

MANUAL FOR COMPARING METHODS OF DESIGNING HYDROLOGIC-DATA-COLLECTION
NETWORKS

by Marshall E. Moss and Gary D. Tasker

U. S. GEOLOGICAL SURVEY

Open-File Report 90-389

(SEAL)

Tucson, Arizona

1990

DEPARTMENT OF THE INTERIOR

MANUEL LUJAN Jr., Secretary

U. S. GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information
write to:

Office of Regional Research
U. S. Geological Survey
Water Resources Division
300 W. Congress St.
Tucson, Arizona 85701

Copies of this report can
be purchased from:

U. S. Geological Survey
Books and Open-File Reports
Federal Center
Box 25425
Denver, CO 80225-0425
[Telephone (303) 236-7476]

CONTENTS

	page
ABSTRACT	1
INTRODUCTION	1
Purpose and Scope	2
Approach	3
METHODS OF NETWORK DESIGN	5
DATA SET SELECTION	6
STEPS IN EVALUATING A NETWORK DESIGN	8
Identify data base	8
Investigate regional homogeneity	8
Compile data	9
Design experiments	11
Execute experiments	15
Analyze results	20
Design, run, and analyze complementary experiments	22
Write report	22
SUMMARY AND CONCLUSION	23
REFERENCES	24
APPENDIX A: Program Source Code.....	A-1
APPENDIX B: Input Data for Program.....	B-1
APPENDIX C: Program Hynet output for seventeen experiments.....	C-1
APPENDIX D: Final Hynet report for the United States of America.....	D-1

FIGURES

	page
Figure 1. Flowchart for Hynet study	26
Figure 2. Location of gaging stations used in study	27
Figure 3. Plot of drainage area against mean annual precipitation ...	28
Figure 4. Predicted versus observed mean flow	29
Figure 5. Positive and negative residuals computed from regression ..	30

TABLES

Table 1. Layout of records for Hynet example	10
Table 2. Experimental design parameters	12
Table 3. Basic experiments	14
Table 4. Example of prompts and responses	17
Table 5. Hynet output variables	18
Table 6. Summary of results for comparison	21
Table 7. Annotated outline of final report	22

MANUAL FOR COMPARING METHODS OF DESIGNING HYDROLOGIC-DATA-COLLECTION
NETWORKS

ABSTRACT

This report describes a method, based on random subsampling of real data, for comparison of network-design technologies that have a common objective. Two such technologies, Network Analysis for Regional Information (NARI) and Network Analysis Using Generalized Least Squares (NAUGLS), were chosen to illustrate the comparison technique by using a data base from a network of gages in the central part of the United States. In general, the results for the illustrative example indicate that the NAUGLS method conveys more information than the NARI method to the network designer interested in maximizing regional information about mean annual flows given a limited budget.

INTRODUCTION

The World Meteorological Organization (WMO) has had a long and productive involvement with the hydrometeorological services of its member countries in the development and dissemination of technology for the design of hydrometeorological-data networks (Rodda, 1969; World Meteorological Organization, 1972; Moss, 1982). However, to date, the testing of such technology has not been conducted in a formal sense under the aegis of WMO. At the Seventh Session of its Commission for Hydrology (World Meteorological Organization, 1984), WMO decided to create a new project that would compare several of the technologies that the services were using to design networks. This project, known as Hynet, incorporates the concept of using actual data for split-sample testing (Efron, 1982) that has been used successfully in other comparison projects (World Meteorological Organization, 1975; World Meteorological Organization, 1986).

The main difficulty in implementing the Hynet project has been the non-comensurate nature of the various technologies that are used by the hydrometeorological services. To conduct a truly valid comparison of two or more technologies, the objective that the resulting data sets are to address must be the same for each technology. This commonality of objective was absent in the responses of the member countries to an initial survey of interest in Hynet conducted by WMO. Therefore, it was decided to illustrate the conduct of an comparison of network-design technologies with two procedures developed and used in the United States of America that did exhibit a common objective. This approach was chosen to demonstrate the utility of such comparisons, with the hope that it would stimulate movement toward common objectives that would permit subsequent comparison of a broader international suite of network-design technologies.

Purpose and scope

The purpose of this report is to document how a study to compare network-design techniques by use of random resampling of real data can be conducted. Data obtained from a streamflow gaging station network in the central part of the United States are used to illustrate the method. The report describes the approach and compares two network-design technologies currently in use in the United States that select gages to be operated to optimize regional information.

Approach

The chosen approach takes advantage of randomly selected subsets of actual hydrologic data to simulate the design of a network and its subsequent implementation and evaluation. By repeated sampling from an existing data set, the statistics of the effectiveness, in a particular hydrologic context, of the network-design technologies in addressing their common objective can be developed and used as the basis for comparison.

The approach can be illustrated by a hypothetical example. Suppose that a data set exists in a particular region that has been determined to be homogeneous with respect to the underlying assumptions of the network-design technologies that are to be compared. This data set consists of the records from N stream-gages, each of which has been operated for M years. Thus, if an annual streamflow characteristic, like mean annual discharge or mean annual flood, is a variable of interest, there are $N \times M$ observations that can be derived from the data set. To conduct an experiment, n streamgages, where n is less than the minimum of N or 50, are randomly selected from the data set and $m(i)$ observations, where $i=1, n$, are selected for each gage. The values of $m(i)$, the lengths of record at each site, are set by the experimental design. This data subset is used in conjunction with each technology to design data networks that are to be operated during a hypothetical planning horizon, which also is defined by the experimental design. Because of data limitations, the network designs are constrained to operate no more than N_p gages during the planning horizon. The planning horizon must be less than or equal to M minus the maximum of the $m(i)$; it also must be less than or equal to 50 minus the maximum of the $m(i)$. For each network design, the projected level of satisfaction of the objective at the end of the planning horizon is recorded.

For each network design -- that is, one for each technology being compared, actual data are selected from the remainder of the original data set to conform with each design. These data are incorporated with those used in the design to compute the actual level of satisfaction of the design objective. For each technology, the difference between the projected and achieved levels of satisfaction is used as a measure of the validity of each network design for the given sample of streamflow data -- the smaller the absolute difference, the better the technique.

Because of the random nature of streamflow, a single simulation of the network-design comparison does not provide strong evidence of the superiority among the technologies. To strengthen the evidence, other random samples from the $N \times M$ data set with the same n and $m(i)$ dimensions can be selected and the simulation repeated. By analyzing the statistics of a suite of simulations, stronger statements can be made concerning the relative utility of the technologies in the hydrologic setting of the experiment.

Other experiments can be conducted by changing n or $m(i)$ or by selecting data sets from other hydrologic regimes. By conducting a broad set of experiments, the robustness of the individual technologies can be determined.

METHODS OF NETWORK DESIGN

The two U.S. technologies that have been incorporated into the current version of the Hynet programs are Network Analysis for Regional Information (NARI) as described by Moss and others (1982) and Network Analysis Using Generalized Least Squares (NAUGLS) as described by Tasker (1986). Each of these technologies has as its goal the definition of data networks that will serve as efficient information bases for the estimation of statistical parameters of streamflow at ungaged sites in a homogeneous region; each also uses a regression model of streamflow parameter against physiographic and climatic characteristics as the mechanism for estimation. Each of these technologies has the capability of being used to design networks for the estimation of any one of several streamflow characteristics. For the Hynet project, the estimation of mean annual discharge was chosen as the parameter of interest, and the common objective of the two technologies was to minimize its expected mean squared error of estimation at ungaged sites in a homogeneous region. The definition of a homogeneous region is discussed under Data Set Selection.

The NARI technology, which evolved from earlier work of Carter and Benson (1971), relies on ordinary least squares to calibrate the regression relation and is based on results of simulations using stochastic hydrology. NAUGLS conceptually improves on NARI by the use of generalized least squares (Stedinger and Tasker, 1985), which permits the individual values of the computed streamflow characteristics at each gaged site to be weighted in inverse relation to the estimate of its accuracy. NAUGLS does not rely on simulation and is much more mathematically elegant than NARI. However, NAUGLS does entail some simplifying assumptions in developing its weighting scheme. Thus, Hynet becomes a desirable approach to test whether the added elegance of NAUGLS in combination with its simplifying assumptions is a practical improvement over the more simplistic NARI.

DATA SET SELECTION

The larger the original data set, the more powerful and robust will be the conclusions that can be developed from it. However, there are two criteria that potentially limit the data-set size: (1) the records for each of the N streamgages must be representative of a homogeneous hydrologic region and (2) records for each streamgage should be continuous for a common period of M years. Neither of these criteria is an absolute requirement, but significant deviations from either will weaken the resulting conclusions.

The definition of homogeneous hydrologic regions has been a topic of research within the hydrologic community (Wiltshire, 1986). The approach taken in each of the Hynet technologies is that homogeneity is relative to the level of sophistication contained in the underlying regression model. For example, if the logarithm of mean annual streamflow is to be regressed against the logarithm of basin drainage area, a homogeneous region for this model would consist only of stream reaches that are influenced similarly by precipitation regimes, soils, vegetation, and other morphological characteristics of the drainage upstream from the reach. Any significant inclusion of subareas that violate this assumption increases the inherent error of the underlying model and, thereby, decreases the ability of the model to utilize the data in providing more accurate estimates. On the other hand, if concepts and variables that capture more of the understanding of the hydrologic processes are available, the homogeneous region expands to incorporate subregions with deviations that can be explained by the added complexity. Thus, in implementing Hynet, there is a trade off between the desirability of large data sets and the added effort required to achieve homogeneity within the data set. An arbitrary selection has been made for the current version of Hynet to use two independent variables-- drainage area and mean annual precipitation-- in the regressions. Therefore, the data set should be as homogeneous as possible with respect to all other causal factors of annual discharge.

If the second criterion can not be met explicitly, there are two options for the implementation of Hynet. The first option is to remove streamgages and/or shorten the common time period to the point that the criterion is met. By exercising this option, the range of data availability -- that is, the number of gages and lengths of record -- over which the technologies can be compared will be reduced, and the robustness of the comparison will be impaired. The second option is to fill the gaps within the NxM matrix with statistically valid procedures (Kendall and others, 1983). A minimal amount (less than a few percent) of such synthetic data will not compromise the conclusions that can be drawn from the analysis.

STEPS IN EVALUATING A NETWORK DESIGN

The execution of an individual phase of the HYNET project is conducted in a series of steps, as illustrated in figure 1. Each of these steps is demonstrated herein by use of an example from the central part of the United States.

Identify data base

The current version of the HYNET program restricts the number of gaging stations to a maximum of 150 and the period of record at any station to a maximum of 50 years. The NxM data base for the implementation of HYNET must fall within these limits.

The United States Geological Survey operates and maintains records for approximately 7000 thousand gaging stations in the United States. These gages monitor streamflow from areas with climatic conditions ranging from arid to humid and with terrain ranging from mountains to plains. This demonstration study was limited to the upper central portion of the United States (figure 2) because of the region's roughly similar climate and topography. Only those stations that were operated, at least in part, for the purpose of collecting regional information and had complete record for the period 1955-1984 were considered. The 146 stations that form the potential data base for this example have drainage areas that range between 32 and 24,730 square kilometers and mean annual precipitation ranging between 77 and 117 cm as shown in figure 3.

Investigate regional homogeneity

To investigate the regional homogeneity of the potential data base, mean annual discharge was computed for each of the 146 gaging stations for the common period of record, 1955-1984, and a regression of the natural logarithms of these values

against the natural logarithms of the independent variables, drainage area and mean annual precipitation, was performed. The resulting regression had a coefficient of determination of 0.99 and a standard error of estimation of 14 percent. A plot of the data-based estimates of mean annual discharge against those derived from the regression (figure 4) shows no unusual outliers. Figure 5, a map of residuals (the regression estimates minus the data-based estimates), shows a trend from east to west. However, because of the overall goodness of fit of the regression, it was felt that this trend was not a significant violation of the assumption of homogeneity. Thus, the conclusion from this step is that all 146 stations comprise a sufficiently homogeneous region for the purposes of the Hynet study.

Compile data

Because there are no discontinuities in the 146 records used in the U. S. example, there is no need to complete the data base with synthetic data. However, if it were necessary, synthetic data should be generated and added to the data base prior to its formatting for input to the Hynet program.

The data-base format is arranged sequentially by streamgage -- that is, all data for a particular gage are maintained as a separate record. Each record consists of ten lines of information. Table 1 shows the layout of the first two records (gages) of the U.S. example. The first line contains a gage number and name; lines two through ten, annual mean discharges for the years 1901-1990 with ten fields or values per line; line eleven contains the drainage area upstream from the gage and the mean annual precipitation on the drainage upstream from the gage. In lines two through eleven, column 1 is blank followed by up to ten fields of seven columns each. Years with no value of annual mean discharge, neither measured nor synthetic, are indicated by -1. There should be no negative or missing values in the concurrent records used for the Hynet analysis (1955-1984 in the example).

Table 1. Layout of records for Hynet example. [Annual means are shown in cubic meters per second, drainage area is in square kilometers, and mean annual precipitation is in centimeters. Values of -1.00 indicate missing values]

03086500 MAHONING R AT ALLIANCE OH

03092000 KALE C NB PRICETOWN OH

Design Experiments

Each experiment is characterized by an individual set of values for the parameters shown in table 2. The goal of the Hynet comparison is to test the network-design technologies over a range of conditions that bracket most situations encountered by hydrometeorological services throughout the world. Therefore, for each hydrologic setting to be investigated, it is desireable to compare the technologies when the designs are based on the existence of either sparse or replete data sets and for conditions under which the designer expects either austere or abundant budgets during the planning horizon. To span this multidimensional space of potential experiments, it is convenient to separate the initial experimental design into two facets: (1) selection of the parameters that describe the data base available for performing the network design and (2) selection of the parameters that constrain the design outcomes.

The first dimension of data availability is the number of gages that can provide data for the initial regressions that serve as the basis of each network design. For the sparse situation, it is assumed that ten individual gage records are available in the homogeneous region; for the data-rich case, it is assumed that 30 records are available.

The second dimension of data availability is the temporal one, the lengths of the available records. In most actual situations, the records available at any given time are variable in length. The Hynet program mimics this characteristic by providing for the selection of three different lengths within any experiment. Therefore, selection of the three record lengths and the fractions of the records of each length comprise the second step in the experimental design. For the initial designs, it is assumed that records of 5, 8, and 10 years length are available to represent the sparse-data situation, with 30, 40, and 30 percent, respectively, of the records being of each length. To explore the data-rich condition, it was chosen

that records of 10, 15, and 20 years be available with a respective distribution of 30, 40, and 30 percent in each category. Combining the sparse and replete characteristics in each dimension defines four data-availability conditions.

Table 2 -- Experimental design parameters

Symbol	Definition
NB	Number of gages with record available for the initial regressions
L1	Record length in the first category, in years
N1	Number of gages with record length of L1
L2	Record length in the second category, in years
N2	Number of gages with record length of L2
L3	Record length in the third category, in years
N3	Number of gages with record length of L3
PH	Length of planning horizon, in years
NP	Maximum number of gages operated during the planning horizon

As with data availability, there are two dimensions to design constraints: (1) the number of gages that can be operated in the future -- a budgetary constraint, and (2) the length of the planning horizon -- a time constraint. To represent austere budgets, it is assumed that 10 gages can be operated; under the abundant budget, funds for 40 gages are assumed. For the length of the planning horizon, values of 5 and 10 years are of interest.

Each of the two facets of experimental design contains four pairs of conditions. When the two facets are combined, sixteen scenarios result, each of which defines a desirable experiment for implementation of HYNET. These 16 basic experiments, enumerated in table 3, bracket the extremities of the HYNET sample space. In addition to these experiments, at least one experiment in the interior of the sample space would be desireable. Therefore, an experiment in which 20 records are available for the regression--six of which are 10 years long, eight of which are 12 years long, and six of which are 15 years long--is favored. The preferred planning horizon for the experiment is 10 years and the preferred budget would provide for 25 gages during the planning horizon.

Table 3 -- Basic experiments

Data availability	Design constraints	Design parameters			
		NB	L3	PH	NP
<hr/>					
Few, short records	Austere budget, short horizon	10, 10, 5, 10			
	Austere budget, modest horizon	10, 10, 10, 10			
	Adequate budget, short horizon	10, 10, 5, 40			
	Adequate budget, modest horizon	10, 10, 10, 40			
Few, long records	Austere budget, short horizon	10, 20, 5, 10			
	Austere budget, modest horizon	10, 20, 10, 10			
	Adequate budget, short horizon	10, 20, 5, 40			
	Adequate budget, modest horizon	10, 20, 10, 40			
Many, short records	Austere budget, short horizon	30, 10, 5, 10			
	Austere budget, modest horizon	30, 10, 10, 10			
	Adequate budget, short horizon	30, 10, 5, 40			
	Adequate budget, modest horizon	30, 10, 10, 40			
Many, long records	Austere budget, short horizon	30, 20, 5, 10			
	Austere budget, modest horizon	30, 20, 10, 10			
	Adequate budget, short horizon	30, 20, 5, 40			
	Adequate budget, modest horizon	30, 20, 10, 40			

For any given experiment, the minimum size of the actual data set is a function of the parameters of the experiment: (1) the minimum number of gaged records is equal to the sum of the number of gages available for the initial regressions and the number of gages that can be operated during the planning horizon, and (2) the minimum length of concurrent record equals the sum of the maximum length of record available for the initial regressions and the length of the planning horizon. To accomplish the full suite of experiments described in table 3, an actual data base comprised of at least 70 gages (N), that have concurrent records with a minimum of 30 years (M), is required. This limitation derives from the data-rich, abundant-budget scenario, which is the experiment with the greatest data demand. If the minimum data set is not available, those experiments listed in table 3 that fall within the constraints described above would be executed. Furthermore, when N is less than 70 and M is less than 30, one additional experiment that just fits within the constraints should be run.

As was discussed in the section on data-set selection, the larger the actual data set that is provided for the Hynet program, the more credible will be the results. If more than 70 gages are available from the homogeneous region or if concurrent records of length greater than 30 years exist, these additional data would be included in the data set.

Execute experiments

The computer program for comparison of the NARI and NAUGLS procedures consists of a main program (HN.F77) and 37 subprograms and functions (see Appendix A for listing). The program requires approximately 420K bytes of memory and will run 100 repetitions in about 120 minutes of CPU on a computer that can perform 4.5 million instructions per second.

In addition to the streamflow-data file, input to the Hynet program is made

from the keyboard in response to prompts that appear on the computer screen. An example is shown in table 4.

HYNET computer program output consists of the values of 15 variables as shown in table 5. The first 10 variables are the parameters that define the experiment; the last five are the results of the experiment. Output for the seventeen experiments in the U.S. example are given in appendix C.

Table 4. Example of prompts and responses as they appear on the screen and are typed from keyboard, respectively, for running the HYNET program.

=====

Please enter total number of stations in file
146

Please enter beginning year and ending year of
complete record for all sites. -- example 1955 1984
1955 1984

Please enter name of output file
ex1.out

Please enter the number of stations with record
available for the initial regressions, NB.
10

Please enter length of planning horizon, PH, in years
5

Please enter maximum number of gages that can be operated at one time, NP
10

There are 10 stations in network
Please enter 3 pairs of number of station-rec length combinations
N1 L1 N2 L2 N3 L3
3 5 4 8 3 10

Please enter number of repetitions
100

=====

Table 5 -- HYNET output variables

Variable number	Description
<hr/>	
Data Availability	
1	Number of gages (NB)
2	Record length in the first category, in years (L1)
3	Number of gages in the first category (N1)
4	Record length in the second category, in years (L2)
5	Number of gages in the second category (N2)
6	Record length in the third category, in years (L3)
7	Number of gages in the third category (N3)
Design Constraints	
8	Planning horizon, in years (PH)
9	Maximum number of gages during the planning horizon (NP)
10	Number of repetitions in the experiment
Results of the Experiment	
11	Mean error of NARI designs, in percent
12	Mean error of NAUGLS designs, in percent
13	Root mean squared error of NARI designs, in percent
14	Root mean squared error of NAUGLS designs, in percent
15	Relative information content of NAUGLS to NARI

Output variables 11 through 14 are based on differences of the projected and realized standard error of estimate of mean annual discharge, expressed as percentages of the individual repetitions within the experiment. For example, if

the network design for NARI indicated that the standard error of estimate would be 10 percent at the end of the planning horizon and the realization of the network design resulted in only 8 percent, the difference for this particular repetition would be 2 percent. The averages of 100 differences for each experiment, both for NARI and NAUGLS, are variables 11 and 12. Variables 13 and 14 are the averages of the squares of the 100 differences for each technology. Variable 15, the relative information of NAUGLS to that of NARI, is the ratio of the square of variable 13 to the square of variable 14.

Analyze Results

The primary measure of the reliability of a network-design technology is the reciprocal of the mean squared error -- that is, the root mean squared error squared. This measure is the equivalent of the technology's information content about the regional information at the end of the planning horizon if the network design is implemented. Therefore, if the information content of one technology exceeds the other by a significant amount, it can be said to be the superior technology for the conditions of the given experiment. One way of portraying the comparison of the two technologies is by the reciprocal of the ratio of their mean squared errors, which is a measure of their relative information contents (Matalas and Langbein, 1962). For example, if the mean squared error of NARI is divided by that of NAUGLS, the result is the relative information of NAUGLS to NARI. If the ratio is significantly greater than 1.0, NAUGLS is superior to NARI for the conditions of the experiment; if the ratio is significantly less than 1.0, then NARI is superior to NAUGLS; and if the ratio is approximately equal to 1.0, the choice between the technologies is an insensitive one. Relative information should be computed for each experiment, and the regions in the design sample space where one technology is superior to the other should be defined. The results for the U.S. example are summarized in table 6.

Table 6. Summary of results for comparison of Network Analysis for Regional Information (NARI) and Network Analysis Using Generalized Least Squares (NAUGLS).

EXP NO.	NB	L3	PH	NP	BIAS (in, percent)		RMSE(in, percent)		RELATIVE INFORMATION [mse(NARI)/mse(NAUGLS)]
					NARI	NAUGLS	NARI	NAUGLS	
1	10	10	5	10	1.62	- 0.65	4.07	3.20	1.6
2	10	10	10	10	2.15	- 0.25	4.20	2.75	2.3
3	10	10	5	40	0.91	- 0.82	3.74	2.93	1.6
4	10	10	10	40	1.65	- 0.18	3.83	2.57	2.2
5	10	20	5	10	1.26	- 0.16	3.03	2.26	1.8
6	10	20	10	10	1.80	0.11	3.06	1.95	2.5
7	10	20	5	40	0.44	- 0.37	3.08	2.24	1.9
8	10	20	10	40	1.33	- 0.02	2.79	1.86	2.2
9	30	10	5	10	0.71	- 0.08	2.24	1.70	1.7
10	30	10	10	10	1.12	0.20	2.40	1.75	1.9
11	30	10	5	40	0.62	- 0.18	2.08	1.71	1.5
12	30	10	10	40	1.16	0.18	2.33	1.76	1.8
13	30	20	5	10	0.74	0.21	1.40	1.02	1.9
14	30	20	10	10	0.94	0.39	1.49	1.06	2.0
15	30	20	5	40	0.65	0.24	1.39	1.04	1.8
16	30	20	10	40	0.97	0.34	1.47	1.04	2.0
17	20	15	10	25	1.14	0.39	2.15	1.55	1.9

Design, run, and analyze complementary experiments

If the basic experiments are not dense enough to define the regions of superiority, additional experiments, in the vicinities where shifts in dominance are suspected, should be performed until the shifts are reasonably well defined.

Write report

A report on each implementation of HYNET should be prepared following the annotated outline given in table 7. A sample report for the U.S. example is provided in Appendix D.

Table 7 -- Annotated outline of final report

I. The Homogeneous Region: Describe the climate and phisiography of the region.

II. The Hydrology of the Region: Describe seasonal characteristics of the surface-water hydrology and describe the sub-surface hydrology if it has a major impact on runoff.

III. The Available Data Base: Describe the availability of surface-water records in the region, the selection of candidate gages for the data base, the tests for homogeneity, and the results of the tests; describe the accuracy of the topographic maps used to compute drainage areas; and describe the accuracy of the estimates of mean annual precipitation.

IV. The Experiments: Describe which experiments were run and what their outcomes were.

V. Conclusions: Describe which technology was superior in which parts of the sample space.

SUMMARY

Comparing streamflow network design technologies by random resampling of real data is operational for comparing two network design technologies currently in use in the United States. The network design technologies, NARI and NAUGLS, are briefly summarized. These technologies have a common objective-- to maximize regional streamflow information. The use of the computer program described in the report is illustrated by an example using a streamflow network located in the central part of the United States. The program can be used for other networks by changing the input data. However, changes in the source code (Appendix A) would have to be made if technologies other than NARI and NAUGLS are to be compared.

REFERENCES

Carter, R.W., and Benson, M.A., 1971, Nationwide study of the streamflow data program: Water Resources Bull., v. 7, No 2, pp 383-385.

Efron, B., 1982, The Jackknife, the Bootstrap, and other Resampling Plans Society for Industrial and Applied Mathematics, Philadelphia, PA, 92 p.

Fisher, R.A., 1966, The Design of Experiments, 8th ed.: Hafner Publishing Co., New York, 248 p.

Kendall, M., Stuart, A., and Ord, J.K., 1983, The Advanced Theory of Statistics, Volume 3, 4th ed.: Oxford University Press, New York, ? p.

Matalas, N. C. and Langbein, W. B., 1962, Information content of the mean: J. Geophysical Research, v. 67, no. 9, pp 3441-3448.

Moss, M.E., 1982, Concepts and Techniques in Hydrological Network Design: WMO Operational Hydrology Report No. 19, WMO-No.580, 30 p.

Moss, M.E., Gilroy, E.J., Tasker, G.D., and Karlinger, M.R., 1982, Design of Surface-Water Data Networks for Regional Information, U.S. Geol. Survey Water-Supply Paper 2178, 33p.

Rodda, J.C., 1969, Hydrological Network Design - Needs, Problems, and Approaches: WMO/IHD Projects Report No. 12, 57p.

Stedinger, J.R. and Tasker, G.D., 1985, Regional hydrologic analysis- ordinary, weighted, and generalized least squares compared: Water Resources Research, v. 21, No. 9, pp. 1421-1432.

Tasker, G.D., 1986, Generating efficient gaging plans for regional information: in Integrated Design of Hydrological Networks(M.E. Moss ed.) IAHS Publ. no. 158, pp. 269-281.

Wiltshire, S.E., 1986, Identification of homogeneous regions for flood frequency analysis: Journal of Hydrology, v. 84, pp. 287-302.

WMO, 1972, Casebook on Hydrological Network Design Practice: WMO - No. 324.

WMO, 1975, Intercomparison of Conceptual Models Used in Operational Hydrological Forecasting: Operational Hydrology Report No. 7, WMO - 429, 172 p.

WMO, 1984, Abridged Final Report of the Seventh Session of Commission for Hydrology: WMO - No. 638, 124 p.

WMO, 1986, Intercomparison of Models of Snowmelt Runoff: Operational Hydrology Report No. 23, WMO - No. 646.

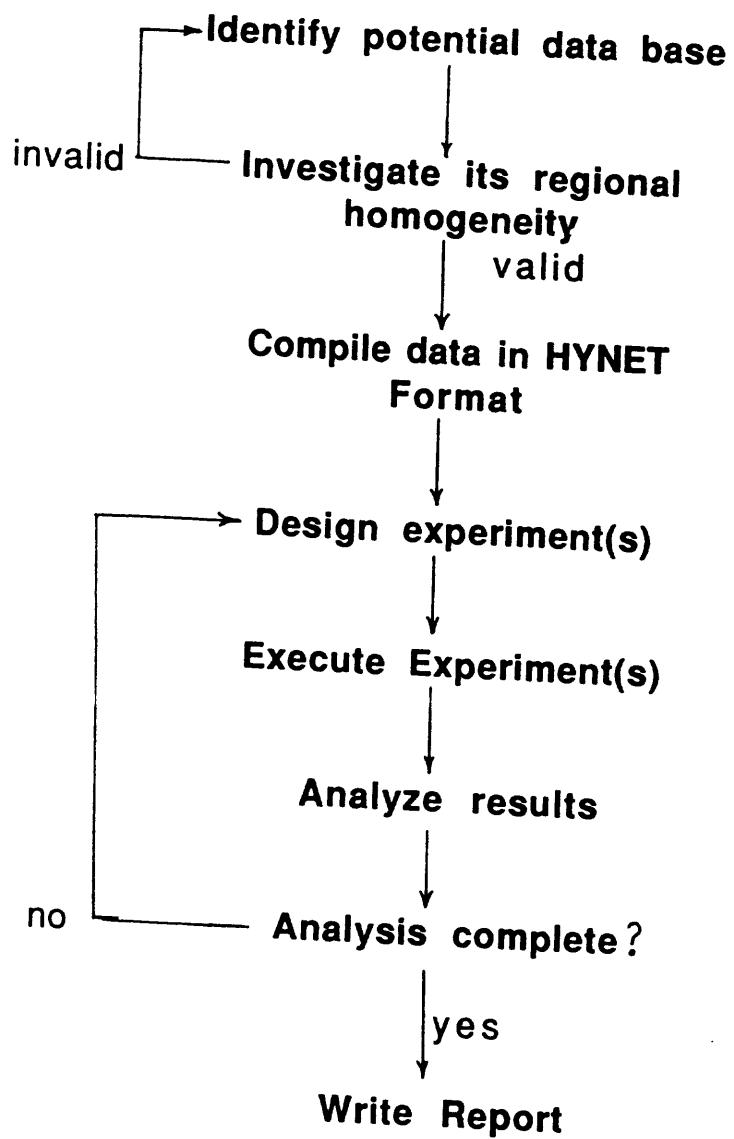


Figure 1. Flowchart for HYNET study.

