U. S. DEPARTMENT OF THE INTERIOR

U. S. GEOLOGICAL SURVEY

DESCRIPTIONS OF SEISMIC ARRAY COMPONENTS:
PART 3. SOFTWARE MODULES FOR DATA CONVERSION

Compiled by

W. H. K. Lee
MS 977, 345 Middlefield Road
Menlo Park, CA 94025

Open-File Report 92-598
August, 1992

This report is preliminary and has not been reviewed for conformity with U. S. Geological
Survey editorial standards. Any use of trade, firm, or product names is for descriptive

purposes only and does not imply endorsement by the U. S. Government.

Although these programs have been used by the U.S. Geological Survey, no warranty,
expressed or implied, is made by the USGS as to the accuracy and functioning of the
programs and related program material, nor shall the fact of distribution constitute any

such warranty, and no responsibility is assumed by the USGS in connection therewith.

INTRODUCTION

In the summer of 1990, funding was available to J’design and implement two portable

- seismic arrays for the volcano program. The approach was based on Lee et al. (1989).
Several contracts were awarded to commercial companies to design and implement various
components needed to build the portable arrays. Tt‘e2 purpose of this report to present
ST/ST2DR, GRM2ST/ST2GRM,

PCEQ2ST/PCQ2ST, SEGY2ST, IO_RSDS, and IO_WRSDS, and two miscellaneous mod-
ules - PLT_ PMTN, and SPR_PLFL - in detail as submitted by the contractors. Source
code on PC-DOS/MS-DOS diskette for this report is presented in U. S. Geological Survey
Open-File Report 92-598-B.

the software modules for data conversion purposes - D

DR2ST/ST2DR (p. 4 - 24)

DR2ST/ST2DR are two computer programs for converting data from DR-100 (GEOS)
data format (Borcherdt et. al.) to the SUDS data format (Ward, 1989; Banfill, 1992) and

vice versa, respectively. |

GRM2ST/ST2GRM (p. 25 - 46)

GRM2ST/ST2GRM are two computer programs for converting data from CUSP’s GRM
data format (Allan Walter, personal communication, 1992) to the SUDS data format
(Ward, 1989; Banfill, 1992) and vice versa, respectively.

PCEQ2ST/PCQ2ST (p. 47 - 62)

PCEQ2ST/PCQ2ST are two computer programs for converting data from the PCEQ

| data format (Valdes, 1989) and from the PC-Quake jla,ta format (Tottingham et al., 1989)
to the SUDS data format (Ward, 1989; Banfill, 199

), respectively.

SEGY?2ST (p. 63 - 69)

SEGY2ST is a computer program for converting data from the SEGY data format
(Barry et al., 1975) to the SUDS data format (Ward, 1989; Banfill, 1992).

MISC (p. 70 - 106)

The MISC directory contains four source code modules that may be added to the PITSA
program package (Scherbaum and Johnson, 1992) in order to (1) read and write data files
in the SUDS format (Ward, 1989; Banfill, 1992): I0_RDSDS.C and IO_WRSDS.C, (2)
plot particle motion: PLT_PMTN, and (3) perform polarization filtering: SPR._PLFL.C.

REFERENCES

Banfill, R., (1992). SUDS: Seismic Unified Data System, version 1.31, Small Systems
Support, Big Water, Utah.

Barry, K. M., D. A. Cavers, and C. W. Kneale, (1975). Recommended standards for digital
tape format, Geophysics, 40, 344-352.

Borcherdt R.D., J. B. Fletcher, E. G. Jensen, G. L. Maxwell, J. R. Vanschaack, (1985).
A general earthquake-observation system (GEOS) Bull. Seism. Soc. Am., 75, 1783-
1825.

Lee, W. H. K., D. M. Tottingham, and J. O. Ellis (1989). Design and implementation of a
PC-based seismic data acquisition, processing, and analysis system, JASPEI Software
Library, 1, 21-46.

Scherbaum, F., and J. Johnson, (1992). “Programmable Interactive Toolbox for Seismo-
logical Analysis (PITSA)”, JASPEI Software Library, 5, in preparation.

Tottingham, D. M., W. H. K. Lee, and J. A. Rogers, (1989). User manual for MDETECT,
TASPEI Software Library, 1, 49-88.

Valdes, C. M., (1989). User manual for PCEQ, IASPEI Software Library, 1, 175-201.

Ward, P. L. (1989). SUDS: Seismic Unified Data System, U. §. Geol. Surv. Open-file
Report 89-188.

README. TXT Monday, August 17, 19

92 3:38 pm

DR2ST - DR100 (GEOS) to SUDS data converter veraio#x 1.00

ST2DR - SUDS to DR100 file converter version 1.00
Sun 16-Aug-1992 21:27, RB
These two programs convert data files between DR10

DR100 refers to the DR100 format as defined by the
its GEOS instrument.

0 and SUDS format.

USGS for use with

These programs were written using Microsoft C 6.00AX and the makefile

provided is for the PWB.

Additional libraries required:
HSUDS.LIB - SUDS data file library version 1
Available from:

Small Systems Support
2 Boston Harbor Place
Big Water, UT 84741-0205
(801) 675-5827 Voice
(801) 675-3730 FAX

Once built, these programs offer command line help
of the executable (e.g., ST2DR) and pressing retur]

.31.

by typing only the name
n.

DR2ST takes an "ordered arrival list"” (.OAR) file as input and processes the
DR100 "trigger files" contained in that list into a single SUDS data file.
The user should avail his/her self to a program such as ORDARR (OAR.EXE,
contained in USGS OFR 89-172) to manage these ordered arrival lists. This

program allows the user to easily extract a subset

of the data based on various

criteria and automates the production of .OAR filer.

ST2DR takes a SUDS data file and generates DR100 trigger files (1 per channel

per event).

Source files included:

DR2ST c 15948 03-09-92 5:14p
ST2DR c 13480 07-21-92 7:47p
DR1HEAD H 6001 07-19-92 3:54p <- DR100 qeader definitions
DR2ST MAK 2329 07-07-92 4:42p
ST2DR MAK 1733 07-21-92 7:47p

004

Page 1

DR2

sT'c

Monday, August 17, 1992 3:40 pm Page 1

// DR2ST - DR100 to SUDS data file converter

// Mon 06-Jan-1992 12:17, RB

char version{] = "1.00";

#in
#in

clude
clude

#include
#include
#include
#include
#include

#in
#in

int
int
int
int
int
int

clude
clude

read_

<stdio.h>
<conio.h>
<stdlib.h>
<string.h>
<mallec.h>
<des.h>
<ctype.h>

<suds.h>
*"drlhead.h"

dr header(void);

get_ arrival(void);

open_:
open_

oar(void);
suds(void);

write _suds(void);

suds

sti(void);

void close _files(void);
void s upper(char *);

char curfile{_ MAX PATH), outfile(_MAX_PATH), carfile[_ MAX_ PATH];
FILE *drlfil,” *stfil, *oarfil;

char stn({5}, comp, buf{72};

int arrivals, k, eof_flag = 0, verbose = 1;

char comps{6]1({34];

extern char *progname;

//***

main(int argec, char *argvi{]) {
register i, j;

int ierr, first = 1;

char buf{_ MAX_PATH), *p;

oarfile{0] = '\0';
outfile{0] = '\0';

printf("DR2ST - DR100 to SUDS data file converter - Version %.4s\n", version);
printf("Copyright (c) Robert Banfill 1992. All rights reserved.\n\n");

// Help
if(argv(1](0] == '?' || argv(1)(1l] == '?°
printf("Usage: DR2ST ([switches] [inputfile) [outputfile]\n\n");
printf("Switches:\n");
printf(" /Q = Quiet, minimum status messages (Verbose).\n\n");
printf(" inputfile = Ordered Arrival List (UNDEFINE.OAR)\n");
printf(" outputfile = SUDS output file (Hex IST of 1lst arrival with .DMX exte
nsion).\n\n");
printf(" () indicates default, [] indicates optional arguments.\n");
exit(1);

