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INTRODUCTION

The U.S. Geological Survey began a systematic study of sediment
distribution, depositional environments, and shallow structure of the
northeast Gulf of Alaska in 1974, The objective of the study was primarily to
evaluate seafloor hazards on a regional basis in preparation for possible
offshore petroleum development. The study was extended to include an
extensive sediment sampling program in 1975 when approximately 400 samples of
continental shelf sediments were collected (Carlson and others, 1977).
Systematic measurement of geotechnical properties was started in 1977 (Carlson
and others, 1978).

Detailed geologic study of seismic reflection records and sediment
samples in areas of sediment instability, although valuable for specifying the
types and extents of different past hazardous conditions, leave unanswered
questions. For example, they often do not specify causes of failures, provide
information on the safety of apparently unfailed areas, suggest whether
existing slide bodies will fail again or enlarge, or predict the implications
of certain earthquake or storm events.

The quantitative methods of geotechnology have the potential for
answering some of these questions. A vast amount of previously unpublished
geotechnical data, primarily derived from tests on core samples but
supplemented with a few in situ tests, has been accumulated on the
continental shelf between Montague Island and Cross Sound (Fig. 1). The
primary objective of this report is to make these data available with a
consistent format. A secondary objective is to provide preliminary
quantitative analyses of some of the geologic hazards.

SETTING

Geologic Setting. Glaciation is the most important process contributing
sediment to the northeast Gulf of Alaska continental shelf. In Miocene time,
glaciation was restricted to the onshore area but by early to middle
Pleistocene, a large ice sheet had spread across the continental shelf (Molnia
and Carlson,1978; Molnia and Sangrey, 1979; Carlson and others, 1982). Today
glaciers in the Gulf of Alaska region are restricted to the onshore areas
(Fig. 1). As recently as 75 years ago, however, a glacier filled Icy Bay and
extended 5 km or 6 km onto the continental shelf (Molnia, 1979).

The complex Quaternary history of the northeast Gulf of Alaska has
generated a variety of sedimentary deposits. Four major sedimentary units
(Fig. 1) are defined on the basis of seismic reflection and sedimentologic
data (Carlson and Molnia, 1975; Molnia and Carlson, 1975, 1980; Carlson and
others, 1977, Molnia and Sangrey, 1979; Molnia and Carlson, 1980). These
units are: A. Holocene glacial-marine sediment; B. Holocene end moraine
deposits; C. Quaternary glacial deposits; and D. Pleistocene and older
lithified sedimentary rocks. Holocene end moraine deposits, Quaternary
glacial-marine sediment, and Pleistocene and older lithified sedimentary rocks
are predominantly dense and hard, reflecting diagenesis or glacial ice
loading. These compacted deposits are probably not susceptible to instability
on the continental shelf (Lee and Schwab, 1982). ‘Therefore, Geotechnical
studies have been directed almost exclusively toward investigating Holocene
glacial-marine sediment.



Fine sand and clay¢ '‘¢:=ilt of the Holocene glacial-marine unit cover most
of the inner shelf, reac:i:.ng a maximum thickness of about 350 m seaward of the
Copper River, about 200 m seaward of Icy Bay (Carlson and Molnia, 1975), and
about 260 m seaward of the Alsek River. This sediment is glacially derived
from the Gulf of Alaska Tertiary province and bordering rocks of Mesozoic and
older age, then fluvially transported to the gulf as rock flour (Molnia and
Carlson, 1980). The Mesozoic and older age rocks are highly deformed, locally
metamorphosed sedimentary and volcanic rocks that are commonly intruded by
igneous plutons, whereas the Tertiary Province is a compound continental
margin basin made up almost entirely of terrigenous clastic rocks with minor
coal. For a summary of the onshore geology of the Gulf of Alaska the reader
is referred to Plafker (1971), Bruns (1979), and Bruns and Plafker (1982).

West of Kayak Island, the Copper River is_the primary source of Holocene
sediment, carrying a sediment load of 107 x 10” kg/yr (Reimnitz, 1966). East
of Kayak Island, major sediment sources are streams draining the larger ice
fields (Malaspina and Bering Glaciers) and the Alsek River. Accumulation
rates of the Holocene glacial-marine unit on the continental shelf range from
0 to 29 mm/yr (Molnia and others, 1980). Accumulation rates of Holocene
glacial-marine sediment in coastal embayments are thought to be as high as 2
to 3.75 m/yr (Molnia, 1979).

The largest deposits of sand in the Holocene glacial-marine unit occur
along the barrier islands at the mouth of the Copper River, along the
nearshore zone both adjacent to and west of the Malaspina Glacier (Carlson and
others, 1977), and along the nearshore zone between the Alsek River and
Yakutat Bay (Fig. 1). The moderately well sorted, mineralogically immature
sand (containing about equal parts of quartz and metamorphic rock fragments)
is mostly found in water depths less than 50 m indicating an environment
subject to high wave and current energy. Storm waves and longshore currents
resuspend the fine silt and clay particles or maintain them in suspension and
the Alaska Current transports them offshore and westward (Molnia and Carlson,
1980).

Large deposits of Holocene glacial-marine clayey silt occur seaward of
the Copper River and seaward of the Malaspina and Bering Glaciers (Carlson and
others, 1977). ‘The mean grain size of Gulf of Alaska Holocene glacial-marine
sediment generally decreases with distance from shore and is largely glacial
rock flour which is dominated by the silt fraction (Carlson and others, 1977).

Of fshore Geologic -Hazards. Seafloor gelogic hazards in the northeast
Gulf of Alaska are summarized by Carlson and Schwab (1982) and have been
described by Carlson and others (1975), Carlson and Molnia (1977), Molnia and
others (1977), Carlson (1978), and Carlson and others (1980). The hazards
include shallow faults, buried channels, gas-charged sediment, and submarine
slides and flows.

Active faulting is well documented using conventional geophysical
techniques (Bruns 1979; 1982; Bruns and Schwab, 1982; Carlson and Schwab,
1982). Buried channels involve sediment and sedimentary rocks that are too
deeply buried to be sampled with conventional coring equipment and therefore
have not been studied except with geophysical profiling.



Bubble phase gas charging, although present in the northeastern Gulf of
Alaska, is not widespread. Of the hydrocarbon gases, only methane is present
in concentrations that may exceed the saturation of interstitial water
(Appendix A). Anomalously high concentrations of methane suggesting the
presence of bubble phase gas in place and potentially unstable sediment, were
found in only two areas: a fault zone southeast of Kayak Island (sample
concentration of 14,000 Ul/1), and an area east of Dry Bay (sample
concentration of 32,8000 Bl/1)., Other locations had significant amounts of
methane but the amounts measured in samples were insufficient to indicate that
the sediment in situ was, indeed, charged with bubble-phase gas. No
correlation between the occurrence of seismic reflection anomalies and the
presence of gas-charged sediment is apparent, except for the sediment
southeast of Kayak Island. The sampling and analytical techniques needed to
quantitatively assess gas-charged sediment as a geologic hazard have not been
fully developed.

Geotechnical studies have been directed almost exclusively toward
investigating slides and flows in the Holocene glacial-marine sediment,
Holocene morainal sediments, Quaternary glacial-marine sediment and
Pleistocene and older lithified sedimentary rocks are predominantly dense and
hard, reflecting diagenesis or glacial ice loading. These compacted deposits
are probably not susceptible to sliding on the continental shelf. 1In
contrast, the Holocene glacial marine sediment is weak. 1In this area of
frequent earthquakes and large storm waves, the Holocene glacial marine
sediment is susceptible to slope failure under cyclic loading (Lee and Schwab,
1982).

Morphology of Submarine Slides and Flows. Numerous slides and slumps
have been identified from seismic profiles of an 8 by 100 km area seaward of
the mouth of the Copper River (Hampton and others, 1978; Carlson and Schwab,
1982) (Fig. 4). Some disrupted reflectors on a few of the profiles may
indicate the presence of gas-charged sediment (Fig. 5). The disrupted
reflectors occur beneath a slope of about 0.5° and appear to outline
individual slump "blocks" that range in height from 1 m to 5 m and in length
from 0.3 km to 1.0 km. The slump structures appear to be developed to a depth
in the sediment of 20 m to 40 m in water depths of 40 m to 125 m.