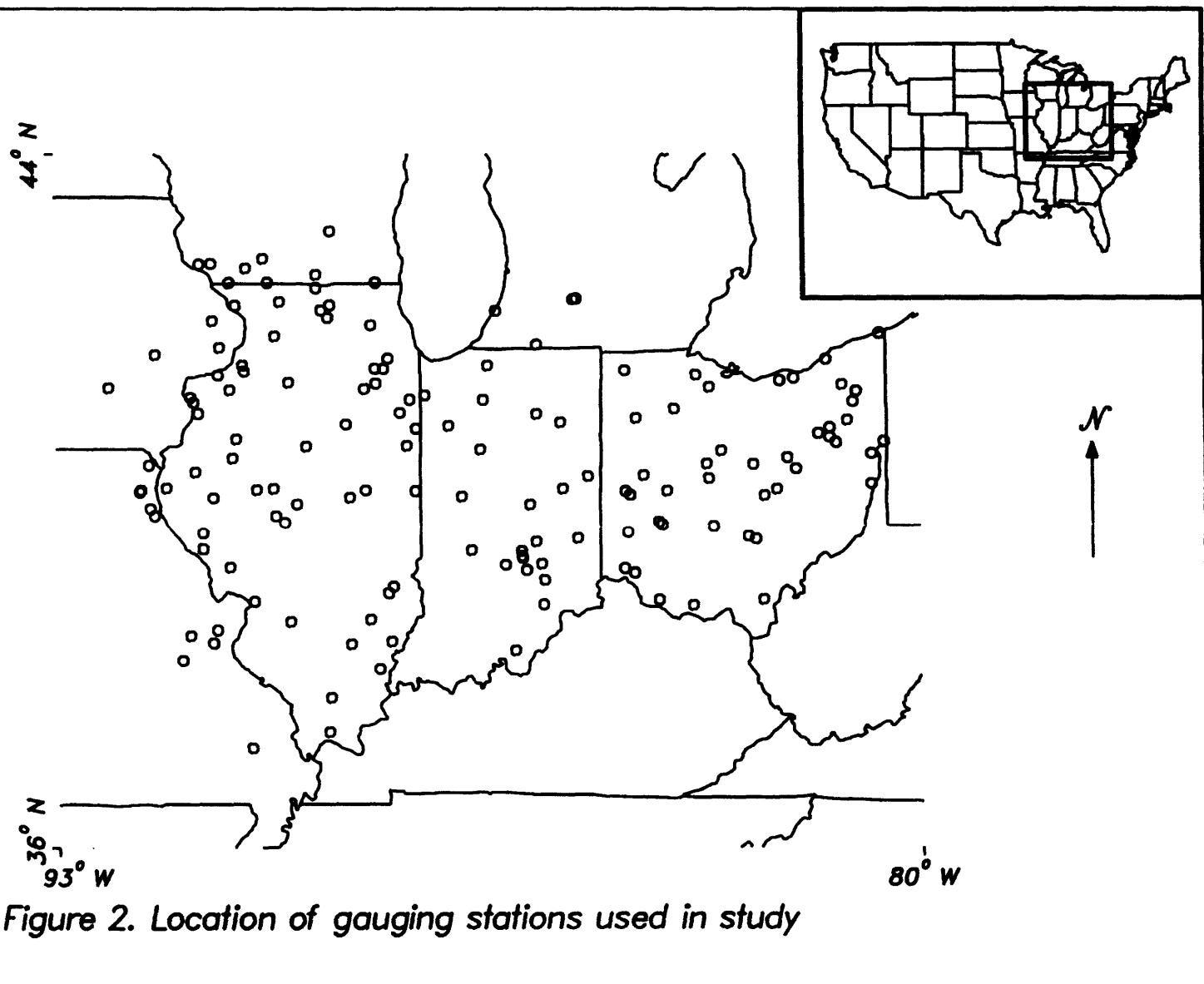


Figure 2. Location of gauging stations used in study

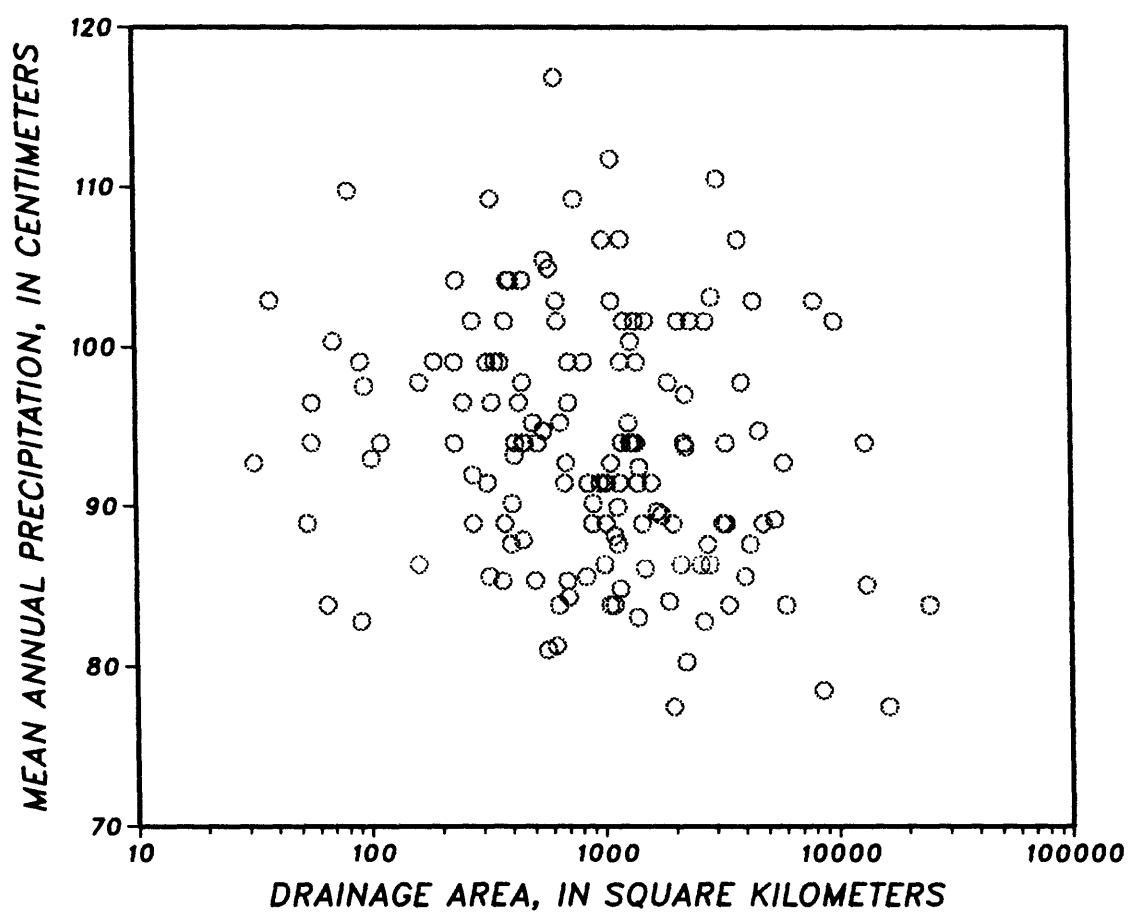


Figure 3. Plot of drainage area against mean annual precipitation for 146 stations in the United States.

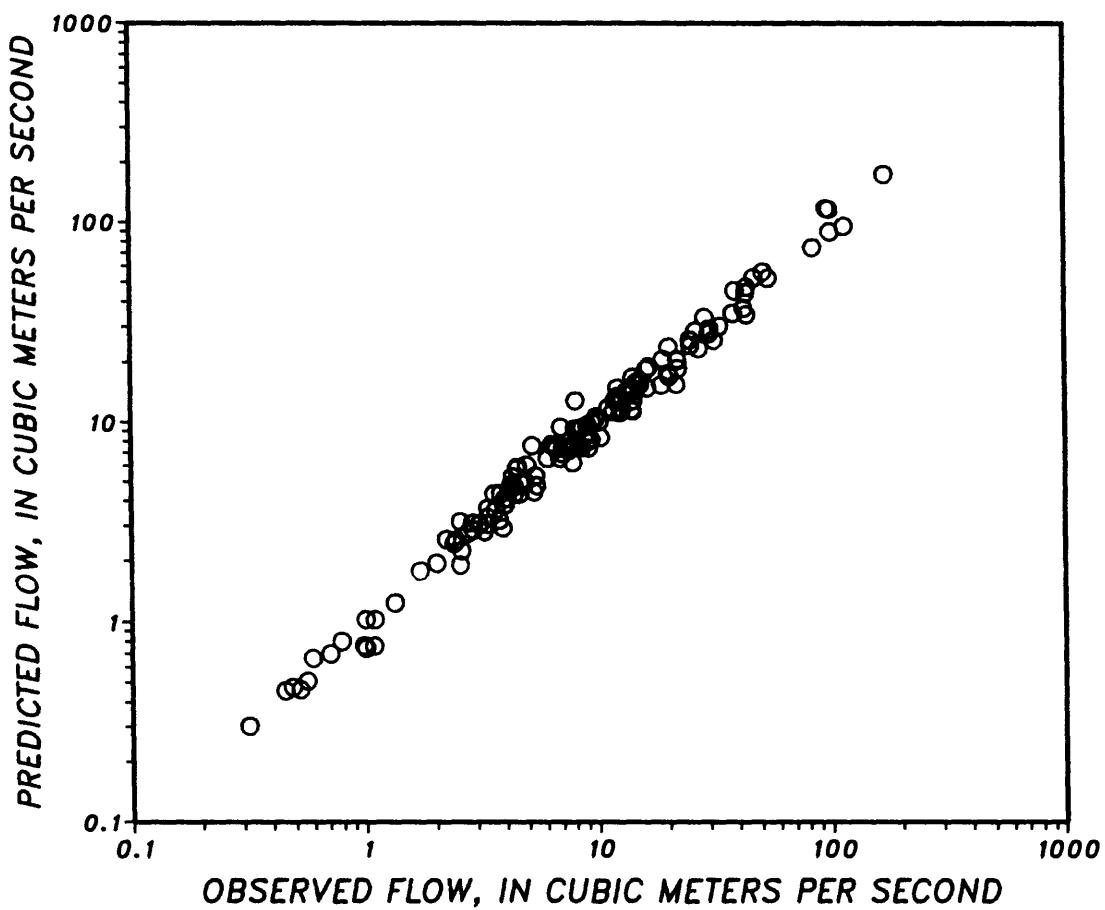
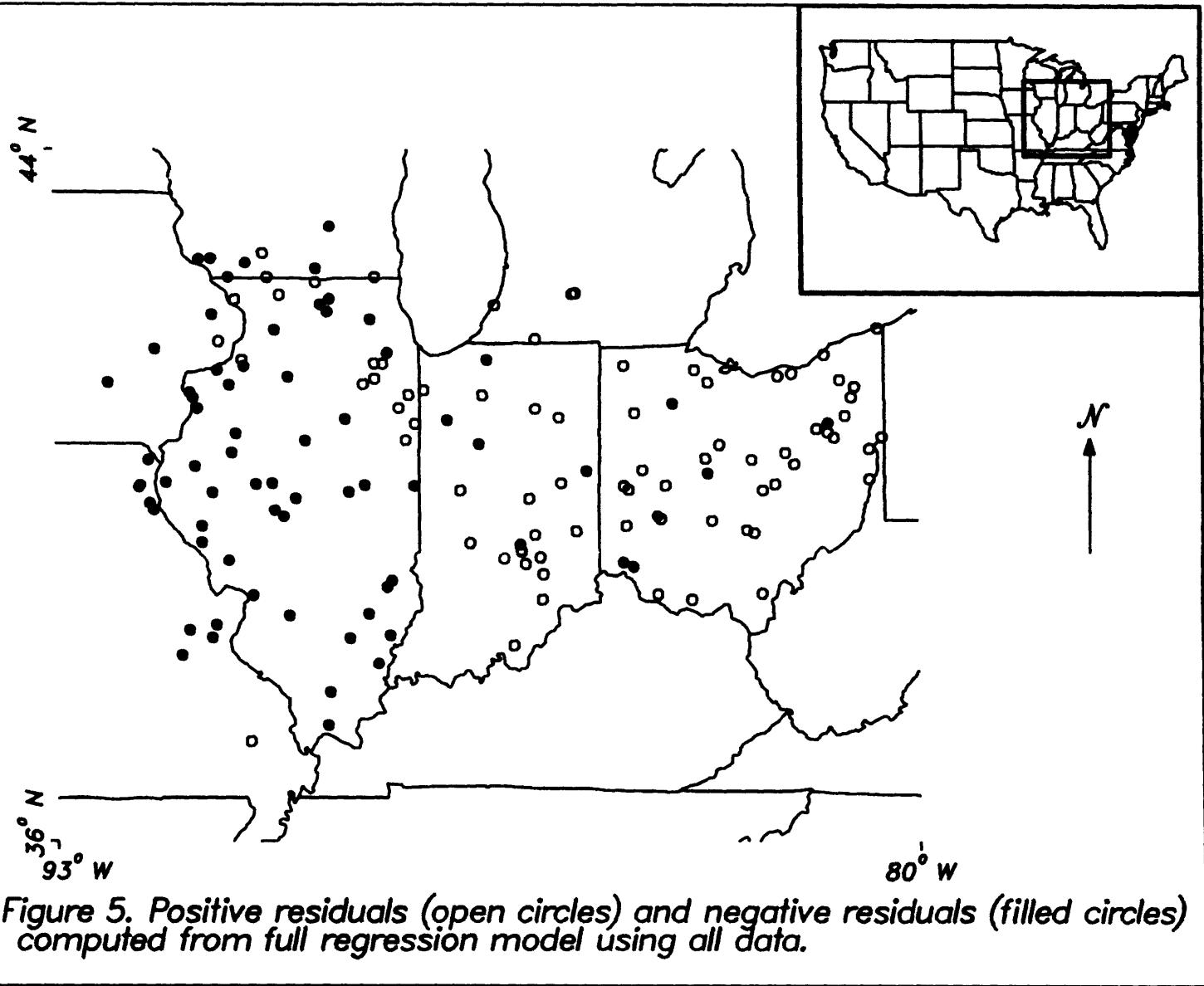



Figure 4. Predicted versus observed mean annual discharge using all data.

Appendix A -- Program source code.

Table of contents

PROGRAM	PAGE NO.
hnt (main)	32
SUBROUTINES AND FUNCTIONS	
bhind	36
coefm at	37
datain	37
decomp	38
dznout	38
editin	39
eqcov	40
evalu8	41
gauscf	42
gls	42
glsnet	43
glsreg	46
hartiv	46
hartk	53
inv3	54
invert	54
lever	55
lnmom	55
melior	55
modivalu	56
multiply	57
netgis	57
obsemt	58
obsesd	58
olsreg	59
prical	60
ran2	60
rank	60
readin	60
read5	61
secant	61
smpsrl	62
srpos	62
stutp	65
trsemt	66
trsesd	67
zero	67
COMMON FILES	
dimens.cmn	68
gr.cmn	68
tab.cmn	68
mv.cmn	68
gr1-5.cmn	68
nari.cmn	68

```

c program hn.f77
  include 'dimens.cmn'
  include 'gr.cmn'
  real*4 ynew(1,maxyr), danew(maxs), prnew(maxs), pick(200)
  integer*4 ipick(maxs), i, nstat, nph, nbud, n1, j1, n2, j2, n3, j3, nrep,
  +         irand, irep, ntot, npick, jhave, ipk, ii, ibeg, ict, ict, ict,
  +         ihave, j, jparm, jsave, k, jmax, j1b, j2b, j3b, nm, ns, nmean,
  +         minyr, isav, jend, nex, noall
  real*4 smean, ss, aa, vmean, se, varbar, rabar, recin, anb, serr, sserr, x1,
  +         x2, pred, err, errmean, prmse, obmse, bg0, bg1, bg2,
  +         gmean, gpmse, gomse, daall, prall, amall
  common /net1/ noall, daall(150), prall(150), amall(150)
  integer*4 jl, irank, ivsav
  common /c1/ jl(50), irank(50), ivsav(50,30)
  include 'nari.cmn'
  double precision stanew(1), staold(50)
  character*32 fileout
  open(5, file='hynet.dat')
  write(*, 121)
121 format(' Please enter total number of stations in file')
  read(*, *) noall
  do 41 i=1, noall
  call read5(amall(i), daall(i), prall(i))
41 continue
  rewind(5)
c terminal queries
  write(*, 122)
122 format(' Please enter beginning year and ending year of', '/',
  +' complete record for all sites. -- example 1955 1984')
  read(*, *) kbeg, kend
  kbeg=kbeg-1900
  ktot=kend-1900-kbeg+1
  write(*, 98)
98 format(' Please enter name of output file')
  read(*, 97) fileout
97 format(a32)
  open(6, file=fileout)
  endfile(6)
  rewind(6)
  write(*, 100)
100 format(' Please enter the number of stations with record', '/',
  +' available for the initial regression, NB')
  read(*, *) nstat
  write(*, 200)
200 format(' Please enter length of planning horizon, PH, in years')
  read(*, *) nph
  write(*, 300)
300 format(' Please enter maximum number of gauges that can be operate
  +d at one time, NP')
  read(*, *) nbud
  write(6, 1177) nstat, nph, nbud
1177 format(' Initial number of stations = ', i3, '/',
  +' Planning horizon = ', i3, '/',
  +' Number of stations to be operated in future = ', i3)
c read distribution of record lengths
  write(*, 101) nstat
101 format(' There are', i3, ' stations in network', '/',
  +' Please enter 3 pairs of number of station-rec length combination
  +' s', i2, ' N1  L1  N2  L2  N3  L3')
  read(*, *) n1, j1, n2, j2, n3, j3
  write(*, 103)
103 format(' Please enter number of replications ')
  read(*, *) nrep
  write(6, 108) nrep, n1, j1, n2, j2, n3, j3
  irand=971
c 108 format(1x, 'nreps, irand, rec length dist', i5, i10, 6i5)
108 format(1x, ' Number of replications = ', i5, '/',
  +' Initial distribution of record lengths', '/',
  +' i1x, i2, ' stations with ', i2, ' years of record', '/',
  +' i1x, i2, ' stations with ', i2, ' years of record', '/',
  +' i1x, i2, ' stations with ', i2, ' years of record')
c 109 FORMAT(//, ' rep no', t10, 'pred ols mse', t23, 'obs ols mse',
  *t36, 'bias ols', t50, 'pred gls mse', t63, 'obs gls mse', t76,
  *'bias gls', t86, 'b1 ols', t96, 'b2 ols',
  *t106, 'b1 gls', t116, 'b2 gls', '/')
  snari=0.0
  ssnari=0.0
  sgls=0.0
  ssgls=0.0
  do 77 irep=1, nrep

```

```

      do 18 i=1,50
18 ipick(i)=0
      rewind(5)
      ntot = nstat + nbud
c randomly pick stations
c ===== for picking with replacement =====
c      call randuv(irand,pick,50)
c      do 1 i=1,50
c         ipick(i)=pick(i)*146 + 1
c      1 continue
c ===== for picking without replacement =====
c      npick=1
c      call randuv(irand,pick,200)
      do 511 i=1,200
511 pick(i)=ran2(irand)
      do 1 i=1,200
         if (npick.le.50)then
            jhave=0
            ipk=pick(i)*noall+1
c check to see if it is a repeat
         do 17 ii=1,npick
17          if (ipick(ii).eq.ipk)jhave=1
             if (jhave.eq.0) then
                ipick(npick)=ipk
                npick=npick+1
             end if
         end if
1 continue
         if (npick.lt.51)then
            write(*,5053)
5053         format(' STOP-- fewer than 50 stations selected ')
            stop
         end if
c =====
c randomly pick beginning year
      ibeg=ran2(irand)*ktot+kbeg
c load y matrices
      ictcount=0
c      jstart=1
      do 2 i=1,noall
1sta=i
      ihave=0
      do 3 j=1,50
         if (ipick(j).eq.1sta)then
            jparm=j
c            jstart=jstart+1
            ihave=ihave+1
            if (ihave.eq.1)then
               call readin(yold,50,ktot,daold,prold,staold,jparm,ibeg,kbeg)
               jsave=jparm
            else
               daold(j)=daold(jsave)
               prold(j)=prold(jsave)
               staold(j)=staold(jsave)
               do 15 k=1,ktot
15                  yold(j,k)=yold(jsave,k)
            end if
         end if
3 continue
         if (ihave.eq.0)then
            ictcount=ictcount+1
            ictcount =1
            call readin(ynew,1,ktot,danew,prnew,stane,ictcount,ibeg,kbeg)
         end if
2 continue
      jmax=max(j1,j2,j3)
      ixttest=jmax+nph
      if(ixttest.gt.ktot)then
         write(*,5056)
5056         format(' STOP -- Maximum record length +' planning horizon',/
+                           ' exceeds total years of record.')
         stop
      end if
      j1b=jmax-j1
      j2b=jmax-j2
      j3b=jmax-j3
      nm=n1+n2
      ns=n1+1
      do 7 i=1,n1
         j1(i)=j1

```

```

      if(j1b.gt.0)then
        do 6 j=1,j1b
6       yold(i,j)=-9.9999
      end if
7   continue
    do 9 i=ns,nm
      j1(i)=j2
      if(j2b.gt.0)then
        do 8 j=1,j2b
8       yold(i,j)=-9.9999
      end if
9   continue
  ns=nm+1
  do 11 i=ns,nstat
    j1(i)=j3
    if (j3b.gt.0)then
      do 10 j=1,j3b
10      yold(i,j)=-9.9999
    end if
11  continue
  ns=nstat+1
  do 16 i=ns,50
    j1(i)=0
    do 14 j=1,jmax
14      yold(i,j)=-9.9999
16  continue
c write results
  do 12 i=1,nstat
c   write(6,2000)ibeg, staold(i), daold(i), prold(i)
c   write(6,2001)(yold(i,j),j=1,30)
2000  format(1x,i2,2x,a8,2x,f8.4,2x,f8.4)
2001  format(10f8.4)
  smean=0.0
  slogs=0.0
  nmean=0
  ss=0.0
  do 21 j=1,jmax
    if(yold(i,j).gt.-9.)then
      nmean=nmean+1
      smean=smean+10**yold(i,j)
      slogs=slogs+(yold(i,j))
      ss=ss+(yold(i,j))**2
    end if
21  continue
    if(nmean.gt.0)then
      aa=smean/nmean
      al=slogs/nmean
      amean(i)=alog10(aa)
      vmean=(ss-nmean*al**2)/(nmean-1.0)
      stdev(i)=sqrt(vmean)
    end if
c =====
  12 continue
c   write(6,9003)(amean(i),daold(i),prold(i),i=1,nstat)
9003  format(1x,'amean,da,pr',3f10.4)
c
c   call lever
c   call olsreg(amean,daold,prold,nstat,se)
c
c   write(1,9001)se
9001  format(' olsreg',f10.4)
c
c   minyr=6
c   call eqcov(yold,jmax,nstat,minyr,varbar,rabar,recin)
c
c   write(1,9002)rabar
9002  format(' eqcov',f10.4)
c
c   call srpos(nstat,recin,varbar,rabar,0.0,recin)
c   write(1,9006)varbar
9006  format(1x,' srpos ',g13.5)
  anb=nstat-2
  call modlvalu(recin,anb,se)
c   write(1,9004)recin
9004  format(1x,' modlvalu ',f10.2)
  call evalu8(ntot,jmax,nph,nbud,se)
c   write(1,9005)se
9005  format(1x,' evalu8 ',f10.4)
c   NE=3
c   NEX=2

```

```

C
C      WRITE(1,954)NSTAT,JMAX,RABAR
C      954 FORMAT(' NSTAT JMAX RABAR ',2I5,F10.2)
C      call glsreg(nstat,jmax,rabar,nex,0)
C
C      write(1,9007)rabar
C      9007 format(1x,' glsreg',f10.2)
C      isav=0
C      jend=jmax+nph
C      do 30 i=1,50
C          smean=0.0
C          nmean=0
C          ss=0.0
C          do 31 j=1,jend
C              if(ivsav(i,j).gt.0)then
C                  nmean=nmean+1
C                  smean=smean+10**yold(i,j)
C                  ss=ss+yold(i,j)**2
C              end if
C          continue
C          if(nmean.gt.0)then
C              isav=isav+1
C              aa=smean/nmean
C              vmean=(ss-nmean*aa**2)/(nmean-1.0)
C              amean(isav)=alog10(aa)
C              stdev(isav)=sqrt(vmean)
C              danew(isav)=daold(i)
C              prnew(isav)=prold(i)
C          end if
C      continue
C      call olsreg(amean,danew,prnew,isav,se)
C      call glsreg(isav,jend,rabar,nex)
C
C      serr=0.0
C      sserr=0.0
C      do 51 i=1,noall
C          x1=alog10(daall(i))
C          x2=alog10(prall(i))
C          pred=b0+b1*x1+b2*x2
C          err=pred - (amall(i))
C          err=err*2.302585
C          serr=serr+err
C          sserr=sserr+err**2
C      write(6,1012)pred, err, daall(i), prall(i)
C      1012 format(1x,'pred err da pr',4f15.4)
C      51 continue
C      errmean=serr/noall
C      errvar=(sserr-noall*errmean**2)/(noall-1.0)
C      prmse=semin**2
C      bias2=errmean**2
C      obmse=bias2 + errvar
C      obmse=sserr/noall
C      write(6,1013) irep, prmse, obmse, errmean, anbsv, anysv,
C      *a, b1, b2
C      1013 format(1x,i4,3g13.5,2f10.1,3f10.4)
C
C      =====
C      write (1,7001)rabar,jmax,nph,nbud
C      7001 format(' call gisnet args=',f10.3,3i5)
C      =====
C      call gisnet(rabar,jmax,nph,nbud)
C      write(1,9009)rabar
C      9009 format(1x,' gisnet',g13.5)
C      call netgis(bg0,bg1,bg2,gemean,gpmse,gomse,jend,rabar)
C      write(1,9010)bg1
C      9010 format(1x,' netgis',g13.5)
C
C      write(6,1014)irep,prmse,obmse,errmean,gpmse,gomse,gemean,
C      *b1,b2,bg1,bg2
C      1014 format(1x,i4,6e13.5,4f10.4)
C          dnari=prmse-obmse
C          dgls=gpmse-gomse
C
C          snari=snari+dnari/nrep
C          ssnari=ssnari+dnari**2/nrep
C          sgls=sgls+dgls/nrep
C          ssgls=ssgls+dgls**2/nrep
C      77 continue
C          sign1=snari/(abs(snari))

```

```

sign2=sgls/(abs(sgls))
snari=sign1*100.0*(exp(snari**2)-1.0)**.5
sgls=sign2*100.0*(exp(sgls**2)-1.0)**.5
rinfo=snari/ssgls
ssnari=100.0*(exp(ssnari)-1.0)**.5
ssgls=100.0*(exp(ssgls)-1.0)**.5
write(6,1179)
1179 format(//,' The following statistics are based on the differences
+, in percent,
+', ' between projected and achieved mean square error:')
write(6,1178)snari,ssnari,sgls,ssgls,rinfo
1178 format(' Mean difference NARI =',f10.2,/,
+', Root-Mean-Square difference NARI =',f10.2,/,
+', Mean difference NAUGLS =',f10.2,/,
+', Root-Mean-Square difference NAUGLS =',f10.2,
+//,' Relative information of network output of NAUGLS to that of
+NARI =',f10.2)
stop
end
C SUBROUTINE BHIND
C
SUBROUTINE BHIND(IPHI,KFLAG,JEVENT)
INTEGER*4 NRCV,NEV,I,IFLAG,K,IPHI,KFLAG,JEVENT
REAL*4 NYRS,NBAS,POGAM,POSJO,SEAPP,AGAM
INCLUDE 'TAB.CMN'
INCLUDE 'MV.CMN'
COMMON/PARST2/AGAM(41),SEAPP
COMMON/N1SET/NYRS,NBAS
COMMON/N2SET/NRCV
COMMON/PROSET/POGAM(41),POSJO(100)
REAL*4 CUT,SUM,DELT,CVS,RC,GAMMA,PXU,PXL,PTU,PTL,AM,AS,ZMU,ZSD,
+      PRI,XMU,XSD
CUT=0.0010
100 CONTINUE
KFLAG=1
IPHI=0
SUM=0.0
DELT=SEAPP*.01
NEV=4*JEVENT-3
DO 150 I=1,NRCV
  CVS=CV(I)
  RC=RHOC(I)
  IFLAG=1
  DO 140 K=1,41
    GAMMA=AGAM(K)
    PXU=SEAPP+DELT
    PXL=SEAPP-DELT
    PTU=ALOG(PXU)
    PTL=ALOG(PXL)
    IF(JEVENT.NE.6) THEN
      CALL OBSEMT(NBAS,NYRS,CVS,RC,GAMMA,NEV,AM,AS)
      CALL LNMMOM(AM,AS,ZMU,ZSD)
      CALL PRICAL(ZMU,ZSD,PTU,PTL,PRI)
    ELSE
      CALL OBSESD(NBAS,NYRS,CVS,RC,GAMMA,XMU,XSD)
      CALL PRICAL(XMU,XSD,PTU,PTL,PRI)
    ENDIF
    PRI=PRI*POGAM(K)
    IF(IFLAG.GT.1) GO TO 110
    IF(PRI.LT.CUT) GO TO 120
    IFLAG=2
110   IF(PRI.LT.CUT) GO TO 150
    CONTINUE
    IF(IFLAG.LT.2) GO TO 140
    IPHI=IPHI+1
    IF(IPHI.GT.500) THEN
      WRITE(6,610)
      KFLAG=2
      RETURN
    ENDIF
    CVARAY(IPHI)=CV(I)
    RCARAY(IPHI)=RHOC(I)
    GARAY(IPHI)=GAMMA
    PRIOR(IPHI)=PROBRC(I)*PRI
    SUM=SUM+PRIOR(IPHI)
    IF(K.EQ.41.AND.SUM.GE.0.0001) WRITE(6,620) CVS,RC
    IF(K.EQ.41.AND.SUM.GE.0.0001) KFLAG=2
140   CONTINUE
150   CONTINUE
    IF(SUM.GT.0.0001) THEN
      DO 200 I=1,IPHI

```

```

        PRIOR(I)=PRIOR(I)/SUM
200    CONTINUE
        RETURN
    ENDIF
    IF(CUT.LT..001) GO TO 300
    CUT=0.0001
    GO TO 100
100  CONTINUE
    WRITE(6,600)
600  FORMAT('0** OBSERVED STANDARD ERROR APPEARS TO BE INCONSISTENT WIT
*H THE OTHER PARAMETERS..// THE CONDITIONAL PROBABILITY OF SUCH
*A COMBINATION OF PARAMETERS IS NEARLY ZERO.')
610  FORMAT('NUMBER OF FEASIBLE PARAMETER COMBINATIONS(PHIS) EXCEEDS N
*NUMBER ALLOTTED')
620  FORMAT('***** WARNING ***** THE PRODUCT OF THE LIKELIHOOD
1AND THE PRIOR FOR MODEL ERROR HAS NOT BEEN ZEROED OUT ***// CV
2= ',F5.3,' RC = ',F5.3,' *** THE FOLLOWING TABLE OF FEASIBLE P
3ARAMETER COMBINATIONS IS UNUSABLE IN THE ANALYSIS ***')
    KFLAG=2
    RETURN
    END
C ****
C ****
C Coefficient matrix sub
C
    subroutine coefmat(rabar)
    implicit double precision (a-n,o-z)
    double precision rho2
    real*4 rabar
    integer*4 i,j
    include 'dimens.cmn'
    include 'gr1-5.cmn'
    do 1 i=1,nsites
    do 1 j=1,i
        if(i.eq.j)then
            rho=1.0
        else
            rho2=rabar
            if(rho2.lt.0.0)rho2=0.0
C approx. bias correction see Johnson and Kotz
C
            rho=rho2+.05
        end if
        sta(i,j)=rho*mcon(i,j)*sighat(i)*sighat(j)*aj/
        + (mcon(i,i)*mcon(j,j))
        cov(i,j)=sta(i,j)
        cov(j,i)=sta(i,j)
1 continue
    return
    end
C ****
C ****
C SUBROUTINE DATAIN
C
    SUBROUTINE DATAIN(ANY,ANB,SEC,JEVENT)
    REAL*4 SEAPP,AGAM,POGAM,POSJO
    COMMON /PARST2/ AGAM(41),SEAPP
    COMMON /N1SET/ NYRS,NBAS
    INTEGER*4 NUMDSN
    COMMON /DSNN1/ NBDSN(99),NYDSN(99)
    COMMON /DSNN2/ NUMDSN
    COMMON /PROSET/ POGAM(41),POSJO(100)
    REAL*4 NBDSN, NYDSN, NYRS,NBAS,ANY,ANB,SEC,FI,XNY,DEL,XNB
    CHARACTER*6 EVENT(6)
    INTEGER*4 I,IT,K,J,FLAG,JEVENT
    DATA EVENT /' MEAN ',' 2-YR ',' 10-YR ',' 50-YR ',' 100-YR ',' ST DEV'/
    NYRS=ANY
    NBAS=ANB
    DO 10 I=1,41
        POGAM(I)=1.0
        FI=I
        AGAM(I)=-0.05+FI*0.05
10  CONTINUE
    POGAM(1)=0.5
    WRITE(6,20)
20  FORMAT(' NETWORK EVALUATION AND DESIGN BASED ON STANDARD ERROR OF
CC 1REGIONAL REGRESSION.')
    NUMDSN=90
    IT=0