}

progname = argv(0);

// Parse the command-line
for(i=1l; i<argec; i++) {

C05

DR2ST.C

if(argv(i) (0] ==

switch(argv{i)[1)

case 'q':
case 'Q':

verbose = 0;

break;
}

}
else if(ocarfile{0] == '\0') {
strcpy(oarfile, argv(i]);

Monday, August 17, 1992 3:40 pm

"/ !I{argv{iltol == -t)

if((p = strchr(oarfile, '.')) == NULL)

| strcat(oarfile, ".OAR");

}
| else if(outfile(0) == *\0') {
‘ strcpy(outfile, argv(i]);

if((p = strchr(outfile, '.')) == NULL)

strcat(outfile, ".DMX");

}
else

fprintf(stderr, "WARNING: Unrecognized irgument: $s\n", argv(i]);

}

2
if(ocarfile[0) == '\O'
"UNDEFINE.OAR");

strepy(oarfile,

_fullpath(buf, ocarfile, _MAX PATH);

strcpy(oarfile, buf
8_upper(oarfile);

if(verbose)

)i

printf("Input file: %s\n\n", ocarfile);

// Oopen the Ordered arrival list

if(open_ocar() !=0
exit(1);

)

printf("Processing %d arrivals\n", arrivals);

if(verbose)
printf("\n");

for(i=1; i<=arrivals; i++) {

// Get an arrival

ierr = get arrival();

if(ierr < 0)
exit(1);

else if(ierr > O
break;

// Process each component
for(j=1; j<=k; j++) {
strepy(curfile, comps(j=-1]);

if(verbose)
printf("
else
printf("ss

)

%s8", curfile);

\r", curfile);

// Open the current DR100 file and read the header

if(read_dr_header() != 0)

exit("1);

C06

Page 2

DR2ST.C

}

Monday, August 17, 1992 3:40 pm

if(first) {
// Open the SUDS output file after reading first header (for time)
open_suds();
first = 0;

}

// output station related data to SUDS file
if(suds_sti() i=0)
exit(1);

// Output trace to SUDS file
if(write_suds() t= 0)
exit(1);

// Close SUDS and OAR file
close_files();

exit(0);

}

//***
int get_arrival(void) {

register i;

char newname(34], *p, *q, hr{3];

struct find_t fi;

// Clear out component array
memset (comps, '\0’, sizeof(comps));
memset(hr, '\0', 3);

// Trim off trailing crap
if{ (p = strchr(buf, ' ')) != NULL)
*p = "\0';

else

buf{32] = '\0';

ff(verbose)
printf("Processing arrival: %s\n", buf);

// Build new name

strcpy(newname, buf);

p = strrchr(newname, '\\')+4;
strnepy(hr, p, 2);

*p = 'A'+atoi(hr);

p++;

strcpy(pr Pl)i

// Decompose into components
P = strchr(newname, '.')-1;
switch(*p) {(

case 'A':

for(i=0; i<=2; i++) {
strcpy(comps[i]), newname);
q = strchr(comps(i), '.')-1;
*q = '0'+i+l;

}
k = 3;
break;

case 'V':

for(i=0; i<=2; i++) {
strcpy(comps(i], newname);

Page 3

DR2ST.C

q = strchr(comps{i], '.')-1;
*q = '0'+i+4;

}

k = 3;

break;

case 'D':

for(i=0; i<=2; i++) {

strcpy(comps{i], newname

U

-

q = strchr(comps{i], '.' 1;
*q = '0'+i+7;

}

k = 3;

break;

case 'G':

for(i=0; i<=5; i++) {
strcpy(comps{i]), newname);
q = strchr(comps({i], '.')~-1;

*q = '0'+i+1;

}

k = 6;

break;

default:

strcpy(comps{0]), newname);
k=1;

break;

}

if(leof_flag) {

Monday, August 17, 1992 3:40 pm

|
|

// Read next "Arrival filespec" from the oni file

if(fgets(buf, 73, ocarfil) == NULL) {
if(feof(oarfil))
eof flag = 1;
else {
fprintf(stderr, "\nERROR: Read error
return(-1);
}
}

else
return(1);

// Check that component files exist
for(i=0; i<k; i++) {
if(dos findfirst(comps(i},
comps{i]{0] = '\0';
}

return(0);
}

//***
int open_oar(void) {
register i;

// Open the Ordered Arrival List

if((oarfil = fopen(ocarfile, "r")) == NULL

fprintf(stderr, "\nERROR: Unable to open:
return(-1);

}

in: %s\n", oarfile);

dos _A NORMAL, &fi) !=0) {
fprintf(stderr, "WARNING: Missing component: %s\n", comps{i]);

A XL EXEEEEEE LSS RS E LS L]

|
)

s\n", oarfile);

// Read .OAR header data (line beginning with I"|")

o8

Page 4

DR2ST.C Monday, August 17, 1992 3:40 pm

arrivals = 0;
do {
if(fgets(buf, 73, oarfil) == NULL) {
if(feof(ocarfil)) {
fprintf(stderr, "\nERROR: Premature end-of-file: %$s\n", ocarfile);
return(-1);

}

else {
fprintf(stderr, "\nERROR: Read error in: %s\n", oarfile);
return(-1);

}

}

if(strncmp(buf, "|Included Arrivals =", 20) == 0)
B arrivals = atoi(&buf([21)]);
} while(buf[0) == '|');

// Check that we have some arrivals

if(arrivals == 0)
fprintf(stderr, "\nERROR: No arrivals in: %s\n", oarfile); -
return(-1);

}

// Stream pointer at first DR100 filespec
return(0);

/***
int read_dr_header(void) {

// Open the DR100 input file

if((drlfil = fopen(curfile, "rb")) == NULL) {
fprintf(stderr, "\nERROR: Unable to open: %s\n", curfile);
return(-1);

}

// Read in the integer header

if(fread(&ihdr, 1, sizeof(ihdr), drlfil) != sizeof(ihdr)) {
fprintf(stderr, "\nERROR: Reading integer header: %s\n", curfile);
return(-1);

}

// Skip any additional integer "Bullshit blocks"
if(ihdr.ex int = 0) {
if(fseek(drlfil, (long)ihdr.ex_int*512L, SEEK_CUR) != 0) {
fprintf(stderr, "\nERROR: Unable to seek record: %s\n", curfile);
return(-1);
}
}

// Skip any additional ASCII "Bullshit blocks"
if(ihdr.ex_asc != 0) {
if(fseek(drlfil, (long)ihdr.ex_asc*512L, SEEK CUR) != 0 } {
fprintf(stderr, "\nERROR: Unable to seek record: %s\n", curfile);
return({ ~1);

}

}

// Read in the real header

if(fread(&rhdr, 1, sizeof(rhdr), drlfil) != sizeof(rhdr)) {
fprintf(stderr, "\nERROR: Reading real header: %s\n", curfile);
return(-1);

}

Page 5

DR2ST.C Monday, August 17, 1992 3:40 pm Page 6

// Skip any additional real "Bullshit blocks"
if((int)rhdr.ex flt 1= 0) {
if(fseek(drifil, (long)rhdr.ex_flt+*512L, S sz CUR) 1= 0)
fprintf(stderr, "\nERROR: Unable to seek record: %s\n", curfile);
return(-1);
}
}

// input file left open, stream pointer positioned at first data sample
jreturn(0); ‘
} |

//i**
int open_suds(void) {

int mon, day;

char buf[_ MAX PATH]);

SUDs DETECTOR 8d;

// 1f we dont have an explicit filespec, use h IST as filename
if(outfile{0] == '\0') {
mnday(ihdr.day, 1, &mon, &day);
sprintf(outfile, "%s8.DMX", list mgtime(maﬂe mstime(ihdr.yr+1900,
mon, day, ihdr hr, ihdr.min, (double)ihdr.sec), 9));
}