A spectacular example of a large submarine slide is located in Kayak
Trough (Carlson and Molnia, 1977; Molnia and others, 1977; Hampton and others,
1978) (Fig. 4). This slide has a length of 17 km, a maximum width of 12 km,
and a maximum thickness of 115 m (estimated volume is approximately 5.9
km”). The slide occurred on a 1° slope. Seismic profiles over the Kayak
Trough slide typically show disrupted internal reflectors and irregular
surface morphology. This slide has a fairly well-preserved pull-apart scarp
with a relief of about 10 m and a well-developed toe that is 20 m thick about
2 km from the distal end (Fig. 6). Apparently there was enough momentum to
carry the toe of the slide past the thalweqg of the trough (Carlson and Molnia,
1977).

The largest known slide on the continental shelf east of Kayak Island is
the Icy Bay-Malaspina slump (Carlson, 1978), located seaward of the Malaspina
Glacier (Slide A, Fig. 7). Here a process of en echelon slumping of Holocene
clayey silt is taking place in water depths of 70 m to 150 m on a slope of
less than 0.5° (Fig. 8). These slump structures extend over an area of about



1080 km2. The slump blocks are about 0.5 km long and have reliefs of 2 m to 5

m. The slip surfaces extend to a depth of 15 m to 40_m beneath the sea
floor. The volume of the entire slump is about 32 km~.

Four smaller slides have been mapped in the nearshore zone east of the
Icy Bay-Malaspina slump, all of which begin in water shallower than 100 m
(Carlson and others, 1980) (Slide B, Fig. 7). One slide southwest of Yakutat
Bay begins on the north wall of Yakutat Sea valley and extends across most of
the valley floor. This slide covers an area of 350 km“ and incorporates the
upper few meters of clayey silt. This slide appears to fit into Varnes (1978)
classification as a mudflow that failed due to lateral spreading (Carlson and
others, 1980).

The second of the four smaller slides, the Yakutat slide, begins 4 km
seaward of the coastline between Yakutat Bay and the Dangerous River., It is
about 40 km in width, and about 260 km? in area (Carlson and others, 1980)
(slide C. Fig. 7). The slope of the upper part of the slide is about 1° and
decreases to about 0.5° at the seaward edge of the slide. This slide mass is
characterized by a series of clayey silt blocks undergoing rotational slump
movement. The steplike surfaces of the blocks have a tread length of about
100 m and a riser height of 3 to 4 m (Fig. 9). The slip surfaces extend 10 m
below the sea floor and the volume of slumped material is nearly 3 km3.

The third smaller slide is located southeast of the Dangerous River in
clayey silt (Carlson and others, 1980) (Slide D, Fig. 7). This slide begins
about 2 km offshore in water depths less than 20 m. This area of seafloor
instability is thought to be associated with gas-charged sediment interpreted
from acoustic anomalies in high resolution seismic profiles, and water column
gas plumes visible on side-scan sonographs (Carlson and others, 1980) (Fig.
10).

The fourth of the smaller slides is just seaward of the Alsek River
(Alsek River Prodelta) (Slide E, Fig. 7) and has an area of 150 xmZ. The
shoreward edge of the slide is in sand and sandy mud less than 2 km
offshore. Water depths are around 35 m and the slope is about 0.5°, This
slide is thought to have moved down the headwall of the Alsek Sea Valley (1.3°
slope) possibly as far offshore as the floor of the valley (Slide F, Fig. 7)
where it offsets the clayey silt to a depth of 10 m to 20 m (Carlson and
others, 1980). A detailed picture of the sea floor in a 10 x 2 km area within
the Alsek River prodelta was made by assembling 21 speed corrected, digitally
processed, side-scan sonographs (Molnia and Rappeport, 1980). Typical side-
scan sonographs of the Alsek River slide are presented in Figures 11, 12, and
13, Molnia and Rappeport (1980) suggest that the principal factor for causing
the Alsek Prodelta slope failures is saturation of the sediment by biogenic
methane gas. Carlson and others (1980) also mapped this failure as an area of
gas-charged sediment.

In addition to the slides and flows in the nearshore zone, other slides
have been mapped within the Yakutat and Alsek Sea Valleys (Carlson and others,
1980) (Fig. 7). These slides all appear to be mud flows affecting the upper
10 m to 20 m of clayey silt.

Numerous areas of slides and slumps have been mapped on the continental
slope (Fig. 7) (Carlson and others, 1980). Although most of these slides are



immediatly seaward of the valleys, sliding appears to be a common mechanism
for transporting sediment down the continental slope in the entire Gulf of
Alaska (Hampton and others, 1978; Carlson, 1979). Many of these slides are
longer than 5 km and occur on slopes with gradients of 3° to 6°. The slides
range from discrete mudflows, thinner than 50 m, to complex zones of mass
transport several hundred meters thick consisting of multiple slides, such as
in the area southeast of Yakobi ‘Sea Valley (Carlson and others 1980; Carlson
and Schwab, 1982). The sediment contained in these slides is primarily a
pebbly mud that was deposited by glaciers on the shel: iuring parts of the
Pleistocene (Carlson and others, 1980). *

GEOTECHNICAL APPROACH

General Methodology. The critical sediment geotechnical property
measured for use in geologic hazards evaluations is the shearing strength. It
must be exceeded by environmental loads for most types of failure to occur.
Index properties (grain size, water content, bulk density, Atterberg limits
and grain density) are measured as well because they aid in classifying the
sediment and can be correlated with both strength parameters and sedimentary
processes. Also, they are not strongly affected by coring disturbance.
Compression or consolidation properties are measured because the consolidation
state (relative degree of compaction) correlates well with relative shearing
strength (Ladd and Foott, 1974), and reflects earlier geologic events (for
example preloading by glaciers or erosion of overburden).

The usefullness of most of our geotechnical data are limited by the short
length of cores (typically 1 m to 10 m) and by core disturbance. Because many
failure features have basal shearing planes that are much deeper (50 m or
more) than conventional coring devices penetrate, the sediment involved in
failure may not have the same properties as that sampled. Coring disturbance,
generated by the thick walled samplers that are commonly used, alters the
engineering properties of the sampled sediment from the properties of the
sediment in place. Both of these limitations, core shortness and disturbance,
are serious and capable of greatly reducing the validity of any geotechnical
study.

A methodology for partially overcoming these limitations is provided by
the normalized soil parameter (NSP) approach (Ladd and Foott, 1974, Mayne,
1980). The NSP approach is based on empirical results that show certain
engineering properties of certain sediments to be constant if normalized by
appropriate consolidation stresses. For example, in a normally consolidated
sediment profile (one in which no removal of sediment or preloading has
occurred), the ratio of undrained shearing strength to overburden effective
stress is often constant. 1If this ratio is known, a strength profile can be
constructed by multiplying the ratio by values of overburden effective stress
(sub-bottom depth times the average submerged density). If the sediment is
overconsolidated, that is, if it has been preloaded by glaciers or other
sediment that has since been eroded, a different ratio of strength to
overburden stress will result. This ratio of strength to overburden stress is
constant as long as the degree of overconsolidation, expressed as the
overconsolidation ratio (OCR), is constant. The ratio of strength to
overburden stress typically varies with the OCR raised to the power A , where
Ao is a sediment constant (Mayne, 1980). 1If the variation of OCR with depth
in the sediment column is known, a prediction of the strength variation can be



made. If the sediment is normally or underconsolidated, as the Holocene
glacial-marine sediment appears to be in most locations, the value of Ao is
irrelevant.

One advantage of the NSP approach lies in its ability to provide
parameters that are independent of consolidation stress and depth in the
sediment column. In a sense, therefore, the limitation imposed by short
samples is at least partially removed, particularly in large depositional
environments where the type of sediment being deposited at a given location is
fairly constant over a long period of time (i.e., to a significant depth).

The northeast Gulf of Alaska is probably such a large depositional
environment. A second advantage of the NSP approach is that normalized
parameters can be made somewhat independent of coring disturbance by
conducting all strength tests at greatly increased consolidation stresses
(Ladd and Foott, 1974). That is, a disturbed sample and a nearly undisturbed
sample would produce almost the same normalized strength parameters if both
are consolidated (in a triaxial or direct simple shear cell) to a high stress
level before testing for shear. Once the normalized strength parameters have
been measured at the high stress levels, they can be applied to any stress
level including the low level that the sample originally experienced in place.

The NSP approach cannot handle all offshore geotechnical conditions.
Ladd and Foott (1974) warn against applying it in cases of naturally cemented
clays. Offshore sediments often display "psuedo-overconsolidation"; that is,
most aspects (low surface strength, no obvious hiatus, steady increase of
strength with depth) point to normal consolidation but consolidation tests
indicate a moderate degree of overconsolidation. If "psuedo-
overconsolidation" results from a form of interparticle cementation, the NSP
approach would predict strengths that are too low.

