unit (model 
layer 2), Pleistocene alluvial aquifer (semiconfined part) 
(model layers 3–6), and lower confining unit. The unsaturated 
zone is composed of surface soils, loess, sand, and gravel. The 

Figure 2. Schematic diagram showing rock stratigraphy, hydrogeologic units, monitoring well construction, ground-water-model 
layers, and electrical units (modified from IT Corporation, 2002). 
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thickness of the unsaturated zone ranges from about 95 to 115 
feet. The unconfined part of the Pleistocene alluvial aquifer 
consists of sand, and to a lesser extent, sand and gravel and 
clayey or silty sand. Saturated thickness of the unconfined part 
of the aquifer varies but typically is about 15 feet. The (local) 
upper confining unit consists of silty clay, clayey silt, and 
clayey sand. The upper confining unit can be as thick as 11 feet; 
however, the thickness and extent vary throughout the former 
NAD site. The semiconfined part of the Pleistocene alluvial 
aquifer primarily consists of sand and gravel, with thin, discon-
tinuous silty clay and clayey sand layers interbedded in the unit. 
The semiconfined part of the alluvial aquifer ranges from 140 to 
160 feet thick. The (local) lower confining unit consists of silty 
clay and clayey silt overlying bedrock, but its thickness at the 
site is unknown.

Methodology and Approach

Using surface geophysical methods to measure the physi-
cal properties of the subsurface, such as electrical conductivity 
or resistivity, dielectric permittivity, magnetic permeability, 
density, or acoustic velocity, provides a relatively quick and 
inexpensive means to characterize the subsurface (Powers and 
others, 1999). The results (measurements) can be influenced by 
chemical and physical properties of soils, rocks, and pore fluids. 
Interpretations from these measurements can be used to image 
the distribution of physical properties in the subsurface (Amer-
ican Society for Testing and Materials, 1999).

Electrical surface geophysical methods can be used to 
detect changes in the electrical properties of the subsurface. The 
electrical properties of soils and rocks are determined by water 
content, mineralogical clay content, salt content, porosity, and 
presence of metallic minerals. However, the resistivity of the 
water typically has a greater effect on bulk resistivity than the 
soil or rock type. Variations in electrical properties of soils and 
rocks, either vertically or horizontally, produce variations in the 
electrical signature measured by surface geophysical tools. 
Changes in the received signal can be related to changes in the 
composition, extent, and physical properties of the soils and 
rocks within the subsurface, to the extent that differences in 
lithology or rock type are accompanied by differences in resis-
tivity (U.S. Army Corps of Engineers, 1995). However, to 
effectively detect these differences there must be a contrast in 
the property measured; for example, the target to be detected or 
the geologic feature to be defined must have properties substan-
tially different from background conditions (American Society 
for Testing and Materials, 1999). For electrical surface geo-
physical methods to successfully detect or define a geologic 
unit, the geologic unit of interest must have properties substan-
tially different from the geologic unit immediately above or 
below it. Typically, clay and shale units are less resistive than 
sands and gravels, which in some cases can produce an electri-
cal contrast that could be detectable with electrical surface geo-
physical methods (U.S. Army Corps of Engineers, 1995).

The 2D–DC resistivity method was used to collect field 
measurements of apparent resistivity along six profiles (fig. 3) 
in two study areas (fig. 1) within the former NAD site. Apparent 
resistivity is the resistivity of a homogeneous isotropic earth 
(subsurface) that will give the same resistance value for the 
same electrode arrangement. To estimate the distribution of 
resistivity for a heterogeneous anisotropic subsurface, the 
apparent resistivity data were processed using an inverse mod-
eling software program (Loke, 2002). The results from this pro-
gram were used to generate 2D–DC profiles of the subsurface 
distribution of resistivity.

