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Pliocene and younger basaltic-rock aquifers are the most
productive aquifers in the Snake River Plain. The saturated
thickness of the Pliocene and younger basaltic rocks is locally
greater than 2,500 feet in parts of the eastern Snake River Plain
but is much less in the western plain (fig. 44). Aquifers in
Miocene basaltic rocks underlie the Pliocene and younger
basaltic-rock aquifers (fig. 43), but the Miocene basaltic-rock
aquifers are used as a source of water only near the margins
of the plain. Unconsolidated-deposit aquifers are interbedded
with the basaltic-rock aquifers, especially near the boundaries
of the plain. The unconsolidated deposits consist of alluvial
material or soil that developed on basaltic rock, or both, and
were subsequently covered by another basalt flow.

The Pliocene and younger basaltic-rock aquifers consist
primarily of thin basalt flows with minor beds of basaltic ash,
cinders, and sand. The basalts were extruded as lava flows
from numerous vents and fissures which are concentrated
along faults or rift zones in the Snake River Plain. Some flows
spread outward for as much as 50 miles from the vent or fis-
sure from which the flow issued. Shield volcanoes formed
around some of the larger vents and fissures (fig. 45). Flows
that were extruded from the volcanoes formed a thick com-
plex of interbedded basalt.

Water in the Snake River Plain aquifer system occurs
mostly under unconfined (water-table) conditions. The con-
figuration of the regional water table of the aquifer system (fig.
46) generally parallels the configuration of the land surface of

the plain. The altitude of the water table is greatest in Fre-
mont County, Idaho, near the eastern border of the plain and
least in the Hells Canyon area along the Idaho–Oregon bor-
der. Where the water-table contours bend upstream as they
cross the Snake River (for example, near Twin Falls, Idaho),
the aquifer system is discharging to the river. In a general way,
the spacing between the contours reflects changes in the geo-
logic and hydrologic character of the aquifer system. Widely
spaced contours in the Eastern Plain indicate more perme-
able or thicker parts of the aquifer system, whereas closely
spaced contours in the Western Plain indicate less permeable
or thinner parts. Water levels in the areas where shallow
aquifers or perched water bodies overlie the regional aquifer
system (fig. 46) are higher than those in the aquifer system.
These areas are underlain by rocks that have extremely low
permeability.

Other basalt aquifers are the Hawaii volcanic-rock aqui-
fers, the Columbia Plateau aquifer system, the Pliocene and
younger basaltic-rock aquifers, and the Miocene basaltic-rock
aquifers. Volcanic rocks of silicic composition, volcaniclastic
rocks, and indurated sedimentary rocks compose the volca-
nic- and sedimentary-rock aquifers of Washington, Oregon,
Idaho, and Wyoming. The Northern California volcanic-rock
aquifers consist of basalt, silicic volcanic rocks, and
volcaniclastic rocks. The Southern Nevada volcanic-rock aqui-
fers consist of ash-flow tuffs, welded tuffs, and minor flows of
basalt and rhyolite.
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Figure 43. Basalt of Miocene
and younger age fills the graben-like trough
on which the Snake River Plain has formed. Low-
permeability, silica-rich volcanic rocks bound the basalt,
which is locally interbedded with unconsolidated deposits.

Figure 44. The saturated thickness of Pliocene and younger
basaltic rocks is locally greater than 2,500 feet in the eastern
Snake River Plain but is much less in the western plain.

Figure 45. Basaltic lava
that was extruded from numerous
overlapping shield volcanoes in southern
Idaho has formed a thick complex of overlapping
flows. Most flows issued from a central vent or fissure,
and some are associated with large rift zones in the Earth’s crust.

Figure 46. The regional movement of water in the Snake River
Plain aquifer system is from east to west. Much of the discharge
from the aquifer system is to the Snake River. Low-permeability
rocks underlie shallow local aquifers or perched water bodies.
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