The presence of significantly different sediment below the level of
sampling or the presence of undetermined environmental factors that might
alter the consolidation state also cannot be handled by the NSP approach.
Bubble phase gas might be an example of the latter. Highly varied or
stratified sediment might also produce complications.

Cyclic Strength Degradation. and- Test Type Effects. ExXcess pore water
pressures that develop during episodes of cyclic loading from earthquakes or
storm waves effectively reduce the ability of the sediment to resist shear.
This effect on shearing resistance can be expressed as a strength degradation
factor, A,. If this factor is multiplied by the static shearing strength
obtained by the NSP approach, an estimate of the strength remaining in the
sediment after dynamic loading will result. The degradation factor, '
varies with the type and magnitude of cyclic loading. If the loading 1s wave
induced and the sediment is fairly pervious, an effective stress approach with
allowance for partial pore pressure dissipation may be required for accurate
modeling. For this situation a worst case (lower bound of strength) model can
be provided by using a strength degradation parameter, AD corresponding to no
drainage. For earthquakes the duration of cyclic loading is short and a
simple, undrained approach can be taken.

Another factor affecting measured sediment strength is the type of
strength test performed. A reported value of shearing strength is not
independent of test type because of initial consclidation conditions, shearing
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rate, stress inhomogeneities, variations in stress orientations and many other
potential differences. A parameter that relates the strength corresponding to
the mode and rate of stress application that would exist during failure in the
field to the strength of the same material measured in a field or laboratory
test is needed. In the present studies most strengths were obtained through
isotropically consolidated triaxial shear tests. Because field consolidation
conditions are typically anisotropic, a correction factor, A, is applied to
correct strength values for these consolidation effects.

Summary of NSP Strength Determination. A summary of the normalized soil
parameter approach as it has been applied in the northeastern Gulf of Alaska
is given by the following equation:

A
o
ACAD(OCR) snct....t....'.'.'......t...".........t.........(‘)

1
Su/ov

Where S, = The undrained shearing strength applicable to the mode of failure
under consideration
Uv' = overburden effective stress = UY'z
U = degree of consolidation
1 for complete normal or over-consoclidation

Y' = average submerged density
z = sub-bottom depth
An = Test type correction factor
= Cyclic strength degradation factor
OCR = Overconsolidation ratio
=0_v/ 0
v v
v ' = Maximum past effective stress
Ro = A normalized strength exponent that is constant for a given
sediment
Snc = the ratio of static undrained shearing strength to isotropic

consolidation stress for normally consolidated conditions.

A program that involves a family of triaxial test types has been
developed to obtain the parameters needed to evaluate Equation 1. The
specific procedures are described under TEST PROCEDURES. Not that all of
these properties relate to undrained conditions. For earthquake loading and
wave loading of relatively impervious sediment, the undrained assumption is
valid. For long term gravitational loading and wave loading of pervious
sediment, a drained or partially drained analysis would be required.

Other shearing strength tests have been conducted that do not follow the
NSP methodology directly. These include laboratory vane shear, field vane
shear and static cone penetration, and certain types of triaxial shearing
tests. The field tests were conducted to establish a level of ground truth
and provide a basis for judging the quality of subsequent laboratory data.
Also, some field penetration tests were conducted in sandy deposits and
provide the only reliable geotechnical data for these deposits. Laboratory
vane tests were conducted onboard the ship immediately following sample
recovery. They typically provide a lower bound estimate of the in place
undrained shearing strength (Lee, 1979). The triaxial tests that did not
follow the NSP methodology involved samples consolidated to the in situ
effective overburden stress or lower. These types of tests typically produce
an upper bound estimate of the in place undrained shearing strength (Ladd and
Lambe, 1963).
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Quantitative Evalua...n of Offshore Stability. Some of these
geotechnical results can be readily used to evaluate geologic hazards or
provide a means of mapping relative stability. The three major offshore
downslope driving forces are gravity, earthquake shaking and storm wave
loading. By writing a simplified equation for each driving force and setting
it equal to the estimated, in place undrained shearing strength, we can
determine the level of force needed to achieve failure. For example, it can
be shown (Lee and others, 1981) that the approximate shearing stress developed
under combined earthquake and gravitational loading is given by the simplified
equation:

T =Y'Z sim""kYZO..t..'.’.00..00t.”.l’...’..l...l..ll...'(z)

-
]

Where: mobilized shearing stress at depth z

slope angle

k = horizontal pseudo-static earthquake
acceleration ( in g's)

Y = average total density of sediment (unit weight in air)

=]
]

This relation was derived from Morgenstern's (1967) infinite-slope
pseudo-static, earthquake-influenced slope stability analysis., It is valid
only for small slope angles (@ less than about 10°). The pseudo-static
approach assumes that an earthquake can be modeled by a constant horizontal
acceleration. The infinite slope approach assumes that the seafloor is smooth
and has the same slope over a large area. Failure occurs on a plane parallel
to the surface of the slope and movement takes the form of a sliding sheet.

At failure the driving force will equal the resisting force. Substituting T
from Equation 2 for Su in Equation 1 and solving for k yields:

A
k = (Y/Y|)U ACAD(OCR) osnc - (Y'/Y)Sina PP <))

The resulting critical acceleration, k, derived from Equation 3 is the
pseudo-static acceleration needed to induce failure given all of the
conditions and assumptions present in the derivation. It is a function of
sediment and site parameters. Lower values of the critical acceleration would
correspond to areas that are more vulnerable to seismically induced sliding,
given a uniform degree of seismicity over the region being investigated. The
value of this approach is increased if known failures are sampled. Critical
accelerations from a known failure area indicate the level of shaking required
to cause failure and provide a value by which the significance of other
measured critical accelerations can be judged.

A similar approach could be followed to evaluate relative stability with
respect to storm wave-induced shearing stresses. However, as shown in
Appendix B, the magnitude of peak wave-induced stresses exceeds that of peak
earthquake-induced stresses only in relatively shallow water (water depth less
than 35 to 76 m). In these depths the sediment is primarely sand which might
allow nearly full dissipation of excess pore water pressures during storms.
If full dissipation did not occur, a condition similar to liquefaction might
develop under certain combinations of density, wave height and permeability
(Clukey and others, 1980). This situation is unlikely and not considered in
this report. For other conditions, earthquake loading dominates and Equation
(3) can serve as the critical equilibrium relation.

8



TEST PROCEDURES

Geotechnical testing was conducted in conjunction with four cruises to
the Gulf of Alaska: three from the R/V DISCOVERER in 1977, 1980 and 1981
(DC1-77-EG, DC2-80-EG and DC1-81-EG) and one from the R/V SEA SOUNDER in 1977
(S8-77-EG). Many different USGS individuals were involved in planning and
conducting these tests in-house, and three outside laboratories conducted
additional tests on four separate contracts (Geotechnical Engineers,
Incorporated (GEI), 1977 cores, University of California, Berkeley, 1977 cores
and Law Engineering Testing Company (LETCO), 1977 cores and 1980 cores). As a
result, not all of the procedures followed in determining each property were
identical throughout the test program. In the following discussion, major
differences in procedure are listed whenever significant.,

shipboard Sampling and Testing. Most core samples were taken with
gravity corers weighing between 2 and 10 kNt. A few samples were obtained
with piston samplers or a vibratory corer similar to the Alpine Vibracore
sampler described by Tirey (1972). All cores were contained within a plastic
liner. Once aboard ship the core liners were sectioned into 1 or 1.5 m
lengths. At most sites replicate cores were obtained; one was split,
described and subsampled on shipboard (stratigraphy-sedimentology core), while
the other was sealed with cheesecloth and microcrystalline wax and preserved
under refrigeration for shore laboratory testing (geotechnical core). One of
the split core sections was subsampled for water content determiniation.

Most vane shear testing was conducted on split cores sections. A
miniature four-bladed vane (typically 1.22 x 1.22 cm) was inserted
perpendicular to the split face so that it was at least 1.2 cm below the
surface. The vane was rotated by a motor-driven device through a calibrated
spring on the 1977 cruises and through a torque cell on the 1980 and 1981
cruises, The top of the torque cell or spring rotated at 90°/minute, a rate
relayed directly to the vane by the stiff torque cell. With the more flexible
springs, the true vane rotation rate was less than 90°/minute before failure
and greater after failure. The peak torque was measured and used to calculate
the sample undrained shearing strength (ASTM, 1982 standard D 2573-72).