Locations for six 2D–DC resistivity profiles (fig. 3) were 
selected by USACE, Kansas City District, to collect data in dif-
ferent areas throughout the former NAD site where borehole 
data were available. Geologist descriptions of rock units, col-
lected by USACE during the RI/FS, were supplied for 22 mon-
itoring wells (fig. 3) (B.J. Roberts, U.S. Army Corps of Engi-
neers, written commun., 2003). Electromagnetic induction-
resistivity borehole geophysical logs (borehole resistivity logs) 
were collected by the USGS during September 2003 in eight of 
the 22 monitoring wells. In most wells, borehole data did not 
extend to the lower confining unit.

Borehole Geophysical Data

Monitoring wells used in this report were named by the 
USACE according to the placement of the screened interval of 
the well within its respective aquifer. BB and C designate wells 
(fig. 3) screened in the upper and lower parts, respectively, of 
the semiconfined aquifer. B designates wells (fig. 3) screened in 
the unconfined aquifer (IT Corporation, 2002). 

Borehole resistivity logs were collected by the USGS at 
eight monitoring wells with a System VI logging system (fig. 
4a) using a 9512 three-coil slim-hole induction tool supplied by 
Century Geophysical Corporation (2004). Borehole resistivity 
logs were collected along profile 1 at monitoring wells 
MW170B and MW175B, along profile 2 at monitoring wells 
MW19BB4 and MW20C, along profile 3 at monitoring wells 
MW105BB and MW155B, and along profile 4 at monitoring 
wells MW9BB and MW113BB3 (fig. 3a). Positional data (hor-
izontal and vertical) for the monitoring wells (fig. 4b) and elec-
trodes used in the surface geophysical survey were collected 
using an Ashtech Z-extreme real-time kinematic global posi-
tioning system (Thales Navigation Inc., 2004). All geologist 
descriptions and borehole geophysical logs of the boreholes 
used in this report were incorporated into Oasis montaj version 
6.2 (Geosoft, Inc., 2004) and are presented in appendix 1.

Direct-Current Resistivity Data

Resistivity surveys are made by transmitting current into 
the subsurface through two current electrodes and measuring 
the resulting voltage between two potential electrodes. The 
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Figure 3a. Two-dimensional direct-current resistivity profiles and monitoring well locations of the former NAD site at study area 1.
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Figure 3b. Two-dimensional direct-current resistivity profiles and monitoring well locations of the former NAD site at study area 2. 
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resistance, R, then is computed by dividing the measured volt-
age by the transmitted current, as described by Ohm’s law: 

 R = V/I, (1)

where I is the current applied through the current electrodes, 
and V is the potential difference or voltage measured by the 
potential electrodes. The apparent resistivity of the subsurface 
is calculated by multiplying each resistance by a geometric 
factor determined by the geometry and the spacing of the elec-
trode array (Zohdy, 1974). Deeper apparent resistivity measure-
ments can be obtained by increasing the electrode spacing. The 
DC resistivity method is described in detail by Grant and West 
(1965) and Zohdy (1974).

Resistivity data can be collected using different tech-
niques. Traditionally, individual resistivity measurements are 
made by keeping the central point of the array at the same loca-
tion and increasing the electrode spacing to obtain measure-
ments at increasing depths, a technique known as resistivity 
sounding. The central point of the array then is moved and the 
process repeated until the desired area is covered. An alternative 
to resistivity sounding is resistivity profiling, in which a large 
number of electrodes are connected to a multiconductor cable 
and controlled by an automatically switching resistivity meter. 
The resistivity meter uses an initial set of four electrodes (two 
current electrodes and two potential electrodes) to make a 
measurement, switches to another four electrodes, and then 
continues until all electrodes have been used in a sequence of 
different spacings to create a 2D section of apparent resistivity.