_fullpath(buf, outfile, _MAX PATH);
strcpy(outfile, buf);

s_upper(outfile);

// Open output file
stfil = st_open(outfile, "w+b");

// DETECTOR struct

st_init(DETECTOR, &sd);

strcpy(sd.net _node_id, "DR2ST");

sscanf(version, "SI", &sd.versionnum);

st_put(&sd, DETECTOR, sizeof(SUDS_DETECTOR), stfil);
st_flush(stfil);

return(0);

}

//***

int write_suds(void) {
int mon, day, blk;
long bytes;
double sec;
char _huge *ptr;
char huge *ptrl;
sSUDs DESCRIPTRACE _huge *dt;

// Check if block size is defined
if(ihdr.rec_bytes == ihdr.i_null)
ihdr.rec_bytes = 512;

// Allocate trace buffer
bytes = ((long)(ihdr.num_recs-1)*(long)ihdr.rec_bytes)+
{long) (ihdr.1 samp*2)+(long)sizeof(SUDS_DESCRIPTRACE);
if((ptr = (char huge *)halloc(bytes, sizeof(char))) == NULL) {
fprintf(stderr, "\nERROR: Not enough memory!\n" });
return(-1);

C10

DR2ST.C Monday, August 17, 1992 3:40 pm Page 7

}
dt = (SUDS_DESCRIPTRACE _huge *)ptr;

// Init the struct
st_init(DESCRIPTRACE, dt);

// Stuff the header values
strepy(dt->dt_name.st_name, stn);
dt->dt_name. component = comp;
mnday(ihdr.day, 1, &mon, &day);
sec = (double)(ihdr.sec)+((double)ihdr.msec*.001)+((double)ihdr.usec*0.000001);
dt->begintime = (MS_TIME)make mstime(ihdr.yr+1900, mon, day, ihdr.hr, ihdr.min, se
c)i
if(ihdr.d_type > 0)
dt->datatype = 'f£';
else
dt->datatype = 'i’';
dt->length = (((long)(ihdr.num_recs-1)*(long)ihdr.rec_bytes)/2)+
(long)ihdr.l_samp;
dt->rate = rhdr.rate;
dt->mindata = -32767;
dt->maxdata = 32767;
dt->avenoise = 0;
if(ihdr.p_flag)
dt->time correct = -(MS_TIME)rhdr.clk_cor;
else
dt->time correct = 0.0;
dt->rate_correct = 0.0;

if(verbose)
printf(", %ld samples, IST=%s\n", dt->length, list_mstime(dt->begintime, 4))

~e

// Init a pointer to first sample
ptrl = ptr+sizeof(SUDS_DESCRIPTRACE);

// Read in the full blocks of data
for(blk=1l; blk<=ihdr.num recs-1; blk++) (
if(fread(ptrl, sizeof(char), ihdr.rec _bytes, drlfil) != ihdr.rec_bytes) {
fprintf(stderr, "\nERROR: Reading sample data: %s\n", curfile);
return(-1);

}
ptrl+=ihdr.rec_bytes;

}

// Read in the last block

if(fread(ptrl, sizeof(int), ihdr.l_samp, drlfil) 1= ihdr.l_samp) ({
fprintf(stderr, "\nERROR: Reading sample data: %s\n", curfile);
return(-1);

}

// Write it and flush it

st_put(dt, DESCRIPTRACE, bytes, stfil);
st_flush(stfil);

// Free memory
hfree(ptr);

// Close the current input file
fclose(drlfil);

return{ O);

DR2ST.C Monday, August 17, 1992 3:40 pm

/********************t***************************+********************

void close files(void) (i

}

st_flush(stfil);
st_close(stfil);

fclose(oarfil);

if(verbose)
printf("Output written to: %s\n", outfile);

return;

//**b********************

int suds_sti(void) (

char *p;

int mon, day;
SUDS_STATIONCOMP sc;
SUDS INSTRUMENT in;

// Extract station name from current input filename
strnset(stn, '\0', 5); »

p = strchr(curfile, '.')+1;

strncpy(stn, p, 3);

// Stuff a station component and instrument struct with header values
st_init(STATIONCOMP, &sc);
st init(INSTRUMENT, &in);

switch(ihdr.com_num) {

case 1l:

case 4:

case 7:
sc.sc name.component = 'v';
ln.in name.component = 'v';
comp = 'v';
break;

case 2:

case 5:

case 8:
8C.B8C_name.component
in. in name.component
comp : lnl.
break;

case 3:

case 6:

case 9:
sc.sc_name.component = 'e';
in.in _name.component ‘e';
comp = 'e';

r

ln':
lnl;

break
}

strcpy(sc.sc_name.st_name, stn);
strepy (in.zn name.st . _name, stn);

switch(ihdr.mot_type) {

case 1:
sc.sensor_type = 'a‘';
in.sens_type = 'a’;
break;

case 2:
sc.sensor_type = 'v';

D
o

Page 8

DR2ST.C Monday, August 17, 1992 3:40 pm Page 9

in.sens_type = 'v';
break;

case 3:
sc.sensor_type = 'd’;
in.sens_type = 'd’';
break;

}

if(ihdr.d_type > 0) {
sc.data_ _type = 'f£';
in.datatype = 'f';

else {
sc.data_type = 'i‘';
in.datatype = 'i';
}

sc.data_units = 'd’;
scC. clip value = 32767.0;
sc.channel = ihdr.com _num;

if(ihdr.p_flag) {
sc.st_ lat = (LONLAT)rhdr.lat;
sc.st long = (LONLAT)rhdr.lon;
sc.elev = rhdr.elev;
sc.azim = ihdr.sen_horz;
sc.incid = ihdr.sen_vert;
sc.con_mvolts = rhdr.dig_con;
sc.clock_correct = rhdr.com_lag;
}

mnday(ihdr.day, 1, &mon, &day);

sc.effective = (ST TIME)make mstime(ihdr.yr+1900, mon, day, ihdr.hr,
ihdr.min, (double)ihdr.sec);

in.effective = gc.effective;

in.in_serial = ihdr.ser_num;
in. comps = ihdr.tot_com;
in.channel = ihdr.com _num;
in.void samp = (long)Thdr.i _null;
in. tr;g num = ihdr.seq_ num;
if(isalpha(ihdr.study([0]) || isdigit(ihdr.study{0]))
strncpy(in.study, ihdr.study, 6);
if(ihdr.sen ser_num == jhdr.i null)
in.en_ serial = 0;
else
in.sn_serial = ihdr.sen_ser_ num;
if(ihdr. pre_event == ihdr. i null)
in.pre_ event = 0;
else
in.pre_event = (float)ihdr.pre event*10.0;

if(ihdr.p_flag) {
in.dig_con = rhdr.dig_con;
in.aa_corner = rhdr.aa_corner;
in. aa_poles = rhdr. aa_poles,
in.nat_freq = rhdr.nat_freq;
in.damping = rhdr. damp coe;
in.mot_con = rhdr. coil _con;
in.gain = rhdr.gain;
in.local _x = rhdr.loc_x;
in.local _y = rhdr. loc B¢
in.local” _z rhdr.loc_ _Z;

olD

DR2ST.C Monday, August 17, 1992 3:40 pm Page 10

\
// Write it and flush it
st_put(&sc, STATIONCOMP, sizeof(SUDS_STATIONCOMP), stfil);
st_flush(stfil);
st_put(&in, INSTRUMENT, sizeof(SUDS_INSTRUMENT), stfil);
st_flush(stfil);

\
return(0);

}

//************t*********************************** L2 22 22222 2 22 X R 222 R 2]

long die(int in) {
exit(in);
}

//***
void s_upper(char *buffer) {
char *p;
for(p = buffer; *p; p++)
*p = toupper(*p);

