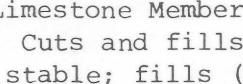
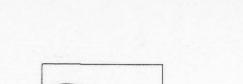


EXPLANATION


Recent landslides
Dominantly earth slumps and earth flows, characterized by uneven, hummocky ground surface and benchlike settling, usually stable in a loose, partially consolidated state, but can be reactivated by excavation, loading, and changes in ground-water and surface-water conditions. Areas shown probably include some recent non-documented landslides and other landslides not recognized during field reconnaissance.


Prehistoric landslides
Dominantly earth slumps and earth flows, characterized by uneven, hummocky ground surface and benchlike settling, usually stable in a loose, partially consolidated state, but can be reactivated by excavation, loading, and changes in ground-water and surface-water conditions. Areas shown probably include some recent non-documented landslides and other landslides not recognized during field reconnaissance.

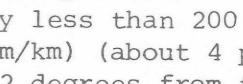
Slopes with moderate to severe susceptibility to landsliding
Chiefly areas underlain by thick redbeds and associated rocks of the Glenshaw and Casselman Formations on which landslides and crevices in thick reddish clayey soil and crevices in rock weathers rapidly on exposure; most redbeds ("Pittsburgh red beds") occur in the interval beneath the Ames Limestone Member of Glenshaw (fig. 1; fig. 2). Cut and fill slopes generally are not stable; fills (f) in these areas are patterned to show this relationship.

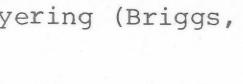
Slopes with slight to moderate, locally variable susceptibility to landsliding
Clayey soils forming cohesive slabs generally less than 5 feet (1.5 m) thick, commonly underlain by weathered claystone and shale in the Glenshaw, Casselman, or Pittsburgh Formations (fig. 1); often characterized by conspicuous slow movement of the slab that can be greatly accelerated by overloading by placement of fills or structures.

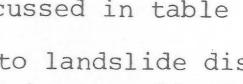

Ground with highly variable slope conditions
On the ticked side of the line, ground has been widely disturbed by earth-moving operations related to residential and commercial development and placement of fills. Considerations of thin and locally thick soil and weathered rock mantle the areas; redbeds are relatively rare. These conditions combine to prevent consistent classification of slopes. The basis of classification is relatively minor soil creep. Largely underlain by rocks of the Monongahela and lower Dunkard Groups (fig. 1; fig. 2).

Slopes most susceptible to rockfall
Bucket-shaped slopes steep, locally vertical, natural and manmade slopes and clifflike 40 feet (4.5 m) to more than 150 feet (45 m) high, exposing layers of sandstone, subindurated limestone and flaggy, sandy shale, and interbedded claystone and sandstone. Sandstone and limestone commonly are highly fractured and are undercut by relatively rapid weathering of claystones and shale.

Ground with little susceptibility to landsliding
Slopes commonly exhibit slight soil creep, but are susceptible to significant landsliding only where extensively modified by man.


Manmade fill
Heterogeneous soil and rock material with variable susceptibility to slope failure depending on nature of material, foundation conditions, design and construction of fills. Filled redbed areas commonly contain redbed rock and soil, resting on redbeds and therefore are less stable than similarly constructed fills in other areas; these fills are patterned to show this relationship. Fills in older urbanized areas and fills resulting from mining are shown only where associated with significant recent landslides. Many fills are too small to show the scale of map but are shown on open-file maps (Briggs, 1974a-k; Pomeroy, 1974a-k).


Boundaries between areas of different landslide susceptibilities
Most boundaries are gradual over tens and locally hundreds of feet, so their locations are approximate. Boundaries between areas labeled 2 and 3 are dashed as an aid to map reading.


General direction of dip of rock layering
Single-barred arrows—Layers largely dip 40 feet per mile (7.6 m/km) (about 0.8 percent of grade or 0.5 degrees from the horizontal) or less.

Double-barred arrows—Layers dip more than 40 feet per mile (7.6 m/km) but more less than 200 feet per mile (38 m/km), about 4 percent of grade or 2 degrees from the horizontal.

Slopes dipping in the same general direction but at greater angles than the dip of rock layering are somewhat more susceptible to landsliding than are slopes dipping in directions opposite to the dip of rock layering (Briggs, 1974).

Selected landslide localities discussed in table

Arrows point to landslide discussed. Locality 4 is shown by a small circle to indicate that this may have a cause other than landsliding.

MAP OF SUSCEPTIBILITY TO LANDSLIDING, ALLEGHENY COUNTY, PENNSYLVANIA

By
John S. Pomeroy and William E. Davies

1975

INTERIOR-GEOLOGICAL SURVEY, RESTON, VA. 1975-REPORTED 1980