In Place Testing. In place vane shear and cone penetration tests were
conducted during the 1980 cruise. The Multi-purpose in situ testing system
(MITS) was leased from Woodward-Clyde Consultants, Plymough Meeting, PA, and
deployed at seven locations in the eastern Gulf of Alaska. The device is a
tethered, bottom~supported platform capable of conducting static cone
penetration and vane shear tests to a depth of 6 m below the seafloor. The
device weighs 27 kNt (2.7 metric tons) in water. The ultimate cone
penetration depth at a few locations was limited because of insufficient
reaction force. The static cone penetrometer tip has a standard 10 cm? base
area and a 60° tip angle. The load on the cone was measured by a full-bridge
strain gage load cell mounted directly above the cone. The shear vane sensor
consisted of a torque cell mounted above the vane blade. The vane was rotated
by a pressure compensated electric motor at a rate of 60°/min and the shearing
strength was calculated from the same formula as that used for laboratory vane
shear measurements. Both the cone and the vane were driven into the seafloor
by a sliding drive head coupled to a drill rod. The drive head was moved at 1
m/minute by an electric motor and a chain and sprocket assembly. The sub-
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bottom depth to the cone or vane was measured by a 360° potentiometer
connected to the sprocket assembly. A tilt indicator mounted on the base
sensed the attitude of the frame to determine whether the maximum deadweight
reaction was exceeded or if lateral loads on the tether line were pulling the
device over. All electrical signals were carried to shipboard recorders
through a shielded cable, )

The MITS system was deployed from the R/V DISCOVERER from a two-point
mooring., Typically the system was assembled in the cone penetrometer mode on
its first deployment at a site. After a penetrometer record was obtained, the
device was returned to the ship and rigged to perform a vane shear test. The
size of vane and torque cell as well as sub-bottom locations for vane shear
tests were selected based on the cone penetration resistance. The device was
redeployed and the vane was driven in to the predetermined depths. At each
depth the vane was rotated to obtain a peak torque and thus a measure of in
place undrained shearing strength. At some depths the vane was rotated in the
opposite direction (following an initial undisturbed strength determination)
to obtain a measure of the remolded strength and the sediment sensitivity.

Shore Laboratory Testing. Water contents were obtained using drying and
weighing techniques (ASTM, 1982 standard D2216-80). A correction was made to

the weights to account for dried salts (assuming a salinity of 35 ppt).

Atterberg limits were obtained using ASTM standards (D 423-66, D 424-59
and wet preparation technique, D 2217-66) with the exception that the
Casagrande grooving tool was used instead of the ASTM tool. Salt corrections
identical to those described above were applied to both the liquid and plastic
limits., The grain density was obtained using a Beckman air comparison
pycnometer at the USGS laboratory and by ASTM Standard D 854-58 for the tests
conducted by contractors. Grain size distributions and parameters were
obtained using pipette analysis (Carver, 1971) at the USGS and by the
hydrometer technique (ASTM Standard D 422-63) at the contractor laboratories.

Consolidation testing followed ASTM Standard D 2435-70 with these
exceptions:

(a) In two early contracts (GEI and LETCO testing of 1977 cores),
calculated and plotted void ratios corresponded to the end of a stress
increment time period. In later testing the plotted void ratios
corresponded to 100% consolidation.

(b) In all contracted tests the coefficient of consolidation (c) was
calculated using the square root of time method. For the tests
conducted at the USGS, c, was obtained using the log of time method.
(c) In the LETCO testing of 1980 samples, about half of the tests were
conducted with a pneumatically controlled Anteus consolidometer while
the remainder were conducted with a dead weight oedometer.

(d) Some of the tests conducted by the USGS on 1980 and 1981 samples
were performed in a back pressured triaxial cell using the constant
rate of strain technique (Wissa and others, 1971).

In all cases the results were used to estimate the maximum past vertical

stress, c'vm’ using the Casagrande (1936) construction and to obtain other
consolidation parameters.
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Static triaxial testing roughly followed the procedures given by Bishop
and Henkel (1957). Cylindrical samples (3.6 cm in diameter by about 9 cm in
height) were hand-trimmed from larger core sections extruded from the plastic
liner. Filter strips were attached and the sample was enclosed in a thin
rubber/latex membrane in a triaxial cell. Differential pressures between cell
and sample fluids were applied and full drainage was allowed. These
consolidation stresses were applied in increments until a final value was
reached. In some tests conducted by the USGS and LETCO on 1980 and 1981
samples, final consolidation was set to a level of ab . four times the
maximum past stress. This was followed by a reductic. a differential
pressure and full drainage. In this way, an induced state of
overconsolidation with a known value of OCR was generated. A few samples were
consolidated anisotropically with the horizontal consolidation stress equal to
about 0.5 times the vertical consolidation stress,

Most samples were sheared without drainage by increasing the axial load
at a constant rate of strain, typically 0.03% to 0.16% per hour. Some of the
LETCO testing of 1977 cores involved constant rate of stress application.
Excess pore water pressures developed in the samples during undrained shear
were measured using electronic pressure transducers. Axial loads were
measured with strain gage type load cells and axial deformations were obtained
with linearly variable differential transformers (LVDT's). Testing was
continued until about 20% axial strain was obtained. Stresses and strains
were calculated using standard procedures but without membrane or filter strip
corrections. The static undrained shearing strength was obtained from the
peak axial load measured over the full 20% axial strain range of the test.

Three types of static triaxial tests were performed:

(a) Consolidation to a stress level less than three times the estimated
maximum past stress without rebound.

(b) Consolidation to a stress level greater than three times the
estimated maximum past stress with a subsequent rebound to a lower final
consolidation stress. A known induced overconsolidation ratio is
obtained.

(c) Consolidation to a stress level greater than three times the
estimated maximum past stress without rebound.

Type (a) tests produce strength values that may be less than, equal to or
greater than the in place shearing strength, depending on the details of the
consolidation stresses. The approach does not provide parameters that can be
used in the NSP approach. The value of this type of test would be in
obtaining upper and lower bound values of strength and in studying naturally
cemented sediment for which the NSP approach is not applicable.

Type (b) and (c) tests yield strength values for use in the NSP
approach. Type (c) is used to obtain the ratio of strength to consolidation
stress for normal consolidation, She! while type (b) yields the parameter Ao
required for Egquation 1.

Specimens for cyclic triaxial tests were prepared and consolidated in the
same way as specimens for static tests (b) and (c) above., Because the static
test for each consolidation condition was performed first on an adjacent
sample, an estimate of the static strength of the cyclic specimen could be
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made. Cyclic stresses less than the estimated static strength were then
applied and the number of cycles needed to cause a predetermined one-~
directional strain was measured. Nearly full stress reversal (tensile and
compressive stresses approximately equal) was developed. Loading was
sinusoidal with a frequency of 0.1 Hz. The results were graphed on a plot of
relative stress level (maximum average one-directional cyclic stress/estimated
static strength) versus the log of number of cycles to 20% one-directional
strain., A straight line connecting the data points was drawn and the stress
level required for failure in 10 cycles was estimated by interpolation or
extrapolation. Because 10 cycles is a characteristic number of significant
cycles for a major earthquake (Seed and Peacock, 1971), this stress level was
used for Ay in BEquations 1 and 3 for earthquake analysis. The parameter

for storm-wave-induced instability would correspond to a larger number of
cycles.

RESULTS

Study Areas and Core Locations. To simplify locating core sample and in
place data, the region has been divided into eight study areas. Many of the
study areas are associated with the major failure features discussed
previously. Proceeding from west to east the eight study areas are (Figure
14):

(A) Copper River

(B) Kayak Trough

(C) Bering Trough

(D) Icy Bay

(E) Icy Bay-Malaspina
(F) vYakutat Bay

(G) Yakutat

(H) Alsek River

A ninth category, "other", includes a few sampling and in place stations
that fall outside the regqular areas.

Core and in place test location maps for each study area are given in
Figures 15 through 21. The coordinates for these locations are given in
Table 1,

Organization of Laboratory Test Data Presentation. All of the index
property data are provided on summary plots in Appendix C. These data include
water content, Atterberg limits, vane shear, grain size and grain density.
Downcore locations of samples on which consolidation and triaxial tests were
performed are also shown. The nature of these tests is indicated by a coded
test number. The code for the test numbering system is as follows:

First two letters:

(a) OE - Oedometer test

(b) CE - Constant rate of strain (CRS) consolidation test
(c) TE - Static triaxial test

(d) TC - or D - Cyclic triaxial test

Trailing characters:
(a) No trailing characters - test performed by the USGS
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(b) L1 - Test of 1977 core sample by Law Engineering and Testing Company
(c) G - Test of 1977 sample by Geotechnical Engineers, Incorporated

(d) B - Test of 1977 sample by University of California, Berkeley

(e) L2 - Test of 1980 sample by Law Engineering and Testing Company

Critical sediment geotechnical parameters from each test are summarized
in Tables 2 (consolidation), 3 (static triaxial) and 4 {cyclic triaxial).
Graphical presentations of the results of each test are given in Appendices D
(Law Engineering testing of 1977 cores), E (Geotechnical Engineers,
Incorporated testing), F (Law Engineering testing at 1980 cores) and G (USGS
testing of 1980 and 1981 cores). The appendices are grouped according to the
organization performing the test because of a variation in the formats
followed in graphically presenting the data. Each appendix is subdivided
according to test type (consolidation, static triaxial or cyclic triaxial).