ST2DR.C

Monday, August 17, 1992 3:37 pm

// ST2DR - SUDS to DR100 Conversion

// R. Banfill 21-Jul-1992

char version{] = "1.00";

#include
#include
#include
#include
#include
#include
#include
#include

#include
#include

<stdio.h>
<conio.h>
<stdlib.h>
<string.h>
<malloc.h>
<ctype.h>
<search.h>
<math.h>

<gsuds.h>
"drlhead.h"

#define INULL -32768
#define RNULL =-le+30

typedef struct DB {

ST_TIME effective;

char
char
char
int
int
float
float
float
int
int
int
float
float
int
int
int
float
int
} DB;

stn([S]);
study(6];
comp;
incid;
azim;
lat;

lon;
elev;
void_samp;
gain;
chan;
bev;

samp lag;
i_serial;
8_serial;
n_comps;
pre_evn;
trig_num;

int build_db(void);
int st2dr(void);

void s_upper(char *);

e e e e
e e e S

Time stamp

sc
in
sc
sC
sc
sc
sc
-1
in
sc
sc
sc
sc
in
in
in
in
in

Station ID

Study name

Component

Component incidence
Component azimuth

Station latitude

Station longitude

Station elevation

Void sample value

A/D gain (magnification)
Channel number

Bit count volts (mv/count)
Serial sampling lag
Instrument serial number
Sensor serial number
Number of components recorded
Pre-event length

Trigger number

int lookup(ST_TIME time, char *stn, int add);

double x2db(double x);
voeid dump_db(char *file);

int compare (DB *recl, DB *rec2);

DB *db;
DB *rec;

int nrecs;

char sudsfspec(MAX PATH], drlfspec[_MAX PATH};

FILE *sudsfil, *dri1fil;

int verbose = 1;
int debug = 0;

extern char *progname;

/]

main(int argc, char *argv(]) {

Page 1

>

ST2DR.C Monday, August 17, 1992 3:37 pm Page 2

register i;

printf("ST2DR -~ SUDS to DR100 data file converter - Version %.4s\n", version);
printf("Copyright (c) Robert Banfill 1992. All rights reserved.\n\n");

// Help

if(argv{1](0] == '2' || argv(1](1] == '2') {
printf("Usage: ST2DR [switches] ([inputfile]\n\n");

: printf("Switches:\n");

! printf(* /Q = Quiet, minimum status messages (Verbose).\n");

printf(" /D = Debug, dump database to ST2DR.DB (Off).\n\n");

printf(" inputfile = SUDS 1.3x data file.\n\n");

printf("() indicates default, {] indicates pptional arguments.\n");

exit(1);

}

progname = argv{Q];
sudsfspec[0] = '\0';

// Parse the command-line
for(i=1; i<argc; i++) {
if(argv[i]{0] == '/' || argv(i][0] == '=') {
switch(argv({il[(l]) (
case 'q':
case 'Q':
verbose = 0;
break;
case 'd':
case 'D':
debug = 1;
break;
default:
fprintf(stderr, "WARNING: Unrecognized command-line argument: %s\n", a

rgv(i));
}
else { |

_fullpath(sudsfspec, argv(i), _MAX PATH
8_upper(sudsfspec);

break;

)i

} |
|
»
if(verbose)

printf("Input filespec: $s\n\n", sudsfspec |);
sudsfil = st_open(sudsfspec, "r+b");

if(! build db())
exit(1);

if(! st2dr())
exit(1);

st _close(sudsfil);

if(! verbose)
printf("\n");

exit(0);

D
b e
)

ST2DR.C

Monday, August 17, 1992 3:37 pm

int st2dr(void) {

}

/1

SH_INT typ;
LG INT inp, len;
CHAR _huge *ptr;

st_rewind(sudsfil);

while((inp = st_get(&(void _huge *)ptr, &typ, &len,
if(typ == DESCRIPTRACE) ({
if(! write dr(ptr))
return(O);

s}
st_free(ptr, inp);
}

return(1);

sudsfil))

t= EOF) {

int write_dr(char _huge *ptr) {

register i;

char comp, buf(_MAX PATH];

int j, *iptr, yr, mn, dy, hr, mi, jd, found,
float *fptr;

double sc;

SH_INT _huge *data;

suDs DESCRIPTRACE _huge =*dt;

(SUDS_DESCRIPTRACE _huge *)ptr;
data = (SH INT _huge *) (dt+1);

// Build DR100 filename
decode_mstime(dt->begintime, &yr, &mn, &dy, &hr, &mi,
j& = yrday(mn, dy, isleap(yr, 0));

&sc);

sprintf(drlfspec, "%3.3d%c%2.2d%c%c.%.38", jd, 'A'+hr, mi,
'A'+((int)sc/3), dt->dt_name.st_name(3], dt->dt_name.st_name);

if(verbose)

printf("%s -> %g\n", dt->dt_name.st_name, drlfspec);

else
printf("\r%s", drlfspec);

// Clear headers

iptr = &ihdr.ex_int;

for(i=0; i<=255; i++)y {
*iptr = INULL;
iptr++;

}

fptr = &rhdr.ex flt;

for(i=0; i<=127; i++) {
*fptr = RNULL;

fptr++;
}
// Stuff the DR100 headers
ihdr.inst_type = 2;
ihdr.rec_sys = 4;
ihdr.loc_num = 1;
ihdr. ex_int = 0;
ihdr.ex asc = 0;
ihdr.i_ null = INULL;

D
[
-1

Page 3

ST2DR.C Monday, August 17, 199T 3:37 pm

ihdr.d_type = INULL;
ihdr.p_ _flag = 1;

ihdr.yr = yr-1900;

ihdr.day = ijd;

ihdr.hr = hr;

ihdr.min = mi;

ihdr.sec = (int)sc;

ihdr.msec = (int)((sc-(int)sc)*1000.0);
ihdr.usec = 0;

ihdr.num_recs = (;nt)((dt—>length+255L)

ihdr.1 samp = (int)(dt->length % 256L);
ihdr.rec_bytes = 512;
if(dt->Tength <= 32768)

ihdr.samps = (int)dt->length;

strcpy(ihdr.filename, drlfspec);

rhdr.ex flt = 0.0;
rhdr.r_ null = RNULL;

rhdr.rate = dt->rate;

if(lookup((ST_TIME)dt->begintime, dt->dt_name.st name, 0)) {

}

ihdr.sen_vert = rec~>incid;

ihdr.sen horz = rec->azim;

ihdr. com num = rec->chan;

ihdr.tot™ _Com = rec->n_comps;

ihdr.sen” _ser_num = rec->8 serial;

ihdr.ser _num = rec->i_serial;

strcpy(1hdr.study, rec->study);
ihdr.pre_event = (int)(rec->pre_evn*10.0);
ihdr.seq_num = rec~>trig_num;
ihdr.mot_type = 2;

rhdr.com_lag = rec->samp_lag;
rhdr.lat = rec->lat;

rhdr.lon = rec->lon;
rhdr.elev = rec->elev;

rhdr. d;g con = 1/(rec->bcv*(float)rec—>ga1n*0 001);

rhdr.gain = (float)x2db(rec->gain);

else {

ihdr.com_num = dt->dt_name.st_name{3]-'0";
ihdr.tot™ _com 6;
ihdr.mot_type = 2;
switch(Thdr.com_num) {
case 1:
case 4:
case 7:
ihdr.sen_vert
ihdr.sen_horz
break;
case 2:
case 5:
case 8:
ihdr.sen_vert
ihdr.sen_horz
break;
case 3:
case 6:
case 9:

nu
-~ O ~

i
[« RV

e
[
3

/ 256L);

Page 4

ST2DR.C Monday, August 17, 1992 3:37 pm Page 5

ihdr.sen_vert = 90;
ihdr.sen_ “horz = 90;
break;

}

rhdr.com_lag =

rhdr. dig con = 3276 8;