```

```

SEAPP=SEC*2.3026
IF(IT.EQ.0)JEVENT=1
IF(IT.EQ.1) JEVENT=6
IF(IT.EQ.2)JEVENT=2
IF(IT.EQ.10)JEVENT=3
IF(IT.EQ.50)JEVENT=4
IF(IT.EQ.100)JEVENT=5
CC  WRITE(6,30)NBAS,NYRS,EVENT(JEVENT),SEAPP
CC 30 FORMAT(//,, ' NB = ',F5.1, ' NY = ',F5.1, //,A6, ' EVENT ANALYSIS.'
CC  *: /, ' APPARENT STANDARD ERROR OF REGIONAL REGRESSION = ',F9.4,
CC  *: IN NATURAL (BASE E) LOG UNITS')
K=0
XNY=0.0
DEL=5.0
DO 50 I=1,10
  XNB=XNY+DEL
  DO 40 J=1,9
    K=K+1
    XNB=XNB+DEL
    NBDSN(K)=XNB
    NYDSN(K)=XNY
40  CONTINUE
50  CONTINUE
JFLAG=0
CALL EDITIN(JFLAG)
RETURN
END
SUBROUTINE DECOMP(N,NDIM,XLAM,B)
implicit double precision (a-h,o-z)
C -----
C CHOLESKY DECOMPOSITION BB-TRANSPOSE = XLAM
C -----
INCLUDE 'DIMENS.CMN'
INTEGER*4 N,NDIM,IS,ISM,JS,JSM,KS
DOUBLE PRECISION XLAM(NDIM,NDIM), B(MAXS,MAXS),BN,BH
IF(XLAM(1,1).LE.0.0.OR.XLAM(2,2).LE.0.)
1 WRITE(1,96) NDIM,XLAM(1,1),XLAM(2,1),XLAM(2,2),XLAM(1,2)
96 FORMAT( ' IN DECOMP/ NDIM,XLAM 1-1.2-1.2-2,1-2 = ',I5,4F10.4,
1/, ' COVARIANCE MATRIX NOT POSITIVE DEFINITE')
B(1,1)=SQRT(XLAM(1,1))
B(1,2)=0.
B(2,1)=XLAM(2,1)/B(1,1)
C  WRITE(1,97)B(2,2)
97 FORMAT(1X, ' B22=',F10.3)
B(2,2)=DSQRT(XLAM(2,2)-B(2,1)**2)
CC  WRITE(6,99) NDIM, B(1,1),B(2,1),B(2,2)
99 FORMAT(I5,/(10F10.5))
IF(N.LE.2)RETURN
C
DO 4 IS=3,N
B(IS,1)=XLAM(IS,1)/B(1,1)
BN=XLAM(IS,IS)-B(IS,1)**2
ISM=IS-1
DO 3 JS=2,ISM
JSM=JS-1
BH=XLAM(JS,JS)
DO 2 KS=1,JSM
2 BH=BH-B(JS,KS)*B(JS,KS)
B(IS,JS)=BH/B(JS,JS)
3 BN=BN-B(IS,JS)**2
IF( BN.LE.0.) WRITE(1,98)BN, IS, JS
98 FORMAT(1X, ' COVARIANCE MATRIX NOT POSITIVE DEFINITE BN=',F10.3,
1 ' I= ',I4, ' J= ',I4)
B(IS,IS)=DSQRT(DMAX1(BN, DBLE(0)))
CC  WRITE(6,99) N,BN,(B(IS,J), J=1,IS)
4 CONTINUE
RETURN
END
SUBROUTINE DZNOUT(IPHI,JEVENT,ICARD)
INTEGER*4 IPHI,JEVENT,ICARD,I,NUMDSN,IDSN,KGIL,MGIL,KK,I13,ICR,K,
+           IBACK
REAL*4 NBDSN,NYDSN,NY,NB,Z(12),W(12),V(12),PCT(12),G,XCV,XRC,WX,
+           X,YCUM,YBAR2,YMAX2,X1(100),X2(100),Y(100)
COMMON/CONDIS/X(12),YCUM(500,14),YBAR2(12),YMAX2(500)
COMMON/DSNN1/NBDSN(99),NYDSN(99)
COMMON/DSNN2/NUMDSN
INCLUDE 'TAB.CMN'
DATA      PCT/.05,.10,.20,.30,.40,.50,.60,.70,.80,.90,.95,.99/
CC  WRITE(6,*) '1NETWORK DESIGN POINTS (AVG. REGR. ERROR IN NATURAL (B
CC  +ASE) LOG UNITS)')

```



```

20 continue
  ic(i,j)=num
  if (i.ne.j.and.num.ge.minyr)then
    nr=nr+1
    xnum=num
    prod=prod-smqi*smqj/xnum
    sumcov=sumcov+prod*2.0
    sdi =sqrt((ssqi-smqi**2/xnum)/(xnum))
    sdj =sqrt((ssqj-smqj**2/xnum)/(xnum))
    xr(i,j)=prod/(xnum*sdi*sdj)
    xrbar=xrbar+xr(i,j)
  end if
30 continue
  xnr=nr
  xrbar=xrbar/xnr
  rabar=0.0
c compute weighted rbar
  do 46 i=2,nstat
    j=i-1
    do 40 k=1,j
      if(ic(i,k).ge.minyr)then
        xr(i,k)=xr(i,k)*ic(i,k)/sqrt(float(ic(i,i))*float(ic(k,k)))
      else
        xr(i,k)=0.0
      end if
40 rabar=rabar+xr(i,k)
46 continue
  rabar=rabar/xnr
  return
end
c ****
c **** subroutine evalu8(ntot, jmax, nph, nbud,se)
c ****
c **** include 'dimens.cmn'
c **** include 'gr.cmn'
c **** include 'nari.cmn'
c **** integer*4 iv,jlt,jl,irank,ivsav,nreg,kreg,i,j,jbeg,jend,k,ick,
c ****      ntot,jmax,nph,nbud
c **** real*4 se,anb,sum,any,sepred
c **** common /c2/ iv(maxs,maxyr), jlt(maxs)
c **** common /c1/ jl(maxs), irank(maxs), ivsav(maxs,maxyr)
c initialize
  nreg=ntot + 1
  kreg=nreg - 7
  do 1 i=1,50
    do 1 j=1,jmax
      if (yold(i,j).gt.-9.0)then
        iv(i,j)=1
      else
        iv(i,j)=0
      end if
1  continue
  semin=999.99
  jbeg=jmax+1
  jend=jmax+nph
c find optimum nb and ny for nbud
  do 4 k=1,kreg
    do 5 i=1,50
      jlt(i)=jl(i)
      do 5 j=jbeg,jend
4      iv(i,j)=0
      nreg=nreg-1
      do 2 j=jbeg,jend
        call rank(jlt,irank)
        do 3 i=1,50
          if(irank(i).le.nreg)then
            ick=nreg-irank(i)+1
            if(ick.le.nbud)then
              iv(i,j)=1
              jlt(i)=jlt(i)+1
            end if
          end if
3  continue
2  continue
c calculate nb and ny
  anb=nreg-3
  sum=0.0
  do 6 i=1,50
6    if(irank(i).le.nreg)sum=sum+1.0/float(jlt(i))
    any=float(nreg)/sum
    sepred=b0+b1*(1.0/anb)+b2*(1.0/any)

```

```

sepred=exp(sepred)
if(sepred.lt.semin)then
  semin=sepred
  anysv=any
  anbsv=anb
  do 7 i=1,50
  do 7 j=1,jend
  ivsav(i,j)=iv(i,j)
  if(irank(i).gt.nreg)ivsav(i,j)=0
7   continue
end if
C =====
C   write(1,200)sepred,anb,any
200 format(' sepred,ny,nb ',f12.4,2f10.2)
C =====
4 continue
C =====
C   write(6,201)se, semin, anbsv, anysv
201 format(1x,' se semin nb ny ',2f12.4,2f10.2)
C   write(6,202)((ivsav(i,j),j=1,jend),i=1,50)
202 format(30i2)
      return
end
FUNCTION GAUSCF(XX)
C THE VALUE OF GAUSCF IS THE VALUE OF THE CUMULATIVE NORMAL PROBABILITY FUNCTION
C THIS APPROXIMATION IS FROM M. ABRAMOWITZ AND I. STEGUN, N.B.S. HANDBOOK OF
C MATHEMATICAL FUNCTIONS , 1964 , P.932 , SEC. 26.2.17
C AS PROGRAMMED BY W. KIRBY SEPTEMBER , 1974
REAL*4 XX,AX,T,D
AX=ABS(XX)
GAUSCF=1.
IF(AX.GT.10.0) GO TO 101
T=1.0/(1.0+.2316419*AX)
D=0.3989423*EXP(-XX*XX*.5)
GAUSCF=1.-D*T*((((1.330274*T - 1.821256)*T + 1.781478)*T -
1.03565638)*T + 0.3193815)
101 CONTINUE
IF(XX.LT.0)GAUSCF=1.-GAUSCF
RETURN
END
FUNCTION GLS(GAMA2)
implicit double precision (a-h,o-z)
C -----
C   SUBROUTINE TO COMPUTE LIKELIHOOD FUNCTION
C   E IS N*1 MATRIX OF RESIDUALS
C   DET IS DETERMINANT OF COVARIANCE MATRIX
C -----
C   -----
C   GENERALIZED LEAST SQUARES
C
C   Y IS A N*1 MATRIX OF OBSERVED DEPENDENT VARIABLES
C   X IS A N*2 MATRIX OF OBSERVED INDEPENDENT VARIABLES
C   B IS A 2*1 MATRIX OF PARAMETERS TO BE ESTIMATED
C   SINV IS THE INVERSE OF COVARIANCE MATRIX OF ERRORS (N*N)
C   E IS A N*1 MATRIX OF RESIDUALS
C -----
INCLUDE 'DIMENS.CMN'
INCLUDE 'GR1-5.CMN'
DOUBLE PRECISION GAMA2,WORK,C,WORK1,WORK2,WORK3,DET
INTEGER*4 I,N
COMMON /COVINV/ WORK(1,MAXS),C(1,1)
COMMON /WORKC/ WORK1(MAXP,MAXS), WORK2(MAXP,MAXS), WORK3(MAXS,1)
C
C   COMPUTE GLS FIT WITH GAMA2 VALUE
DO 10 I = 1,NSITES
  COV(I,I)=GAMA2 + STA(I,I)
10 CONTINUE
C
CALL INVERT(NSITES,50,DET,COVINV,COV)
C
SOLVE (XT*COVINV*X)(-1)*XT*COVINV*YS
N = NSITES
NE=NEXP+1
CALL MULTIPLY(WORK1,XT,COVINV,NE,N,N,3,3,50)
CALL MULTIPLY(WORK2,WORK1,X,NE,N,NE,3,3,50)
CALL INVERT(NE,3,DET,XTXINV,WORK2)
CALL MULTIPLY(WORK1,XTXINV,XT,NE,NE,N,3,3,3)
CALL MULTIPLY(WORK2,WORK1,COVINV,NE,N,N,3,3,50)
DO 5 I=1,NSITES
5 E(I,1)=YS(I,IYS)
CALL MULTIPLY(BHAT,WORK2,E,NE,N,1,3,3,50)

```

```

C      CALL MULTIPLY(WORK3,X,BHAT,N,NE,1,50,50,3)
C
C      DO 2 I=1,N
C      ET(I,I)=YS(I,IYS)-WORK3(I,I)
C      2 E(I,I)=ET(I,I)
C
C      CALL MULTIPLY(WORK,ET,COVINV,1,NSITES,NSITES,1,1,50)
C      CALL MULTIPLY(C,WORK,E,1,NSITES,1,1,1,50)
C      GLS = (NSITES - 3.)/C(1,1) - 1.
C
C      RETURN
C      END
C ****
C ****
C subroutine glsnet(rbar,jmax,nph,nbud)
C implicit double precision (a-h,o-z)
C real*4 rbar
C include 'dimens.cmn'
C include 'gr.cmn'
C include 'gr1-5.cmn'
C integer*4 jmax,nph,nbud,i,j,iv,jlt,icode(maxs),istat(maxs),ndrop,
C           nstep,kstep,jstart,jend,iph,idrop,ix,isv,ihave,k,isum,
C           nmean
C common /c2/ iv(maxs,maxyr), jlt(maxs)
C common /c3/ gamasd
C double precision work(50,3), work2(3,3), d(50,50), der(50)
C double precision omt(3,50), omega(50,3), omegat(3,50), tr(3,3),
C           +slogs,           +wm(3,3), det, trace, dermin, smean, ss, aa, al, vmean
C set iv
C      do 1 i=1,50
C      do 1 j=1,jmax
C          if (yold(i,j).gt.-9.0) then
C              iv(i,j)=1
C          else
C              iv(i,j)=0
C          end if
C      1 continue
C
C      ndrop=50-nbud
C initialize
C
C      nstep=(nph+4)/5
C      nstep=1
C      if(nph.gt.9)nstep=2
C      jhalf=nph/nstep
C
C      do 2 kstep=1,nstep
C          if(kstep.eq.1)then
C              jstart=jmax+1
C              jend=jmax+jhalf
C          end if
C          if(kstep.eq.2)then
C              jstart=jmax+jhalf+1
C              jend=jmax+nph
C          end if
C          iph=jend-jstart+1
C          nsites=50
C      ++++++
C      write(1,712)ndrop
C      712 format(' ndrop=',i5)
C      =====
C
C      do 3 i=1,50
C          x(i,1)=1
C          x(i,2)=daold(i)
C          x(i,3)=prold(i)
C          xt(1,i)=1
C          xt(2,i)=x(i,2)
C          xt(3,i)=x(i,3)
C          icode(i)=1
C          istat(i)=i
C
C      do 31 j=1,i
C      31      mcon(i,j)=msv(i,j)
C              do 32 j=jstart,jend
C      32      iv(i,j)=1
C      3      continue
C      call multiply(sighat,x,bsv,50,3,1,50,50,3)
C      do 44 i=1,50
C      44      sighat(i)=dexp(sighat(i))*dexp(gamasd)
C      call multiply(wm,xt,x,3,50,3,3,3,50)

```

```

c
      do 5 i=1,nsites
      do 5 j=1,i
      5      mcon(i,j)=mcon(i,j)+icode(i)*icode(j)*iph
c
      do 4 idrop=1,ndrop
c =====
c      write(1,714)(mcon(ix,ix),ix=1,nsites)
c 714 format(1x,40i3)
c =====
c      call coefmat(rbar)
c
      do 6 i=1,nsites
      c          d(i)=cov(i,i)*mcon(i,i)
      c          cov(i,i)=cov(i,i)+gamasv
      6      continue
c =====
c      WRITE(1,711) KSTEP, IDROP, NSITES, RBAR, GAMASV
c 711 FORMAT(' KSTEP, IDROP, NSITES, RBAR, GAMASV ', 3I5,2F10.5)
c      write(1,712)ndrop
c =====
c      call invert(nsites,50,det,covinv,cov)
c      write(1,9001)
c 9001 format(ix,' m 1')
c          call multiply(work,covinv,x,nsites,nsites,3,50,50,50)
c      write(1,9002)
c 9002 format(ix,' m 2')
c          call multiply(xtx,xt,work,3,nsites,3,3,3,50)
c      write(1,9003)
c 9003 format(ix,' m 3')
c          call inv3(xtx,xtxinv)
c
c comput omega
c
c      call multiply(work,x,xtxinv,nsites,3,3,50,50,3)
c      write(1,9004)
c 9004 format(ix,' m 4')
c          call multiply(omega,covinv,work,nsites,nsites,3,50,50,50)
c      write(1,9005)
c 9005 format(ix,' m 5')
c transpose
c      do 7 i=1,nsites
c          do 7 j=1,3
c 7      omegat(j,i)=omega(i,j)
c compute dJ/dN
c      do 8 i=1,nsites
c          do 20 il=1,nsites
c              do 20 ij=1,il
c                  if(i.ne.il.and.i.ne.ij)then
c                      d(il,ij)=0.0
c                      d(ij,il)=0.0
c                  else
c                      d(il,ij)=sta(il,ij)*mcon(i,i)
c                      d(ij,il)=d(il,ij)
c                  end if
c 20 continue
c          call multiply(omt,omegat,d,3,nsites,nsites,3,3,50)
c          call multiply(work2,omt,omega,3,nsites,3,3,3,50)
c          call multiply(tr,wm,work2,3,3,3,3,3,3)
c          trace=0.0
c          do 21 j=1,3
c 21      trace=trace+tr(j,j)
c          der(i)=-trace/(mcon(i,i)**2)
c          if(icode(i).eq.0)der(i)=-999999.
c          do 22 j=1,3
c 22      omt(j,i)=0.0
c 8      continue
c      write(1,9006)work2
c 9006 format(ix,'work2 ',3g13.5)
c      write(1,9007)tr
c 9007 format(ix,'tr ',3g13.5)
c
c find min der
c
c      dermin=-999999.
c      do 321 i=1,nsites
c          if(der(i).gt.dermin)then
c              dermin=der(i)
c              isv=i
c          end if

```

```

321    continue
      if(dermin.gt.-999998.)then
c
      icode(isv)=0
      ihave=0
      do 501 j=jstart,jend
      iv(istat(isv),j)=0
      do 3211 j=1,jstart-1
      if(iv(istat(isv),j).eq.1)ihave=1
      if(ihave.eq.1)then
      do 322 j=1,isv-1
      mcon(isv,j)=mcon(isv,j)-icode(j)*iph
      mcon(isv,isv)=mcon(isv,isv)-iph
      do 323 i=isv+1,nsites
      mcon(i,isv)=mcon(i,isv)-icode(i)*iph
      else
      do 324 i=isv+1,nsites
      sighat(i-1)=sighat(i)
      istat(i-1)=istat(i)
      icode(i-1)=icode(i)
c
      do 325 j=1,3
      x(i-1,j)=x(i,j)
      xt(j,i-1)=x(i,j)
c
      do 326 j=1,isv-1
      mcon(i-1,j)=mcon(i,j)
      do 327 j=isv+1,i
      mcon(i-1,j-1)=mcon(i,j)
      324 continue
c
      nsites=nsites-1
      end if
      end if
      4 continue
c
c update msv
c
      do 42 i=1,50
      do 42 k=1,i
      isum=0
      do 43 j=jstart,jend
      isum=isum+iv(i,j)*iv(k,j)
      43 continue
      msv(i,k)=msv(i,k)+isum
      42 continue
      2 continue
c
c compute mean and sd
c =====
c
      write(1,718)((iv(i,j),j=1,30),i=1,50)
      718 format(ix,30i2)
c
      write(1,719)(istat(i),i=1,50)
      719 format(ix,25i3)
c =====
      do 51 i=1,nsites
      smean=0.0
      nmean=0
      ss=0.0
      slogs=0.0
      do 52 j=1,jend
      if(iv(istat(i),j).gt.0)then
      nmean=nmean+1
      smean=smean+10**yold(istat(i),j)
      slogs=slogs+(yold(istat(i),j))
      ss=ss+(yold(istat(i),j))**2
      end if
      52 continue
      aa=smean/nmean
      al=slogs/nmean
      vmean=(ss-nmean*al**2)/(nmean-1.0)
      amean(i)=alog10(sngl(aa))
      stdev(i)=sqrt(sngl(vmean))
      x(i,1)=1.0
      x(i,2)=daold(istat(i))
      x(i,3)=prold(istat(i))
      xt(1,i)=1.0
      xt(2,i)=daold(istat(i))
      xt(3,i)=prold(istat(i))
c
      51 continue

```

```

      return
      end
C ****
C ****
C **** Subroutine GLSREG
C
      subroutine glsreg(ns,jmax,rbar,nex,ihave)
      implicit double precision (a-h,o-z)
      include 'dimens.cmn'
      include 'gr.cmn'
      include 'gr1-5.cmn'
      common /c3/ gamasd
      double precision sum,ss,ybar
      integer*4 ns,jmax,nex,ihave,i,j,k,kk,iii
      real*4 rbar
C load mcon(i,j)
      nexp=nex
      ne=nex+1
      if(ihave.eq.0)then
      do 1 i=1,50
      do 1 j=1,i
      mcon(i,j)=0
      msv(i,j)=0
      do 2 k=1,jmax
      if(yold(i,k).gt.-9..and.yold(j,k).gt.-9.)then
      mcon(i,j)=mcon(i,j)+1
      msv(i,j)=msv(i,j)+1
      end if
      2 continue
      1 continue
      end if
C load y and x matrices
      nsites=ns
      do 3 i=1,nsites
      ys(i,2)=alog(stdev(i))
      ys(i,3)=amean(i)
      if(ihave.eq.0)then
      xt(1,i)=1.0
      xt(2,i)=daold(i)
      xt(3,i)=prold(i)
      do 31 kk=1,3
      x(i,kk)=xt(kk,i)
      31 continue
      end if
      sihat(i)=1.0
      3 continue
C regress ln(sigma) on x's
      aj=0.5
      iys=2
      call coefmat(rbar)
      call secant
      gamasd=gamasq/2.0
      do 32 iii=1,3
      32 bsv(iii,1)=bhat(iii,1)
      rsv=rbar
      call multiply(sihat,x,bhat,nsites,3,1,50,50,3)
      do 4 i=1,nsites
      4 sihat(i)=dexp(sihat(i))*dexp(gamasd)
C regress amean on x's
      aj=1.0
      iys=3
      sum=0.0
      ss=0.0
      do 5 i=1,nsites
      sum=sum+ys(i,3)
      5 ss=ss+ys(i,3)**2
      ybar=sum/nsites
      yvar=(ss-nsites*ybar**2)/(nsites-1.0)
      call coefmat(rbar)
      call secant
      gamasv=gamasq
C
C      write(6,100)bhat
      100 format(' gis bhat ',3f10.3)
C
      return
      end
C===== 11/19/80 ====== HARTIV =====
      SUBROUTINE HARTIV (SKU,PD)
C
      C VERSION FOR HARRIS 9/79 HAS LOCAL COPY OF TABLES NOT COMMON.

```

```

C G387 - LOOK UP K OR P IN HARTERS TABLES. WKIRBY 3/75. 9/76.G387.
C HARTIV -- HARTER INTERPOLATE VECTOR PD BY 3-PT LAGRANGE INT W/R SKEW
C REV 9/76 WK - NO LONGER USES SKEW TABLES IN HARTAB
C ERROR IN IORDER MADE 9/76, CORRECTED 7/77. FOR SKU IN (-.05,-0.)
C
C -- NOTE- ABS SKEW IS TRUNCATED AT 9. W/OUT COMMENT.
C
C G387 -- HARTERS TABLES OF PEARSON TYPE III DISTRIBUTION.
C TECHNOMETRICS FEB 69 AND FEB 71. THESE TABLES IN HARTAB
C HAVE BEEN CHECKED AGAINST ANOTHER SET OF TABLES LOANED BY
C W. H. SAMMONS OF SOIL CONS. SERVICE.
C W.KIRBY USGS-WRD 3/73.
C
C SKEWS = -0.1, 0.0(0.1)4.8, 5.0(0.2)9.0
C
C TABULAR PROBABILITIES / 0.00010,
C 0.00050, 0.00100, 0.00200, 0.00500, 0.01000, 0.02000,
C 0.02500, 0.04000, 0.05000, 0.10000, 0.20000, 0.30000,
C 0.40000, 0.429624, 0.50000, 0.570376, 0.60000, 0.70000,
C 0.80000, 0.90000, 0.95000, 0.96000, 0.97500, 0.98000,
C 0.99000, 0.99500, 0.99800, 0.99900, 0.99950, 0.99990 /
C
C
C DIMENSION PD(31)
C
C DIMENSION PCT(31, 71)
C
C DIMENSION
$ VM1(31), V 0(31), V 1(31), V 2(31), V 3(31), V 4(31),
$ V 5(31), V 6(31), V 7(31), V 8(31), V 9(31), V10(31),
$ V11(31), V12(31), V13(31), V14(31), V15(31), V16(31),
$ V17(31), V18(31), V19(31), V20(31), V21(31), V22(31),
$ V23(31), V24(31), V25(31), V26(31), V27(31), V28(31),
$ V29(31), V30(31), V31(31), V32(31), V33(31), V34(31),
$ V35(31), V36(31), V37(31), V38(31), V39(31), V40(31),
$ V41(31), V42(31), V43(31), V44(31), V45(31), V46(31),
$ V47(31), V48(31)
C
C DIMENSION
$ V50(31), V52(31), V54(31), V56(31), V58(31), V60(31),
$ V62(31), V64(31), V66(31), V68(31), V70(31), V72(31),
$ V74(31), V76(31), V78(31), V80(31), V82(31), V84(31),
$ V86(31), V88(31), V90(31)
C
C EQUIVALENCE
$ (VM1(1),PCT(1, 1)), (V 0(1),PCT(1, 2)), (V 1(1),PCT(1, 3)),
$ (V 2(1),PCT(1, 4)), (V 3(1),PCT(1, 5)), (V 4(1),PCT(1, 6)),
$ (V 5(1),PCT(1, 7)), (V 6(1),PCT(1, 8)), (V 7(1),PCT(1, 9)),
$ (V 8(1),PCT(1, 10)), (V 9(1),PCT(1, 11)), (V10(1),PCT(1, 12)),
$ (V11(1),PCT(1, 13)), (V12(1),PCT(1, 14)), (V13(1),PCT(1, 15)),
$ (V14(1),PCT(1, 16)), (V15(1),PCT(1, 17)), (V16(1),PCT(1, 18)),
$ (V17(1),PCT(1, 19)), (V18(1),PCT(1, 20)), (V19(1),PCT(1, 21)),
$ (V20(1),PCT(1, 22)), (V21(1),PCT(1, 23)), (V22(1),PCT(1, 24)),
$ (V23(1),PCT(1, 25)), (V24(1),PCT(1, 26)), (V25(1),PCT(1, 27)),
$ (V26(1),PCT(1, 28)), (V27(1),PCT(1, 29)), (V28(1),PCT(1, 30)),
$ (V29(1),PCT(1, 31)), (V30(1),PCT(1, 32)), (V31(1),PCT(1, 33)),
$ (V32(1),PCT(1, 34)), (V33(1),PCT(1, 35)), (V34(1),PCT(1, 36)),
$ (V35(1),PCT(1, 37)), (V36(1),PCT(1, 38)), (V37(1),PCT(1, 39)),
$ (V38(1),PCT(1, 40)), (V39(1),PCT(1, 41)), (V40(1),PCT(1, 42)),
$ (V41(1),PCT(1, 43)), (V42(1),PCT(1, 44)), (V43(1),PCT(1, 45)),
$ (V44(1),PCT(1, 46)), (V45(1),PCT(1, 47)), (V46(1),PCT(1, 48)),
$ (V47(1),PCT(1, 49)), (V48(1),PCT(1, 50))
C
C EQUIVALENCE
$ (V50(1),PCT(1, 51)), (V52(1),PCT(1, 52)), (V54(1),PCT(1, 53)),
$ (V56(1),PCT(1, 54)), (V58(1),PCT(1, 55)), (V60(1),PCT(1, 56)),
$ (V62(1),PCT(1, 57)), (V64(1),PCT(1, 58)), (V66(1),PCT(1, 59)),
$ (V68(1),PCT(1, 60)), (V70(1),PCT(1, 61)), (V72(1),PCT(1, 62)),
$ (V74(1),PCT(1, 63)), (V76(1),PCT(1, 64)), (V78(1),PCT(1, 65)),
$ (V80(1),PCT(1, 66)), (V82(1),PCT(1, 67)), (V84(1),PCT(1, 68)),
$ (V86(1),PCT(1, 69)), (V88(1),PCT(1, 70)), (V90(1),PCT(1, 71))
C
C
C DATA VM1 /
# -3.93453, -3.45513, -3.23322, -2.99978,
# -2.66965, -2.39961, -2.10697, -2.00688,
# -1.78462, -1.67279, -1.29178, -0.83639,
# -0.51207, -0.23763, -0.16111, 0.01662,

```

```

#      0.19339,      0.26882,      0.53624,      0.84611,
#      1.27037,      1.61594,      1.71580,      1.91219,
#      1.99973,      2.25258,      2.48187,      2.75706,
#      2.94834,      3.12767,      3.50703,      /
C
#      DATA V0 /      -3.71902,
#      -3.29053,      -3.09023,      -2.87816,      -2.57583,      -2.32635,      -2.05375,
#      -1.95996,      -1.75069,      -1.64485,      -1.28155,      -0.84162,      -0.52440,
#      -0.25335,      -0.17733,      0.0,      0.17733,      0.25335,      0.52440,
#      0.84162,      1.28155,      1.64485,      1.75069,      1.95996,      2.05375,
#      2.32635,      2.57583,      2.87816,      3.09023,      3.29053,      3.71902 /
#      DATA V1 /      -3.50703,
#      -3.12767,      -2.94834,      -2.75706,      -2.48187,      -2.25258,      -1.99973,
#      -1.91219,      -1.71580,      -1.61594,      -1.27037,      -0.84611,      -0.53624,
#      -0.26882,      -0.19339,      -0.01662,      0.16111,      0.23763,      0.51207,
#      0.83639,      1.29178,      1.67279,      1.78462,      2.00688,      2.10697,
#      2.39961,      2.66965,      2.99978,      3.23322,      3.45513,      3.93453 /
#      DATA V2 /      -3.29921,
#      -2.96698,      -2.80786,      -2.63672,      -2.38795,      -2.17840,      -1.94499,
#      -1.86360,      -1.67999,      -1.58607,      -1.25824,      -0.84986,      -0.54757,
#      -0.28403,      -0.20925,      -0.03325,      0.14472,      0.22168,      0.49927,
#      0.83044,      1.30105,      1.69971,      1.81756,      2.05290,      2.15935,
#      2.47226,      2.76321,      3.12169,      3.37703,      3.62113,      4.15301 /
#      DATA V3 /      -3.09631,
#      -2.80889,      -2.66915,      -2.51741,      -2.29423,      -2.10394,      -1.88959,
#      -1.81427,      -1.64329,      -1.55527,      -1.24516,      -0.85285,      -0.55839,
#      -0.29897,      -0.22492,      -0.04993,      0.12820,      0.20552,      0.48600,
#      0.82377,      1.30936,      1.72562,      1.84949,      2.09795,      2.21081,
#      2.54421,      2.85636,      3.24371,      3.52139,      3.78820,      4.37394 /
#      DATA V4 /      -2.89907,
#      -2.65390,      -2.53261,      -2.39942,      -2.20092,      -2.02933,      -1.83361,
#      -1.76427,      -1.60574,      -1.52357,      -1.23114,      -0.85508,      -0.56867,
#      -0.31362,      -0.24037,      -0.06651,      0.11154,      0.18916,      0.47228,
#      0.81638,      1.31671,      1.75048,      1.88039,      2.14202,      2.26133,
#      2.61539,      2.94900,      3.36566,      3.66608,      3.95605,      4.59687 /
#      DATA V5 /      -2.70836,
#      -2.50257,      -2.39867,      -2.28311,      -2.10825,      -1.95472,      -1.77716,
#      -1.71366,      -1.56740,      -1.49101,      -1.21618,      -0.85653,      -0.57840,
#      -0.32796,      -0.25558,      -0.08302,      0.09478,      0.17261,      0.45812,
#      0.80829,      1.32309,      1.77428,      1.91022,      2.18505,      2.31084,
#      2.68572,      3.04102,      3.48737,      3.81090,      4.12443,      4.82141 /
#      DATA V6 /      -2.52507,
#      -2.35549,      -2.26780,      -2.16884,      -2.01644,      -1.88029,      -1.72033,
#      -1.66253,      -1.52830,      -1.45762,      -1.20028,      -0.85718,      -0.58757,
#      -0.34198,      -0.27047,      -0.09945,      0.07791,      0.15589,      0.44352,
#      0.79950,      1.32850,      1.79701,      1.93896,      2.22702,      2.35931,
#      2.75514,      3.13232,      3.60872,      3.95567,      4.29311,      5.04718 /
#      DATA V7 /      -2.35015,
#      -2.21328,      -2.14053,      -2.05701,      -1.92580,      -1.80621,      -1.66325,
#      -1.61099,      -1.48852,      -1.42345,      -1.18347,      -0.85703,      -0.59615,
#      -0.35565,      -0.28516,      -0.11578,      0.06097,      0.13901,      0.42851,
#      0.79002,      1.33294,      1.81864,      1.96660,      2.26790,      2.40670,
#      2.82359,      3.22281,      3.72957,      4.10022,      4.46189,      5.27389 /
#      DATA V8 /      -2.18448,
#      -2.07661,      -2.01739,      -1.94806,      -1.83660,      -1.73271,      -1.60604,
#      -1.55914,      -1.44813,      -1.38855,      -1.16574,      -0.85607,      -0.60412,
#      -0.36889,      -0.29961,      -0.13199,      0.04397,      0.12199,      0.41309,
#      0.77986,      1.33640,      1.83916,      1.99311,      2.30764,      2.45298,
#      2.89101,      3.31243,      3.84981,      4.24439,      4.63057,      5.50124 /
#      DATA V9 /      -2.02891,
#      -1.94611,      -1.89894,      -1.84244,      -1.74919,      -1.66001,      -1.54886,
#      -1.50712,      -1.40720,      -1.35299,      -1.14712,      -0.85426,      -0.61146,
#      -0.38186,      -0.31368,      -0.14807,      0.02693,      0.10486,      0.39729,
#      0.76902,      1.33889,      1.85856,      2.01848,      2.34623,      2.49811,
#      2.95735,      3.40109,      3.96932,      4.38807,      4.79899,      5.72899 /
#      DATA V10 /      -1.88410,
#      -1.82241,      -1.78572,      -1.74062,      -1.66390,      -1.58838,      -1.49188,
#      -1.45507,      -1.36584,      -1.31684,      -1.12762,      -0.85161,      -0.61815,
#      -0.39434,      -0.32740,      -0.16397,      0.00987,      0.08763,      0.38111,
#      0.75752,      1.34039,      1.87683,      2.04269,      2.38364,      2.54206,
#      3.02256,      3.48874,      4.08802,      4.53112,      4.96701,      5.95691 /
#      DATA V11 /      -1.75053,
#      -1.70603,      -1.67825,      -1.64305,      -1.58110,      -1.51808,      -1.43529,
#      -1.40314,      -1.32414,      -1.28019,      -1.10726,      -0.84809,      -0.62415,
#      -0.40638,      -0.34075,      -0.17968,      -0.00719,      0.07032,      0.36458,
#      0.74537,      1.34092,      1.89395,      2.06573,      2.41984,      2.58480,
#      3.08660,      3.57530,      4.20582,      4.67344,      5.13449,      6.18480 /
#      DATA V12 /      -1.62838,
#      -1.59738,      -1.57695,      -1.55016,      -1.50114,      -1.44942,      -1.37929,
#      -1.35153,      -1.28225,      -1.24313,      -1.08608,      -0.84369,      -0.62944,
#      -0.41794,      -0.35370,      -0.19517,      -0.02421,      0.05297,      0.34772,