For the consolidation tests, a standard plot of void ratio, e, versus
vertical effective stress, Gv', is given, These plots were used to obtain the
slopes of the virgin compression and rebound curves (C_ and C_) and the
maximum past stresses, va', all of which are tabulated in Table 2. For some
of the testing organizations, a plot is also given of the calculated
coefficient of consolidation, c,+ versus the vertical effective stress.

For the static triaxial tests, plots are given of the shearing or
deviatoric stress, g, versus the mean normal effective stress, p. These
stress paths provide a definition of the failure envelope and indicate whether
sediment behavior is of a collapsing (bend to the left) or dilitative (bend to
the right) nature. Also given are plots of shearing or deviatoric stress and
pore pressure change versus axial stress.

The cyclic triaxial test plots include shearing stress-axial strain
curves (hysteresis loops) and shearing stress-average normal effective stress
(stress path) plots for selected cycles. The stress path plots indicate
roughly the failure envelope applicable for cyclic loading and the rapidity
with which pore pressures develop as a result of cyclic loading. The
hysteresis loops indicate damping (proportional to relative area of each loop)
and degrading stiffness (proportional to average slope through each loop).

For the USGS tests these results are further presented on four additional
plots that show pore pressure developed, damping, stiffness (modulus) and peak
strain developed as a function of cycle number.

In Place Test Data., The results of in place vane shear testing are given
in Figures 22 through 26 and cone penetrometer records appear in Fiqures 27
through 34. The vane shear results are plots of calculated undrained shearing
strength versus sub-bottom depth. The cone results are continuous plots of
cone pressure versus depth. Additional information plotted on the figures is
discussed in a later section.

SYNTHESIS AND DISCUSSION

Analysis of Parameters. A major goal of the geotechnical testing was to
provide parameters that could be inserted into Equation 3 so that a stability-
related parameter, the critical acceleration, k, could be calculated. These
parameters are:
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(a) Shc = ratio of “i-ained strength to consolidation stress for
normal consolidat.on

(b) A. - test type correction factor

(c) AD - cyclic strength degradation factor

(d) U - degree of consolidation

(e) OCR - overconsolidation ratio

(£) Ao - normalized strength exponent

(g) Y/Y' - ratio of submerged unit weight to total unit weight

(h) @ - slope angle

The next few sections discuss several of these parameters and how they
were obtained from the basic engineering properties given in Tables 2 through
4 and in the appendices. Most of these parameters are correlated with
sediment water content. 1In these correlations the water content is used as an
index property that is representative of more basic sediment characteristics
such as clay mineralogy, grain size and plasticity. The water content is used
in place of these other parameters because it is the only parameter that was
measured in conjunction with every other test. Also, because more water
contents were measured than any other property, correlations can be applied to
any location where a water content measurement was made. The influence of in
place consolidation on reducing the water content with sub-bottom depth is
ignored because of the shortness of the cores and the relative
incompressibility of the silty sediment. The significant down-core
fluctuations in water content in many of the cores appear to be related to
basic lithologic changes.

Undrained Strength to Consolidation Stress Ratio for Normal
Consolidation, Snc' The type (c) tests listed in Table 3 were used to obtain
values of Shc* The criterion used to distinguish type (c) tests was that the
final consolidation stress applied in the triaxial cell needed to exceed the
natural maximum past stress by at least a factor of 3. Any lower
consolidation stresses, in conjunction with disturbance effects, might produce
a sample with some characteristics of overconsolidation (Ladd and Foott,
1974). The ratios of strength to overburden pressure for all of the type (c)
tests were obtained and are plotted versus water content in Figure 35. The
correlation is fairly good, given the scatter typically involved in
geotechnical measurements, and shows a trend toward decreasing S c with
increasing water content. A solid line follows the trend of the tests for
which the initial consolidation was isotropic. The tests for which initial
consolidation was anisotropic (lateral stress about one-half of the vertical
stress) are shown with circled dots. Although a limitation in the number of
these points prevents the construction of a line as complete as that for
isotropic consolidation, a line with values of S e that are 0.8 times the
isotropic values seems to fit the data fairly well.

Test Type Correction Factor, Aqe. The factor A, ideally should relate
strength under laboratory test rate, test mode and consolidation stress
conditions to the strength effective in the field under natural loading
conditions. Most aspects cannot be considered without a major increase in the
scope of investigation. The relation between strength under laboratory
consolidation (predominately isotropic) and field consolidation (predominately
anisotropic) condition is straightforward and represented by the difference
between the two lines in Figures 35. Because a ratio of 0.8 appeared to
account for most of the variation, this value will be used for AC. The value
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is similar to that obtained in an earlier study of sediment from offshore
northern California. (Lee and others, 1981).

Cyclic Strength Degradiation Factor, Ay. Results of cyclic triaxial
tests on fine grained sediment are typically presented on a plot of cyclic
stress level (as a percent of static strength) versus number of cycles to
failure (Lee and Focht, 1976). Such a presentation is dependent upon
knowledge of a static strength that can be used for normalization. In the
University of California, Berkeley tests, the static strength of a third
sample cut from the same increment as two cyclic test samples was
determined. Normalizing the cyclic stress levels by this static strength is
legitimate because the cyclic samples probably would have had the same
strength if failed statically. For the USGS and Law Engineering tests,
however, a static strength was measured on a sample from the same core but a
different depth increment from that of the cyclic tests. One method (Method
I) of normalizing the cyclic stress is to divide the cyclic stress level by
this measured static strength. 1In some cores, however, there were lithologic
changes downcore and the static and cyclic tests were not run on the same
material type. This problem was solved partially by estimating a static
strength from the water content and consolidation stress of the cyclic sample
and an estimate of the ratio of static strength to consolidation stress from
Figure 35. This approach to obtaining the static strength is termed Method
II. A third method of handling this problem is to eliminate the need for
static strength estimation by evaluating the product AD She rather than its
components. Because AD is a cyclic shear stress, T , divided by a static
strength, Sy’ and Snc is Su divided by a consolidation stress, ovc" the
product is TC/Ov '. This ratio can be obtained from a cyclic test alone
without any static test results. The use of the ratio TC/GVC' is termed
Method III.

Plots of relative cyclic stress levels versus number of cycles to failure
are given in Fiqures 36 through 48. Separate figures corresponding to the
three methods of analysis are given for the USGS/Law Engineering test
results. The lines shown in the figures connect two or more cyclic test
results and have been extended when necessary to cover the 10 cycles to
failure zone. For methods I and II, the relative stress level corresponding
to 10 cycles to failure was taken as . For method III this value was taken
as AD Snc or TC/Ov '. Plots of relative stress level for failure in 10 cycles
versus representative water content for the three methods of analysis are
given in figures 49 through 51. Method 11 (Figure 50) shows a somewhat closer
correlation than Method I (Figure 49); a solid line fit of the data shows an
acceptable level of scatter (Figure 50). The trend shows an increase in AY
with increasing water content. That is, the lower water content coarse silts
and sands are more susceptible to cyclic strength degradation than are the
higher water content fine silts and clays. The product of the solid line fits
for Snc (Figure 35) and AD (Figure 50) yields a solid line fit for SNC AD
versus water content (Method 111, Figure 51).