Using the Wenner-Schlumberger array (Zohdy, 1974), 
2D–DC resistivity data at the former NAD site were collected 
using an IRIS Syscal R1 Plus switching unit (IRIS Instruments, 
2004). Using four electrodes at a time, the unit switches among 
a combination of 11 sets of multicore cables (fig. 5c) with six 

electrodes each at 10-meter spacing to collect multiple points 
from a single layout. After the initial section of data was col-
lected, the first two cables of 12 electrodes were moved ahead 
of the survey profile. A partial section of data then was collected 
using the previous 54 electrodes (electrodes 13–66) and the 12 
electrodes (electrodes 67–78) that were just moved. This pro-
cess, known as the roll-along technique, was continued until all 
data along the desired profile length were collected. Plastic 
speed bumps were used to protect the cables when profiles 
extended over roads (fig. 5d). The data from the roll-alongs 
were combined into a single apparent resistivity dataset during 
processing. 

Inverse Modeling of Resistivity Data

Apparent resistivity, as calculated from the field measure-
ments, is the electrical resistivity of an equivalent electrically 
homogeneous isotropic subsurface and is used to represent the 
average resistivity of the heterogeneous subsurface (Loke, 
2000). To estimate the “true” subsurface resistivity, an inver-
sion program develops a 2D model consisting of rectangular 
blocks of individual resistivities. The inversion program then 
determines the calculated system response of that model, the 
calculated apparent resistivity, on the basis of the collected field 
data properties. The root mean square (RMS) difference 
between the measured and calculated apparent resistivities is 
used to determine the accuracy of the model. The inversion pro-
gram then attempts to reduce the RMS difference by altering the 
model resistivity values, and the apparent resistivity is recalcu-
lated; this alteration is known as an iteration. When the RMS 
difference between the calculated and measured apparent resis-
tivity no longer improves substantially between iterations (more 
than 1 percent between iterations), a solution is reached. This 
final model represents a non-unique estimate of the true 2D 

Figure 4. Collection of (a) borehole geophysical log at monitoring well 113BB3 and (b) positional data at monitoring well 113BB3.

(a) (b)
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Figure 5. Setup of two-dimensional direct-current resistivity equipment, (a) multicore cable connected to electrode, (b) resistivity meter 
connected to multicore cables (orange cables connected in back of unit), (c) one of 11 sets of multicore cables with 10-meter electrode 
spacing, and (d) speed bump used to protect cables where profile extends over roads.

(a)

(b)

(c)

(d)

distribution of subsurface resistivity. This inversion process is 
described in detail by Loke (2003). DC resistivity data were 
inverted using the finite-element method with the least-squares 
approximation using RES2DINV version 3.54w (Geotomo 
Software, 2005) 

Two-Dimensional Direct-Current Resistivity 
Survey Results

Resistivity data were processed and inverted, then input 
into Oasis montaj version 6.2 (Geosoft, Inc., 2004). The inver-
sion results of the resistivity data are displayed as gridded, 2D 
profiles. The same vertical and horizontal scales were used 
between all profiles, with distance from the origin of the profile 
on the x-axis and elevation above NAVD 88 on the y-axis. 
Resistivity data were gridded using the bi-directional line grid-
ding method with a 0.25-foot cell size in Oasis montaj version 
6.2 (Geosoft, Inc., 2004) and plotted as image maps ranging 
from 0 to 648 ohm-meters (appendix 2). To provide an alterna-
tive and complimentary presentation of the profiles, available 
geologist logs from monitoring wells were plotted against the 
inversion results of the 2D–DC resistivity data and referred to 
as section plots (fig. 6).

The electrical stratigraphy in five of the six section plots 
(fig. 6b–f) displays three distinct electrical units—(from land 
surface downward) unit 1, a low-resistivity zone (less than 216 
ohm-meters); unit 2, a high-resistivity unit (greater than 216 

ohm-meters); and unit 3, a low-resistivity unit (less than 216 
ohm-meters). The inversion results of the 2D–DC resistivity 
data in section plot 1 show discontinuity in unit 2, which is sep-
arated by two vertical low-resistivity (less than 216 ohm-
meters) features along the profile. Section plots 2–6 all show a 
continuous unit 2. To illustrate the three-unit electrical stratig-
raphy, the 216 ohm-meter line has been displayed in the inver-
sion results for section plots 1–6. 