```

```

* 0.73257, 1.34047, 1.90992, 2.08758, 2.45482, 2.62631,
* 3.14944, 3.66073, 4.32263, 4.81492, 5.30130, 6.41249 /
DATA V13 / -1.51752,
* -1.49673, -1.48216, -1.46232, -1.42439, -1.38267, -1.32412,
* -1.30042, -1.24028, -1.20578, -1.06413, -0.83841, -0.63400,
* -0.42899, -0.36620, -0.21040, -0.04116, 0.03560, 0.33054,
* 0.71915, 1.33904, 1.92472, 2.10823, 2.48855, 2.66657,
* 3.21103, 3.74497, 4.43839, 4.95549, 5.46735, 6.63980 /
DATA V14 / -1.41753,
* -1.40413, -1.39408, -1.37981, -1.35114, -1.31815, -1.26999,
* -1.25004, -1.19842, -1.16827, -1.04144, -0.83223, -0.63779,
* -0.43949, -0.37824, -0.22535, -0.05803, 0.01824, 0.31307,
* 0.70512, 1.33665, 1.93836, 2.12768, 2.52102, 2.70556,
* 3.27134, 3.82798, 4.55304, 5.09505, 5.63252, 6.86661 /
DATA V15 / -1.32774,
* -1.31944, -1.31275, -1.30279, -1.28167, -1.25611, -1.21716,
* -1.20059, -1.15682, -1.13075, -1.01810, -0.82516, -0.64080,
* -0.44942, -0.38977, -0.23996, -0.07476, 0.00092, 0.29535,
* 0.69050, 1.33330, 1.95083, 2.14591, 2.55222, 2.74325,
* 3.33035, 3.90973, 4.66651, 5.23353, 5.79673, 7.09277 /
DATA V16 / -1.24728,
* -1.24235, -1.23805, -1.23132, -1.21618, -1.19680, -1.16584,
* -1.15229, -1.11566, -1.09338, -0.99418, -0.81720, -0.64300,
* -0.45873, -0.40075, -0.25422, -0.09132, -0.01631, 0.27740,
* 0.67532, 1.32900, 1.96213, 2.16293, 2.58214, 2.77964,
* 3.38804, 3.99016, 4.77875, 5.37087, 5.95990, 7.31818 /
DATA V17 / -1.17520,
* -1.17240, -1.16974, -1.16534, -1.15477, -1.14042, -1.11628,
* -1.10537, -1.07513, -1.05631, -0.96977, -0.80837, -0.64436,
* -0.46739, -0.41116, -0.26808, -0.10769, -0.03344, 0.25925,
* 0.65959, 1.32376, 1.97227, 2.17873, 2.61076, 2.81472,
* 3.44438, 4.06926, 4.88971, 5.50701, 6.12196, 7.54272 /
DATA V18 / -1.11054,
* -1.10901, -1.10743, -1.10465, -1.09749, -1.08711, -1.06864,
* -1.06001, -1.03543, -1.01973, -0.94496, -0.79868, -0.64488,
* -0.47538, -0.42095, -0.28150, -0.12381, -0.05040, 0.24094,
* 0.64335, 1.31760, 1.98124, 2.19332, 2.63810, 2.84848,
* 3.49935, 4.14700, 4.99937, 5.64190, 6.28285, 7.76632 /
DATA V19 / -1.05239,
* -1.05159, -1.05068, -1.04898, -1.04427, -1.03695, -1.02311,
* -1.01640, -0.99672, -0.98381, -0.91988, -0.78816, -0.64453,
* -0.48265, -0.43008, -0.29443, -0.13964, -0.06718, 0.22250,
* 0.62662, 1.31054, 1.98906, 2.20670, 2.66413, 2.88091,
* 3.55295, 4.22336, 5.10768, 5.77549, 6.44251, 7.98888 /
DATA V20 / -0.99990,
* -0.99950, -0.99900, -0.99800, -0.99499, -0.98995, -0.97980,
* -0.97468, -0.95918, -0.94871, -0.89464, -0.77686, -0.64333,
* -0.48917, -0.43854, -0.30685, -0.15516, -0.08371, 0.20397,
* 0.60944, 1.30259, 1.99573, 2.21888, 2.68888, 2.91202,
* 3.60517, 4.29832, 5.21461, 5.90776, 6.60090, 8.21034 /
DATA V21 / -0.95234,
* -0.95215, -0.95188, -0.95131, -0.94945, -0.94607, -0.93878,
* -0.93495, -0.92295, -0.91458, -0.86938, -0.76482, -0.64125,
* -0.49494, -0.44628, -0.31872, -0.17030, -0.09997, 0.18540,
* 0.59183, 1.29377, 2.00128, 2.22986, 2.71234, 2.94181,
* 3.65600, 4.37186, 5.32014, 6.03865, 6.75798, 8.43064 /
DATA V22 / -0.90908,
* -0.90899, -0.90885, -0.90854, -0.90742, -0.90521, -0.90009,
* -0.89728, -0.88814, -0.88156, -0.84422, -0.75211, -0.63833,
* -0.49991, -0.45329, -0.32999, -0.18504, -0.11590, 0.16682,
* 0.57383, 1.28412, 2.00570, 2.23967, 2.73451, 2.97028,
* 3.70543, 4.44398, 5.42426, 6.16816, 6.91370, 8.64971 /
DATA V23 / -0.86956,
* -0.86952, -0.86945, -0.86929, -0.86863, -0.86723, -0.86371,
* -0.86169, -0.85486, -0.84976, -0.81929, -0.73880, -0.63456,
* -0.50409, -0.45953, -0.34063, -0.19933, -0.13148, 0.14827,
* 0.55549, 1.27365, 2.00903, 2.24831, 2.75541, 2.99744,
* 3.75347, 4.51467, 5.52694, 6.29626, 7.06804, 8.86753 /
DATA V24 / -0.83333,
* -0.83331, -0.83328, -0.83320, -0.83283, -0.83196, -0.82959,
* -0.82817, -0.82315, -0.81927, -0.79472, -0.72495, -0.62999,
* -0.50744, -0.46499, -0.35062, -0.21313, -0.14665, 0.12979,
* 0.53683, 1.26240, 2.01128, 2.25581, 2.77506, 3.02330,
* 3.80013, 4.58393, 5.62818, 6.42292, 7.22098, 9.08403 /
DATA V25 / -0.80000,
* -0.79999, -0.79998, -0.79994, -0.79973, -0.79921, -0.79765,
* -0.79667, -0.79306, -0.79015, -0.77062, -0.71067, -0.62463,
* -0.50999, -0.46966, -0.35992, -0.22642, -0.16138, 0.11143,
* 0.51789, 1.25039, 2.01247, 2.26217, 2.79345, 3.04787,
* 3.84540, 4.65176, 5.72796, 6.54814, 7.37250, 9.29920 /
DATA V26 / -0.76923,

```

```

# -0.76923, -0.76922, -0.76920, -0.76909, -0.76878, -0.76779,
# -0.76712, -0.76456, -0.76242, -0.74709, -0.69602, -0.61854,
# -0.51171, -0.47353, -0.36852, -0.23915, -0.17564, 0.09323,
# 0.49872, 1.23766, 2.01263, 2.26743, 2.81062, 3.07116,
# 3.88930, 4.71815, 5.82629, 6.67191, 7.52258, 9.51301 /
DATA V27 / -0.74074,
# -0.74074, -0.74073, -0.74067, -0.74049, -0.73987,
# -0.73943, -0.73765, -0.73610, -0.72422, -0.68111, -0.61176,
# -0.51263, -0.47660, -0.37640, -0.25129, -0.18939, 0.07523,
# 0.47934, 1.22422, 2.01177, 2.27160, 2.82658, 3.09320,
# 3.93183, 4.78313, 5.92316, 6.79421, 7.67121, 9.72543 /
DATA V28 / -0.71429,
# -0.71429, -0.71428, -0.71425, -0.71415, -0.71377,
# -0.71348, -0.71227, -0.71116, -0.70209, -0.66603, -0.60434,
# -0.51276, -0.47888, -0.38353, -0.26282, -0.20259, 0.05746,
# 0.45980, 1.21013, 2.00992, 2.27470, 2.84134, 3.11399,
# 3.97301, 4.84669, 6.01858, 6.91505, 7.81839, 9.93643 /
DATA V29 / -0.68966,
# -0.68966, -0.68965, -0.68965, -0.68964, -0.68959, -0.68935,
# -0.68917, -0.68836, -0.68759, -0.68075, -0.65086, -0.59634,
# -0.51212, -0.48037, -0.38991, -0.27372, -0.21523, 0.03997,
# 0.44015, 1.19539, 2.00710, 2.27676, 2.85492, 3.13356,
# 4.01286, 4.90884, 6.11254, 7.03443, 7.96411, 10.14602 /
DATA V30 / -0.66667,
# -0.66667, -0.66667, -0.66667, -0.66666, -0.66663, -0.66649,
# -0.66638, -0.66585, -0.66532, -0.66023, -0.63569, -0.58783,
# -0.51073, -0.48109, -0.39554, -0.28395, -0.22726, 0.02279,
# 0.42040, 1.18006, 2.00335, 2.27780, 2.86735, 3.15193,
# 4.05138, 4.96959, 6.20506, 7.15235, 8.10836, 10.35418 /
DATA V31 / -0.64516,
# -0.64516, -0.64516, -0.64516, -0.64516, -0.64514, -0.64507,
# -0.64500, -0.64465, -0.64429, -0.64056, -0.62060, -0.57887,
# -0.50863, -0.48107, -0.40041, -0.29351, -0.23868, 0.00596,
# 0.40061, 1.16416, 1.99869, 2.27785, 2.87865, 3.16911,
# 4.08859, 5.02897, 6.29613, 7.26881, 8.25115, 10.56090 /
DATA V32 / -0.62500,
# -0.62500, -0.62500, -0.62500, -0.62500, -0.62499, -0.62495,
# -0.62491, -0.62469, -0.62445, -0.62175, -0.60567, -0.56953,
# -0.50585, -0.48033, -0.40454, -0.30238, -0.24946, -0.01050,
# 0.38081, 1.14772, 1.99314, 2.27693, 2.88884, 3.18512,
# 4.12452, 5.08697, 6.38578, 7.38382, 8.39248, 10.76618 /
DATA V33 / -0.60606,
# -0.60606, -0.60606, -0.60606, -0.60606, -0.60606, -0.60603,
# -0.60601, -0.60587, -0.60572, -0.60379, -0.59096, -0.55989,
# -0.50244, -0.47890, -0.40792, -0.31055, -0.25958, -0.02654,
# 0.36104, 1.13078, 1.98674, 2.27506, 2.89795, 3.20000,
# 4.15917, 5.14362, 6.47401, 7.49739, 8.53236, 10.97001 /
DATA V34 / -0.58824,
# -0.58824, -0.58824, -0.58824, -0.58824, -0.58823, -0.58822,
# -0.58821, -0.58812, -0.58802, -0.58666, -0.57652, -0.55000,
# -0.49844, -0.47682, -0.41058, -0.31802, -0.26904, -0.04215,
# 0.34133, 1.11337, 1.97951, 2.27229, 2.90599, 3.21375,
# 4.19257, 5.19892, 6.56084, 7.60953, 8.67079, 11.17239 /
DATA V35 / -0.57143,
# -0.57143, -0.57143, -0.57143, -0.57143, -0.57143, -0.57142,
# -0.57141, -0.57136, -0.57130, -0.57035, -0.56242, -0.53993,
# -0.49391, -0.47413, -0.41253, -0.32479, -0.27782, -0.05730,
# 0.32171, 1.09552, 1.97147, 2.26862, 2.91299, 3.22641,
# 4.22473, 5.25291, 6.64627, 7.72024, 8.80779, 11.37334 /
DATA V36 / -0.55556,
# -0.55556, -0.55556, -0.55556, -0.55556, -0.55556, -0.55555,
# -0.55555, -0.55552, -0.55548, -0.55483, -0.54867, -0.52975,
# -0.48888, -0.47088, -0.41381, -0.33085, -0.28592, -0.07195,
# 0.30223, 1.07726, 1.96266, 2.26409, 2.91898, 3.23800,
# 4.25569, 5.30559, 6.73032, 7.82954, 8.94335, 11.57284 /
DATA V37 / -0.54054,
# -0.54054, -0.54054, -0.54054, -0.54054, -0.54054, -0.54054,
# -0.54054, -0.54052, -0.54050, -0.54006, -0.53533, -0.51952,
# -0.48342, -0.46711, -0.41442, -0.33623, -0.29335, -0.08610,
# 0.28290, 1.05863, 1.95311, 2.25872, 2.92397, 3.24853,
# 4.28545, 5.35698, 6.81301, 7.93744, 9.07750, 11.77092 /
DATA V38 / -0.52632,
# -0.52632, -0.52632, -0.52632, -0.52632, -0.52632, -0.52631,
# -0.52631, -0.52630, -0.52629, -0.52600, -0.52240, -0.50929,
# -0.47758, -0.46286, -0.41441, -0.34092, -0.30010, -0.09972,
# 0.26376, 1.03965, 1.94283, 2.25254, 2.92799, 3.25803,
# 4.31403, 5.40711, 6.89435, 8.04395, 9.21023, 11.96757 /
DATA V39 / -0.51282,
# -0.51282, -0.51282, -0.51282, -0.51282, -0.51282, -0.51282,
# -0.51282, -0.51281, -0.51281, -0.51261, -0.50990, -0.49911,
# -0.47141, -0.45819, -0.41381, -0.34494, -0.30617, -0.11279,

```

```

# 0.24484, 1.02036, 1.93186, 2.24558, 2.93107, 3.26653,
# 4.34147, 5.45598, 6.97435, 8.14910, 9.34158, 12.16280 /
DATA V40 / -0.50000,
# -0.50000, -0.50000, -0.50000, -0.50000, -0.50000, -0.50000,
# -0.50000, -0.50000, -0.49999, -0.49986, -0.49784, -0.48902,
# -0.46496, -0.45314, -0.41265, -0.34831, -0.31159, -0.12530,
# 0.22617, 1.00079, 1.92023, 2.23786, 2.93324, 3.27404,
# 4.36777, 5.50362, 7.05304, 8.25289, 9.47154, 12.35663 /
DATA V41 / -0.48780,
# -0.48780, -0.48780, -0.48780, -0.48780, -0.48780, -0.48780,
# -0.48780, -0.48780, -0.48780, -0.48772, -0.48622, -0.47906,
# -0.45828, -0.44777, -0.41097, -0.35105, -0.31635, -0.13725,
# 0.20777, 0.98096, 1.90796, 2.22940, 2.93450, 3.28060,
# 4.39296, 5.55005, 7.13043, 8.35534, 9.60013, 12.54906 /
DATA V42 / -0.47619,
# -0.47619, -0.47619, -0.47619, -0.47619, -0.47619, -0.47619,
# -0.47619, -0.47619, -0.47619, -0.47614, -0.47504, -0.46927,
# -0.45142, -0.44212, -0.40881, -0.35318, -0.32049, -0.14861,
# 0.18967, 0.96090, 1.89508, 2.22024, 2.93489, 3.28622,
# 4.41706, 5.59528, 7.20654, 8.45646, 9.72737, 12.74010 /
DATA V43 / -0.46512,
# -0.46512, -0.46512, -0.46512, -0.46512, -0.46512, -0.46512,
# -0.46512, -0.46512, -0.46511, -0.46508, -0.46428, -0.45967,
# -0.44442, -0.43623, -0.40621, -0.35473, -0.32400, -0.15939,
# 0.17189, 0.94064, 1.88160, 2.21039, 2.93443, 3.29092,
# 4.44009, 5.63934, 7.28138, 8.55627, 9.85326, 12.92977 /
DATA V44 / -0.45455,
# -0.45455, -0.45455, -0.45455, -0.45455, -0.45455, -0.45455,
# -0.45455, -0.45455, -0.45454, -0.45452, -0.45395, -0.45029,
# -0.43734, -0.43016, -0.40321, -0.35572, -0.32693, -0.16958,
# 0.15445, 0.92022, 1.86757, 2.19988, 2.93314, 3.29473,
# 4.46207, 5.68224, 7.35497, 8.65479, 9.97784, 13.11808 /
DATA V45 / -0.44444,
# -0.44444, -0.44444, -0.44444, -0.44444, -0.44444, -0.44444,
# -0.44444, -0.44444, -0.44444, -0.44443, -0.44402, -0.44114,
# -0.43020, -0.42394, -0.39985, -0.35619, -0.32928, -0.17918,
# 0.13737, 0.89964, 1.85300, 2.18874, 2.93105, 3.29767,
# 4.48303, 5.72400, 7.42733, 8.75202, 10.10110, 13.30504 /
DATA V46 / -0.43478,
# -0.43478, -0.43478, -0.43478, -0.43478, -0.43478, -0.43478,
# -0.43478, -0.43478, -0.43478, -0.43477, -0.43448, -0.43223,
# -0.42304, -0.41761, -0.39617, -0.35616, -0.33108, -0.18819,
# 0.12067, 0.87895, 1.83792, 2.17699, 2.92818, 3.29976,
# 4.50297, 5.76464, 7.49847, 8.84800, 10.22307, 13.49066 /
DATA V47 / -0.42553,
# -0.42553, -0.42553, -0.42553, -0.42553, -0.42553, -0.42553,
# -0.42553, -0.42553, -0.42553, -0.42553, -0.42532, -0.42357,
# -0.41590, -0.41121, -0.39221, -0.35567, -0.33236, -0.19661,
# 0.10436, 0.85817, 1.82334, 2.16465, 2.92455, 3.30103,
# 4.52192, 5.80418, 7.56842, 8.94273, 10.34375, 13.67495 /
DATA V48 / -0.41667,
# -0.41667, -0.41667, -0.41667, -0.41667, -0.41667, -0.41667,
# -0.41667, -0.41667, -0.41667, -0.41666, -0.41652, -0.41517,
# -0.40880, -0.40477, -0.38800, -0.35475, -0.33315, -0.20446,
# 0.08847, 0.83731, 1.80631, 2.15174, 2.92017, 3.30149,
# 4.53990, 5.84265, 7.63718, 9.03623, 10.46318, 13.85794 /
DATA V50 / -0.40000,
# -0.40000, -0.40000, -0.40000, -0.40000, -0.40000, -0.40000,
# -0.40000, -0.40000, -0.40000, -0.40000, -0.39993, -0.39914,
# -0.39482, -0.39190, -0.37901, -0.35174, -0.33336, -0.21843,
# 0.05798, 0.79548, 1.77292, 2.12432, 2.90930, 3.30007,
# 4.57304, 5.91639, 7.77124, 9.21961, 10.69829, 14.22004 /
DATA V52 / -0.38462,
# -0.38462, -0.38462, -0.38462, -0.38462, -0.38462, -0.38462,
# -0.38462, -0.38462, -0.38462, -0.38462, -0.38458, -0.38414,
# -0.38127, -0.37919, -0.36945, -0.34740, -0.33194, -0.23019,
# 0.02927, 0.75364, 1.73795, 2.09490, 2.89572, 3.29567,
# 4.60252, 5.98602, 7.90078, 9.39827, 10.92853, 14.57706 /
DATA V54 / -0.37037,
# -0.37037, -0.37037, -0.37037, -0.37037, -0.37037, -0.37037,
# -0.37037, -0.37037, -0.37037, -0.37037, -0.37036, -0.37011,
# -0.36825, -0.36680, -0.35956, -0.34198, -0.32914, -0.23984,
# 0.00243, 0.71195, 1.70155, 2.06365, 2.87959, 3.28844,
# 4.62850, 6.05169, 8.02594, 9.57232, 11.15402, 14.92912 /
DATA V56 / -0.35714,
# -0.35714, -0.35714, -0.35714, -0.35714, -0.35714, -0.35714,
# -0.35714, -0.35714, -0.35714, -0.35714, -0.35714, -0.35700,
# -0.35583, -0.35484, -0.34955, -0.33573, -0.32519, -0.24751,
# 0.02252, 0.67058, 1.66390, 2.03073, 2.86107, 3.27854,
# 4.65111, 6.11351, 8.14683, 9.74190, 11.37487, 15.27632 /
DATA V58 / -0.34483,

```

```

# -0.34483, -0.34483, -0.34483, -0.34483, -0.34483, -0.34483, -0.34483,
# -0.34483, -0.34483, -0.34483, -0.34483, -0.34483, -0.34476,
# -0.34402, -0.34336, -0.33957, -0.32886, -0.32031, -0.25334,
# -0.04553, 0.62966, 1.62513, 1.99629, 2.84030, 3.26610,
# 4.67050, 6.17162, 8.26359, 9.90713, 11.59122, 15.61878 /
DATA V60 / -0.33333,
# -0.33333, -0.33333, -0.33333, -0.33333, -0.33333, -0.33333,
# -0.33333, -0.33333, -0.33333, -0.33333, -0.33333, -0.33330,
# -0.33285, -0.33242, -0.32974, -0.32155, -0.31472, -0.25750,
# -0.06662, 0.58933, 1.58541, 1.96048, 2.81743, 3.25128,
# 4.68680, 6.22616, 8.37634, 10.06812, 11.80316, 15.95660 /
DATA V62 / -0.32258,
# -0.32258, -0.32258, -0.32258, -0.32258, -0.32258, -0.32258,
# -0.32258, -0.32258, -0.32258, -0.32258, -0.32258, -0.32256,
# -0.32230, -0.32202, -0.32016, -0.31399, -0.30859, -0.26015,
# -0.08580, 0.54970, 1.54487, 1.92343, 2.79259, 3.23419,
# 4.70013, 6.27723, 8.48519, 10.22499, 12.01082, 16.28989 /
DATA V64 / -0.31250,
# -0.31250, -0.31250, -0.31250, -0.31250, -0.31250, -0.31250,
# -0.31250, -0.31250, -0.31250, -0.31250, -0.31250, -0.31249,
# -0.31234, -0.31216, -0.31090, -0.30631, -0.30209, -0.26146,
# -0.10311, 0.51089, 1.50365, 1.88528, 2.76591, 3.21497,
# 4.71061, 6.32497, 8.59027, 10.37785, 12.21429, 16.61875 /
DATA V66 / -0.30303,
# -0.30303, -0.30303, -0.30303, -0.30303, -0.30303, -0.30303,
# -0.30303, -0.30303, -0.30303, -0.30303, -0.30303, -0.30303,
# -0.30294, -0.30283, -0.30198, -0.29862, -0.29537, -0.26160,
# -0.11859, 0.47299, 1.46186, 1.84616, 2.73751, 3.19374,
# 4.71836, 6.36948, 8.69167, 10.52681, 12.41370, 16.94329 /
DATA V68 / -0.29412,
# -0.29412, -0.29412, -0.29412, -0.29412, -0.29412, -0.29412,
# -0.29412, -0.29412, -0.29412, -0.29412, -0.29412, -0.29412,
# -0.29407, -0.29400, -0.29344, -0.29101, -0.28854, -0.26072,
# -0.13231, 0.43608, 1.41963, 1.80618, 2.70751, 3.17062,
# 4.72350, 6.41086, 8.78950, 10.67197, 12.60913, 17.26360 /
DATA V70 / -0.28571,
# -0.28571, -0.28571, -0.28571, -0.28571, -0.28571, -0.28571,
# -0.28571, -0.28571, -0.28571, -0.28571, -0.28571, -0.28571,
# -0.28569, -0.28565, -0.28528, -0.28355, -0.28169, -0.25899,
# -0.14434, 0.40026, 1.37708, 1.76547, 2.67603, 3.14572,
# 4.72613, 6.44924, 8.88387, 10.81343, 12.80069, 17.57979 /
DATA V72 / -0.27778,
# -0.27778, -0.27778, -0.27778, -0.27778, -0.27778, -0.27778,
# -0.27778, -0.27778, -0.27778, -0.27778, -0.27778, -0.27778,
# -0.27776, -0.27774, -0.27751, -0.27629, -0.27491, -0.25654,
# -0.15478, 0.36557, 1.33430, 1.72412, 2.64317, 3.11914,
# 4.72635, 6.48470, 8.97488, 10.95129, 12.98848, 17.89193 /
DATA V74 / -0.27027,
# -0.27027, -0.27027, -0.27027, -0.27027, -0.27027, -0.27027,
# -0.27027, -0.27027, -0.27027, -0.27027, -0.27027, -0.27027,
# -0.27026, -0.27025, -0.27010, -0.26926, -0.26825, -0.25352,
# -0.16371, 0.33209, 1.29141, 1.68225, 2.60905, 3.09099,
# 4.72427, 6.51735, 9.06261, 11.08565, 13.17258, 18.20012 /
DATA V76 / -0.26316,
# -0.26316, -0.26316, -0.26316, -0.26316, -0.26316, -0.26316,
# -0.26316, -0.26316, -0.26316, -0.26316, -0.26316, -0.26316,
# -0.26315, -0.26315, -0.26306, -0.26248, -0.26175, -0.25005,
# -0.17123, 0.29986, 1.24850, 1.63995, 2.57375, 3.06137,
# 4.71998, 6.54727, 9.14717, 11.21658, 13.35309, 18.50446 /
DATA V78 / -0.25641,
# -0.25641, -0.25641, -0.25641, -0.25641, -0.25641, -0.25641,
# -0.25641, -0.25641, -0.25641, -0.25641, -0.25641, -0.25641,
# -0.25641, -0.25640, -0.25635, -0.25596, -0.25544, -0.24622,
# -0.17746, 0.26892, 1.20565, 1.59732, 2.53737, 3.03038,
# 4.71358, 6.57456, 9.22863, 11.34419, 13.53009, 18.80504 /
DATA V80 / -0.25000,
# -0.25000, -0.25000, -0.25000, -0.25000, -0.25000, -0.25000,
# -0.25000, -0.25000, -0.25000, -0.25000, -0.25000, -0.25000,
# -0.25000, -0.25000, -0.24996, -0.24970, -0.24933, -0.24214,
# -0.18249, 0.23929, 1.16295, 1.55444, 2.50001, 2.99810,
# 4.70514, 6.59931, 9.30709, 11.46855, 13.70366, 19.10190 /
DATA V82 / -0.24390,
# -0.24390, -0.24390, -0.24390, -0.24390, -0.24390, -0.24390,
# -0.24390, -0.24390, -0.24390, -0.24390, -0.24390, -0.24390,
# -0.24390, -0.24390, -0.24388, -0.24371, -0.24345, -0.23788,
# -0.18643, 0.21101, 1.12048, 1.51141, 2.46175, 2.96462,
# 4.69476, 6.62159, 9.38262, 11.58974, 13.87389, 19.39516 /
DATA V84 / -0.23810,
# -0.23810, -0.23810, -0.23810, -0.23810, -0.23810, -0.23810,
# -0.23810, -0.23810, -0.23810, -0.23810, -0.23810, -0.23810,
# -0.23810, -0.23809, -0.23808, -0.23797, -0.23779, -0.23352,

```

```

# -0.18939, 0.18408, 1.07832, 1.46829, 2.42268, 2.93002,
# 4.68252, 6.64148, 9.45530, 11.70785, 14.04086, 19.68488 /
DATA V86 / -0.23256,
# -0.23256, -0.23256, -0.23256, -0.23256, -0.23256, -0.23256,
# -0.23256, -0.23256, -0.23256, -0.23256, -0.23256, -0.23256,
# -0.23256, -0.23256, -0.23255, -0.23248, -0.23236, -0.22911,
# -0.19147, 0.15851, 1.03654, 1.42518, 2.38288, 2.89440,
# 4.66850, 6.65907, 9.52521, 11.82294, 14.20463, 19.97115 /
DATA V88 / -0.22727,
# -0.22727, -0.22727, -0.22727, -0.22727, -0.22727, -0.22727,
# -0.22727, -0.22727, -0.22727, -0.22727, -0.22727, -0.22727,
# -0.22727, -0.22727, -0.22727, -0.22722, -0.22714, -0.22469,
# -0.19277, 0.13431, 0.99519, 1.38213, 2.34242, 2.85782,
# 4.65277, 6.67443, 9.59243, 11.93509, 14.36528, 20.25402 /
DATA V90 / -0.22222,
# -0.22222, -0.22222, -0.22222, -0.22222, -0.22222, -0.22222,
# -0.22222, -0.22222, -0.22222, -0.22222, -0.22222, -0.22222,
# -0.22222, -0.22222, -0.22222, -0.22219, -0.22214, -0.22030,
# -0.19338, 0.11146, 0.95435, 1.33922, 2.30138, 2.82035,
# 4.63541, 6.68763, 9.65701, 12.04437, 14.52288, 20.53356 /

```

C
C
C

```

IORDER=1
IF(SKU.LT. 0.0)IORDER=-1
S=ABS(SKU)
IF(S.GT.9.01)GOTO500
IF(S.GT.4.75 .AND. S.LT.4.90)GOTO300
H=0.1
IF(S.GT.4.75)H=0.2
KKTV=50+(S-4.8)/H + .5
IF(KKTV.GT.70)KKTV=70
SKTV = 4.8 + H*(KKTV-50)
P = (S - SKTV)/H
C0=P*(P-1.)*.5 *FLOAT(IORDER)
C1=(1.-P**2) *FLOAT(IORDER)
C2=P*(P+1.)*.5 *FLOAT(IORDER)
GOTO400
300 KKTV=50
P=S-4.8
Q=S-5.0
R=S-4.7
C2=P*R*16.66667*FLOAT(IORDER)
C1=Q*R*(-50.) *FLOAT(IORDER)
C0=P*Q*33.33333*FLOAT(IORDER)
400 L=16*(1-IORDER)
D0410I=1,31
L=L+IORDER
410 PD(L)=C0*PCT(I,KKTV-1) + C1*PCT(I,KKTV) + C2*PCT(I,KKTV+1)
RETURN
500 D0520I=1,31
520 PD(I)=0.
RETURN
END