} -

// open the file

if((drlfil = fopen{ drlfspec, "w+b")) == NULL)
fprintf(stderr, "\nERROR: unable to open: %s\n", drlfspec);
return(0);

}

// Write the integer header

if(fwrite(&ihdr, 2, 256, drlfil) != 256) {
fprintf(stderr, "\nERROR: write error to: %s\n", drlfspec);
return(0);

}

// Write the real header

if(fwrite(&rhdr, 4, 128, drlfil) != 128) {
fprintf(stderr, "\nERROR: write error to: %s\n", drlfspec):
return(0);

}

// Write the full sample records
for(i=1; i<ihdr.num_recs; i++) {
if(fwrite(data, 2, 256, drlfil) != 256) {
fprintf(stderr, "\nERROR: write error to: %s\n", drlfspec);
return(0);

}
data += 256;
}

// Write last samples

if(fwrite(data, 2, ihdr.l samp, drifil) != ihdr.1l samp) {
fprintf(stderr, "\nERROR: write error to: %s\n", drlfspec);
return(0);

}
// Fill out the last block
j = INULL;

for(i=ihdr.l_samp; i<256; i++) {
if(fwrite(&j, 2, 1, drlfil) i= 1) {
fprintf(stderr, "\nERROR. write error to: %s\n", drlfspec);
return(0);

}

// Close the file
fclose(drlfil);

return(1);

/1 --- -=--
int build db(void) {

SH_INT typ,

LG INT inp, len;

CHAR _huge *ptr;

SUDS_STATIONCOMP *sc;

SUDS_INSTRUMENT *in;

o

faoe

)

ST2DR.C

if(verbose)
printf("Building database...");

// Initialize database
db = NULL;
nrecs = 0;

// Process all SC and IN structures

while((inp = st_get(&(void _huge *)ptr, &typ, &len, sudsfil))

switch(typ) {
case STATIONCOMP:
sc = (SUDS_STATIONCOMP *)ptr;
lookup(sc->effective, sc->sc_name.st

rec->effective = gc->effective;
strcpy(rec->stn, sc->sc_name.st_name

rec->comp = gc->8C name component ;
rec->azim = gc->azim;
rec->incid = gc->incid;

rec->lat = (float)sc->st_lat;
rec->lon = (float)str>at long;
rec->elev = gsc->elev;

rec->gain = sc->atod_gain;
rec->chan = ge->channel;
rec->bev = gc->con_mvolts;
rec->samp_lag = sc->clock ._correct;
break;

case INSTRUMENT:
in = (SUDS_INSTRUMENT *)ptr;

lookup(in->effective, in->in name.st_

rec->effective = gc->effective;
strcpy(rec->stn, in->in_name.st_name
strcpy(rec->study, in->study);

rec->pre_evn
rec->trig_num

in->pre_event;
in—>trxg num;

rec->void_samp = in->void_samp;
rec->i_ serial = in->in_serial;
rec->s_ “gerial = in—>sn_serial;
rec->n_ _comps = n->comps,

=

break;

}
gsort(db, nrecs, sizeof(DB), compare);

st_free(ptr, inp);
}

!if(debug)
dump_db("ST2DR.DB");

if(verbose)
printf("\r \r£");
return(1);

}

Monday, August 17, 1992 3:37 pm

|

|

_name, 1);

name, 1);

/1=

int compare (DB *recl, DB *rec2) {
// Compare routine for gsort

l= EOF) {

Page 6

ST2DR.C

Monday, August 17, 1992 3:37 pm Page 7

return(recl->effective-rec2->effective);

}

//
int lookup(ST_TIME time, char *stn, int add) (
register i;

// Returns true if found, else false
// rec points to current record

// Lookup record
for(i=0; i<nrecs; i++) {
rec = db+i;
if(stremp(rec—>stn, stn) == 0) {

if(rec->effective >= time) {
return(1);

}
}

}
// Add record if not found
i

£f(add) {
nrecs++;

if((db = (DB *)realloc((void *)db, sizeof(DB)*nrecs))
fprintf(stderr, "\nERROR: cannot allocate memory!\n");

exit (
}

1);

rec = db+(nrecs-1);
rec->effective = -2147472000;

}
return(0);
}

== NULL) {

//
LG_INT die(SH_INT in) {
// SUDS library fatal error handler

exit(in);

//

void s_upper(char *buffer)

char *p;

for(p = buffer; *p; p++)
*p = toupper(*p);

/
void dump db(char *file) (

register i;

FILE *dmpfil;

dmpfil = fopen(file, "w");

fprintf(dmpfil,

"Database dump: $s\n\n", sudsfspec);

for(i=0; i<nrecs; i++) {
rec = db+i;

fprintf(
fprintf(
ctive, 4));
fprintf(
fprintf(
fprintf(
fprintf(

dmpfil,
dmpfil,

dmpfil,
dmpfil,
dmpfil,
dmpfil,

"Rec

ord #%d\n", i);

Time stamp $8\n", list_mstime(rec->effe
Station ID ss\n", rec->stn);

Study name %s8\n", rec->study);
Component sc\n", rec->comp);

Component incidence %d\n", rec->incid);

|

U ke e

ST2DR.C Monday, August 17, 1992 3:37 pm Page 8
{

fprintf(dmpfil, " Component azimuth ‘ sd\n", rec->azim);
fprintf(dmpfil, * Station latitude sf\n", rec->lat);
fprintf(dmpfil, " Station longitude : sf\n", rec->lon);
fprintf(dmpfil, " Station elevation 3f\n", rec->elev);
fprintf(dmpfil, " Void sample value td\n", rec->void_samp);
fprintf(dmpfil, ® A/D gain (magnification) %d\n", rec->gain);
fprintf(dmpfil, " Channel number %d\n", rec->chan);
fprintf(dmpfil, " Bit count volts (mv/count) $f\n", rec->bcv);
fprintf(dmpfil, " Serial sampling lag $f\n", rec->samp_lag);
fprintf(dmpfil, " Instrument serial number $d\n", rec->i_serial);
fprintf(dmpfil, " Sensor serial number %d\n", rec->g_serial);
fprintf(dmpfil, " Number of components rec¢orded %d\n", rec~>n_comps);
fprintf(dmpfil, " Pre-event length %£f\n", rec->pre evn);
fprintf(dmpfil, * Trigger number %d\n\n", rec->trig num);

}
fclose(dmpfil);

return;
}

//

double x2db(double x) {
// Magnification to dB
return(20.0 * 1loglO(x));

}

o
)
']

DR1HEAD.H Monday, August 17, 1992 3:40 pm Page 1

// DR100 Header defintions
// 18-Jul-1992, RB

// Integer header

struct DR1IHDR {
int ex_int; // 1 Number of extra 512 byte integer records
int ex_asc; /] 2 Number of extra ASCII blocks
int i null, // 3 "Undefined" integer value (INULL)
int 4~ | type; /] 4 Data type: >0 = Real, <0 = Integer
// abs = #bytes/sample except 1=R*4, INULL=I*2
int p_flag; // 5 Additional param flag, if 1 (*) params are defined
int rec_sys; // 6 Recording system identification
int dummyl({3}; // 7-9 Undefined
int yr; // 10 IS8T year
int day; // 11 IS8T julian day (day of year)
int hr; // 12 IS8T hour
int min; // 13 1IST minute
int sec; // 14 IST second
int msec; // 15 1IST millisecond
int usec; // 16 IST microsecond
int tic_samp; // 17 Sample index of first tickmark
int tic_det; // 18 Detection amplitude of tickmark
int tic_num; // 19 Number of tickmarks detected
int ser_num; // 20 Serial number of recording unit
int seq_num; // 21 Event sequence number
int dummy2({5]); // 22-26 Undefined

int fir_chn; // 27 First active channel number recorded on unit
int act_chn; // 28 Actual channel as rcorded on unit

int tot_chn; // 29 Total number of channels recorded on unit

int tot_com; // 30 Total number of components recorded on unit
int num_recs; // 31 Number of data records that follow