Electrical unit 1 correlates with the surface soils and loess 
deposits of the upper part of the unsaturated zone (fig. 2). Elec-
trical unit 2, which is more resistive than unit 1, correlates with 
the unconsolidated sand and gravel deposits that compose the 
lower part of the unsaturated zone and the Pleistocene alluvial 
aquifer. Unit 3, which is less resistive, correlates with the clay 
and silt of the lower part of the unconsolidated Pleistocene 
deposits that compose the upper part of the lower confining 
unit. 

Geologist logs from MW20C located on profile 2 (fig. 6b) 
extend to the lower confining unit. Although the full range of 
depth of the profile does not extend to the top of the lower con-
fining unit identified in the geologist logs, the southernmost 
elevation of electrical unit 2 in profile 2 and the elevation of the 
top of the lower confining unit identified in MW20C are very 
similar. Because, in many cases, geologist logs from the exist-
ing monitoring wells did not extend to the total depth of the 
2D–DC resistivity profiles, it would be difficult to develop 
interpretations identifying the top of the lower confining unit 
along each profile with the existing data. To interpret the 
2D–DC resistivity profiles, additional data such as geologist 
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Figure 6a. Geologist log (B.J. Roberts, U.S. Army Corps of Engineers, written commun., 2003) superimposed on inversion results (true 
resistivity) of two-dimensional direct-current resistivity profile for section plot 1. 
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Figure 6b. Geologist log (B.J. Roberts, U.S. Army Corps of Engineers, written commun., 2003) superimposed on inversion results (true 
resistivity) of two-dimensional direct-current resistivity profile for section plot 2. 
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Figure 6c. Geologist log (B.J. Roberts, U.S. Army Corps of Engineers, written commun., 2003) superimposed on inversion results (true 
resistivity) of two-dimensional direct-current resistivity profile for section plot 3. 
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Figure 6d. Geologist log (B.J. Roberts, U.S. Army Corps of Engineers, written commun., 2003) superimposed on inversion results (true 
resistivity) of two-dimensional direct-current resistivity profile for section plot 4. 
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Figure 6e. Geologist log (B.J. Roberts, U.S. Army Corps of Engineers, written commun., 2003) superimposed on inversion results (true 
resistivity) of two-dimensional direct-current resistivity profile for section plot 5. 
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Figure 6f. Geologist log (B.J. Roberts, U.S. Army Corps of Engineers, written commun., 2003) superimposed on inversion results (true 
resistivity) of two-dimensional direct-current resistivity profile for section plot 6. 
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and borehole resistivity logs or other surface geophysical data 
extending beyond the lower confining unit into the Niobrara 
Formation could be used with the existing data to construct for-
ward models for data analysis and interpretation similar to the 
method identified in Kress and Teeple (2005).

The results of this pilot study have been compiled into 
Oasis montaj, which serves as a 3D database that allows the user 
to graphically display and compare the results of geologic and 
geophysical data collected at the former NAD site. The database 
for this pilot study was designed to allow input of additional 
geologic or geophysical data that could be used to determine the 
effectiveness of using 2D–DC resistivity data to extend hydro-
geologic contacts between existing or new monitoring wells. 

Summary

The former Blaine Naval Ammunition Depot (former 
NAD site) located immediately southeast of Hastings, Nebr., 
was an ammunition facility during World War II and the Korean 
Conflict. Waste-management practices during the operation and 
decommissioning process of the former NAD site resulted in 
soil and ground-water contamination. Ground-water models 
have been used by the U.S. Army Corps of Engineers (USACE) 
to provide information on the fate and transport of contaminants 
on the former NAD site.