Some of the University of California, Berkeley, tests were performed with
a static bias (Fiqgures 36 through 39). That is, following nearly isotropic
consolidation but before cyclic shear, a static shearing stress was applied.
The sinusoidal cyclic stress was then applied relative to the static bias.
The level of principal stress rotation (alternating compressive and tensile
stresses) is reduced as the static bias is increased. Herrmann and Houston

15



(1976) show that the greater the level of principal stress rotation the
greater is the extent of cyclic strength degradation. In cyclic earthquake
loading of nearly horizontal sediment deposits, there is considerable rotation
of principal stresses with each major cycle of loading (Seed and Peacock,
1971). Therefore, the case of no static bias or full stress rotation is more
realistic as well as more conservative., The tests with a significant static
bias give an intermediate level of cyclic strength degradation,

Degree of Consolidation, U, Overconsolidation Ratio (OCR) and Normalized
Strength Exponent, Ao' A critical concern is evaluating offshore stability is
the relative consolidation state of the sediment. Table 2 provides some
information on consolidation state in the form of two parameters: Oe' and
Ovm'/Y'z. The parameter, Oe' is the difference between the maximum past
stress, ovm' and the submerged weight per unit area of overlying material,
Y'z. The parameter is negative for underconsolidated sediment (not all
submerged overburden carried by interparticle stress), zero for normal
consolidation and positive for overconsolidation. The ratio Ovm'/Y'z is the
degree of consolidation, U, for values of 0 ' less than or equal to zero and
the overconsolidation ratio (OCR) for values greater than or equal to zero.
As may be seen, scattered values of both parameters were obtained with
apparently underconsolidated, normally consolidated and overconsolidated
sediment all present. There is little consistency among the values, however,
and in only about 10% of the tests is the absolute value of 0.' greater than
50 kPa. Because of inaccuracies present in the Casagrande procedure and
coring disturbance, these small deviations from normal consolidation are
probably insignificant. In later sections additional in place data and
theoretical information is used to further evaluate the consolidation state of
these sediments, Based on Table 2 alone, it appears that the best estimate
for both U and OCR for most of the cores is 1.0 (normal consolidation).

In anticipation of at least some of the cores being overconsolidated, a
few static triaxial tests of the type (b) variety (induced overconsolidation
ratio) were performed. These were used to obtain estimates of the parameter
Ao needed for Bquations 1 and 3. To obtain A o one first obtains the ratio of
undrained strength to consolidation stress for a specimen that has an induced
overconsolidation ratio (OCR known). This ratio is divided by the ratio of
strength to consolidation stress for normal consolidation, Snc to obtain a
shear strength that has been normalized twice. Again, S, . may be obtained
from a test on a different sample from the same core or estimated from Figure
35 (if the initial water content of the induced OCR sample is known). These
methods are termed I and II, respectively, and are similar to Methods I and 11
for normalizing cyclic triaxial test data discussed previously. The parameter
A is obtained by dividing the log of the twice normalized shear strength by
the log of the induced OCR (Mayne, 1980). Values of A (by both Methods I and
II) and the intermediate parameters required to calculate them are given in
Table 5. There is considerable scatter and a few values exceed 1.0 (not
physically reasonable; probably indicative of experimental error at some
level)., Also, there is no correlation between Ao and water content. The
average value of 0.9 would be appropriate for overconsolidated sediment.
However, in_ the present study, all Holocene glacial-marine silty clays tested
appear to be under- or normally comnsolidated.

Ratio of Submerged to Total Unit Weight, Y'/Y. The ratio of submerged to
total unit weight can be calculated directly from the water content by
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assuming 100% saturation and using the average measured grain density, 2.8
g/cm™.

validity of NSP Approach, Vane Shear Tests and Type (a) Triaxial Tests.
One purpose of performing in place strength tests was to provide a ground
truth check on values obtained in the laboratory. The locations where both in
place vane shear tests were perfbrmed and cores were taken for shore
geotechnical analysis offer an opportunity to check the gquality of laboratory
strength determinination procedures. Strengths were r: sured in the
laboratory using the miniature vane, type (a) static i "axial tests
(consolidation to a low value, often near the estimatea in situ overburden
stress) and normalized soil property (NSP) oriented tests (types (b) and
(c)). These laboratory strength determiniations are shown on the same figures
as the field vane shear results (Figures 22 through 26). In these comparisons
the laboratory vane shear results are consistently lower than the field
results, The laboratory values range between about 50 and 80% of the field
values. These findings are thus in line with a value of 60% obtained for a
low plasticity (PI=15%) southern California sediment (Lee, 1979). The type
(a) static triaxial tests consistently yielded strengths 150 to 250% higher
than the field values,

The NSP values were obtained by using measured core water contents to
obtain ratios of static strength to overburden effective stresses (Sn ) from
Figure 34. The overburden effective stresses were obtained from Y'z ?average
submerged unit weight times depth) and multiplied by the Snc estimates to
obtain an estimated shear strength profile. An implicit assumption of normal
consolidation was made. These estimated shear strength values ranged between
about 60% and 140% of the measured field values for the depth range sampled
(excluding the upper 1 m). Below the level of sampling, a range of estimated
strengths is given, corresponding to the range of water contents measured in
the core. 1In this deeper unsampled sediment the NSP estimated shearing
strengths were about 80 to 140% of the field values,

The NSP approach appears to provide the best estimate of the in place
shearing strength values while the type (a) static triaxial test
(consolidation to a low stress level with no normalization) appears to provide
the poorest estimate and has the lowest correlation with the in place
results. The simple laboratory vane shear test is nearly as accurate as the
NSP approach if measured strengths are multiplied by a correction factor of
about 1.7 (1/0.6) to account for disturbance., The laboratory vane test is not
suitable for extrapolation below the level of sampling or evaluating cyclic
strength degradation, however.

Evaluation of Consolidation State Using Field Strength Results and
Gibson's Theory. Laboratory consolidation tests showed little indication of

underconsolidation but the results were fairly scattered. Another means of
judging consolidation state is to compare field vane strengths with NSP
generated strengths. Such a comparison (Figures 22 through 26) shows no
indication of overconsolidation except possibly for the upper 3.5 m of field
test MV-1, That is, the field strengths do not greatly exceed the NSP
strengths calculated by assuming normal consolidation. With field test MV-1
the high field strengths are probably a result of layered sand observed in
nearby vibratory cores rather than true overconsolidation.,
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Field tests MvV-4 (Figure 25) and, to a lesser extent MV-5 (Figure 26)
suggest that a state of underconsolidation exists in the sediment in the
eastern portion of the Icy Bay-Malaspina study area. The field strengths are
60 to 80% of the NSP generated strengths for normal consolidation. Excluding
any other errors or opportunities for variability, these values correspond
directly to the degree of consolidation.

To- further evaluate the potential for underconsolidation in the northeast
Gulf of Alaska, we performed a simplified theoretical analysis using the
method of Gibson (1958). Gibson modeled a layer of sediment deposited at a
steady and continuing sedimentation rate, m, that began to be deposited at a
time, t, in the past. The degree of consolidation at the base of the sediment
column can be predicted (Figure 52) as a function of the dimensionless
parameter, mzt/c , where c_ is the coefficient of consolidation. The degree
of consolidation at shallower levels is somewhat lower.

Values of ¢, were measured in this study but are fairly scattered and
inconsistent (Table 2). To reduce the scatter, a simplified correlation
between c, and liquid limit (Figure 53) from Lambe and Whitman (1969, p. 412)
was used along with average liquid limit values for several locations.
Sedimentation rates were taken from Figure 3.

By combining the results of Figures 52 and 53, we constructed lines of
constant degree of consolidation on a plot of liquid limit versus m2t (Figure
54). Using measured results, locations within the eastern Gulf of Alaska were
plotted on the same figure. The position of these data points relative to the
lines of constant degree of consolidation indicates the theoretical degree of
consolidation of the sites. Most of the sites fall to the left of the 90%
consolidation line indicating a degree of consolidation approaching 100%. All
of the field vane shear tests except MV-4 (eastern Icy Bay-Malyaspina study
area) correspond to sites that fall in this range. The eastern Icy Bay-
Malaspina study area has a theoretical degree of consolidation of about 85%,
somewhat greater than the discrepancy between NSP and field strengths (Figures
25 and 26), but in the same range. Therefore, several lines of evidence
(field versus NSP strength, theory and consolidation test results) suggest a
degree of underconsolidation (60 to 85% of normal consolidation) of the
sediment in the eastern Icy Bay-Malaspina study area. As indicated on Figure
54, the eastern portion of the Alsek prodelta study area and Kayak Trough may
also display a similar underconsolidation level. Two of the embayments, Icy
Bay and Yakutat Bay, appear to be highly underconsolidated, having degrees of
consolidation of 30 and near 15%, respectively. The remainder of the Holocene
glacial-marine sediment sites appear to be normally consolidated.