int 1_samp; // 32 1Index of last data sample in last data record
int rec_bytes; // 33 Record size (bytes)

int pb_prog, // 34 Playback program: 1=RDGEOS, 2=AFTAPE

int pb_ver_ 1; // 35 Playback program major version number

int pb ver 2, // 36 Playback program minor version number

int inst type, // 37 Instrument type: 1=GEOS, 2=DR200

int inst™ _ver_1; // 38 1Instrument major version number

int lnst ver 2, // 39 Instrument minor version number (GEOS software version)
int sen_ ser _num; // 40 Sensor serial number

int sen vert; // 41 (*) Vertical orientation (degrees)

int sen horz, // 42 (*) Horizontal oreintation (degrees, CW from north)
char sen_model[14};// 43-49 Sensor model number

int loc_num; // 50 Location number (GEOS)

int exp_num; // 51 Experiment or tape number (GEOS)

int trig_type; // 52 Trigger type

int trlg sta; // 53 Trigger STA (tenths of seconds) (GEOS)

int trig 1lta; // 54 Trigger LTA (seconds) (GEOS)

int trig ratio; // 55 Trigger ratio STA/LTA 2** (GEOS)

int trig_com: // 56 Trigger component number (GEOS)

int pre_event; // 57 Pre-event memory size (tenths of seconds)

int post_trig; // 58 Post-trigger duration (seconds)

int dummy3{42]}]; // 59-100 Undefined

char history(214]; //

int
int

dlr num_1;
dlt num_. 2;

//
/1

101-207 (*) Bugger processing history

208
209

Directory number (study ID number)
Subdirectory number (or tape-set number)

DR1HEAD.H

char filename[14]; //

Monday, August 17, 1992 3:40 pm

210-216 ASCII filaename

Page 2

char study(6];

//

int dummy4([32); //
int clk_type; 1/
//
int evn_type; //
//
1/
int mot_type; 1/
//
int com_num; //
//
/1l
int samps; //
/1l
} ihdr;
// Real header
struct DR1RHDR {
float ex_ flt; //
float r_null; //
float dummyl{2); //
float rate; //
float com_lag; 1/
float dummy2(32); //
float t_type; //
float lat; //
float loc_x; //
float lon; //
float loc_y; //
float elev; //
float loc_z; //
float dig_con; //
float aa_corner; [/
float aa_poles; //
float nat_freq; //
float damp_coe; 1/
float coil_con; //
float gain; //
float dummy3(7}; //
float clk_cor; //
float clk_cor_tim; //
float voltage; //
float d_trig_rat; //
float act_sta; //
float act_lta; //
float max_sta_lta; //
float dummy4(62]; //
} rhdr;

217-219 Study name
220-251 Undefined

252
253

Clock type (GEOS): O=none, 1=WWVB,
2=external (master), 3=manual

Event type (GEOS): O=continuous, l=trigger,
2=preset, 3=calibration, 4=amplifier calibration,
S=gengor calibration

254 Motion type: l=acceleration, 2=velocity,
3=displacement, S50=volumetric strain

255 Component number: l-3=acceleration vector,
4-6=velocity vector, 7-9=dispacement vector
1,4&7=vertical co nents, 2,3,5,6,8&9=horizontals

256 Total number of samples in event, valid only when
I031 (num_recs) <= 128

1 Number of extra 512 byte real records

2 "Undefined"” real value (RNULL)

3-4 Undefined

5 Sample rate (samples/second)

6 (*) Component serial sample lag

7-38 Undefined

39 (*) Tranducer type

40 (*) Latitude (degreei)

41 Local coordinate X (meters)

42 (*) Longitude (degrees)

43 Local coordinate Y (meters)

44 (*) Elevation (meters)

45 Local coordinate Z (depth below surface, meters)

46 (*) Digitizing constant (counts/volts)

47 (*) Anti-alias filter corner frequency (Hz)
48 (*) Poles of AAF, roll-off = 6dB/pole

49 (*) Transducer natural frequency (Hz)

50 (*) Transducer dampimg coefficient

51 (*) Coil-constant (volts/motion unit)

52 (*) Amplifier gain (dB when IS5 (pflag) = 1)

$3-59 Undefined

60 (*) Clock correction (subtract from IST)
61 Seconds since last clock correction

62 Voltage

63 Desired trigger ratio (real value=2+**I55)
64 Actual value of STA at trigger

Actual value of LTA at trigger
Maximum value of STA/LTA during event

67-128 Undefined !

README. TXT Monday, August 17, 1992 3:43 pm

GRM2ST - CUSP GRM file to SUDS converter version 1.00
ST2GRM - SUDS to CUSP GRM file converter version 1.00

Sun 16-Aug-1992 21:27, RB
These two programs convert data files between CUSP GRM and SUDS format.

These programs were written using Microsoft C 6.00AX and the makefile
provided is for the PWB.

Additional libraries required:
HSUDS.LIB - SUDS data file library version 1.31.
Available from:
Small Systems Support
2 Boston Harbor Place
Big Water, UT 84741-0205
(801) 675-5827 Voice
(801) 675-3730 FAX

Once built, the programs offer command line help by typing only the name
of the executable (e.g., ST2GRM) and pressing return.

GRM2ST processes a single GRM file to produce a single and equivalent SUDS
data file. ST2GRM performs the process in reverse.

Source files included:

GRM2ST € 14214 03-07-92 7:18p

ST2GRM C 12997 03-07-92 7:22p

GRM_HEAD H 2154 03-05-92 12:25p <- C GRM structure definitions
GRM_HEAD INC 6205 03-04-92 4:08p <~ FORTRAN GRM structure definitions
GRM2ST MAK 2281 03-07-92 3:59p

ST2GRM MAK 2307 03-07-92 6:51p

o
o
I

Page 1

GRM2S8T.C Monday, August 17, 1992 3:41 pm

// GRM2ST - sat 07-Mar-1992 13:07, RB

// Copyright (C) Robert Banfill 1992. All rights reserved.

// Converts CUSP .GRM files to SUDS 1
#define VERSION "1.00"

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>

#include "grm_head.h"
#include <suds.h>

// Prototypes

int build db(FILE *grmfil);

int write _file(FILE *grmfil, char *sudsfspec);
int dump grm head(FILE *grmfil);

int get | blk(“char *ptr, FILE *grmfil);

long *1 unxdr(long *val);

float *f unxdr(float *val);

int *i unxdr(int *val);

MS TIME grm2ms_time(TIME *grm);

vold s_upper(char *buffer);

// Defines

#define BLOCK_SIZE 512
#define STRUCT_ SIZE 64
#define CHUNK 32767

// TypeDefs
typedef unsigned char UCHAR;

typedef struct (

char stn{5); // Station name
char comp; // Component descriptor
MS_TIME ist; // Initial sample time
long offset; // Byte offset into file for firgt sample
long length; // Number of samples
long chan; // Channel or "Pin" number
} REC;
// Globals
REC *db;

long num_recs, rec_num;
char net[4];

float rate;

char d_type = '_';
MS_TIME base_time;
ST_TIME eff_time;

int dump =
int verbose = 1;

char *progname;

-

//

main(int arge, char *argv{]) {
~FILE *grmfil;
char grmfspec{ MAX PATH], sudsfspec[_ MAX_ PATH]

buf [_MAX_PATH];

Page 1

GRM2ST.C Monday, August 17, 1992 3:41 pm Page 2

progname = argv{0];

fprintf(stderr, "GRM2ST - CUSP GRM to SUDS data file converter - Version %.4s\n",
VERSION);
fprintf(stderr, "Copyright (c) Robert Banfill 1992. All rights reserved.\n\n");

if(arge < 3) {
" printf("Usage: GRM2ST grmfilespec { sudsfilespec | /Dump }\a");
printf(" /Dump = Dump header values to stdout\n");
exit(1);
}

strcpy(grmfspec, argv(1l]);
_fullpath(buf, grmfspec, _MAX_ PATH);
gstrcpy(grmfspec, buf);

s_upper(grmfepec);

s_upper(argv(2]);
if(strncmp(argv{2), "/D", 2) == 0) {
dump = 1;
strcpy(sudsfspec, "Dump header to stdout”);

else {
strcpy(sudsfspec, argv(2]);
_fullpath(buf, sudsfspec, _MAX_PATH);
strcpy(sudsfspec, buf);
s_upper(sudsfspec);