The reliability of any ground-water-flow model depends, 
in part, on the quality and quantity of data available. In hetero-
geneous aquifers, lack of subsurface data substantially limits 
model results and is one of the common sources of model error. 
Additional information on the aquifer system can be obtained 
by installing wells or test holes, collecting ground-water sam-
ples for chemical analysis, examining borehole logs, or con-
ducting aquifer tests, but drilling additional wells and perform-
ing aquifer tests can be time-consuming and expensive. An 
alternative approach is to combine non-intrusive surface geo-
physical methods with a drilling and ground-water sampling 
program to provide additional aquifer-system information at a 
lower cost.

During September 2003, the U.S. Geological Survey, in 
cooperation with USACE, Kansas City District, conducted a 
pilot study to collect two-dimensional direct-current (2D–DC) 
resistivity data on the former NAD site along six profiles near 
existing monitoring wells. The inversion results of field data 
from five of the six 2D–DC resistivity profiles display distinct 
electrical stratigraphy consistent with three resistivity units 
(low resistivity, high resistivity, and low resistivity). These 
three resistivity units correlate with surface soils and loess 
deposits of the upper part of the unsaturated zone (unit 1), the 
unconsolidated sand and gravel deposits that compose the lower 
part of the unsaturated zone and the Pleistocene alluvial aquifer 
(unit 2), and the clay and silt of the lower part of the unconsol-
idated Pleistocene deposits that compose the upper part of the 
lower confining unit. 

To interpret the 2D–DC resistivity profiles, additional data 
such as geologist and borehole resistivity logs or other surface 
geophysical data extending through the lower confining unit 
into the underlying Niobrara Formation could be used with the 
existing data to construct forward models for data analysis and 
interpretation.
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Appendix 1—Geologist Logs1 and Borehole 
Geophysical Resistivity Logs

1 B.J. Roberts, U.S. Army Corps of Engineers, written commun., 2003.
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Figure 7a. Geologist log and borehole geophysical resistivity log for monitoring well MW9BB.
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Figure 7b. Geologist log and borehole geophysical resistivity log for monitoring well MW19BB4.
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Figure 7c. Geologist log and borehole geophysical resistivity log for monitoring well MW20C.
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Figure 7d. Geologist log and borehole geophysical resistivity log for monitoring well MW105BB.
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Figure 7e. Geologist log and borehole geophysical resistivity log for monitoring well MW113BB3.
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Figure 7f. Geologist log and borehole geophysical resistivity log for monitoring well MW155B.

MW155B
Easting
 (feet)

Northing
  (feet)

          Elevation
(feet above NAVD 88)

               Depth
(feet below land surface)

   
   

   
   

 D
E

P
TH

(fe
et

 b
el

ow
 la

nd
 s

ur
fa

ce
)        E

LE
V

A
TIO

N
(feet above N

A
V

D
 88)

 1837708.3  14728486.9  1873.6  115.0 

   20

40

60

80

100

0 50 100
150

1870

1860

1850

1840

1830

1820

1810

1800

1790

1780

1770

1760

DESCRIPTION

CLAY

SAND

RESISTIVITY (ohm-meters)

CLAY AND SILT

CLAY AND SAND



Appendix 1 25

Figure 7g. Geologist log and borehole geophysical resistivity log for monitoring well MW170B.
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Figure 7h. Geologist log and borehole geophysical resistivity log for monitoring well MW175B.
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Appendix 2—Inversion Results of Two-Dimensional 
Direct-Current Resistivity
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Figure 8a. Inversion results of two-dimensional direct-current resistivity for profile 1. 

Figure 8b. Inversion results of two-dimensional direct-current resistivity for profile 2. 
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Figure 8c. Inversion results of two-dimensional direct-current resistivity for profile 3. 

Figure 8d. Inversion results of two-dimensional direct-current resistivity for profile 4. 
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Figure 8e. Inversion results of two-dimensional direct-current resistivity for profile 5. 

Figure 8f. Inversion results of two-dimensional direct-current resistivity for profile 6. 
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