```

```

=====
C===== HARTK =====
C===== FUNCTION HARTK (P,V)
C G387 - LOOK UP K OR P IN HARTERS TABLES. WKIRBY 9/76.
C HARTK - LOOKUP STDIZED HARTER K AT CUMULATIVE PROB P
C HARTP - LOOKUP CUM (NONEXCEED) PROB P AT STDIZED HARTER K
C V - VECTOR OF SKEW-INTERPOLATED HARTER K VALUES (FROM HARTIV)
C 6/78 WK -- USING LOCAL NOT HARTAB COPY OF HARTER TAB PROBS/GAUSS DEV.
C DIMENSION V(1)
C HARTER TABULAR PROBABILITIES OR GAUSSIAN DEVIATES -----
REAL PROB(31)
DATA PROB / 0.00010,
# 0.00050, 0.00100, 0.00200, 0.00500, 0.01000, 0.02000,
# 0.02500, 0.04000, 0.05000, 0.10000, 0.20000, 0.30000,
# 0.40000, 0.429624, 0.50000, 0.570376, 0.60000, 0.70000,
# 0.80000, 0.90000, 0.95000, 0.96000, 0.97500, 0.98000,
# 0.99000, 0.99500, 0.99800, 0.99900, 0.99950, 0.99990 /
C -----
C DATA HUGE / 1E38/
C ENTRY HARTK -
IF(P.GT.PROB(31) .OR. P.LT.PROB(1))GOTO90
IB=2
IF(P.GE.0.5)IB=17
IE=IB+13
D010I=IB,IE
IF(P.LT.PROB(I))GOTO20
10 CONTINUE

```

```

I=IB+14
20 HARTK=V(I-1)+(P-PROB(I-1))*(V(I)-V(I-1))/(PROB(I)-PROB(I-1))
  RETURN
C  RETURN + OR - 1E38 IF OUT OF RANGE OF PROB
90 HARTK=HUGE
  IF(P.LT.PROB(1))HARTK=-HUGE
  RETURN
C
C  ENTRY HARTP -
  ENTRY HARTP(SHK, V)
  IF(SHK.GT.V(31).OR.SHK.LT.V(1))GOTO190
  IB=2
  IF(SHK.GE.V(16))IB=17
  IE=IB+13
  DO110I=IB,IE
  IF(SHK.LT.V(I))GOTO120
110 CONTINUE
  I=IB+14
120 DV=V(I)-V(I-1)
  IF(DV.EQ.0.)GOTO180
  HARTP=PROB(I-1)+(SHK-V(I-1))*(PROB(I)-PROB(I-1))/DV
  RETURN
180 HARTP=PROB(I)
  IF(V(1).NE.V(31))      RETURN
190 HARTP=1.
  IF(SHK.LT.V(1))HARTP=0.
  RETURN
  END
=====
C ****
C ****
C subroutine inv3(x,xinv)
  double precision x(3,3), xc(3,3), xinv(3,3), det
  integer*4 i,j
  det=x(1,1)*x(2,2)*x(3,3)+x(1,2)*x(2,3)*x(3,1)
  1 +x(1,3)*x(3,2)*x(2,1) - x(1,1)*x(2,3)*x(3,2)
  1 -x(1,2)*x(2,1)*x(3,3) - x(1,3)*x(2,2)*x(3,1)
  xc(1,1)=x(2,2)*x(3,3) - x(2,3)*x(3,2)
  xc(2,1)=-x(2,1)*x(3,3) + x(2,3)*x(3,1)
  xc(3,1)=x(2,1)*x(3,2) - x(2,2)*x(3,1)
  xc(1,2)=-x(1,2)*x(3,3) + x(1,3)*x(3,2)
  xc(2,2)=x(1,1)*x(3,3) - x(1,3)*x(3,1)
  xc(3,2)=-x(1,1)*x(3,2) + x(1,2)*x(3,1)
  xc(1,3)=x(1,2)*x(2,3) - x(1,3)*x(2,2)
  xc(2,3)=-x(1,1)*x(2,3) + x(1,3)*x(2,1)
  xc(3,3)=x(1,1)*x(2,2) - x(1,2)*x(2,1)
  do 1 i=1,3
  do 1 j=1,3
  xinv(i,j)=xc(i,j)/det
1  continue
  return
  end
  SUBROUTINE INVERT(N,NDIM,DET,COVINV,COV)
  implicit real*8 (a-h,o-z)
C -----
C  COV IS AN N*N MATRIX
C  SUBROUTINE COMPUTES DETERMINANT OF COV THEN REPLACES COV WITH ITS
C  INVERSE
C  B IS THE LOWER TRIANGULAR DECOMPOSITION OF COV
C -----
  INCLUDE 'DIMENS.CMN'
  INTEGER*4 N,NDIM,I,IM,K,J
  DOUBLE PRECISION COVINV(NDIM,NDIM), COV(NDIM,NDIM), B(MAXS,MAXS)
  DOUBLE PRECISION A(MAXS,MAXS), TEMP,DETL,SUM,DET
C
  IF (N.EQ.2) THEN
    DET = COV(1,1)*COV(2,2) - COV(1,2)**2
    TEMP = COV(1,1)/DET
    COVINV(1,1) = COV(2,2)/DET
    COVINV(2,2) = TEMP
    COVINV(1,2) = - COV(1,2)/DET
    COVINV(2,1) = COVINV(1,2)
  ELSE
C
    CALL DECOMP(N,NDIM,COV,B)
    CC  WRITE(6,9)((B(I,J),J=1,N), I=1,N)
    9 FORMAT(10F10.4)
    DETL=B(1,1)
    DO 1 I=2,N
    1 DETL=DETL*B(I,I)
    DET=DETL**2

```

```

      IF(DET.EQ.0.0)THEN
        WRITE(6,1000)
1000      FORMAT(1X,' PROCESSING STOPPED -- SINGULAR MATRIX')
C       STOP
C       END IF
C
C       A(1,1)=1./B(1,1)
C       A(2,2)=1./B(2,2)
C       A(2,1)=-B(2,1)*A(1,1)*A(2,2)
C
C       DO 10 I=3,N
C       A(I,I)=1./B(I,I)
C       IM=I-1
C       DO 11 K=1,IM
C       SUM=0.
C       DO 12 J=K,IM
C       12 SUM=SUM+B(I,J)*A(J,K)
C       11 A(I,K)=-SUM*A(I,I)
C       10 CONTINUE
C
C       DO 4 I=1,N
C       DO 4 J=1,I
C       SUM=0.
C       DO 25 K=I,N
C       25 SUM=SUM+A(K,I)*A(K,J)
C       COVINV(I,J)=SUM
C       COVINV(J,I)=SUM
C       4 CONTINUE
C       END IF
C       RETURN
C
C ****
C **** subroutine lever
C include 'dimens.cmn'
C include 'gr.cmn'
C double precision x(maxs,maxp), xt(maxp,maxs), hat(maxs,maxs),
C      temp(maxp,maxs)
C double precision xtxinv(maxp,maxp), xtx(maxp,maxp)
C include 'nari.cmn'
C integer*4 i
C DO 1 I=1,50
C X(I,1)=1.0
C X(I,2)=DAOOLD(I)
C X(I,3)=PROLD(I)
C XT(1,I)=1.0
C XT(2,I)=DAOOLD(I)
C XT(3,I)=PROLD(I)
C 1 CONTINUE
C =====
C COMPUTE LEVERAGE FOR 50 REPRESENTATIVE SITES
C =====
C CALL MULTIPLY(XTX,XT,X,3,50,3,3,3,50)
C CALL INV3(XTX,XTXINV)
C CALL MULTIPLY(TEMP,XTXINV,XT,3,3,50,3,3,3)
C CALL MULTIPLY(HAT,X,TEMP,50,3,50,50,50,3)
C DO 3 I=1,50
C 3 H(I)=SNGL(HAT(I,I))
C      return
C
C SUBROUTINE LNMOM
C
C       SUBROUTINE LNMOM(X,Y,U,V)
C       REAL*4 X,Y,U,V,W
C       W=(Y**2)/(X**2)
C       IF(W.LT.0.000001) GO TO 10
C       W=ALOG(1.0+W)
C 10 CONTINUE
C       V=SQRT(W)
C       U=ALOG(X)-0.5*W
C       RETURN
C
C SUBROUTINE MELIOR
C
C       SUBROUTINE MELIOR(YCUM,YCUMBL,PRIOR,NPHI)
C       REAL*4 YCUM(500,14),YCUMBL(12),PRIOR(1000),ALPHA(14),V(500),
C      + YCUMAL(12),ALFA(12),PCT(12),PSTORE,YSTORE,PCUM,VMIN,B,
C      + ALPROX,DELP,SLOPE

```



```

C OVER ALL PARAMETERS EXCEPT . CV MUST BE BETWEEN 0.1 AND 5.0 .
C NB AND NY MUST BE BETWEEN 10 AND 50 .
C MODEL ERROR MAY NOT EXCEED 2.0 .
C JOINT PRIORS ON RHOC AND CV MUST BE ENTERED
C
C      INTEGER*4 JEVENT,ICARD,IPHI,KFLAG
C      REAL*4 ANY,ANB,SEC
C
C      WRITE(6,1000)
C1000 FORMAT(//,T10,91(1H*),/,1X,T10,'*',T100,'*',/,1X,T10,'* THIS PROG
C      1RAM IS NARI DESIGN PROCEDURE BASED ON THE STANDARD ERROR OF A
C      2 REGIONAL',T100,'*',/,1X,T10,'* REGRESSION ANALYSIS OF MEAN, STAND
C      3ARD DEVIATION, 2-YEAR, 10-YEAR, 50-YEAR, OR 100-YEAR',T100,'*',/,1
C      41X,T10,'* EVENTS. REQUIRED PROBABILITY DISTRIBUTIONS HAVE BEEN IN
C      STERPOLATED OVER ALL PARAMETERS',T100,'*',/,1X,T10,'* *** NOTE **.
C      AJOINT PRIORS ON RHOC AND CV MUST BE ENTERED AS INPUT.'
C      6 ,T100,'*',/,1X,T10,'*',T100,'*',/,1X,T10,'* RESTRICTIONS: 1)
C      6 CV MUST BE BETWEEN 0.1 AND 5.0',T100,'*',/,1X,T10,'*',T31,'2) STD
C      7. ERROR OF REGRESSION MUST BE IN NATURAL (BASE E) LOG UNITS',
C      8T100,'*',/,1X,T10,'*',T31,'3) NB & NY MUST BE BETWEEN 10 AND 50 ',
C      8T100,'*',/,1X,T10,'*',T31,'4) ALLOWABLE VALUES OF RHOC ARE BETWEEN
C      1 0.0 AND 0.9 . ',T100,'*',/,1X,T10,'*',T100,'*',/,1X,T10,'*
C      2DATE: APRIL 6 , 1979',T100,'*',/,1X,T10,'*',T100,'*',/,1X,T10,91(1
C      3H*)) )
C      CALL DATAIN(ANY,ANB,SEC,JEVENT)
C      CALL PRITAB
C      KFLAG=1
C      CALL BHIND(IPHI,KFLAG,JEVENT)
C      IF(KFLAG.EQ.2) GO TO 5
C      CALL DZNOUT(IPHI,JEVENT,ICARD)
C      END
C ****
C ****
C      SUBROUTINE MULTIPLY(PROD,X,Y,K1,K2,K3,N1,N2,N3)
C      IMPLICIT REAL*8 (A-H,O-Z)
C -----
C      X IS K1*K2 MATRIX
C      Y IS K2*K3 MATRIX
C      PROD = X*Y IS A K1*K3 MATRIX
C -----
C      DOUBLE PRECISION PROD,X,Y,SUM
C      INTEGER*4 K1,K2,K3,N1,N2,N3,I,J,K
C      DIMENSION PROD(N1,K3), X(N2,K2),Y(N3,K3)
C      DO 1 I=1,K1
C      DO 3 K=1,K3
C      SUM=0.
C      DO 2 J=1,K2
C      2 SUM=SUM+X(I,J)*Y(J,K)
C      3 PROD(I,K)=SUM
C      1 CONTINUE
C      RETURN
C      END
C ****
C ****
C      Subroutine netgls
C
C      subroutine netgls(b0,b1,b2,bias,pmse,tmse,jend,rbar)
C      implicit double precision (a-h,o-z)
C      include 'dimens.cmn'
C      include 'gr.cmn'
C      include 'gri-5.cmn'
C      double precision work(3,1), v(1,3), vt(3,1), z(1,1), pred(1,1),
C      +           work1,work2,work3,sum,sumerr,sserr,avep,err,
C      +           ebar,varp
C      COMMON /WORKC/ WORK1(3,maxs), WORK2(3,maxs), WORK3(maxs,1)
C      common /net1/ noall,daall(150), prall(150), amall(150)
C      real*4 daall, prall, amall,b0,b1,b2,bias,pmse,tmse,rbar
C      integer*4 jend,i
C
C      Compute predicted ave mse of prediction, avep
C
C      sum=0.0
C      sumerr=0.0
C      sserr=0.0
C      do 1 i=1,50
C      v(1,1)=1.0
C      v(1,2)=(daold(i))
C      v(1,3)=(prold(i))
C      vt(i,1)=v(1,1)
C      vt(2,1)=v(1,2)
C      vt(3,1)=v(1,3)

```

```

call multiply(work,xtxinv,vt,3,3,1,3,3,1)
call multiply(z,v,work,1,3,1,1,1,3)
sum=sum+z(1,1)
1 continue
avep=gamasv+sum/50.
avep=avep*2.302585**2
c
c regress using data relaized from gls network design
c
call glsreg(nsites,jend,rbar,2,1)
do 2 i=1,noall
v(1,1)=1.0
v(1,2)=alog10(daall(i))
v(1,3)=alog10(prall(i))
vt(1,1)=v(1,1)
vt(2,1)=v(1,2)
vt(3,1)=v(1,3)
call multiply(pred,v,bhat,1,3,1,1,1,3)
err=pred(1,1)-dble(amall(i))
err=err*2.302585
sumerr=sumerr+err
sserr=sserr+err**2
2 continue
ebar=sumerr/noall
c
varp=(sserr-146.0*ebar**2)/145.0
varp=sserr/noall
c
write(6,1000)avep, varp
1000 format(' gls pred mse and obs mse =',2f15.4)
bias=sngl(ebar)
pmse=sngl(avep)
tmse=sngl(varp)
b0=sngl(bhat(1,1))
b1=sngl(bhat(2,1))
b2=sngl(bhat(3,1))
return
end
SUBROUTINE OBSEMT(XNB,XNY,CVS,RHOCS,GAMMA,NEV,AM,AS)
REAL*4 XNB,XNY,CVS,RHOCS,GAMMA,AM,AS,SIGSQ,RX,RNY,BEX,BSD,AHAT
INTEGER*4 NEV,NEV2,NUP
NEV2=NEV+2
SIGSQ=ALOG(1.0+CVS*CVS)
RX=ALOG(1.0+RHOCS*CVS*CVS)/SIGSQ
RNY=XNY-1.0
BEX=.87+.214/(XNY-1.0)+.003*XNB
BSD=0.4659/(XNB-2.0)
NUP=NEV
IF(MOD(NUP,19).EQ.1)
1AHAT=EXP(0.18 +1.16*ALOG(SIGSQ)+.912*ALOG(1.0-RX)-.901*ALOG(RNY))
IF(MOD(NUP,19).EQ.5)
1AHAT=EXP(-.35 +1.08*ALOG(SIGSQ)+.926*ALOG(1.0-RX)-.844*ALOG(RNY))
IF(MOD(NUP,19).EQ.9)
1AHAT=EXP(-.08 +1.04*ALOG(SIGSQ)+.840*ALOG(1.0-RX)-.801*ALOG(RNY))
IF(MOD(NUP,19).EQ.13)
1AHAT=EXP(-.35 +1.04*ALOG(SIGSQ)+.770*ALOG(1.0-RX)-.701*ALOG(RNY))
IF(MOD(NUP,19).EQ.17)
1AHAT=EXP(-.47 +1.04*ALOG(SIGSQ)+.760*ALOG(1.0-RX)-.670*ALOG(RNY))
AM=SQRT(AHAT+BEX*GAMMA*GAMMA)
NUP=NEV2
IF(MOD(NUP,19).EQ.3) AHAT=EXP(-2.264+1.055*ALOG(SIGSQ)+*0.548*ALOG(1.0-RX)-0.685*ALOG(RNY)-0.656*ALOG(XNB-2.0))
IF(MOD(NUP,19).EQ.7) AHAT=EXP(-2.453+0.917*ALOG(SIGSQ)+*0.592*ALOG(1.0-RX)-0.702*ALOG(RNY)-0.729*ALOG(XNB-2.0))
IF(MOD(NUP,19).EQ.11) AHAT=EXP(-1.494+0.981*ALOG(SIGSQ)+*0.643*ALOG(1.0-RX)-0.749*ALOG(RNY)-0.753*ALOG(XNB-2.0))
IF(MOD(NUP,19).EQ.15) AHAT=EXP(-1.162+1.060*ALOG(SIGSQ)+*0.544*ALOG(1.0-RX)-0.625*ALOG(RNY)-0.760*ALOG(XNB-2.0))
IF(MOD(NUP,19).EQ.0) AHAT=EXP(-1.055+1.072*ALOG(SIGSQ)+*0.525*ALOG(1.0-RX)-0.603*ALOG(RNY)-0.746*ALOG(XNB-2.0))
AS=SQRT(AHAT+BSD*GAMMA*GAMMA)
RETURN
END
SUBROUTINE OBSESD(XB,XY,CV,RC,GAM,XMU,XSD)
REAL*4 XB,XY,CV,RC,GAM,XMU,XSD,XNB,XNY,A04,A14,A24,B4,A06,A16,A26,
+ B6,A4,A6,PRC4,PRC6
XNB=XB
XNY=XY
XNB=1.0/XNB
XNY=1.0/XNY
A04=-2.4283+8.9763*XNY-4.4345*XNB
A14=0.9555-2.4770*XNY
A24=0.8165+0.42*XNY

```

```

B4=0.9745+0.4833*XNY-3.2148*XNB
A06=-2.3403+8.9734*XNY-2.3211*XNB
A16=0.9777-2.676*XNY
A26=0.7977+0.3858*XNY
B6=0.982+0.6781*XNY-2.1032*XNB
A4=EXP(A06+ A14* ALOG(CV)+A24* ALOG(1.0-RC))
A6=EXP(A06+ A16* ALOG(CV)+A26* ALOG(1.0-RC))
PRC4=A4+B4*GAM**2
PRC6=A6+B6*GAM**2
XSD=(ALOG(PRC6)-ALOG(PRC4))*0.5/0.52
XMU=0.5*ALOG(PRC6)
RETURN
END
C ****
C ****
C ***** SUBROUTINE OLSREG(YIN,X1,X2,N,SE)
C ***** INTEGER*4 N,I,NDF
C ***** REAL*4 YIN(100), X1(100), X2(100), SE, SS, SUM, PRED, RES, VRES,
C ***** + SEB2, SEB3, T2, T3, P2, P3
C ***** DOUBLE PRECISION X(100,3), XT(3,100)
C ***** DOUBLE PRECISION XTXINV(3,3), BHAT(3,1), E(3,1), Y(100,1), XTX(3,3)
C ***** INCLUDE 'DIMENS.CMN'
C ***** INCLUDE 'NARI.CMN'
C ***** DO 1 I=1,N
C ***** X(I,1)=1.0
C ***** X(I,2)=X1(I)
C ***** X(I,3)=X2(I)
C ***** XT(1,I)=1.0
C ***** XT(2,I)=X1(I)
C ***** XT(3,I)=X2(I)
C ****=
C ****= WRITE(1,702)X1(I), X2(I)
C 702 FORMAT(1X,2F12.4)
C ****=
C ****= Y(I,1)=YIN(I)
C 1 CONTINUE
C ****= CALL MULTIPLY(XTX,XT,X,3,N,3,3,3,100)
C ****=
C DO 701 I=1,3
C DO 701 J=1,3
C 701 WRITE(1,111)XTX(I,J)
C 111 FORMAT(1X,G13.3)
C ****=
C CALL INVERT(3,3,DET,XTXINV,XTXINV)
C CALL INV3(XTX,XTXINV)
C ****=
C DO 707 I=1,3
C DO 707 J=1,3
C WRITE (1,111)XTXINV(I,J)
C 707 CONTINUE
C ****=
C CALL MULTIPLY(E,XT,Y,3,N,1,3,3,100)
C CALL MULTIPLY(BHAT,XTXINV,E,3,3,1,3,3,3)
C ****=
C WRITE(6,1000)BHAT(1,1), BHAT(2,1), BHAT(3,1)
C 1000 FORMAT(1X,' BHATS ',3F12.4)
C CALCULATE SE
SS=0.0
SUM=0.0
B0=SNGL(BHAT(1,1))
B1=SNGL(BHAT(2,1))
B2=SNGL(BHAT(3,1))
DO 2 I=1,N
PRED=B0 + X1(I)*B1 + X2(I)*B2
RES=YIN(I)-PRED
SUM=SUM+RES
SS=SS+RES**2
2 CONTINUE
VRES=(SS-SUM**2/N)/(N-3)
SE=SQRT(VRES)
SEB2=VRES*XTXINV(2,2)
SEB3=VRES*XTXINV(3,3)
T2=ABS(B1/SEB2)
T3=ABS(B2/SEB3)
NDF=N-3
P2=2.0*STUTP(-T2,NDF)
IF(P2.LT..0001)P2=.0001
P3=2.0*STUTP(-T3,NDF)
IF(P3.LT..0001)P3=.0001
C ****=
C WRITE(6,1001)SE, P2, P3

```

```

1001 FORMAT(1X,' SE, PLEVELS 1 AND 2 ',3F12.5)
C
      RETURN
      END
      SUBROUTINE PRICAL(ZMU,ZSD,PTU,PTL,PRI)
      REAL*4 ZMU,ZSD,PTU,PTL,PRI,XU,XL
      XU=(PTU-ZMU)/ZSD
      XL=(PTL-ZMU)/ZSD
      PRI=GAUSCF(XU)-GAUSCF(XL)
      RETURN
      END
C ****
C ****
C
      FUNCTION RAN2(IDUM)
C
C Returns a uniform random deviate between 0.0 and 1.0
C (Numerical Recipes, 1986, p 197)
C
      PARAMETER (M=714025,IA=1366,IC=150889,RM=1.4005112E-6)
      DIMENSION IR(97)
      DATA IFF /0/
      DATA IY /0/
      DATA IR /97*0/
      IF(IDUM.LT.0.OR.IFF.EQ.0)THEN
        IFF=1
        IDUM=MOD(IC-IDUM,M)
        DO 11 J=1,97
          IDUM=MOD(IA*IDUM+IC,M)
          IR(J)=IDUM
11      CONTINUE
        IDUM=MOD(IA*IDUM+IC,M)
        IY=IDUM
      ENDIF
      J=1+(97*IY)/M
      IF(J.GT.97.OR.J.LT.1)PAUSE
      IY=IR(J)
      RAN2=IY*RM
      IDUM=MOD(IA*IDUM+IC,M)
      IR(J)=IDUM
      RETURN
      END
C ****
C ****
C
      subroutine rank(j1, irank)
      include 'dimens.cmn'
      integer*4 j1(maxs), irank(maxs), i,k,kmax, isave
      real*4 hsave
      include 'nari.cmn'
      do 1 i=1,50
1      irank(i)=0
      do 3 k=1,50
        kmax=-1
        hsave=-1.0
      do 2 i=1,50
        if(j1(i).lt.kmax.or.irank(i).gt.0)go to 2
        if(j1(i).eq.kmax.and.h(i).lt.hsave)go to 2
        isave=i
        kmax=j1(i)
        hsave=h(i)
2      continue
3      continue
      return
      end
C ****
C ****
C
      subroutine readin(y,ni,nj,da,pr,sta,i,ibeg,kbeg)
      integer*4 ni,nj,i,ibeg,ii,jset,j,kbeg
      real*4 y,da,pr,a,p,q(90)
      dimension y(ni,nj), da(ni), pr(ni)
      double precision sta(ni), stano
      read(5,202)stano
202    format(t2,a8)
      read(5,203)(q(ii),ii=1,10)
      read(5,203)(q(ii),ii=11,20)
      read(5,203)(q(ii),ii=21,30)
      read(5,203)(q(ii),ii=31,40)
      read(5,203)(q(ii),ii=41,50)
      read(5,203)(q(ii),ii=51,60)

```

```

        read(5,203)(q(ii),ii=61,70)
        read(5,203)(q(ii),ii=71,80)
203 format(1x,10f7.1)
        read(5,203)(q(ii),ii=81,90)
        read(5,203)a,p
        jset=ibeg-1
        kbeg=kbeg+nj-1
        do 1  j=1,nj
        jset=jset+1
        if(jset.gt.kbeg)jset=kbeg
        y(i,j)=alog10(q(jset))
1  continue
        da(i)=alog10(a)
        pr(i)=alog10(p)
        sta(i)=stano
        return
        end
C ****
C ****
C subroutine read5(y,da,pr)
integer*4 i,ii,icnt
real*4 y,da,pr,q(90)
double precision stano
read(5,202)stano
202 format(t2,a8)
        read(5,203)(q(ii),ii=1,10)
        read(5,203)(q(ii),ii=11,20)
        read(5,203)(q(ii),ii=21,30)
        read(5,203)(q(ii),ii=31,40)
        read(5,203)(q(ii),ii=41,50)
        read(5,203)(q(ii),ii=51,60)
        read(5,203)(q(ii),ii=61,70)
        read(5,203)(q(ii),ii=71,80)
203 format(1x,10f7.1)
        read(5,203)(q(ii),ii=81,90)
        read(5,203)da,pr
        icnt=0
        y=0.0
        do 1  i=1,90
        if(q(i).ge.0.0)then
            y=y+(q(i))
            icnt=icnt+1
        end if
1  continue
        y=y/icnt
        y=alog10(y)
        return
        end
        SUBROUTINE SECANT
        implicit double precision (a-h,o-z)
C -----
C COMPUTES METHOD OF MOMENTS GAMASQ FOR GLS
C -----
        include 'dimens.cmn'
        include 'gr1-5.cmn'
        DOUBLE PRECISION X1,X2,X3,F1,F2,F3,FNEW,XNEW
        INTEGER*4 I,J
        X1=0.
        X3=0.
        if(aj.gt..7)then
            X2=YVAR*2.
            F2 = GLS(X2)
            ELSE
            X2 = 1.0
            F2 = GLS(X2)
            DO 15 I = 1,4
            IF( F2.GT. 0.0) GO TO 16
            X2 = 2.*X2
            F2 = GLS(X2)
15  CONTINUE
16  CONTINUE
        END IF
C
C     CHECK TO SEE IF A ROOT CAN BE FOUND LESS THAN X2---
        IF( F2.LT. 0.0+0) THEN
            WRITE(6,91) aj,X2
91      FORMAT(' CANNOT FIND ROOT IN SECANT. IYR,X2 = ',F2.1, F10.5)
            GAMASQ = X2
            RETURN
        END IF
C

```

```

F1 = GLS(X1)
IF (F1.GE.0.) GO TO 100
C -----
C DO MIDPOINT SEARCH TO FIND GOOD STARTING POINT FOR SECANT SEARCH
C -----
DO 2 J=1,3
XNEW = (X1+X2)/2.
FNEW = GLS(XNEW)
IF(FNEW.LT.0.) THEN
  X1 = XNEW
  FNEW = FNEW
ELSE
  X2=XNEW
  F2=FNEW
END IF
2 CONTINUE
C -----
C SEARCH FOR GAMMA SQ USING SECANT SEARCH
C -----
DO 1 I=1,30
X3 = X1 - F1*(X2-X1)/(F2-F1)
C WRITE(6,4050)X3
4050 FORMAT(' X3 =',F10.3)
IF(X3.LT.0.) THEN
  X3=DMIN1(X2,X1)/2.
  F3 = GLS(X3)
ELSE
  F3 = GLS(X3)
END IF
IF(ABS(F3).LT..0001)GO TO 100
IF(ABS(F1).LT.ABS(F2)) THEN
  X2=X3
  F2=F3
ELSE
  X1=X3
  F1=F3
END IF
1 CONTINUE
C -----
C IF SEARCH FAILS TO GET CLOSE ENOUGH IN 20 TRIES, WRITE MESSAGE
C -----
WRITE(6,1000)
1000 FORMAT(1X,' NO CONVERGENCE IN SECANT')
WRITE(6,92) X1,X2,F1,F2
  92 FORMAT( ' X1,X2 =' ,2F10.5/' F1,F2 =' ,2F10.5)
100 GAMASQ=X3
RETURN
END
C ****
C **** subroutine smpsrl(x,eps,n,xint)
implicit real*8 (a-h,o-z)
double precision x(100),eps,xint,d
integer*4 i,i1,i2,n
d=10.0**16
d=1.0/d
xint=0.0
do 10 i=3,n,2
i1=i-1
i2=i-2
xint=xint+(x(1)+4.0*x(i1)+x(i2))
10 continue
if(xint.lt.d)then
  xint=0.0
else
  xint=eps*xint/3.0
end if
return
end
C ****
C **** subroutine SRPOS(NB,Z1,Z2,Z3,Z4,Z5)
IMPLICIT REAL*8 (A-H,O-Y)
CHARACTER*4 ZDAT1(30),ZDAT2(30)
DOUBLE PRECISION NY,PRO(5),X(1100),Y(10),DRHO(5),RHOL(6),P(30,5)
REAL*4 Z1,Z2,Z3,Z4,Z5,ZD(31),ZL,ZU,ZSRC,ZZ
DOUBLE PRECISION DD,VARBAR,RHOBAR,R,PZERO,EMPTY,QZERO,CVFRVR,RCFS,
+           SUMSUM,HAF,XNB,XNY,XNU,XNUS,SKU,B2,DEL,CVM,
+           XPOW1,XPOW2,SIGM,RDUMU,RDUML,XM,AMAX,EPS,RHO,B0,
+           B1,UP,SUMOV,XI,CVL,CVU,SIGL,SIGU,TOT,PART,RDUM,
+           SHKL,SHKU,PL,PU,XCESS,CVADJ