}

if(verbose)
printf("Input GRM filespec : %s\n", grmfspec);
printf("Output SUDS filespec: %s\n\n", sudsfspec);
}

if((grmfil = fopen(grmfspec, "r+b")) == NULL) {
fprintf(stderr, "\nERROR: Unable to open: %s\n", grmfspec);

exit(1);
}
if(dump) {
if(! dump_grm_head(grmfil)) {
fprintf{ stderr, "\nERROR: Unable to dump header: %s\n", grmfspec);
exit(1);
}
else (
if(! build db(grmfil)) {
fprintf(stderr, "\nERROR: Unable to read header: %s\n", grmfspec);
exit(1);
}
if(! write file(grmfil, sudsfspec))
exit(1);
}
fclose(grmfil);
exit(0);
}
//

int write file(FILE *grmfil, char *sudsfspec)
register i;
long 1, m, bytes, read bytes, total;

(@]

ro

GRM2ST.C Monday, August 17, 1992 3:41 pm Page 3

REC *rec;

SUDs STATIONCOHP 8C;

SUDS™] DESCRIPTRACE huge *dt;
FILE *sudsfil;

char _huge *ptr;

sudsfil = st _open(sudsfspec, "w+b");

for(1=0; l<num_recs; l++) {

d\n",

rec = db+l;

if(verbose)
printf("\rProcessing %1ld of %1ld records.

if(fseek(grmfil, rec->offset, SEEK SET) !

»e", 1+1, num recs);

0) {
fprintf(stderr, "\nERROR: Unable to seokrrecord in input file\n");

st cloae(sudsfil);
return(0);

}

bytes = (rec->length * sizeof(int)) + sizeof (SUDS_DESCRIPTRACE);
if((dt = (SUDS_DESCRIPTRACE _huge *)halloc(bytes, 1)) == NULL) {
fprintf(stderr, "\nERROR: Not enough memory for trace buffer: ld bytes neede

bytes);
st_close(sudsfil);
return(0);

}
ptr = (char _huge *)dt + sizeof(SUDS_DESCRIP

CE);

read bytes = bytes - 8izeof (SUDS_ DESCRIPTRACE) ;

total = 0;
while(total+CHUNK <= read bytes) (
if(fread(ptr, 1, CHUNK, grmfil) != CHU
fprintf(stderr, "\nERROR: Read error
st_close(sudsfil);
return(0);

}
ptr += CHUNK;
total += CHUNK;

}

if(fread(ptr, 1, (size_t)(read_ bytea-total
fprintf(stderr, "\nERROR: Read error in
st_close(sudsfil);
return(0);

}
st_init(STATIONCOMP, &sc);

K) {
in input file\n");

), grmfil) != read bytes-total) {
input file\n");

strcpy(sc.sc _name.st_name, rec->stn);
8C.8C_name. component = rec->comp;
sc.data _type = d_type;

sc.data_ “units = "d';

sc.channel = rec->chan;

sc.effective = eff time;

st_init(DESCRIPTRACE, dt);

strcpy(dt->dt _name.st_name, rec->stn);
dt->dt_name. component = rec->comp;
dt->begintime = rec->ist;
dt->datatype = d_type;

dt->length = rec->length;

dt->rate = rate;

dt->mindata = -32767.0;

dt->maxdata = 32767.0;

- N
(VR

GRM2ST.C Monday, August 17, 1992 3:41 pm Page 4

dt->avenoise = 0.0;
dt->time correct = 0.0;
dt->rate _correct = 0.0;

st_put(&sc, STATIONCOMP, sizeof(sc), sudsfil);
st_put(dt, DESCRIPTRACE, bytes, sudsfil);

hfree(dt);
}
st_close(sudsfil);

return(1);

}

[/
int build db(FILE *grmfil) {
register i;
long bytes, header_len;
char *ptr;
TAG *tag;
HID *hid;
HST *hst;
HPN *hpn;
REC *rec;

if((ptr = (char *)malloc(BLOCK_SIZE)) == NULL) {
fprintf(stderr, "\nERROR: Unable to allocate memory!\n");
return(0);

}
bytes = num_recs = rec_num = 0;
do {
if(get blk(ptr, grmfil) <= 0)

break;

for(i=0; i<8; i++) {
bytes += STRUCT_SIZE;

tag = (TAG *)(ptr+(i*STRUCT_SIZE));
1 unxdr(&tag->ltid);

if(strncmp(tag->ctid, "HID", 3) == 0) {
hid = (HID *)tag;

header_len = *1_unxdr(&hid->bytes);
if(verbose) {
hid->time.sec = 0.000001;
f unxdr(&hid->time.sec);
eff_time = (ST_TIME)grm2ms_time(&hid->time);
printf("Header created: %s\n", list _mstime((MS_TIME)eff time, 4));

}
else if(strncmp(tag->ctid, "HST", 3) == 0) {
hst = (HST *)tag;

base_time = grm2ms_time(&hst->time);
rate = 1.0 / *f unxdr(&hst->rate);
strncpy(net, hst->net.str, 4);
if(*1 unxdr(&hst->inc) (= 2)
fprintf(stderr, "\nERROR: Unsupported data type: %1ld bytes/sample\n",
hst->inc);
return(0);
}
d type = 'i';

GRM2ST.C

Monday, August 17, 1992 3:41 pm Page 5

i L
else if(strncmp(tag—->ctid, "HPN", 3) == 0) {(

if(bytes >= header_len)

}
} while(

free(ptr);

hpn = (HPN *)tag;

num_recs++;
rec num = num_recs - 1;
if("(db = (REC *)realloc(db, (size_t)num recs*sizeof(REC))) == NULL)

fprintf(stderr, "\nERROR: Unable tp allocate memoryl\n");
return(0);

rec = db+rec_num;

stracpy(rec->stn, hpn->name.str, 4);

rec->stn(4) = '\0';

rec->comp = hpn->type.str{0];

rec->ist = base_time + ((MS_TIME)(*l ubxdr(&hpn->rtc)-1) / (MS_TIME)rate

rec->offset = *1 unxdr(&hpn->key) + header _len;

rec->length = *1 unxdr(&hpn->n) / sizeof (int);
rec->chan = *] unxdr(&hpn=->pin);

break;

bytes < header_len);

return(1);

}
//

int dump grm head(FILE *grmfil) {

register

’

long bytes, str, header_len;
char *ptr;

TAG *tag;
HID *hid;
HST *hst;
HPN *hpn;

if((ptr = (char *)malloc(BLOCK_SIZE)) == NULL) {
fprintf(stderr, "\nERROR: Unable to allocate memory!\n");
return(0);

}
bytes =

do {

str = 0;

if(get blk(ptr, grmfil) <= 0)
break;

for(i=0; i<8; i++) (
bytes += STRUCT_SIZE;
str++;

tag = (TAG *)(ptr+(i*STRUCT_SIZE));
1 _unxdr(&tag->ltid);

printf("\nStructure %1ld: %s\n", str, tag->ctid);

if(strncmp(tag->ctid, "HID", 3) == 0 {

hid = (HID *)tag;

r o
i,‘ja)

GRM2ST.C

printf(
printf(
printf(
(&hid->who.n));

header_len

Monday, August 17, 1992 3:41 pm Page 6

Bytes in heade
Mem ID#
Analyst ID

= hid->bytes;

r

o o0 oo

}
else if(strnemp(tag->ctid, "HsT"
hst = (HST *)tag;

printf(»
printf(
e), 4))
printf(
printf(
printf(
printf (
(&hst->net.n));
printf(
(&hst->dev.n));
printf(
printf(
printf(
printf(
printf(
printf(