Critical Acceleration Calculation. The critical acceleration, k, is
calculated from Equation 3. If we assume normal consolidation (U=OCR=1) and
horizontal surfaces (@=0), then all of the remaining parameters have been
obtained as a function of water content in the sections above. Note that with
a value of OCR equal to 1.0, the value of A_is irrelevant. Also, with OCR
equal to 1.0, the solution for k is indepengent of sub-bottom depth. By
combining the best fits of the data using Bquation 3, a plot of critical
acceleration versus water content can be drawn (Figure 55). The resulting
values of the critical acceleration have a broad-based minimum between water
contents of 35% and 45%. On either side of this zone the acceleration
increases rapidly. The existence of this minimum range indicates that certain
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types of sediment found in the eastern Gulf of Alaska are more susceptible to
earthquake loading than others. If we assume that each location within the
region has the same potential ground shaking intensity and that
underconsolidation and slope effects can be ignored initially, then locations
that have more of the susceptible material should have failed more often.
Within the Icy Bay-Malaspina study area (Figure 56), this appears to be the
case. The portion of each core with a water content between 35% and 45% has
been calculated and listed by the location of the core. It appears that those
cores within the observed failure feature typically have more of the
susceptible sediment than do those outside the feature. The correlation is
not exact but is consistent. Thus mapping of vulnerable material according to
surface core water content may be viable even though the extent of
underconsolidation, steepness of slope, variations in seismicity and
variations in seismic response have not been considered.

The distribution of susceptible material in the Yakutat study area is
shown in Fiqure 57. The correlation of susceptible material with the slump
zone is not as good as for the Icy Bay-Malaspina area. The higher level of
underconsolidation in the Icy Bay-Malaspina area may contribute to the greater
extent of failure. Also, the boundaries of the Yakutat slump are poorly
defined acoustically.

In the Alsek study area (Figure 58), all cores were collected within the
failure zone, The majority of samples appear to consist of susceptible
sediment.

Regional Variations. Most of the geotechnical properties discussed above
have been tied together through a seismic-induced instability analysis. A
correlation of parameters with water content has shown some consistent trends
and has helped to identify a susceptible sediment type. The water content, in
turn, typically increases offshore, although not consistently. Downcore
variations in water content are large.

No consistent variations in the correlations of geotechnical parameters
with water content were found that could be related to study area. Indeed,
the differences between study areas appear to be of the same order as
variations within study areas. Some differences in landslide morphology were
noted in the geologic framework discussion that cannot be explained by these
basic correlations. For example, the multiple, complex flows of the Alsek
prodelta contrast with the massive but simple rotational slumps of the Icy
Bay~Malaspina study area. One possible explanation of these morphology
differences is that fundamental sedimentological parameters contribute to
variations in post failure behavior. That is, certain geotechnical properties
that correlate well with water content may determine the point of initial
failure. Movement after failure may be controlled by other characteristics
that are not properly evaluated in triaxial testing.

An example of at least one characteristic that appears to vary
consistently among the study areas is plasticity. All of the Atterberg limits
measurements, grouped according to geographic area, are plotted on a series of
plasticity charts (plasticity index versus liquid limit, Lambe and Whitman,
1969, p. 35) in Figures 59 through 64. Least squares regression fits of each
set of data were developed and displayed fairly good correlation
coefficients, Figure 65 presents a summary of all of the linear regression
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lines. All plot above t ; "A-line” and fall near or within the zone generally
occupied by glacial clay Lambe, 1951, p. 27). Most sediment classifies as
CL ("inorganic clays of luw to medium plasticity, gravelly clays, sandy clays,
silty clays, lean clays"). The regression lines are nearly parallel to each
other and to the "A-line." The continental shelf study areas (Alsek prodelta,
Yakutat, Icy Bay-Malaspina, Copper River) show a progressively greater
distance from the "A-line" as one progresses toward the west. The Alsek
prodelta slide, which has the most unusual morphology, provides data that plot
closest to the "A-line." The embayments (Icy Bay, Yakutat Bay) and troughs
(Bering, Kayak) show the greatest distance from the "A-line"., This behavior
probably relates to changes in clay mineral activity. The unusual morphology
of the Alsek prodelta slides and flows may relate to these changes in index
properties.

SUMMARY AND CONCLUSIONS

1. Previous studies have shown the major seafloor geologic hazards in the
eastern Gulf of Alaska to be slides and flows, shallow faults, gas charged
sediment and buried channels. Excluding shallow faulting, these hazards on
the continental shelf are associated with Holocene glacial-marine sediment.
This sediment consists primarily of sand and muddy sand in water depth less
than 50 m and clayey silt at greater depths. The Holocene glacial-marine
sediment is a typical glacial rock flour produced by intense mechanical
weathering. Massive failure features have been identified acoustically on
slopes of 0.5° to 1.3° on the continental shelf. Sediment volumes of up to 32
km~ are involved.

2. Both underconsolidation (Hampton and others, 1978; Carlson and others,
1978; Molnia and Sangrey, 1979) and bubble-phase gas charging (Carlson and
others, 1980; Hampton and others, 1978; Molnia and Rappeport, 1980) have been
suggested as principal causative factors for sediment instability in the
region., The present study indicated that both features are present but that
their occurrence is uncommon.

3. Cyclic loading by storm waves and particularly earthquakes appears
sufficient to cause the observed failure features. Gas charging and
underconsolidation may facilitate failure in a few locations. Major wave
induced shearing stresses exceed major earthquake induced stresses only in
relatively shallow water (less than 35 to 76 m).

4. As noted by Ladd and Foott (1974), the normalized soil parameter (NSP)
approach appears capable of partially overcoming the problems of coring
disturbance and core shortness in obtaining valid geotechnical properties.
This is illustrated in this study by good comparisons between NSP generated
strength profiles and those measured with an in place vane shear device. One
comparison that is not as good can be explained by underconsolidation
predicted by Gibson's (1958) analysis.

5. Laboratory vane shear tests produce shearing strengths that are
consistently lower than the field strengths. Triaxial specimens consolidated
to near the in place overburden stress produce strengths that are erratically
higher to much higher than the field strengths.
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6. There is little evidence for overconsolidation in the Holocene glacial-
marine sediment tested.

7. Many of the geotechnical parameters correlate well with water content,
which is probably representativg of more basic sediment characteristics such
as clay mineralogy, grain size, and plasticity. According to laboratory
tests, sediment with a water content between 35% and 45% is most susceptible
to earthquake loading. Cores that contain more of this susceptible material
roughly correlate with the locations of failure features.

8. Differences in failure morphology are difficult to relate to advanced
geotechnical parameters but may relate to observed variations in plasticity.
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Table 1. Core and in place test locations organized by study area

Study
Area

Copper, -
River

Kayak
Trough

Bering
Trough

Icy Bay-
Malaspina

Cruise

$8-77-EG

S8-77-EG

S8-77-EG

$8-77-EG

DC2-80-EG

Core or In Plgce

Test Nuqber

4G
6G
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8G
9G

10G
11G
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20G
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Table 1. Core and in place test locations organized by study area (continued)

Study Cruise Core or In Plgce Latitude Longitude
Area Test Number
Icy Bay~ DC2-80-EG 196G 59° 36.50' N 141° 19.,10' W
Malaspina 197G 59° 36.50' N 141° 19.10' W
MPS 59° 36.6' N 141° 23.4' W
MP10 59° 36.5' N 140° 19.1' W
MV4 59° 36.6' N 141° 23.4' W
MV5 59° 36.5' N 140° 19.,1' W
DC1-81-EG 626G3 59° 35,00' N 140° 33.60' W
627G1 59° 36.30' N 140° 45.20' W
627G2 59° 36.35' N 140° 44.80' W
628G2 59° 37.60' N 140° 57.00' W
628G3 59° 37.50' N 140° 56.90' W
630A1 59° 41.90' N 141° 20.10' W
630A2 59° 41.70' N 141° 20,20' W
632G1 59° 35.,50' N 141° 09.50' W
632G2 59° 35,50' N 141° 09.50' W
633G1 59° 32.40' N 141° 06.00' W
633G2 59° 32.40' N 141° 06.00' W
634G 59° 30.20' N 141° 00.,00' W
634G2 59° 30.20' N 141° 00.00' W
635A2 59° 39.81' N 141° 09.15' W
DC1-77-EG 709B 59° 34.30' N 141° 51.45' W
709C 59° 34.,30' N 141° 51.45' W
710B 59° 41.50' N 141° 40.50' W
710C 59° 41.,40' N 141° 40.40' W
711B 59° 42.,60' N 141° 39.85' W
715B 59° 36.45' N 141° 47.45' W
715C 59° 36.45' N 141° 47.45' W
717B 59° 39.30' N 141° 42.20' W
717C 59° 39.30' N 141° 42,20' W
718B 59° 38.45' N 142° 07.30' W
719B 59° 42,60' N 142° 01.85' W
720B 59° 45.65' N 141° 57.85' W
721C 59° 47.00' N 141° 52.85' W
721D 59° 48.00' N 141° 52.85' W
Icy Bay $8~77EG 39G 60° 04.16' N 141° 23.42' W
40G 60° 03.56' N 141° 22,27' W
41G 60° 01.71' N 141° 21.06' W
42G 60° 01,05' N 141° 21.31' W
43G 59° 56,99' N 141° 26.49' W
44G 59° 59,03' N 141° 27.94' W
Yakutat S8~-77-EG 45G 59° 52.15' N 139° 41.85' W
Bay 46G 59° 52.,21' N 139° 41.81' W
47G 59° 43.,93' N 139° 42.08' W
48G 59° 38.22' N 139° 47.93' W
Yakutat DC2-80-EG 61G 59° 28.45' N 139° 48.16' W
64G 59° 28.23' N 139° 48.83' W
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Table 1. Core and in place test locations organized by study area (continued)