```

```

INTEGER*4 NB,NRCV,K,I,J,L,NINTP,NRHOC,JP
COMMON/N2SET/NRCV
INCLUDE 'MV.CMN'
DATA ZDAT1/9*      U   N   A   D   J   U   /
+   S   T   E   D   A   D   J   8*   U   /
DATA ZDAT2/9*      S   T   E   D   A   D   J   U   /
+   S   T   E   D   A   D   J   8*   U   /
DATA RHOL/ 0.00,0.15,0.40,0.60,0.80,0.99/
DATA DRHO/.00,.30,.50,.70,.90/
DD=-180.0
NY=25
VARBAR=Z2
RHOBAR=Z3
R=RHOBAR
IF(R.LT.0.0) R=0.0
PZERO=Z4
EMPTY=0.0
QZERO=1.0-PZERO
CCC  WRITE(6,2) PZERO
CCC 2 FORMAT( ' PROBABILITY OF ZERO FLOWS = ',F5.2)
CVFRVR=DSQRT(-1.0+DEXP(VARBAR))
RCFS=-1.0+ DEXP( R*VARBAR)
RCFS=RCFS/CVFRVR**2
CCC  WRITE(6,80)
CCC80 FORMAT(' 0', 4X,'STATISTICS OF THE LOGARITHMS OF FLOWS')
CCC  WRITE(6,81) VARBAR,RHOBAR
CCC81 FORMAT(' AVERAGE VARIANCE = ',F7.2,' WEIGHTED AVERAGE CROSS CORRE
CCC 1LATION = ',F7.2)
CCC  WRITE(6,1)
CCC  WRITE(6,82)
CCC82 FORMAT(5X,'ESTIMATES OF THE FLOW STATISTICS OBTAINED FROM STATISTI
CCC  *CS OF THE LOGARITHMS')
CCC  WRITE(6,83) CVFRVR,RCFS
CCC83 FORMAT( ' COEFFICIENT OF VARIATION = ',F7.2,' CROS
CCC 1S CORRELATION = ',F7.2)
IF(QZERO.GT.EMPTY) GO TO 17
CCC  WRITE(6,16)
CCC16 FORMAT(' PROBABILITY OF NONZERO FLOWS GIVEN AS ZERO')
GO TO 999
17 CONTINUE
SUMSUM=0.0
HAF=0.5
XNB=NB
XNY=NY
XNU=XNB*(XNY-1.0)
XNUS=DSQRT(2.0*XNU)
SKU=DSQRT(8.0/XNU)
ZZ=SKU
CALL HARTIV( ZZ,ZD)
B2=0.5*(XNY-1.0)*XNB+0.5
XPOW1=0.5*(XNB-1.0)*(XNY-1.0)+1.0
XPOW2=0.5*(XNY-1.0)+1.0
NRHOC=5
DEL=0.1
CVM=5.9
SIGM=DLOG(1.0+CVM**2)
RDUMU=DLOG(1.0+0.990000*CVM**2)/SIGM
RDUML=0.0
XM=-1.0
K=0
AMAX=0.0
EPS=0.001
74 CONTINUE
XM=XM+1.0
RHO=RDUML+XM*EPS
IF(RHO.GE.RDUMU) GO TO 71
K=K+1
B0=XPOW1*DLOG(1.0-RHO)
B0=B0+XPOW2*DLOG(1.0+(XNB-1.0)*RHO)
B0=-B0
B1= 1.0
B1=B1*(1.0-RHO+(XNB-1.0)*(1.0-R)*RHO)
B1=B1/(1.0-RHO)
B1=B1/(1.0+(XNB-1.0)*RHO)
X(K)=DLOG(HAF)+          B0 -(B2-0.5)*DLOG(B1)
IF(X(K).GT.AMAX)AMAX=X(K)
GO TO 74
71 CONTINUE
UP=0.99
SUMOV=0.0
I=0

```

```

10 CONTINUE
  XI=I
  I=I+1
  CVM=DEL+XI*2.0*DEL
  CVL=CVM-DEL
  IF(I.EQ.1) CVL=0.01
  CVU=CVM+DEL
  SIGL=DLOG(1.0+CVL**2)
  SIGM=DLOG(1.0+CVM**2)
  SIGU=DLOG(1.0+CVU**2)
  K=0
  TOT=0.0
  XM=-1.0
  DO 15 J=1,NRHOC
    PRO(J)=0.0
    JP=J+1
    RDUMU=DLOG(1.0+RHOL(JP)*CVM**2)/SIGM
  3 CONTINUE
  DO 4 L=1,3
    XM=XM+1.0
    RHO=RDUML+XM*EPS
    IF(RHO.GE.RDUMU) GO TO 15
    K=K+1
    NINTP=L
    Y(L)=X(K)-AMAX
    IF( Y(L).LT.DD)GO TO 9
      Y(L)=DEXP( Y(L))
    GO TO 11
  9 Y(L)=0.0
11 CONTINUE
  4 CONTINUE
  CALL SMPSRL( Y ,EPS,NINTP,PART)
  TOT=TOT+PART
  RDUM=RHO-EPS
  B1=( B2-HAF)*VARBAR*(1.0-RDUM+(XNB-1.0)*(1.0-R)*RDUM)
  B1=B1/(1.0-RDUM)
  B1=B1/(1.0+(XNB-1.0)*RDUM)
  B1=2.0*B1
  SHKL=B1/SIGU
  SHKU=B1/SIGL
  SHKL=(SHKL-XNU)/XNUS
  SHKU=(SHKU-XNU)/XNUS
  ZL=SHKL
  ZU=SHKU
  PL=HARTP( ZL,ZD)
  PU=HARTP( ZU,ZD)
  PRO(J)=PRO(J)+PART*(PU-PL)
  GO TO 3
15 CONTINUE
  DO 60 J=1,NRHOC
    PRO(J)=PRO(J)/TOT
    SUMSUM=SUMSUM+PRO(J)
  60 CONTINUE
  IF(I.GT.30) GO TO 200
  DO 70 J=1,NRHOC
    P(I,J)=PRO(J)
  70 CONTINUE
  XCESS=1.0-SUMSUM
  GO TO 10
200 CONTINUE
  IF(SUMSUM.GT.UP) GO TO 201
  XCESS=1.0-SUMSUM
  SUMSUM=1.0
201 CONTINUE
  SUMOV= XCESS
  DO 205 I=1,30
  DO 206 J=1,5
    P(I,J)=P(I,J)/SUMSUM
206 CONTINUE
205 continue
CCC  write(6,1)
CCC 1 FORMAT('0')
CCC  WRITE(6,92) NB
CCC  WRITE(6,91) Z1
CCC92 FORMAT(54X, 'NUMBER OF STATIONS = ',I3)
CCC91 FORMAT(45X, 'HARMONIC MEAN RECORD LENGTH = ',F6.2)
CCC  WRITE(6,25)
CCC  WRITE(6,23)
CCC  WRITE(6,26) (DRHO(J),J=1,5)
CCC  WRITE(6,20)
CCC25 FORMAT(1X,/ ,43X,' PROBABILITIES OF JOINT OCCURRENCE OF CV AND RH

```

```

CCC 10C')
CCC23 FORMAT('0',50X,          RHOC          ')
CCC26 FORMAT(28X,      5(6X,F3.1,6X),      ')
CCC20 FORMAT(' ',29X,72(' '))
ZSRC=0.0
NRCV=0
DO 207 I=1,30
XI=I-1
CVM=DEL+XI*2.0*DEL
CVADJ=DSQRT((CVM**2+PZERO)/QZERO)
CCC  WRITE(6,27) ZDAT1(I),CVM,(P(I,J),J=1,5),CVADJ,ZDAT2(I)
CCC27 FORMAT(20X,A4,F5.2,' ',3X,F7.5  ,4(7X,F7.5,1X),' ',4X,F7.5,A4)
DO 208 J=1,5
  IF(P(I,J).GT..01)THEN
    NRCV=NRCV+1
    RHOC(NRCV)=SNGL(DRHO(J))
    CV(NRCV)=SNGL(CVM)
    PROBRC(NRCV)=SNGL(P(I,J))
    ZSRC=ZSRC+PROBRC(NRCV)
  END IF
208 CONTINUE
207 CONTINUE
DO 209 I=1,NRCV
  PROBRC(I)=PROBRC(I)/ZSRC
CCC  WRITE(6,57) RHOC(I), CV(I), PROBRC(I)
CCC57 FORMAT(1X,' RHO, CV, PROBRC ',3F13.3)
209 CONTINUE
CCC  WRITE(6,20)
CCC  IF(SUMOV.GT.0.01)  WRITE(6,204) SUMOV
CC204 FORMAT(9X,' PROBABILITY OF CV GREATER THAN 6.0 EQUALS ',F5.2)
CCC  WRITE(6,21)
CCC21 FORMAT(          ' RHOC STANDS FOR THE INT
CCC 4ERSTATION CORRELATION AND CV FOR THE COEFFICIENT OF VARIATION AT T
CCC 5HE STATIONS.')
999 CONTINUE
RETURN
END
C===== STUTP =====
C
C STUDENT T PROBABILITY
C STUTP = PROB( STUDENT T WITH N DEG FR .LT. X )
C
C NOTE - PROB(ABS(T).GT.X) = 2.*STUTP(-X,N) (FOR X .GT. 0.)
C
C SUBPGM USED - GAUSCF
C
C REF - G.W. HILL, ACM ALGOR 395, OCTOBER 1970.
C
C USGS - WK 12/79.
C
C
C     DATA RHPI / 0.63661977 /
C
C     STUTP = .5
C     IF(N.LT.1) RETURN
C
C     NN = N
C     Z = 1.
C     T = X**2
C     Y = T/NN
C     B = 1.0 + Y
C
C     IF(NN.GE.20 .AND. T.LT.NN .OR. NN.GT.200) GO TO 200
C     ( OR IF NN NON-INTEGER)
C
C     IF(NN.LT.20 .AND. T.LT.4.) GO TO 100
C
C     -- TAIL SERIES FOR LARGE T
C     A = SQRT(B)
C     Y = A*NN
C     J = 0
C
30  J = J + 2
     IF(A.EQ.Z) GO TO 40
     Z = A
     Y = Y*(J-1)/(B*J)
     A = A + Y/(NN+J)
     GO TO 30
C
40  CONTINUE
     NN = NN + 2
     Z = 0.

```

```

Y = 0.
A = -A
GO TO 110
C
C -- NESTED SUMMATION OF COSINE SERIES
100  Y = SQRT(Y)
     A = Y
     IF(NN.EQ. 1) A = 0.
110  NN = NN - 2
     IF(NN.LE.1) GO TO 120
     A = (NN-1)/(B*NN)*A + Y
     GO TO 110
120  IF(NN.EQ.0) A = A/SQRT(B)
     IF(NN.NE.0) A = (ATAN(Y)+A/B)*RHPI
     STUTP = 0.5*(Z-A)
     IF(X.GT.0.) STUTP = 1.-STUTP
     RETURN
C
C -- ASYMPTOTIC SERIES FOR LARGE OR NONINTEGER N
200  IF(Y.GT.1E-6) Y = ALOG(B)
     A = NN - 0.5
     B = 48.*A**2
     Y = A*Y
     Y = ((((-0.4*Y-3.3)*Y-24.)*Y-85.5)/
           (0.8*Y**2+100.+B)+Y+3.)/B+1.)*SQRT(Y)
     STUTP = GAUSCF(-Y)
     IF(X.GT.0.) STUTP = 1.-STUTP
     RETURN
C
C     END
SUBROUTINE TRSEMT(NBS,NYS,CVS,RHOCS,GAM,IEQ,YHAT)
C MARCH 29, 1979 VERSION EJG ****
REAL*4 NBS,NYS,CVS,RHOCS,GAM,YHAT(12),PCT(12),RC,XNB,XNY,RNY,RNB:
+      BC,AC,AD,BD,C,D,EAA,BCONE,ACONE,ADONE,BDONE,CONE,DONE,EAS:
+      EAAONE,EA20,P,Q,BABAR,AB,BB,G,ST,A,B,CHK
INTEGER*4 IEQ,I
REAL*4 AC0(5),AC1(5),AC2(5),BC0(5),BC1(5),BC2(5)
REAL*4 AD0(5),AD1(5),AD2(5),BD0(5),BD1(5),BD2(5)
REAL*4 P1(5),P2(5),P3(5),Q1(5),Q2(5),Q3(5)
DATA   PCT/.05,.10,.20,.30,.40,.50,.60,.70,.80,.90,.95,.99/
DATA   AC0/-0.00004768,-0.00004627,-0.00135,-0.0026899,-0.0033366/
DATA   AC1/.00098828,.00095741,.00218582,.00364928,.00434355/
DATA   AC2/.00228696,.00228433,.00506094,.00989079,.01227075/
DATA   BC0/.00004756,.0000558,.00008135,.00015733,.00018675/
DATA   BC1/-0.00104333,-0.00114918,-0.00116913,-0.00202905,-0.00224835/
DATA   BC2/.00294110,.00292981,.00421797,.00656359,.00762483/
DATA   AD0/-0.0483009,.04922095,-0.0109047,-0.00682937,.00136460/
DATA   AD1/.14990742,.06462133,.16338939,.21607053,.22409377/
DATA   AD2/.58877368,.21735231,.71078425,1.90346478,2.59422482/
DATA   BD0/0.01501139,-0.06598009,.01685218,.02941826,.02694948/
DATA   BD1/-1.2428315,.02139170,-1.4327578,-1.2743067,-1.3453086/
DATA   BD2/.19042281,.42306749,.47739744,-0.06762123,-.31559290/
DATA   P1/1.4075,1.2884,1.3825,1.2679,1.2337/
DATA   P2/-1.6088,-1.1602,-1.4826,-0.9747,-0.8280/
DATA   P3/-0.0463,0.5287,-0.2825,-0.4225,-0.5090/
DATA   Q1/0.8097,1.1120,0.8690,1.0496,1.0684/
DATA   Q2/-3.1175,-3.8594,-4.5154,-5.1262,-4.9757/
DATA   Q3/0.4488,-0.6487,1.3425,1.3592,1.3258/
RC=RHOCS-0.48
XNB=NBS
XNY=NYS
RNY=1.0/XNY
RNB=1.0/XNB
BC=BC0(IEQ)+BC1(IEQ)*RNB+BC2(IEQ)*RNY
AC=AC0(IEQ)+AC1(IEQ)*RNB+AC2(IEQ)*RNY
AD=AD0(IEQ)+AD1(IEQ)*RNB+AD2(IEQ)*RNY
BD=BD0(IEQ)+BD1(IEQ)*RNB+BD2(IEQ)*RNY
C=AC+BC*RC
D=AD+BD*RC
EAA=C+D*(CVS*CVS/(1.0+CVS)-0.01/1.1)
IF(IEQ.NE.2) GO TO 12
BCONE=BC0(1)+BC1(1)*RNB +BC2(1)*RNY
ACONE=AC0(1)+AC1(1)*RNB +AC2(1)*RNY
ADONE=AD0(1)+AD1(1)*RNB +AD2(1)*RNY
BDONE=BD0(1)+BD1(1)*RNB +BD2(1)*RNY
CONE=ACONE+BCONE*RC
DONE=ADONE+BDONE*RC
EAAONE=CONE+DONE*(CVS*CVS/(1.0+CVS)-0.01/1.1)
IF(CVS.GT.2.0) GO TO 11
EAA=EAAONE
GO TO 12

```

```

11 CONTINUE
EA5=C+D*(25.0/6.0-0.01/1.1)
EA20=CONE+DONE*(4.00/3.0-0.01/1.1)
EAA=EA20+(CVS-2.0)*(EA5-EA20)/(5.0-2.0)
12 CONTINUE
P=P1(IEQ)+P2(IEQ)*RNB+P3(IEQ)*RNY
Q=Q1(IEQ)+Q2(IEQ)*RNB+Q3(IEQ)*RNY
BABAR=P+Q*RC
AB=0.0046+1.4622*RNB+0.01017*RNY
BB=0.0068+1.0659*RNB-0.02152*RNY
IF(EAA.LE.0.0) EAA=0.001
G=GAM
DO 2999 I=1,12
ST=ALOG(-ALOG(1.0-PCT(I)))+0.49
A=BABAR*ST
A=EAA*EXP(A)
B=EXP(AB+BB*ST)
CHK=A+B*G*G
YHAT(I)=SQRT(CHK)
2999 CONTINUE
RETURN
END
SUBROUTINE TRSESD(ZNB,ZNY,CV,RC,GAM,FRAC2)
C APRIL 11, 1979 VERSION *****
REAL*4 FRAC2(12),CAWB(12),PCT(12),ZNB,ZNY,CV,RC,GAM,RNB,RNY,P1,P2,
+ P3,BA,A1,A2,B1,B2,C,D,AA,AB,BB,A,B
INTEGER*4 I
DATA PCT/.05,.10,.20,.30,.40,.50,.60,.70,.80,.90,.95,.99/
RNB=1.0/ZNB
RNY=1.0/ZNY
P1=0.75+2.18*RNB-1.49*RNY
P2=-0.077
P3=1.00-5.20*RNB+1.92*RNY
BA=P1+P2*CV+P3*RC
A1=-0.013+0.072*RNB+0.372*RNY
A2=0.004-0.012*RNB-0.017*RNY
B1=0.02-0.0002*RNB+.753*RNY
B2=.15*RNY+.01*RNY
C=A1+A2*RC
D=B1+B2*RC
AA=C+D*(CV*CV-0.01)
IF(AA.LT.0.0) AA=0.001
AB=0.0046+1.4622*RNB+0.01017*RNY
BB=0.0068+1.0659*RNB-0.02152*RNY
DO 100 I=1,12
CAWB(I)=ALOG(-ALOG(1.0-PCT(I)))+0.49
A=AA*EXP(BA*CAWB(I))
B=EXP(AB+BB*CAWB(I))
FRAC2(I)=(A + B*GAM*GAM)
FRAC2(I)=SQRT(FRAC2(I))
100 CONTINUE
RETURN
END
C
C SUBROUTINE ZERO
C
SUBROUTINE ZERO
INTEGER*4 NRCV,I
COMMON/N2SET/NRCV
REAL*4 POGAM,POSJO
COMMON/PROSET/POGAM(41),POSJO(100)
DO 10 I=1,NRCV
  POSJO(I)=0.0
10 CONTINUE
DO 20 I=1,41
  POGAM(I)=0.0
20 CONTINUE
RETURN
END

```

```

COMMON FILES
C*** begin dimens.cmn
C
C      maxs = maximum number of sites
C      maxp = maximum number of parameters
C      maxyr = maximum number of years
      integer*4 maxs,maxp,maxyr
      parameter(maxs=50,maxp=3,maxyr=30)
C
C*** end dimens.cmn
C*** begin gr.cmn
C
      real*4 yold(maxs,maxyr),amean(maxs),stdev(maxs),daold(maxs),
      +      proid(maxs)
      common /gr/yold,amean,stdev,daold,proid
C
C*** end gr.cmn
C*** BEGIN TAB.CMN
C
      REAL*4 PRIOR,CVARAY,RCARAY,GARAY
      COMMON/TAB1/PRIOR(1000)
      COMMON/TAB2/CVARAY(1000),RCARAY(1000),GARAY(1000)
C
C*** END TAB.CMN
C*** BEGIN MV.CMN
C
      REAL*4 RHOC,CV,PROBRC
      COMMON /MV/ RHOC(150),CV(150),PROBRC(150)
C
C*** END MV.CMN
C*** gr1-5.cmn
C
      double precision sighat(maxs),ys(maxs,maxp),x(maxs,maxp),
      +      xt(maxp,maxs),xtx(maxp,maxp),xtxinv(maxp,maxp)
      integer*4 mcon(maxs,maxs)
      common /gr1/ sighat,ys,mcon,x,xt,xtx,xtxinv
      double precision sta(maxs,maxs),cov(maxs,maxs),covinv(maxs,maxs),
      +      bhat(maxp,1)
      common /gr2/ sta,cov,covinv,bhat
      double precision e(maxs,1),et(1,maxs),yvar,aj
      integer*4 nsites,ne,nexp,iys
      common /gr3/ e,et,yvar,aj,nsites,ne,nexp,iys
      double precision bsv(maxp,1),rsv,gamasv,gamasq
      common /gr4/ bsv,rsv,gamasv,gamasq
      integer*4 msv(maxs,maxs)
      common /gr5/ msv
C
C*** end gr1-5.cmn
C*** begin nari.cmn
C
      real*4 b0,b1,b2,semin,anbsv,anysv,h
      common /nari/ b0, b1, b2, semin, anbsv, anysv, h(maxs)
C
C*** end nari.cmn

```

APPENDIX B -- Input data for program. Flow values are in cubic feet per second, drainage area is in square miles, and precipitation is in inches.

-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	591.0	
267.0	407.0	708.0	367.0	686.0	592.0	773.0	587.0	633.0	694.0		
797.0	739.0	227.0	156.0	364.0	684.0	459.0	651.0	564.0	490.0		
545.0	453.0	511.0	515.0	475.0	499.0	578.0	667.0	621.0	696.0		
473.0	505.0	858.0	753.0	756.0	555.0	387.0	803.0	1129.0	818.0		
745.0	524.0	624.0	766.0	534.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
537.0	39.0										
03157000	CLEAR C NR	ROCKBRIDGE OH									
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	82.0	
69.4	59.7	111.0	62.8	129.0	93.2	105.0	125.0	99.7	89.2		
127.0	105.0	44.0	28.8	59.1	77.0	57.6	96.6	76.7	65.4		
102.0	66.6	81.3	75.3	65.6	65.9	93.9	121.0	80.6	87.1		
80.6	70.6	122.0	107.0	118.0	103.0	63.1	113.0	164.0	116.0		
102.0	64.0	94.6	97.7	87.6	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
89.0	39.0										
03157500	HOCKING R AT	ENTERPRISE OH									
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
-1.0	398.0	543.0	205.0	501.0	414.0	637.0	580.0	505.0	461.0		
297.0	311.0	554.0	291.0	593.0	457.0	510.0	610.0	540.0	519.0		
654.0	521.0	200.0	110.0	321.0	458.0	313.0	572.0	404.0	322.0		
490.0	356.0	425.0	406.0	374.0	423.0	517.0	581.0	349.0	428.0		
399.0	369.0	659.0	553.0	618.0	570.0	302.0	551.0	860.0	700.0		
552.0	342.0	493.0	513.0	421.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
459.0	39.0										
03202000	RACCOON C AT	ADAMSVILLE OH									
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	1095.0	802.0		
552.0	543.0	1086.0	811.0	889.0	548.0	871.0	400.0	748.0	1015.0		
729.0	609.0	542.0	341.0	573.0	709.0	283.0	687.0	837.0	491.0		
418.0	330.0	846.0	411.0	829.0	712.0	628.0	849.0	673.0	734.0		
952.0	638.0	408.0	186.0	617.0	773.0	488.0	797.0	494.0	476.0		
700.0	668.0	636.0	459.0	438.0	612.0	662.0	821.0	344.0	581.0		
572.0	624.0	764.0	779.0	862.0	685.0	422.0	594.0	1088.0	856.0		
591.0	403.0	538.0	552.0	528.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
585.0	40.0										
03219500	SCIOTO R NR	PROSPECT OH									
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
-1.0	492.0	833.0	563.0	554.0	667.0	165.0	385.0	367.0			
226.0	284.0	462.0	249.0	493.0	390.0	649.0	553.0	582.0	647.0		
630.0	595.0	217.0	127.0	293.0	388.0	522.0	552.0	560.0	283.0		
400.0	328.0	337.0	425.0	265.0	268.0	540.0	431.0	603.0	486.0		
345.0	588.0	815.0	513.0	569.0	399.0	208.0	580.0	454.0	642.0		
356.0	568.0	285.0	576.0	301.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
567.0	35.0										
03220000	MILL C NR	BELLEPOINT OH									
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
-1.0	-1.0	-1.0	-1.0	83.3	141.0	132.0	231.0	187.0	188.0	220.0	
257.0	198.0	71.6	51.4	109.0	169.0	151.0	214.0	187.0	97.6		
144.0	118.0	94.9	145.0	99.0	70.3	175.0	144.0	154.0	144.0		
96.5	171.0	239.0	159.0	199.0	109.0	81.0	206.0	199.0	254.0		
173.0	166.0	112.0	190.0	120.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
178.0	37.0										
03223000	OLENTANGY R AT	CLARIDON OH									
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	237.0	149.0	162.0	205.0		
183.0	179.0	84.3	72.7	98.7	157.0	175.0	156.0	185.0	94.8		
124.0	102.0	118.0	151.0	111.0	99.5	175.0	137.0	154.0	168.0		
119.0	163.0	234.0	148.0	194.0	158.0	100.0	199.0	151.0	206.0		
179.0	194.0	123.0	209.0	146.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
157.0	35.5										
03230500	BIG DARBY C AT	DARBYVILLE OH									
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
-1.0	-1.0	-1.0	-1.0	629.0	249.0	601.0	127.0	468.0	689.0		
537.0	658.0	604.0	123.0	465.0	629.0	79.1	243.0	445.0	361.0		
155.0	262.0	489.0	253.0	445.0	381.0	648.0	537.0	577.0	560.0		

746.0	652.0	199.0	132.0	288.0	423.0	397.0	710.0	573.0	273.0
463.0	430.0	337.0	405.0	355.0	305.0	488.0	431.0	530.0	479.0
329.0	463.0	812.0	595.0	633.0	372.0	250.0	649.0	705.0	765.0
475.0	431.0	358.0	583.0	398.0	576.0	-1.0	-1.0	-1.0	-1.0
534.0	37.0								
03237500	OHIO	BRUSH C	NR	WEST UNION	OH				
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	650.0	424.0	403.0	350.0	204.0	576.0	663.0	241.0	588.0
183.0	239.0	605.0	235.0	568.0	454.0	507.0	540.0	491.0	666.0
659.0	438.0	265.0	158.0	408.0	516.0	418.0	578.0	378.0	364.0
520.0	408.0	377.0	468.0	483.0	395.0	393.0	546.0	180.0	387.0
440.0	411.0	592.0	509.0	716.0	444.0	245.0	661.0	951.0	634.0
390.0	353.0	387.0	415.0	379.0	-1.0	-1.0	-1.0	-1.0	-1.0
387.0	42.0								
03238500	WHITEOAK C	NR	GEORGETOWN	OH					
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	117.0	336.0
414.0	268.0	256.0	213.0	101.0	280.0	383.0	120.0	289.0	228.0
92.1	152.0	319.0	120.0	312.0	252.0	290.0	278.0	301.0	380.0
384.0	264.0	160.0	82.4	262.0	310.0	225.0	329.0	190.0	203.0
269.0	185.0	207.0	214.0	245.0	209.0	186.0	294.0	124.0	253.0
264.0	270.0	433.0	366.0	426.0	254.0	142.0	389.0	583.0	322.0
209.0	216.0	198.0	311.0	194.0	-1.0	-1.0	-1.0	-1.0	-1.0
218.0	41.5								
03240000	L	MIAMI R	NR	OLDTOWN	OH				
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	55.3	28.6	76.9	111.0	91.3	168.0	127.0	59.9
96.4	108.0	112.0	107.0	96.1	79.4	130.0	116.0	142.0	106.0
72.1	106.0	199.0	156.0	200.0	104.0	48.8	117.0	192.0	228.0
145.0	147.0	104.0	127.0	114.0	-1.0	-1.0	-1.0	-1.0	-1.0
129.0	38.0								
03241500	MASSIES C	AT	WILBERFORCE	OH					
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	26.0	8.7	36.7	63.2	57.5	100.0	63.0	34.4
65.0	54.3	61.0	54.9	48.7	46.5	73.4	63.0	73.0	56.3
44.5	66.0	113.0	88.0	102.0	50.4	22.7	63.5	99.3	104.0
77.0	73.7	57.8	66.6	63.7	-1.0	-1.0	-1.0	-1.0	-1.0
63.2	38.5								
03245500	L	MIAMI R	AT	MILFORD	OH				
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	1638.0	1304.0
1608.0	1203.0	478.0	1283.0	1892.0	432.0	893.0	794.0	1379.0	1015.0
330.0	771.0	1536.0	731.0	1742.0	1003.0	1662.0	1277.0	1656.0	1675.0
1873.0	1581.0	655.0	301.0	849.0	1236.0	1110.0	1721.0	1243.0	759.0
1307.0	1038.0	1054.0	1134.0	1016.0	882.0	1187.0	1404.0	1167.0	1086.0
981.0	1320.0	2358.0	1875.0	1840.0	942.0	477.0	1349.0	2187.0	1685.0
1148.0	1260.0	1174.0	1499.0	1454.0	1300.0	-1.0	-1.0	-1.0	-1.0
1203.0	43.5								
03255500	MILL C	AT	READING	OH					
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
5.3	39.7	84.2	42.0	89.3	50.0	81.4	57.5	82.2	80.5
83.4	67.7	50.2	18.4	53.6	74.4	59.8	90.3	69.0	43.4
85.6	60.9	51.2	57.0	62.9	44.6	56.5	71.4	58.6	72.9
60.0	64.2	126.0	90.0	104.0	57.0	34.8	92.8	139.0	102.0
71.0	86.4	70.0	89.4	95.7	-1.0	-1.0	-1.0	-1.0	-1.0
73.0	39.0								
03261500	G	MIAMI R	AT	SIDNEY	OH				
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	423.0	762.0	338.0	300.0	350.0	553.0
685.0	639.0	370.0	669.0	195.0	606.0	963.0	568.0	627.0	711.0
1411.0	376.0	648.0	159.0	223.0	346.0	636.0	564.0	502.0	363.0
169.0	287.0	506.0	314.0	599.0	384.0	593.0	633.0	641.0	734.0
692.0	609.0	297.0	179.0	359.0	471.0	573.0	672.0	528.0	284.0
452.0	349.0	318.0	362.0	296.0	209.0	527.0	528.0	526.0	441.0
279.0	585.0	953.0	545.0	646.0	407.0	196.0	545.0	517.0	608.0

386.0	681.0	338.0	636.0	343.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
541.0	36.0									
03264000 GREENVILLE C NR BRADFORD OH										
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	131.0	293.0	70.1	54.8	105.0	257.0	278.0	193.0	120.0	
52.8	158.0	163.0	120.0	167.0	156.0	189.0	193.0	260.0	302.0	
287.0	239.0	142.0	57.1	124.0	182.0	183.0	290.0	190.0	90.1	
170.0	175.0	121.0	144.0	110.0	75.9	223.0	201.0	234.0	166.0	
112.0	149.0	295.0	173.0	232.0	131.0	62.3	210.0	293.0	266.0	
141.0	223.0	106.0	189.0	164.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
193.0	37.5									
03265000 STILLWATER R AT PLEASANT HILL OH										
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	452.0	333.0	427.0	535.0	513.0	678.0	337.0	612.0	
215.0	633.0	684.0	467.0	-1.0	275.0	655.0	627.0	472.0	301.0	
99.3	365.0	398.0	288.0	425.0	378.0	475.0	479.0	634.0	764.0	
693.0	560.0	326.0	115.0	301.0	452.0	510.0	762.0	478.0	205.0	
426.0	398.0	303.0	364.0	268.0	186.0	534.0	480.0	534.0	380.0	
259.0	405.0	775.0	451.0	545.0	328.0	127.0	541.0	704.0	710.0	
379.0	592.0	268.0	515.0	391.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
503.0	37.0									
03267000 MAD R NR URBANA OH										
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	136.0	221.0	162.0	189.0	178.0	75.0	116.0	
68.1	84.2	125.0	91.1	123.0	120.0	186.0	202.0	212.0	236.0	
219.0	197.0	91.9	58.1	99.8	132.0	113.0	189.0	189.0	93.1	
120.0	109.0	97.6	108.0	96.8	75.6	134.0	140.0	160.0	150.0	
101.0	141.0	240.0	200.0	193.0	128.0	79.6	170.0	183.0	234.0	
164.0	187.0	125.0	170.0	140.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
162.0	37.0									
03272000 TWIN C NR GERMANTOWN OH										
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	313.0	378.0	250.0	251.0	
254.0	338.0	366.0	412.0	220.0	-1.0	-1.0	288.0	405.0	337.0	
66.5	231.0	427.0	78.3	107.0	188.0	446.0	395.0	286.0	159.0	
72.6	206.0	283.0	138.0	230.0	201.0	328.0	216.0	344.0	460.0	
439.0	364.0	124.0	43.3	168.0	265.0	255.0	409.0	303.0	106.0	
279.0	213.0	172.0	204.0	181.0	132.0	336.0	299.0	315.0	197.0	
169.0	206.0	440.0	295.0	350.0	165.0	121.0	319.0	407.0	410.0	
216.0	355.0	229.0	274.0	283.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
275.0	39.0									
03275000 WHITEWATER RIVER NEAR ALPINE, IND										
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	725.0	583.0	
167.0	429.0	897.0	178.0	208.0	462.0	857.0	855.0	543.0	316.0	
117.0	444.0	536.0	407.0	526.0	514.0	657.0	578.0	843.0	1000.0	
887.0	696.0	367.0	178.0	335.0	572.0	468.0	866.0	683.0	318.0	
660.0	521.0	427.0	439.0	402.0	233.0	717.0	663.0	740.0	534.0	
397.0	423.0	858.0	608.0	727.0	402.0	218.0	736.0	1001.0	838.0	
421.0	722.0	400.0	587.0	689.0	656.0	-1.0	-1.0	-1.0	-1.0	-1.0
529.0	40.0									
03302500 INDIAN CREEK NEAR CORYDON, IND.										
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	70.0	237.0	160.0	170.0	153.0	284.0	345.0		
242.0	203.0	116.0	32.5	148.0	169.0	144.0	212.0	155.0	150.0	
185.0	158.0	104.0	160.0	113.0	159.0	111.0	140.0	127.0	177.0	
158.0	177.0	235.0	186.0	242.0	148.0	119.0	258.0	317.0	173.0	
68.2	158.0	202.0	176.0	166.0	109.0	-1.0	-1.0	-1.0	-1.0	-1.0
129.0	43.0									
03324000 LITTLE RIVER NEAR HUNTINGTON, IND										
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	209.0	141.0	217.0	343.0	258.0	450.0	
330.0	323.0	137.0	67.0	280.0	210.0	226.0	287.0	356.0	199.0	
161.0	176.0	68.0	123.0	164.0	76.4	286.0	288.0	230.0	205.0	
168.0	218.0	299.0	294.0	194.0	209.0	143.0	296.0	162.0	235.0	
206.0	357.0	230.0	286.0	258.0	343.0	-1.0	-1.0	-1.0	-1.0	-1.0
263.0	36.0									
03325500 MISSISSINewWA RIVER NEAR RIDGEVILLE, IN										

-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
41.7	374.0	359.0	141.0	367.0	289.0	213.0	206.0	337.0	644.0		
308.0	296.0	116.0	3.9	90.8	203.0	330.0	383.0	209.0	160.0		
241.0	282.0	121.0	88.4	78.5	86.1	257.0	426.0	337.0	276.0		
157.0	116.0	430.0	558.0	460.0	174.0	52.7	300.0	321.0	199.0		
183.0	419.0	382.0	386.0	425.0	316.0	-1.0	-1.0	-1.0	-1.0		
318.0	39.0										
03347500	BUCK CREEK NEAR MUNCIE, IND										
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
34.7	30.3	22.8	33.2	21.8	15.4	31.0	37.3	38.3	33.6		
28.2	33.6	53.1	42.1	42.4	30.3	18.9	46.5	51.5	51.0		
32.2	45.7	28.2	43.1	39.4	46.1	-1.0	-1.0	-1.0	-1.0		
35.5	39.0										
03351500	FALL CREEK NEAR FORTVILLE, IND.										
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	115.0	169.0	122.0	135.0	182.0	153.0	195.0	185.0	298.0		
214.0	168.0	120.0	70.1	104.0	180.0	209.0	278.0	187.0	149.0		
187.0	134.0	127.0	169.0	123.0	61.4	141.0	184.0	185.0	145.0		
117.0	167.0	218.0	220.0	208.0	142.0	72.2	219.0	245.0	213.0		
123.0	193.0	105.0	186.0	182.0	225.0	-1.0	-1.0	-1.0	-1.0		
169.0	38.0										
03354500	BEANBLOSSOM CREEK AT BEANBLOSSOM, IND.										
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
29.9	9.0	3.9	9.6	15.7	19.4	26.0	18.7	14.7			
17.5	11.9	10.8	9.0	11.0	11.0	22.6	20.7	21.1	13.0		
12.0	12.2	24.5	19.7	21.8	11.8	9.2	10.8	21.8	18.5		
15.5	16.3	18.7	15.1	24.8	16.8	-1.0	-1.0	-1.0	-1.0		
14.6	40.5										
03358000	MILL CREEK NEAR CATARACT, IND.										
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	448.0
298.0	399.0	177.0	37.3	135.0	293.0	348.0	294.0	271.0	251.0		
263.0	308.0	180.0	176.0	140.0	78.6	212.0	318.0	294.0	234.0		
176.0	186.0	441.0	382.0	298.0	165.0	137.0	350.0	528.0	286.0		
267.0	307.0	235.0	226.0	335.0	340.0	-1.0	-1.0	-1.0	-1.0		
245.0	40.5										
03361500	BIG BLUE RIVER AT SHELBYVILLE, IND										
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	316.0	395.0	463.0	551.0	440.0	635.0	908.0		
621.0	512.0	278.0	166.0	273.0	502.0	414.0	672.0	506.0	384.0		
524.0	356.0	338.0	371.0	365.0	229.0	543.0	552.0	540.0	376.0		
373.0	383.0	722.0	516.0	573.0	334.0	196.0	604.0	712.0	639.0		
332.0	500.0	305.0	492.0	571.0	557.0	-1.0	-1.0	-1.0	-1.0		
421.0	40.5										
03362000	YOUNGS CREEK NEAR EDINBURGH IND										
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	78.5	109.0	102.0	120.0	81.5	132.0	165.0		
153.0	170.0	65.2	20.3	58.8	133.0	150.0	155.0	118.0	82.5		
114.0	100.0	70.3	86.8	81.2	49.7	129.0	133.0	129.0	80.4		
68.2	62.7	152.0	121.0	141.0	84.3	45.6	134.0	176.0	112.0		
89.9	112.0	76.2	106.0	129.0	136.0	-1.0	-1.0	-1.0	-1.0		
107.0	40.0										
03362500	SUGAR CREEK NEAR EDINBURGH IND										
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	350.0	423.0	482.0	539.0	422.0	605.0	849.0		
627.0	644.0	332.0	160.0	292.0	662.0	555.0	688.0	521.0	365.0		

558.0	387.0	358.0	383.0	353.0	203.0	525.0	605.0	626.0	404.0
349.0	363.0	762.0	630.0	626.0	386.0	213.0	660.0	785.0	561.0
390.0	525.0	320.0	506.0	613.0	654.0	-1.0	-1.0	-1.0	-1.0
474.0	40.0								
03363000	DRIFTWOOD RIVER NEAR EDINBURGH IND								
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	849.0	1155.0	814.0	985.0	1182.0	1301.0	1024.0	1533.0	2039.0
1628.0	1578.0	746.0	411.0	742.0	1591.0	1218.0	1656.0	1294.0	986.0
1325.0	942.0	845.0	937.0	874.0	536.0	1344.0	1391.0	1450.0	961.0
884.0	845.0	1784.0	1392.0	1511.0	900.0	523.0	1552.0	1852.0	1489.0
921.0	1306.0	746.0	1204.0	1437.0	1523.0	-1.0	-1.0	-1.0	-1.0
1060.0	40.0								
03364000	EAST FORK WHITE RIVER AT COLUMBUS, IND								
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	2585.0	3304.0
2546.0	2353.0	1121.0	534.0	1125.0	2269.0	1790.0	2677.0	1949.0	1412.0
2096.0	1494.0	1313.0	1452.0	1312.0	840.0	2021.0	2153.0	2144.0	1440.0
1315.0	1390.0	2676.0	2161.0	2413.0	1413.0	859.0	2407.0	2893.0	2456.0
1419.0	1903.0	1237.0	1905.0	2269.0	2061.0	-1.0	-1.0	-1.0	-1.0
1707.0	40.5								
03364500	CLIFTY CREEK AT HARTSVILLE, IND.								
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	188.0	197.0
150.0	136.0	64.3	9.0	65.0	115.0	96.2	122.0	90.5	64.4
101.0	79.8	67.2	74.1	75.6	49.2	89.7	128.0	100.0	76.1
50.9	77.7	119.0	131.0	111.0	58.2	45.7	152.0	131.0	122.0
56.6	97.8	72.0	100.0	135.0	112.0	-1.0	-1.0	-1.0	-1.0
91.4	41.0								
03365000	SAND CREEK NEAR BREWERSVILLE, IND.								
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	269.0	364.0
247.0	223.0	108.0	18.4	104.0	167.0	180.0	235.0	174.0	135.0
172.0	138.0	114.0	127.0	108.0	99.0	157.0	193.0	168.0	140.0
100.0	163.0	244.0	209.0	221.0	121.0	103.0	268.0	273.0	221.0
132.0	179.0	133.0	186.0	207.0	182.0	-1.0	-1.0	-1.0	-1.0
155.0	41.0								
03366500	MUSCATATUCK RIVER NEAR DEPUTY, IND.								
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	555.0	636.0
499.0	347.0	157.0	25.3	331.0	378.0	370.0	406.0	343.0	311.0
389.0	412.0	234.0	269.0	220.0	262.0	263.0	374.0	307.0	206.0
265.0	322.0	479.0	410.0	434.0	247.0	269.0	421.0	546.0	452.0
226.0	391.0	437.0	406.0	440.0	306.0	-1.0	-1.0	-1.0	-1.0
293.0	43.0								
03378000	BONPAS CREEK AT BROWNS, IL								
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
9.7	199.0	201.0	116.0	447.0	280.0	212.0	169.0	350.0	505.0
283.0	330.0	134.0	16.9	192.0	161.0	211.0	401.0	192.0	202.0
311.0	226.0	104.0	113.0	82.3	90.1	131.0	215.0	339.0	259.0
119.0	143.0	342.0	334.0	350.0	105.0	171.0	214.0	379.0	202.0
131.0	290.0	468.0	366.0	342.0	220.0	-1.0	-1.0	-1.0	-1.0
228.0	41.3								
03379500	LITTLE WABASH RIVER BELOW CLAY CITY, I								
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	1267.0	1074.0	735.0	1006.0	903.0	1252.0
483.0	1161.0	689.0	822.0	347.0	748.0	1533.0	1196.0	1501.0	1040.0
200.0	852.0	1394.0	200.0	1256.0	350.0	939.0	953.0	815.0	298.0
181.0	1038.0	1283.0	458.0	1418.0	1142.0	850.0	899.0	1375.0	2040.0
1033.0	912.0	286.0	29.3	392.0	580.0	1538.0	1347.0	762.0	786.0
990.0	1037.0	420.0	272.0	221.0	379.0	751.0	1374.0	1143.0	982.0
392.0	309.0	1584.0	1703.0	1097.0	390.0	318.0	1045.0	1480.0	497.0
414.0	1298.0	1300.0	1794.0	1881.0	1099.0	-1.0	-1.0	-1.0	-1.0

-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	382.0	220.0	330.0	190.0	367.0	294.0	415.0	
141.0	241.0	584.0	300.0	256.0	196.0	382.0	319.0	280.0	671.0	
561.0	452.0	112.0	180.0	257.0	346.0	172.0	319.0	367.0	407.0	
231.0	236.0	94.7	59.6	212.0	259.0	337.0	461.0	411.0	284.0	
269.0	214.0	447.0	407.0	349.0	383.0	210.0	437.0	244.0	419.0	
446.0	482.0	423.0	401.0	441.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
410.0	33.0									
04186500	AUGLAIZE R	NR	FORT	JENNINGS	OH					
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	463.0	306.0	335.0	149.0	341.0	
471.0	370.0	297.0	422.0	65.3	214.0	358.0	137.0	181.0	-1.0	
94.8	211.0	359.0	209.0	319.0	231.0	309.0	314.0	359.0	475.0	
476.0	358.0	162.0	99.9	267.0	265.0	376.0	388.0	359.0	207.0	
246.0	205.0	159.0	233.0	176.0	124.0	324.0	293.0	278.0	275.0	
200.0	338.0	537.0	296.0	290.0	275.0	133.0	398.0	274.0	376.0	
230.0	382.0	209.0	450.0	193.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
332.0	36.0									
04189000	BLANCHARD R	NR	FINDLAY	OH						
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	299.0	104.0	292.0
424.0	312.0	302.0	386.0	57.5	175.0	284.0	78.1	91.6	-1.0	
68.7	183.0	269.0	131.0	246.0	212.0	322.0	296.0	316.0	319.0	
397.0	333.0	122.0	72.2	204.0	233.0	286.0	227.0	386.0	212.0	
197.0	148.0	171.0	178.0	130.0	182.0	354.0	298.0	271.0	268.0	
155.0	258.0	571.0	309.0	284.0	223.0	150.0	397.0	284.0	337.0	
341.0	423.0	191.0	480.0	198.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
346.0	35.0									
04195500	PORTRAGE R	AT	WOODVILLE	OH						
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	360.0	455.0	81.4	202.0	432.0	93.0	98.4	-1.0	228.0	
111.0	217.0	480.0	258.0	237.0	276.0	381.0	390.0	330.0	569.0	
624.0	498.0	144.0	131.0	330.0	415.0	308.0	357.0	404.0	331.0	
258.0	177.0	146.0	177.0	235.0	236.0	458.0	365.0	306.0	304.0	
214.0	337.0	628.0	368.0	325.0	364.0	270.0	497.0	370.0	382.0	
421.0	581.0	322.0	618.0	318.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
428.0	33.0									
04198000	SANDUSKY R	NR	FREMONT	OH						
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	1313.0	566.0	1140.0	1549.0	1184.0	
1102.0	1551.0	342.0	861.0	1100.0	275.0	320.0	-1.0	802.0	819.0	
358.0	723.0	1218.0	464.0	895.0	768.0	1371.0	1011.0	1065.0	1397.0	
1391.0	1314.0	382.0	364.0	782.0	959.0	952.0	940.0	1343.0	738.0	
880.0	743.0	712.0	748.0	667.0	710.0	1340.0	1014.0	1219.0	1109.0	
918.0	915.0	1908.0	1178.0	1153.0	862.0	704.0	1558.0	1218.0	1375.0	
1359.0	1557.0	727.0	2167.0	862.0	1444.0	-1.0	-1.0	-1.0	-1.0	-1.0
1251.0	35.0									
04200500	BLACK R	AT	ELYRIA	OH						
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	227.0	217.0	470.0	299.0	283.0	465.0
414.0	418.0	130.0	204.0	288.0	397.0	371.0	247.0	480.0	300.0	
322.0	183.0	226.0	236.0	185.0	145.0	303.0	271.0	509.0	295.0	
308.0	328.0	534.0	397.0	494.0	276.0	277.0	449.0	335.0	398.0	
314.0	385.0	375.0	532.0	295.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
396.0	35.0									
04201500	ROCKY R	NR	BEREA	OH						
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	219.0	334.0	365.0	339.0	351.0	291.0	98.5	205.0	
234.0	79.5	144.0	165.0	200.0	202.0	360.0	244.0	213.0	348.0	
328.0	314.0	118.0	205.0	268.0	323.0	262.0	226.0	418.0	266.0	
249.0	142.0	201.0	201.0	155.0	164.0	232.0	258.0	359.0	218.0	
263.0	340.0	416.0	332.0	393.0	237.0	213.0	353.0	288.0	303.0	
287.0	326.0	370.0	437.0	308.0	353.0	-1.0	-1.0	-1.0	-1.0	-1.0
267.0	36.5									
04202000	CUYAHOGA R	AT	HIRAM	RAPIDS	OH					
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	249.0	236.0	217.0	122.0	141.0	

146.0	106.0	143.0	-1.0	154.0	206.0	241.0	166.0	155.0	252.0
260.0	254.0	112.0	162.0	223.0	270.0	223.0	201.0	266.0	265.0
186.0	131.0	162.0	168.0	172.0	186.0	195.0	175.0	301.0	161.0
225.0	207.0	261.0	224.0	290.0	263.0	203.0	292.0	207.0	249.0
196.0	266.0	236.0	249.0	240.0	276.0	-1.0	-1.0	-1.0	-1.0
151.0	41.0								
04209000 CHAGRIN R AT WILLOUGHBY OH									
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	403.0
407.0	343.0	360.0	317.0	207.0	251.0	225.0	148.0	205.0	306.0
193.0	299.0	373.0	227.0	294.0	294.0	386.0	294.0	257.0	427.0
399.0	429.0	208.0	288.0	404.0	434.0	355.0	295.0	448.0	395.0
314.0	224.0	268.0	254.0	261.0	248.0	290.0	265.0	440.0	274.0
334.0	408.0	421.0	393.0	465.0	405.0	326.0	432.0	387.0	405.0
356.0	432.0	381.0	457.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
246.0	40.0								
04213000 CONNEAUT C AT CONNEAUT OH									
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	206.0	274.0	169.0	367.0	306.0
281.0	253.0	237.0	140.0	191.0	156.0	141.0	158.0	-1.0	-1.0
317.0	276.0	199.0	241.0	289.0	355.0	272.0	243.0	281.0	336.0
198.0	170.0	182.0	235.0	244.0	208.0	277.0	301.0	368.0	257.0
309.0	391.0	296.0	303.0	278.0	324.0	352.0	325.0	323.0	337.0
303.0	332.0	260.0	323.0	312.0	-1.0	-1.0	-1.0	-1.0	-1.0
175.0	41.0								
05413500 GRANT RIVER AT BURTON, WI									
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	106.0	103.0	143.0	187.0	113.0	137.0
121.0	141.0	248.0	210.0	184.0	189.0	243.0	195.0	164.0	216.0
206.0	206.0	175.0	148.0	130.0	86.7	81.8	59.3	178.0	212.0
176.0	310.0	161.0	82.0	168.0	118.0	117.0	92.8	135.0	116.0
153.0	187.0	341.0	270.0	231.0	163.0	113.0	191.0	192.0	142.0
115.0	199.0	230.0	225.0	217.0	170.0	-1.0	-1.0	-1.0	-1.0
269.0	33.6								
05414000 PLATTE RIVER NEAR ROCKVILLE, WI									
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	62.6	50.5	90.5	104.0	81.8	77.3
81.8	107.0	148.0	116.0	112.0	123.0	140.0	94.7	63.0	114.0
117.0	127.0	87.6	76.8	80.4	48.8	51.7	40.8	105.0	153.0
91.4	184.0	86.8	44.4	85.0	88.7	79.1	65.0	105.0	76.8
95.6	101.0	179.0	164.0	141.0	89.7	63.8	121.0	104.0	81.5
78.0	145.0	143.0	126.0	128.0	113.0	-1.0	-1.0	-1.0	-1.0
142.0	33.6								
05415000 GALENA RIVER AT BUNCOMBE, WI									
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	42.5
49.7	62.8	96.4	86.1	97.0	89.6	98.1	92.3	74.7	89.9
82.5	102.0	70.2	47.6	47.7	34.0	43.7	27.1	94.9	128.0
89.7	144.0	54.4	34.4	69.9	58.6	57.1	54.0	105.0	58.1
61.3	69.1	159.0	137.0	106.0	57.4	44.4	76.4	85.5	66.0
57.7	106.0	113.0	80.5	105.0	127.0	-1.0	-1.0	-1.0	-1.0
125.0	33.7								
05418500 MAQUOKETA RIVER NEAR MAQUOKETA, IOWA									
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	609.0	1024.0	1145.0	679.0	733.0	1257.0	1391.0
843.0	1194.0	854.0	1012.0	795.0	924.0	1477.0	1125.0	1375.0	598.0
386.0	939.0	679.0	344.0	856.0	554.0	1224.0	898.0	765.0	540.0
1167.0	1251.0	1134.0	1175.0	1120.0	1133.0	1911.0	982.0	748.0	962.0
1395.0	1212.0	890.0	540.0	573.0	431.0	425.0	306.0	951.0	1607.0
1085.0	2218.0	887.0	516.0	984.0	986.0	652.0	889.0	1749.0	975.0
1342.0	1516.0	2320.0	1935.0	1257.0	720.0	431.0	902.0	1250.0	892.0
1202.0	1575.0	1499.0	1128.0	1013.0	1453.0	-1.0	-1.0	-1.0	-1.0
1553.0	33.7								
05419000 APPLE RIVER NEAR HANOVER, IL									
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	178.0	115.0	214.0	210.0	131.0	39.3
105.0	129.0	219.0	196.0	181.0	154.0	185.0	157.0	145.0	171.0
224.0	270.0	116.0	83.4	121.0	76.6	86.4	71.8	175.0	400.0
162.0	294.0	88.3	64.8	188.0	158.0	100.0	115.0	253.0	101.0

05437500 ROCK RIVER AT ROCKTON, IL
 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 4310.0 4700.0
 -1.0 -1.0 -1.0 -1.0 4938.0 6496.0 4569.0 4756.0 3614.0 2038.0
 3066.0 3245.0 4589.0 3466.0 2781.0 3801.0 3118.0 3800.0 2749.0 3918.0
 4489.0 6086.0 3503.0 2380.0 3548.0 2209.0 2123.0 1568.0 3709.0 6584.0
 4085.0 5169.0 2295.0 1622.0 3471.0 4267.0 2765.0 2814.0 4073.0 2470.0
 3839.0 4167.0 8601.0 7516.0 5309.0 3464.0 1876.0 4291.0 5527.0 3990.0
 4153.0 5920.0 5983.0 4840.0 5626.0 7059.0 -1.0 -1.0 -1.0 -1.0
 6363.0 30.5

05438500 KISHWAUKEE RIVER AT BELVIDERE, IL
 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 115.0
 205.0 370.0 409.0 300.0 192.0 334.0 213.0 285.0 223.0 363.0
 433.0 508.0 225.0 230.0 333.0 114.0 158.0 158.0 240.0 546.0
 202.0 431.0 112.0 116.0 366.0 411.0 309.0 249.0 393.0 377.0
 363.0 585.0 801.0 823.0 381.0 371.0 119.0 469.0 645.0 335.0
 337.0 440.0 660.0 404.0 389.0 593.0 -1.0 -1.0 -1.0 -1.0
 538.0 32.7

05439500 SOUTH BR KISHWAUKEE RIVER NR FAIRDALE,
 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 65.9
 155.0 330.0 277.0 216.0 153.0 264.0 176.0 177.0 140.0 271.0
 325.0 326.0 110.0 113.0 391.0 94.3 129.0 205.0 182.0 416.0
 106.0 353.0 82.2 95.5 254.0 319.0 212.0 169.0 356.0 364.0
 225.0 424.0 558.0 537.0 263.0 244.0 65.7 395.0 583.0 324.0
 265.0 315.0 556.0 269.0 227.0 383.0 -1.0 -1.0 -1.0 -1.0
 387.0 34.0

05440000 KISHWAUKEE RIVER NEAR PERRYVILLE, IL
 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 244.0
 468.0 831.0 805.0 605.0 402.0 717.0 465.0 588.0 452.0 742.0
 903.0 1014.0 415.0 392.0 754.0 250.0 334.0 420.0 479.0 1094.0
 373.0 948.0 253.0 259.0 727.0 821.0 574.0 461.0 960.0 805.0
 719.0 1138.0 1579.0 1585.0 772.0 714.0 227.0 941.0 1371.0 755.0
 698.0 902.0 1417.0 809.0 783.0 1168.0 -1.0 -1.0 -1.0 -1.0
 1099.0 34.0

05444000 ELKHORN CREEK NEAR PENROSE, IL
 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 30.7
 73.3 81.6 113.0 93.5 58.7 85.3 85.2 90.8 86.0 86.7
 140.0 136.0 77.8 47.6 110.0 40.1 40.3 45.5 103.0 116.0
 77.9 124.0 50.5 49.0 109.0 87.9 58.7 53.1 126.0 96.3
 96.4 146.0 275.0 239.0 124.0 63.2 41.3 118.0 131.0 92.8
 110.0 149.0 127.0 90.2 102.0 170.0 -1.0 -1.0 -1.0 -1.0
 146.0 35.0

05446500 ROCK RIVER NEAR JOSLIN, IL
 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 2847.0
 4596.0 5342.0 7338.0 5285.0 4144.0 6173.0 4970.0 5838.0 4533.0 6144.0
 7316.0 9302.0 5112.0 3527.0 5872.0 3104.0 3081.0 2710.0 5066.0 9440.0
 5407.0 8047.0 3145.0 2587.0 5758.0 6879.0 4451.0 4252.0 6761.0 4916.0
 6252.0 6977.0 013430.0 012250.0 7827.0 5425.0 2807.0 7033.0 8850.0 6014.0
 6358.0 8608.0 9144.0 6896.0 7899.0 010340.0 -1.0 -1.0 -1.0 -1.0
 9549.0 33.0

05447500 GREEN RIVER NEAR GENESEO, IL
 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
 335.0 847.0 729.0 506.0 422.0 668.0 664.0 417.0 506.0 586.0
 867.0 830.0 254.0 232.0 774.0 190.0 224.0 333.0 435.0 987.0
 400.0 967.0 253.0 252.0 643.0 716.0 409.0 332.0 720.0 868.0
 572.0 704.0 1367.0 1369.0 567.0 468.0 186.0 919.0 977.0 536.0
 743.0 909.0 892.0 654.0 679.0 829.0 -1.0 -1.0 -1.0 -1.0
 1003.0 34.0

05448000 MILL CREEK AT MILAN, IL
 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0

-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	33.6	59.4	44.9	28.4	41.5	49.3	29.7	40.5	44.4	
54.1	43.3	16.9	14.4	57.2	9.0	8.7	18.7	42.6	105.0	
25.3	79.3	20.7	16.8	81.0	43.2	33.7	25.0	39.2	66.0	
44.6	43.1	79.1	76.2	30.9	26.4	22.7	60.8	43.0	39.7	
36.6	73.7	59.7	40.0	50.6	77.2	-1.0	-1.0	-1.0	-1.0	
62.4	34.0									
05454000	RAPID CREEK	NEAR IOWA CITY, IOWA								
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	12.2	13.4	4.9	
8.4	14.8	21.5	20.8	8.3	11.9	14.8	10.4	11.0	18.5	
17.1	16.4	18.3	2.2	7.3	6.0	1.1	3.0	18.5	26.0	
16.3	37.9	6.6	3.9	21.2	20.3	11.4	13.5	27.6	25.0	
11.4	32.5	32.3	36.9	13.2	3.7	10.6	17.4	21.6	9.8	
14.5	27.9	24.0	14.6	20.1	38.6	-1.0	-1.0	-1.0	-1.0	
25.3	33.0									
05466000	EDWARDS RIVER	NEAR ORION, IL								
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
52.6	157.0	135.0	88.2	82.2	89.2	115.0	65.1	107.0	106.0	
189.0	142.0	54.8	46.6	141.0	31.1	40.8	92.9	53.7	165.0	
49.4	150.0	45.4	38.1	114.0	108.0	114.0	55.3	125.0	181.0	
84.1	96.7	213.0	213.0	95.8	95.6	22.0	155.0	125.0	77.0	
147.0	179.0	152.0	104.0	120.0	136.0	-1.0	-1.0	-1.0	-1.0	
155.0	34.5									
05466500	EDWARDS RIVER	NEAR NEW BOSTON, IL								
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	438.0	191.0	290.0	251.0	215.0	76.6	
124.0	323.0	318.0	262.0	232.0	261.0	354.0	188.0	229.0	295.0	
427.0	353.0	124.0	111.0	362.0	80.4	83.9	246.0	163.0	483.0	
146.0	405.0	103.0	91.2	388.0	306.0	234.0	149.0	346.0	407.0	
250.0	298.0	673.0	584.0	252.0	284.0	84.6	395.0	367.0	239.0	
398.0	619.0	477.0	280.0	348.0	378.0	-1.0	-1.0	-1.0	-1.0	
445.0	34.5									
05467000	POPE CREEK	NEAR KEITHSBURG, IL								
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	189.0	80.7	93.8	98.4	81.0	25.8	
40.8	134.0	125.0	99.0	102.0	91.3	152.0	72.0	105.0	122.0	
158.0	136.0	44.1	46.4	112.0	35.0	37.5	106.0	69.5	190.0	
48.1	148.0	37.8	29.4	151.0	104.0	72.9	57.6	134.0	154.0	
93.4	98.8	245.0	251.0	99.8	107.0	46.3	170.0	130.0	128.0	
122.0	303.0	184.0	105.0	133.0	155.0	-1.0	-1.0	-1.0	-1.0	
174.0	34.6									
05469000	HENDERSON CREEK	NEAR OQUAWKA, IL								
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	471.0	200.0	210.0	293.0	201.0	58.4	
101.0	434.0	353.0	291.0	328.0	225.0	353.0	195.0	284.0	400.0	
386.0	360.0	137.0	145.0	266.0	128.0	116.0	193.0	163.0	434.0	
132.0	441.0	96.9	84.6	441.0	261.0	197.0	182.0	342.0	427.0	
236.0	199.0	597.0	632.0	288.0	310.0	147.0	443.0	361.0	236.0	
303.0	635.0	410.0	290.0	321.0	308.0	-1.0	-1.0	-1.0	-1.0	
432.0	34.7									
05472500	NORTH SKUNK RIVER	NEAR SIGOURNEY, IOWA								
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	683.0	861.0	317.0	307.0	265.0	
524.0	507.0	295.0	86.2	191.0	27.7	106.0	132.0	523.0	860.0	
456.0	737.0	261.0	173.0	582.0	630.0	127.0	82.7	615.0	456.0	
435.0	439.0	986.0	1019.0	379.0	421.0	74.6	573.0	700.0	141.0	
149.0	709.0	746.0	823.0	312.0	736.0	-1.0	-1.0	-1.0	-1.0	
730.0	33.1									
05495000	FOX RIVER	AT WAYLAND, MO.								
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	63.6	180.0	183.0	367.0	377.0	371.0	572.0	135.0	
191.0	318.0	244.0	27.0	364.0	123.0	223.0	81.1	162.0	46.0	
81.8	279.0	224.0	199.0	312.0	383.0	368.0	241.0	227.0	228.0	

242.0	231.0	182.0	62.4	161.0	17.6	69.9	261.0	351.0	538.0
127.0	315.0	93.4	70.0	244.0	82.6	193.0	118.0	332.0	478.0
168.0	143.0	665.0	393.0	172.0	188.0	129.0	525.0	327.0	302.0
497.0	677.0	427.0	353.0	395.0	639.0	-1.0	-1.0	-1.0	-1.0
400.0	36.0								
05495500	BEAR CREEK NEAR MARCELLINE, IL								
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	376.0	161.0	290.0	225.0	137.0	183.0
231.0	164.0	67.0	48.6	175.0	28.1	107.0	123.0	110.0	320.0
325.0	186.0	40.0	82.0	261.0	125.0	176.0	133.0	404.0	482.0
119.0	120.0	435.0	394.0	211.0	95.2	68.7	377.0	194.0	104.0
314.0	334.0	322.0	336.0	357.0	496.0	-1.0	-1.0	-1.0	-1.0
349.0	35.5								
05497000	NORTH FABIUS RIVER AT MONTICELLO, MO								
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	128.0	234.0	155.0	459.0	465.0	334.0	617.0	189.0
196.0	389.0	327.0	21.9	567.0	159.0	250.0	116.0	218.0	61.7
64.8	327.0	238.0	238.0	332.0	355.0	481.0	254.0	233.0	208.0
258.0	228.0	147.0	66.4	183.0	30.6	69.3	273.0	357.0	535.0
162.0	379.0	115.0	93.4	319.0	129.0	264.0	169.0	329.0	578.0
192.0	159.0	830.0	613.0	229.0	186.0	68.2	502.0	348.0	252.0
536.0	713.0	450.0	421.0	429.0	662.0	-1.0	-1.0	-1.0	-1.0
452.0	36.0								
05498000	MIDDLE FABIUS RIVER NEAR MONTICELLO, MO								
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	247.0	421.0	272.0	272.0	213.0	221.0
227.0	222.0	135.0	57.6	174.0	30.2	83.7	266.0	291.0	462.0
191.0	301.0	101.0	104.0	307.0	98.6	234.0	124.0	472.0	496.0
182.0	132.0	749.0	500.0	201.0	170.0	45.1	432.0	248.0	185.0
486.0	575.0	402.0	424.0	440.0	568.0	-1.0	-1.0	-1.0	-1.0
393.0	36.0								
05500000	SOUTH FABIUS RIVER NEAR TAYLOR, MO								
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	237.0	346.0	241.0	401.0	401.0	105.0
114.0	606.0	483.0	429.0	615.0	435.0	728.0	379.0	288.0	252.0
297.0	360.0	184.0	112.0	353.0	84.1	235.0	425.0	256.0	533.0
361.0	461.0	97.5	133.0	486.0	174.0	423.0	279.0	808.0	884.0
279.0	169.0	1105.0	723.0	381.0	163.0	117.0	682.0	285.0	111.0
646.0	830.0	606.0	610.0	681.0	794.0	-1.0	-1.0	-1.0	-1.0
620.0	36.0								
05501000	NORTH RIVER AT PALMYRA, MO								
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	112.0	213.0	164.0	342.0	45.5	
72.0	420.0	285.0	303.0	435.0	234.0	495.0	226.0	294.0	190.0
178.0	204.0	94.2	56.8	251.0	50.9	164.0	227.0	146.0	176.0
262.0	241.0	66.6	94.6	261.0	124.0	219.0	193.0	495.0	580.0
168.0	84.5	748.0	486.0	333.0	126.0	119.0	503.0	231.0	55.1
336.0	540.0	437.0	394.0	417.0	524.0	-1.0	-1.0	-1.0	-1.0
373.0	36.0								
05512500	BAY CREEK AT PITTSFIELD, IL								
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
8.5	52.0	38.1	21.4	49.8	31.6	42.6	16.0	17.7	21.2
16.7	24.6	5.1	9.9	16.6	4.3	28.5	12.8	20.4	24.8
38.4	35.1	16.1	13.5	37.1	34.7	27.2	25.5	40.2	84.6
18.2	16.0	40.5	47.8	37.0	14.4	14.8	32.2	29.0	8.6
54.6	26.7	29.5	26.1	23.4	32.9	-1.0	-1.0	-1.0	-1.0
39.4	36.6								
05513000	BAY CREEK AT NEBO, IL								
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
24.2	217.0	175.0	89.1	172.0	140.0	183.0	79.1	97.6	80.7
64.4	81.4	17.2	16.8	43.3	19.8	90.3	87.5	57.1	85.5
134.0	120.0	59.2	32.5	96.5	80.0	80.6	115.0	161.0	256.0
79.6	39.9	114.0	165.0	105.0	55.3	61.7	164.0	136.0	51.1