Study Cruise Core or In Place Latitude Longitude
Area Test Number
Yakutat. DC2-80-EG 65G 59° 28.22' N 139° 48.97' W
’ 66G 59° 28.,20' t 139° 48.88' W
69G 59° 28,13' ¢ 139° 49.38' W
72G 59¢ 27.83' N 139° 49.59' W
83G 59° 28.21' N 139° 48.00' W
84G 59° 28,21' N 139° 48.40' W
85G 59°¢ 27.71' N 139° 50.06' W
87G 59°¢ 27.49' N 139° 50.58' W
88G 59°¢ 27.50' N 139° 50.64' W
MP4 59° 28.21' N 139° 48.40' W
MP5 59° 28.63' N 139° 48.14' W
MV2 59° 28.21' N 139° 48.40' W
MV3 59° 28.63' N 139° 48.15' W
DC1-81-EG 616A2 59° 28.80' N 139° 48.10' W
617G1 59° 22.70' N 139° 48.90' W
617G2 59° 22,90' N 139° 48.80' W
618G1 59° 23,19' N 139° 48.45' W
618G2 59° 23.34' N 139° 48.,44' W
619G1 59° 24.45' N 139° 48.19' W
620G1 59°¢ 25.,59' N 139° 48.09' W
620G2 59° 26.03' N 139° 48,20' W
621G1 59° 26.58' N 139° 47.31' W
621G2 59°¢ 27.04' N 139° 47.34' W
623A1 59°¢ 28.70' N 139° 49.70' W
624A1 59° 28,70' N 139° 49,10' W
624A2 59° 28.70' N 139° 48.70' W
625A1 59° 28,70' N 139° 47.90' W
625A2 59° 28.,50' N 139° 48,20' W
Alsek DC2-80-EG MC3-22 59° 06.99' N 138° 44.31' W
River 23G 59° 06.99' N 138° 44.31' W
26G 59° 07.09' N 138° 44.19' W
28G 59° 06.99' N 138° 43.97' W
29G 59° 06.93' N 138° 43.85' W
316G 59° 06.89' N 138° 43.72' W
32G 59° 06.99' N 138° 43.,72' W
35G 59° 06.99' N 138° 43.39' W
36G 59° 06.94' N 138° 43.44' W
386G 59° 06.94' N 138° 43.17' W
43G 59° 06.94' N 138° 43.09' W
46G 59° 06.91' N 138° 42.85' W
47G 59° 06.94' N 138° 42,79' W
49G 59° 06.92' N 138° 42.63' W
50G 59° 06.92' N 138° 42.67' W
52G 59° 06.93' N 138° 42.58' W
55G 59° 06.93' N 138° 42.10' W
56G 59° 06.88' N 138° 42.11' W
MP3 59° 07.00' N 138° 44.,29' W
MP6 59° 07.74' N 138° 43.85' W
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Table 1. Core and in place test locations organized by study area (continued)

Study Cruise Core or In Place Latitude Longitude
Area Test Number
Alsek DC2-80-EG MP7 . 59° 07.74' N 138° 43.85' W
River MV1 59° 07.00' N 138° 44.31' W
DC1-81~-EG 601G2 59° 06.60' N 138° 42.20' W
602G3 59° 06.18' N 138° 40.25' W
603G1 59° 06.16' N 138° 39.25' W
604G3 59° 06.02' N 138° 39.42' W
604G4 59° 06.09' N 138° 39.57' W
605G1 59° 05.47' N 138° 38.01' W
605G2 59° 05.49' N 138° 38.09' W
606G1 59° 05.50' N 138° 36.80' W
606G2 59° 05.27' N 138° 37.13' W
607A1 59° 07.60' N 138° 44.60' W
607A2 59° 07.50' N 138° 44.60' W
608A2 59° 06.90' N 138° 45.40' W
609A1 59° 05.70' N 138° 39.60' W
610A2 59° 05.50' N 138° 37.70' W
611G1 59° 04.90' N 138° 38.60' W
611G2 59° 05.10*' N 138° 39.,10' W
G12G1 59° 05.60' N 138° 40.50' W
G13G2 59° 06.20' N 138° 43.70' W
G14G2 59°¢ 07.00' N 138° 46.10' W
Other $8-77-EG 1G 60° 02.21' N 147° 11.28' W
2G 60° 02.21' N 147° 11.28' W
23G 59° 50.75' N 144° 24.26' W
DC2-80-EG 92G 59° 00.15' N 139° 54.03' W
MP2 59° 18.81' N 139° 18.59' W
MP8 59°¢ 00.16' N 139° 54.01' W
DC1-81-EG 615A1 58° 18.80' N 139° 19.20' W
DC1-77-EG 700B 59° 42.15' N 142° 41.80' W
704B 59° 55.10' N 142° 31.05' W

Core or test number code
G, B, C, or D - Gravity or piston core
A ~ Vibratory core
MP - In place cone penetration test
MV - In place vane shear test
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PLATE

PACIFIC

y \\
EXPLANATION \

MIDDLE AND UPPER «fe = = THRUST FAULT, DASHED

TERTIARY SEQUENCE WHERE INFERRED

el

LOWER TERTIARY - STRIKE-SLIP FAULT
/A seacence o e NORMAL FAULT

UPPER MESO0ZOIC "
A\ METAMORBHIC "AND

IGNEOUS ROCKS

Figure 2.

Simplified geologic setting of the northern Gulf of Alaska, showing
general trends of Mesozoic and Cenozoic rocks (modified from Bruns,
1979). Onshore geology is from Plafker (1967), and Beikman (1974,1975).
Relative convergence vector between Pacific and North Americal plates
(large arrow) is from Minster and Jordon (1978)
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<.

SIDE SCAN

UNIBOOM

100
g

o

Figure 10.

-:-u.n;é I

High resolution seismic reflection data and side scan
sonographs depicting a water column gas plume southeast
of the Dangerous River delta (Carlson and others, 1980).
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Figure 19. Core and in place tvest locations-Yakutat Study Area.
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Figure 20. Core and in place test locations-Alsek River Study Area.
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Results of field vane shear test MV-1 (Alsek River Study Area)
compared with normalized strength parameter (NSP) estimate

of undrained strength from triaxial tests.
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Figure 23.

Results of field vane shear test MV-2 (Yakutat Study
Area) compared with laboratory vane shear strengths and
NSP estimates from triaxial tests. CIU and UU tests
represent triaxial tests with consolidation to near the
overburden stress and to nearly no stress, respectively.
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Figure 24. Results of field vane shear test MV-3 (Yakutat
Study Area). Arrows indicate locations where the
capacity of the field vane torque cell was reached.
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Figure 25. Results of field vane shear test MV-4

(Icy Bay-Malaspina Study Area) compared

with laboratory vane shear strengths and NSP
estimates from triaxial tests. CIU and UU
tests represent triaxial tests consolidated

to near the overburden stress and to nearly no
stress, respectively.

67



Depth (m)

o)

Ol

H

Undrained Shear Strength (kpa)

0 10 20 30 40 50

| I \\\Q/_\Lab Vane, Core 197G

\\ >

- ‘:\
22
i 7\ NSP estimate, normal
~N . N
\\ N consolidation
U - __
_ _—— T oeUU
\ Corel96G

Figure 26. Results of field vane shear test MV-5 (eastern part of
Icy Bay-Malaspina Study Area) compared with laboratory
vane shear strengths and NSP estimates from triaxial
tests. CIU and UU tests represent triaxial tests to near
the overburden stress and to nearly no stress, respectively.
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Figure 27. Results of in place cone penetration test
MP-2 (off the mouth o<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>