228.0	148.0	147.0	106.0	144.0	132.0	-1.0	-1.0	-1.0	-1.0	-1.0
161.0	36.7									
05515000 KANKAKEE RIVER NEAR NORTH LIBERTY, IND.										
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	206.0	108.0	120.0	181.0	149.0	110.0	137.0	134.0	176.0	
116.0	124.0	120.0	95.4	132.0	177.0	174.0	174.0	160.0	146.0	
133.0	149.0	193.0	154.0	152.0	159.0	129.0	159.0	151.0	153.0	
184.0	203.0	183.0	143.0	201.0	174.0	-1.0	-1.0	-1.0	-1.0	
174.0	38.5									
05519000 SINGLETON DITCH AT SCHNEIDER, IND.										
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	79.7	160.0	
102.0	127.0	51.6	58.5	89.5	59.5	76.3	86.0	129.0	145.0	
74.3	103.0	48.1	24.0	104.0	119.0	121.0	124.0	104.0	114.0	
82.0	127.0	211.0	132.0	151.0	147.0	48.8	124.0	119.0	84.8	
173.0	148.0	152.0	131.0	113.0	114.0	-1.0	-1.0	-1.0	-1.0	
123.0	36.0									
05520500 KANKAKEE RIVER AT MOMENCE, IL										
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	1885.0	1485.0	1395.0	1819.0	1597.0	
1057.0	2042.0	1206.0	2530.0	1159.0	1806.0	2563.0	2565.0	2626.0	1919.0	
1004.0	1666.0	2040.0	965.0	1794.0	1104.0	1654.0	1962.0	1934.0	1211.0	
1129.0	2103.0	2786.0	1963.0	1416.0	1816.0	1993.0	1935.0	1714.0	3247.0	
2289.0	2844.0	1299.0	1448.0	2368.0	1563.0	1472.0	1893.0	2091.0	2424.0	
1674.0	2077.0	1205.0	857.0	1827.0	2442.0	2557.0	2554.0	2318.0	2091.0	
1803.0	2356.0	3434.0	2422.0	2570.0	2538.0	1516.0	2246.0	2171.0	1879.0	
2889.0	2986.0	2809.0	2177.0	2486.0	2315.0	-1.0	-1.0	-1.0	-1.0	
2294.0	36.5									
05523000 BICE DITCH NEAR SOUTH MARION, IND.										
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	36.1	
24.8	24.9	12.4	5.9	17.8	10.6	13.4	27.0	16.7	17.4	
10.1	18.0	7.3	3.5	9.9	12.4	11.8	20.5	16.9	19.8	
12.9	17.5	31.4	23.6	21.9	16.5	10.7	22.5	18.3	18.5	
17.8	25.2	21.2	21.2	22.6	28.7	-1.0	-1.0	-1.0	-1.0	
21.8	37.0									
05525000 IROQUOIS RIVER AT IROQUOIS, IL										
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	326.0	529.0	398.0	464.0	485.0	1129.0	
749.0	673.0	373.0	199.0	427.0	363.0	518.0	730.0	569.0	602.0	
364.0	616.0	253.0	121.0	406.0	426.0	556.0	747.0	572.0	603.0	
440.0	605.0	983.0	720.0	603.0	619.0	347.0	663.0	586.0	521.0	
601.0	835.0	701.0	709.0	621.0	835.0	-1.0	-1.0	-1.0	-1.0	
686.0	35.2									
05525500 SUGAR CREEK AT MILFORD, IL										
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	351.0	680.0	
517.0	439.0	242.0	87.2	197.0	207.0	405.0	416.0	303.0	322.0	
279.0	427.0	152.0	145.0	299.0	267.0	269.0	451.0	322.0	394.0	
260.0	271.0	655.0	648.0	466.0	308.0	241.0	390.0	479.0	358.0	
373.0	501.0	516.0	615.0	366.0	613.0	-1.0	-1.0	-1.0	-1.0	
446.0	35.4									
05526000 IROQUOIS RIVER NEAR CHEBANSE, IL										
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	2164.0	703.0	1673.0	3445.0	2184.0	2110.0	1390.0	
365.0	1018.0	1961.0	469.0	1669.0	883.0	1721.0	1837.0	1677.0	472.0	
421.0	2011.0	2797.0	1423.0	1017.0	1732.0	1339.0	1618.0	1452.0	3210.0	
2301.0	2023.0	1149.0	538.0	1202.0	978.0	1792.0	1867.0	1628.0	1559.0	
1014.0	1988.0	698.0	423.0	1371.0	1305.0	1443.0	2222.0	1603.0	2036.0	
1233.0	1908.0	3243.0	2449.0	2031.0	1811.0	1100.0	2159.0	2144.0	1498.0	
1968.0	2972.0	2314.0	2368.0	1797.0	2405.0	-1.0	-1.0	-1.0	-1.0	
2091.0	35.1									
05527500 KANKAKEE RIVER NEAR WILMINGTON, IL										

-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	771.0	386.0	257.0	403.0	350.0	333.0	236.0	623.0	
599.0	471.0	216.0	167.0	222.0	120.0	435.0	409.0	261.0	364.0	
154.0	530.0	104.0	49.7	400.0	296.0	248.0	533.0	213.0	546.0	
233.0	439.0	902.0	648.0	422.0	421.0	163.0	461.0	568.0	390.0	
500.0	524.0	664.0	537.0	421.0	539.0	-1.0	-1.0	-1.0	-1.0	
579.0	33.9									
05556500	BIG BUREAU CREEK AT PRINCETON, IL									
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	166.0	160.0	126.0	28.9	
76.9	178.0	146.0	86.6	104.0	155.0	124.0	75.8	140.0	149.0	
185.0	180.0	44.5	75.9	188.0	51.4	72.0	113.0	87.7	219.0	
36.5	189.0	34.5	32.9	133.0	190.0	91.9	68.5	154.0	222.0	
107.0	192.0	301.0	255.0	145.0	91.4	14.6	185.0	259.0	92.5	
171.0	214.0	218.0	126.0	152.0	178.0	-1.0	-1.0	-1.0	-1.0	
196.0	33.6									
05567500	MACKINAW RIVER NEAR CONGERVILLE, IL									
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	393.0	641.0	546.0	449.0	345.0	861.0	
806.0	666.0	316.0	319.0	415.0	94.8	406.0	357.0	366.0	459.0	
294.0	656.0	97.2	130.0	565.0	396.0	324.0	666.0	327.0	717.0	
375.0	445.0	1147.0	911.0	496.0	577.0	299.0	624.0	557.0	393.0	
828.0	711.0	958.0	796.0	575.0	675.0	-1.0	-1.0	-1.0	-1.0	
767.0	35.0									
05569500	SPOON RIVER AT LONDON MILLS, IL									
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	827.0	557.0	682.0	608.0	661.0	551.0	500.0
1048.0	880.0	368.0	459.0	883.0	246.0	345.0	511.0	457.0	1117.0	
337.0	917.0	201.0	283.0	954.0	659.0	498.0	479.0	630.0	1247.0	
564.0	436.0	1393.0	1795.0	669.0	739.0	362.0	1026.0	897.0	513.0	
886.0	1058.0	991.0	825.0	901.0	812.0	-1.0	-1.0	-1.0	-1.0	
1072.0	34.5									
05570000	SPOON RIVER AT SEVILLE, IL									
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	820.0	316.0	1299.0	462.0	1585.0	2594.0	1683.0
357.0	731.0	1164.0	193.0	1586.0	693.0	774.0	1019.0	632.0	210.0	
501.0	1667.0	1285.0	919.0	1119.0	1026.0	1157.0	881.0	780.0	1360.0	
1397.0	1411.0	584.0	708.0	1298.0	329.0	527.0	746.0	669.0	1675.0	
665.0	1376.0	328.0	486.0	1400.0	973.0	841.0	821.0	1133.0	1837.0	
865.0	625.0	2146.0	2652.0	1017.0	1197.0	643.0	1586.0	1293.0	787.0	
1486.0	1769.0	1773.0	1202.0	1361.0	1319.0	-1.0	-1.0	-1.0	-1.0	
1636.0	34.5									
05572000	SANGAMON RIVER AT MONTICELLO, IL									
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
407.0	208.0	207.0	633.0	258.0	368.0	220.0	318.0	369.0	414.0	
195.0	619.0	347.0	724.0	269.0	574.0	1105.0	596.0	686.0	387.0	
75.3	179.0	429.0	68.0	445.0	260.0	461.0	484.0	481.0	133.0	
142.0	633.0	709.0	401.0	239.0	480.0	383.0	334.0	361.0	798.0	
522.0	494.0	174.0	69.1	173.0	263.0	405.0	419.0	336.0	310.0	
355.0	558.0	158.0	240.0	282.0	245.0	301.0	663.0	312.0	445.0	
323.0	488.0	859.0	697.0	439.0	340.0	295.0	461.0	603.0	240.0	
607.0	592.0	522.0	587.0	357.0	594.0	-1.0	-1.0	-1.0	-1.0	
550.0	36.4									
05576000	SOUTH FORK SANGAMON RIVER NR ROCHESTER									
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	895.0
652.0	443.0	129.0	26.3	162.0	223.0	961.0	640.0	425.0	719.0	
377.0	674.0	250.0	200.0	284.0	436.0	730.0	1147.0	627.0	936.0	
312.0	468.0	1345.0	1320.0	689.0	270.0	195.0	830.0	738.0	214.0	
504.0	1098.0	1054.0	859.0	609.0	661.0	-1.0	-1.0	-1.0	-1.0	
867.0	36.9									
05577500	SPRING CREEK AT SPRINGFIELD, IL									
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
73.8	60.7	7.2	2.2	18.0	18.8	119.0	47.2	51.0	139.0	

56.9	84.5	21.9	46.5	50.7	54.5	49.5	121.0	93.1	87.7
38.8	27.8	140.0	120.0	94.8	45.4	32.9	80.1	67.7	38.3
108.0	79.1	123.0	87.0	51.7	79.5	-1.0	-1.0	-1.0	-1.0
107.0	36.2								
05579500	LAKE FORK NEAR CORNLAND, IL								
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
210.0	160.0	65.3	8.9	42.6	54.6	183.0	152.0	106.0	132.0
119.0	144.0	26.5	63.4	93.4	95.5	126.0	275.0	111.0	227.0
78.5	112.0	280.0	329.0	182.0	135.0	121.0	261.0	230.0	52.3
267.0	212.0	336.0	194.0	142.0	254.0	-1.0	-1.0	-1.0	-1.0
214.0	37.3								
05582000	SALT CREEK NEAR GREENVIEW, IL								
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	1941.0	2227.0	1030.0	798.0	1471.0	1662.0	907.0	817.0	1882.0
1495.0	1307.0	649.0	315.0	486.0	515.0	1132.0	1201.0	879.0	1068.0
993.0	1491.0	381.0	609.0	1035.0	876.0	880.0	2174.0	1272.0	1873.0
720.0	1005.0	2483.0	2425.0	1478.0	1158.0	892.0	1548.0	1844.0	582.0
2286.0	2036.0	2339.0	1595.0	1317.0	1862.0	-1.0	-1.0	-1.0	-1.0
1804.0	37.3								
05583000	SANGAMON RIVER NEAR OAKFORD, IL								
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	2248.0	2114.0	2837.0	3312.0
2390.0	1701.0	-1.0	4901.0	5720.0	2321.0	581.0	1471.0	3837.0	723.0
810.0	5501.0	6213.0	2901.0	3083.0	3879.0	4768.0	2642.0	2615.0	5726.0
4462.0	3520.0	1367.0	516.0	986.0	1506.0	4058.0	3564.0	2553.0	3625.0
2784.0	4101.0	1270.0	1755.0	2516.0	2543.0	2892.0	5970.0	3548.0	5069.0
2160.0	2931.0	7325.0	7081.0	4254.0	2692.0	2117.0	4540.0	4776.0	1594.0
4910.0	4889.0	5808.0	4810.0	3391.0	4328.0	-1.0	-1.0	-1.0	-1.0
5093.0	37.0								
05584500	LA MOINE RIVER AT COLMAR, IL								
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	679.0	448.0	657.0	512.0	373.0	357.0
408.0	431.0	192.0	192.0	413.0	71.2	210.0	216.0	316.0	804.0
672.0	556.0	94.5	249.0	533.0	339.0	252.0	263.0	498.0	832.0
310.0	192.0	976.0	1184.0	519.0	297.0	117.0	616.0	349.0	257.0
642.0	653.0	694.0	458.0	558.0	734.0	-1.0	-1.0	-1.0	-1.0
655.0	35.3								
05585000	LA MOINE RIVER AT RIPLEY, IL								
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	816.0	323.0	923.0	545.0	1131.0	1410.0	693.0	1756.0	392.0
317.0	571.0	804.0	70.9	1264.0	529.0	512.0	943.0	619.0	136.0
199.0	1124.0	1081.0	960.0	1396.0	837.0	1285.0	839.0	573.0	757.0
817.0	737.0	300.0	238.0	778.0	187.0	430.0	424.0	601.0	1320.0
1220.0	1116.0	241.0	395.0	1007.0	617.0	577.0	490.0	1150.0	1473.0
634.0	451.0	1544.0	1843.0	888.0	576.0	277.0	1394.0	690.0	463.0
1363.0	1376.0	1325.0	1104.0	1260.0	1385.0	-1.0	-1.0	-1.0	-1.0
1293.0	35.0								
05587000	MACOUPIN CREEK NEAR KANE, IL								
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	889.0	159.0
506.0	300.0	675.0	1883.0	882.0	1029.0	339.0	34.9	242.0	591.0
84.7	922.0	953.0	516.0	938.0	750.0	888.0	301.0	595.0	815.0
461.0	384.0	98.0	17.0	107.0	96.9	877.0	373.0	159.0	406.0
461.0	681.0	255.0	139.0	174.0	395.0	450.0	722.0	727.0	756.0
242.0	329.0	1043.0	843.0	710.0	186.0	283.0	831.0	588.0	139.0
507.0	769.0	885.0	1039.0	781.0	459.0	-1.0	-1.0	-1.0	-1.0
868.0	38.2								
05588000	INDIAN CREEK AT WANDA, IL								
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
4.3	28.1	44.7	22.4	38.7	45.4	42.0	21.5	31.4	49.3
25.5	30.7	10.0	1.4	8.7	4.8	36.5	17.6	13.0	20.9
32.1	35.2	14.0	5.2	4.1	9.1	20.2	39.7	50.7	30.8
13.0	15.6	45.1	42.3	40.2	7.0	12.8	36.7	29.5	6.4
11.1	31.4	43.8	48.2	50.4	38.1	-1.0	-1.0	-1.0	-1.0

APPENDIX C -- Program Hynet output for seventeen experiments.

EXPERIMENT NUMBER 1

Initial number of stations = 10
Planning horizon = 5
Number of stations to be operated in future = 10
Number of replications = 100
Initial distribution of record lengths
3 stations with 5 years of record
4 stations with 8 years of record
3 stations with 10 years of record

The following statistics are based on the differences , in percent, between projected and achieved mean square error:

Mean difference NARI = 1.62
Root-Mean-Square difference NARI = 4.07
Mean difference NAUGLS = -0.65
Root-Mean-Square difference NAUGLS = 3.21

Relative information of network output of NAUGLS to that of NARI = 1.61

EXPERIMENT NUMBER 2

Initial number of stations = 10
Planning horizon = 10
Number of stations to be operated in future = 10
Number of replications = 100
Initial distribution of record lengths
3 stations with 5 years of record
4 stations with 8 years of record
3 stations with 10 years of record

The following statistics are based on the differences , in percent, between projected and achieved mean square error:

Mean difference NARI = 2.15
Root-Mean-Square difference NARI = 4.21
Mean difference NAUGLS = -0.25
Root-Mean-Square difference NAUGLS = 2.75

Relative information of network output of NAUGLS to that of NARI = 2.34

EXPERIMENT NUMBER 3

Initial number of stations = 10
Planning horizon = 5
Number of stations to be operated in future = 40
Number of replications = 100
Initial distribution of record lengths
3 stations with 5 years of record
4 stations with 8 years of record
3 stations with 10 years of record

The following statistics are based on the differences , in percent,
between projected and achieved mean square error:

Mean difference NARI = 0.91
Root-Mean-Square difference NARI = 3.74
Mean difference NAUGLS = -0.82
Root-Mean-Square difference NAUGLS = 2.93

Relative information of network output of NAUGLS to that of NARI = 1.63

EXPERIMENT NUMBER 4

Initial number of stations = 10
Planning horizon = 10
Number of stations to be operated in future = 40
Number of replications = 100
Initial distribution of record lengths
3 stations with 5 years of record
4 stations with 8 years of record
3 stations with 10 years of record

The following statistics are based on the differences , in percent,
between projected and achieved mean square error:

Mean difference NARI = 1.65
Root-Mean-Square difference NARI = 3.83
Mean difference NAUGLS = -0.18
Root-Mean-Square difference NAUGLS = 2.57

Relative information of network output of NAUGLS to that of NARI = 2.23

EXPERIMENT NUMBER 5

Initial number of stations = 10
Planning horizon = 5
Number of stations to be operated in future = 10
Number of replications = 100
Initial distribution of record lengths
3 stations with 10 years of record
4 stations with 12 years of record
3 stations with 20 years of record

The following statistics are based on the differences , in percent,
between projected and achieved mean square error:

Mean difference NARI = 1.26
Root-Mean-Square difference NARI = 3.03
Mean difference NAUGLS = -0.16
Root-Mean-Square difference NAUGLS = 2.26

Relative information of network output of NAUGLS to that of NARI = 1.80

EXPERIMENT NUMBER 6

Initial number of stations = 10
Planning horizon = 10
Number of stations to be operated in future = 10
Number of replications = 100
Initial distribution of record lengths
3 stations with 10 years of record
4 stations with 12 years of record
3 stations with 20 years of record

The following statistics are based on the differences , in percent,
between projected and achieved mean square error:

Mean difference NARI = 1.80
Root-Mean-Square difference NARI = 3.06
Mean difference NAUGLS = 0.11
Root-Mean-Square difference NAUGLS = 1.95

Relative information of network output of NAUGLS to that of NARI = 2.46

EXPERIMENT NUMBER 7

Initial number of stations = 10
Planning horizon = 5
Number of stations to be operated in future = 40
Number of replications = 100
Initial distribution of record lengths
3 stations with 10 years of record
4 stations with 12 years of record
3 stations with 20 years of record

The following statistics are based on the differences , in percent,
between projected and achieved mean square error:

Mean difference NARI = 0.44
Root-Mean-Square difference NARI = 3.08
Mean difference NAUGLS = -0.37
Root-Mean-Square difference NAUGLS = 2.24

Relative information of network output of NAUGLS to that of NARI = 1.89

EXPERIMENT NUMBER 8

Initial number of stations = 10
Planning horizon = 10
Number of stations to be operated in future = 40
Number of replications = 100
Initial distribution of record lengths
3 stations with 10 years of record
4 stations with 12 years of record
3 stations with 20 years of record

The following statistics are based on the differences , in percent,
between projected and achieved mean square error:

Mean difference NARI = 1.03
Root-Mean-Square difference NARI = 2.79
Mean difference NAUGLS = -0.02
Root-Mean-Square difference NAUGLS = 1.86

Relative information of network output of NAUGLS to that of NARI = 2.24

EXPERIMENT NUMBER 9

Initial number of stations = 30
Planning horizon = 5
Number of stations to be operated in future = 10
Number of replications = 100
Initial distribution of record lengths
9 stations with 5 years of record
12 stations with 8 years of record
9 stations with 10 years of record

The following statistics are based on the differences , in percent, between projected and achieved mean square error:

Mean difference NARI = 0.71
Root-Mean-Square difference NARI = 2.24
Mean difference NAUGLS = -0.08
Root-Mean-Square difference NAUGLS = 1.70

Relative information of network output of NAUGLS to that of NARI = 1.74

EXPERIMENT NUMBER 10

Initial number of stations = 30
Planning horizon = 10
Number of stations to be operated in future = 10
Number of replications = 100
Initial distribution of record lengths
9 stations with 5 years of record
12 stations with 8 years of record
9 stations with 10 years of record

The following statistics are based on the differences , in percent, between projected and achieved mean square error:

Mean difference NARI = 1.12
Root-Mean-Square difference NARI = 2.40
Mean difference NAUGLS = 0.20
Root-Mean-Square difference NAUGLS = 1.75

Relative information of network output of NAUGLS to that of NARI = 1.88

EXPERIMENT NUMBER 11

Initial number of stations = 30
Planning horizon = 5
Number of stations to be operated in future = 40
Number of replications = 100
Initial distribution of record lengths
9 stations with 5 years of record
12 stations with 8 years of record
9 stations with 10 years of record

The following statistics are based on the differences , in percent, between projected and achieved mean square error:

Mean difference NARI = 0.62
Root-Mean-Square difference NARI = 2.08
Mean difference NAUGLS = -0.18
Root-Mean-Square difference NAUGLS = 1.71

Relative information of network output of NAUGLS to that of NARI = 1.49

EXPERIMENT NUMBER 12

Initial number of stations = 30
Planning horizon = 10
Number of stations to be operated in future = 40
Number of replications = 100
Initial distribution of record lengths
9 stations with 5 years of record
12 stations with 8 years of record
9 stations with 10 years of record

The following statistics are based on the differences , in percent, between projected and achieved mean square error:

Mean difference NARI = 1.16
Root-Mean-Square difference NARI = 2.33
Mean difference NAUGLS = 0.18
Root-Mean-Square difference NAUGLS = 1.76

Relative information of network output of NAUGLS to that of NARI = 1.75

EXPERIMENT NUMBER 13

Initial number of stations = 30
Planning horizon = 5
Number of stations to be operated in future = 10
Number of replications = 100
Initial distribution of record lengths
9 stations with 10 years of record
12 stations with 12 years of record
9 stations with 20 years of record

The following statistics are based on the differences , in percent,
between projected and achieved mean square error:

Mean difference NARI = 0.74
Root-Mean-Square difference NARI = 1.40
Mean difference NAUGLS = 0.21
Root-Mean-Square difference NAUGLS = 1.03

Relative information of network output of NAUGLS to that of NARI = 1.87

EXPERIMENT NUMBER 14

Initial number of stations = 30
Planning horizon = 10
Number of stations to be operated in future = 10
Number of replications = 100
Initial distribution of record lengths
9 stations with 10 years of record
12 stations with 12 years of record
9 stations with 20 years of record

The following statistics are based on the differences , in percent,
between projected and achieved mean square error:

Mean difference NARI = 0.94
Root-Mean-Square difference NARI = 1.49
Mean difference NAUGLS = 0.34
Root-Mean-Square difference NAUGLS = 1.06

Relative information of network output of NAUGLS to that of NARI = 1.96

EXPERIMENT NUMBER 15

Initial number of stations = 30
Planning horizon = 5
Number of stations to be operated in future = 40
Number of replications = 100
Initial distribution of record lengths
9 stations with 10 years of record
12 stations with 12 years of record
9 stations with 20 years of record

The following statistics are based on the differences , in percent,
between projected and achieved mean square error:

Mean difference NARI = 0.65
Root-Mean-Square difference NARI = 1.39
Mean difference NAUGLS = 0.24
Root-Mean-Square difference NAUGLS = 1.04

Relative information of network output of NAUGLS to that of NARI = 1.78

EXPERIMENT NUMBER 16

Initial number of stations = 30
Planning horizon = 10
Number of stations to be operated in future = 40
Number of replications = 100
Initial distribution of record lengths
9 stations with 10 years of record
12 stations with 12 years of record
9 stations with 20 years of record

The following statistics are based on the differences , in percent,
between projected and achieved mean square error:

Mean difference NARI = 0.97
Root-Mean-Square difference NARI = 1.47
Mean difference NAUGLS = 0.34
Root-Mean-Square difference NAUGLS = 1.04

Relative information of network output of NAUGLS to that of NARI = 2.01

EXPERIMENT NUMBER 17

Initial number of stations = 20
Planning horizon = 10
Number of stations to be operated in future = 25
Number of replications = 100
Initial distribution of record lengths
6 stations with 10 years of record
8 stations with 12 years of record
6 stations with 15 years of record

The following statistics are based on the differences , in percent,
between projected and achieved mean square error:

Mean difference NARI = 1.14
Root-Mean-Square difference NARI = 2.15
Mean difference NAUGLS = 0.39
Root-Mean-Square difference NAUGLS = 1.55

Relative information of network output of NAUGLS to that of NARI = 1.92

FINAL Hynet Report for the United States of America

I. The Homogeneous Region-- This study was limited to the upper central part of the United States (figure 2) because of the region's roughly similar climate and topography. The area is characterized by generally low relief with relief increasing from west to east and from north to south. Average annual precipitation increases from about 100 cm in the north to about 115 cm in the south. In the eastern two-thirds of the area, average precipitation is relatively evenly distributed throughout the year. In the western third of the area, precipitation from November to February is somewhat less than that for the rest of the year.

II. Hydrology of the Region-- Runoff increases from about 23 cm in the northwest part of the area to about 40 cm along the southern boundary and in the eastern part of the area. Average monthly discharge is generally highest in early spring when snowmelt runoff occurs and gradually decreases to a low on August and September when evapotranspiration losses are large. Mean annual flows exhibit some serial correlation -- sample lag-one correlation coefficients average about 0.3 in the region. This persistence in annual flows may be due to persistence in annual precipitation and in groundwater storage.

III. Availability of Data-- The available streamflow data in the region was screened so that only those stations that were operated, at least in part, for the purpose of collecting regional information and had complete record for the period 1955-1984 were considered. The 146 stations that form the potential data base for this example have drainage areas that range between 32 and 24,730 square kilometers and mean annual precipitation ranging between 77 and 117 cm as shown in figure 3.

In order to investigate the regional homogeneity of the potential data base, mean annual discharge was computed for each of the 146 gauging stations for the common period of record, 1955-1984, and a logarithmic regression of these values against the logarithms of the independent variables, drainage area and mean annual precipitation, was performed. The resulting regression had a coefficient of determination of 0.99 and a standard error of estimation of 14 percent. A plot of the data-based estimates of mean annual discharge against those derived from the regression (figure 4) shows no unusual outliers.

Figure 5, a map of the residuals (that is, the regression estimates minus the data-based estimates), shows a minor trend from east to west. However, because of the overall goodness of fit of the regression, it was felt that this trend was not a significant violation of the assumption of homogeneity. Thus, the conclusion from this step is that all 146 stations comprise a sufficiently homogeneous region for the purposes of the Hynet study. There are no missing values for any stations during the period 1955-1984.

Drainage areas and mean annual precipitation for each site were retrieved from the basin characteristics files of the U. S. Geological Survey. In general, the values in this file for drainage areas were determined by planimetering the area drawn on 7.5 minute topographic maps available from the U. S. Geological Survey. Values for mean annual precipitation were determined by overlaying an outline of the basin boundary on an isoline map of mean annual precipitation provided by the National Weather Service.

IV. The Experiments-- The sixteen basic experiments recommended in the manual and enumerated in Table D-1 were run. In addition as recommended, an experiment in which 20 records are available for the regression --six of which are 10 years long, eight of which are 12 years long, and six of which are 15 years long -- was run. The planning horizon for the experiment was 10 years and the budget provided for 25 gauges during the planning horizon.

Table D-1 -- Basic experiments

Data Availability	Design Constraints	Design Parameters			
		NB	L3	PH	NP
Few, short records	Austere budget, short horizon	10, 10, 5, 10			
	Austere budget, modest horizon	10, 10, 10, 10			
	Adequate budget, short horizon	10, 10, 5, 40			
	Adequate budget, modest horizon	10, 10, 10, 40			
Few, long records	Austere budget, short horizon	10, 20, 5, 10			
	Austere budget, modest horizon	10, 20, 10, 10			
	Adequate budget, short horizon	10, 20, 5, 40			
	Adequate budget, modest horizon	10, 20, 10, 40			
Many, short records	Austere budget, short horizon	30, 10, 5, 10			
	Austere budget, modest horizon	30, 10, 10, 10			
	Adequate budget, short horizon	30, 10, 5, 40			
	Adequate budget, modest horizon	30, 10, 10, 40			
Many, long records	Austere budget, short horizon	30, 20, 5, 10			
	Austere budget, modest horizon	30, 20, 10, 10			
	Adequate budget, short horizon	30, 20, 5, 40			
	Adequate budget, modest horizon	30, 20, 10, 40			

Output for the seventeen experiments in the U.S. example are given in Table D-2..

Table D-2. Summary of results for intercomparison on NARI and NAUGLS

EXP NO.	NB	L3	PH	NP	BIAS(in percent)		RMSE(in percent)		RELATIVE INFORMATION [mse(NARI)/mse(NAUGLS)]
					NARI	NAUGLS	NARI	NAUGLS	
1	10	10	5	10	1.62	- 0.65	4.07	3.20	1.6
2	10	10	10	10	2.15	- 0.25	4.20	2.75	2.3
3	10	10	5	40	0.91	- 0.82	3.74	2.93	1.6
4	10	10	10	40	1.65	- 0.18	3.83	2.57	2.2
5	10	20	5	10	1.26	- 0.16	3.03	2.26	1.8
6	10	20	10	10	1.80	0.11	3.06	1.95	2.5
7	10	20	5	40	0.44	- 0.37	3.08	2.24	1.9
8	10	20	10	40	1.33	- 0.02	2.79	1.86	2.2
9	30	10	5	10	0.71	- 0.08	2.24	1.70	1.7
10	30	10	10	10	1.12	0.20	2.40	1.75	1.9
11	30	10	5	40	0.62	- 0.18	2.08	1.71	1.5
12	30	10	10	40	1.16	0.18	2.33	1.76	1.8
13	30	20	5	10	0.74	0.21	1.40	1.02	1.9
14	30	20	10	10	0.94	0.39	1.49	1.06	2.0
15	30	20	5	40	0.65	0.24	1.39	1.04	1.8
16	30	20	10	40	0.97	0.34	1.47	1.04	2.0
17	20	15	10	25	1.14	0.39	2.15	1.55	1.9

V. Conclusions-- For the seventeen experiments, the relative information statistic described in the manual ranged from 1.6 to 2.5. Because the relative information was greater than 1 for all experiments, one concludes that the NAUGLS technique conveys more information than does the NARI technique to the network designer interested in maximizing regional information about average flows with a limited budget.