Set number
MSTIME

Year, month, day

Hour, minute
Second
Network name
Device name

Sampling rate

Bytes per sample

Digitizer bits
Max counts
Max volts
Time sync code

00 ee 00 00 o0 o0

}
else if(strnemp(tag->ctid, "HPN"
hpn = (HPN *)tag;

printf(
printf(
printf(

r(&hpn->name.n));

printf(
r(&hpn->type.n));
printf(
printf(
printf(
printf(
printf(
}
else {
printf(

2 2 3 3 3

if(bytes >=

break;

Set number
Pin number
Station name

Component

Time to 1lst sample

GRM offset

Length of trace
Triggering mask

Time to trigge

r

e o0 o0 o0 o0

$1d\n", *1 unxdr(&hid->bytes));
$1d\n", =*1 unxdr(&hid->id));
%.4s, %1d chars\n", hid->who.str, *1 _unxdr

¢+ 3)==0) {

$1d\n", *1 unxdr(&hst->set));
ss\n", list _mstime(grm2ms_time(&hst->tim

$1d\n", hst->time.date);

%$1d\n", hst->time.time);

sf\n", hst->time.sec);

%.48, %ld chars\n", hst->net.str, *1_unxdr

%.4s, %14 chars\n", hst->dev.str, *1 unxdr

$f\n", *f unxdr(&hst->rate));
$1ld\n", *1 _unxdr(&hst->inc));
$1d\n", *1 unxdr(&hst->bits))
$1d\n", *17 _unxdr(&hst->mc));
$f\n", *f unxdr(&hst->vm));
$1d\n", *I_unxdr(&hst->sync));

r 3) ==20) {

%1d\n", *1 unxdr(&hpn->set));
$1ld\n", *1 unxdr(&hpn->pin));
%$.8s, %1d chars\n", hpn->name.str, *1 _unxd

%.4s8, %1d chars\n", hpn->type.str, *1 unxd

$1d\n", *1 unxdr(&hpn->rtc))
$1d\n", *1 unxdr(&hpn->key))
%$1d\n", *1 unxdr(&hpn->n));
%$1d\n", *1 unxdr(&hpn->mask));
$1d\n", *1_unxdr(&hpn->trc));

(I
“ we

Unrecognized structure\n”);

header len)

}
} while(bytes < header_len);

fclose(grmfil);
free(ptr);

return{(1);

}
/
/
f -—
UCHAR ¢, *p;

= (UCHAR *)val;

// Swap bytes 1 & 4

cz*p;

/
/ Un-XDR four byte reals
loat *f unxdr(float *val) {

// Byte orders:

// XDR
// 80x86

o
o
[

4321
1234

GRM2ST.C Monday,

*p = *(p+3);

*(p+3) = ¢;

// Swap bytes 2 & 3
c = *(p+l);

*(p+l) = *(p+2);
*(p+2) = c;

return(val);

- ——

August 17, 1992 3:41 pm

|

// Un-XDR four byte integers
long *1 unxdr(long *val) {

UCHAR c, *p;
// Byte orders:
p = (UCHAR *)val; // XDR = 4321
// 80x86 = 1234
// Swap bytes 1 & 4
c = *p;
*p = *(p+3);
*(p+3) = c;

// Swap bytes 2 & 3
c = *(p+l);

*(p+l) = *(p+2);
*(p+2) = ¢;

return(val);

//
// Un-XDR two byte integers
int *i unxdr(int *val) {

UCHAR c, *p;

// Byte orders:
p = (UCHAR *)val; // XDR =

// 80x86 = 12
// Swap bytes 1 & 2
c = *p;
*p = *(p+l);

*(p+l) = c;

return(val);

/1=
int get_blk(char *ptr, FILE *grmfil) ({

// Read the next block in the stream

if((fread(ptr, sizeof(char), BLOCK_SIZE, grﬁfll))

if(ferror(grmfil)) {
fprintf(stderr,
return(-1);

}
elge if(feof(grmfil))
return(0);

}

return(1);

//

[l

[

{2

"\nERROR: Read error on input file!\n");

= BLOCK_SIZE) {

Page 7

GRM2ST.C Monday, August 17, 1992 3:41 pm

// Convert GRM file TIME struct to MSTIME
MS TIME grm2ms time(TIME *grm) {

}
//

long date, time;
int year, mon, day, hour, min;
double sec;

// GRM date is stored as long int YYYYMMDD
date = *1 unxdr(&grm->date);

year = date / 10000;

mon = (date / 100) - (year * 100);

day = date - ((year * 10000) + (mon * 100));

// GRM time is stored as long int HHMM
time = *1 unxdr(&grm->time);

hour = time / 100;

min = time - (hour * 100);

// GRM second is stored as float
sec = (double)*f unxdr(&grm->sec);

// See if year include century
if(year < 100) 3
year += 1900;

return(make mstime(year, mon, day, hour, min, sec));

long die(int in) {

}
//

exit(in);

void s_upper(char *buffer) {

char *p;
for(p = buffer; *p; p++)
*p = toupper(*p);

Page 8

ST2GRM.C Monday, August 17, 1992 3:42 pm Page 1

// ST2GRM - Sat 07-Mar-1992 13:07, RB
// Copyright (C) Robert Banfill 1992. All rights reserved.

// Converts SUDS 1 files CUSP .GRM
#define VERSION "1.00"

// Includes

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <ctype.h>

#include "grm_head.h”
#include <suds.h>

// Prototypes

int build_db(void);

int wr_grm_head(void);

int wr traces(void);

long *1 xdr(long *val);

float *f_xdr(float *val);

int *i_xdr(int *val);

void s upper(char *buffer);

void mszgrm time(TIME *grm, MS_TIME ms);

/ Defines
#define BLOCK_SIZE 512
#define STRUCT SIZE 64
#define CHUNK 32767

// TypeDefs
typedef unsigned char UCHAR;

typedef struct {
char stn{S};
char comp;
MS_TIME ist;
long grm_offset;
long length;
long st_offset;
long chan;

} REC;

typedef struct {
char stn{5];
char comp;
ST _TIME eff;
long chan;

} STATI;

// Globals

REC *db;

long num_recs, rec_num;
char netT4];

float rate;

char d_type = '_';
MS TIME base txme;
ST “TIME eff tlme-

~

int verbose = 1;

s

c
C.
W

ST2GRM.C Monday, August 17, 1992 3:42 pm

char *progname;
FILE *sudsfil, *grmfil;

Page 2

//
main(int argc, char *argv{]) {

char grmfspec(_MAX_PATH), sudsfspec[_MAX_PATH], buf(_MAX PATH);

progname = argv{0];

fprintf(stderr, "ST2GRM - SUDS to CUSP GRM data file converter

VERSION);

fprintf(stderr, "Copyright (c) Robert Banfill 1992. All rights

if(argc < 3)

printf("Usage: ST2GRM sudsfilespec grmfilespec\n");

exit(1);

strcpy(sudsfspec, argv(l]);
_fullpath(buf, sudsfspec, _MAX_PATH);
strcpy(sudsfspec, buf);

s_upper(sudsfspec);

strcpy(grmfspec, argv(2]);

_fullpath(buf, grmfspec, _MAX PATH);
strcpy(grmfspec, buf);

s_upper(grmfspec);

if(verbose) {
printf("Input SUDS filespec: %s\n",

}

sudsfil = st_open(sudsfspec, "r+b");

if((grmfil = fopen(grmfspec, "w+b")) == NULL)
fprintf(stderr, "\nERROR: Unable to open: %8\n", grmfspec)

exit(1);
}

if(! build db())
exit(1):

if(! wr_grm_head())
exit(1);

if(| wr_traces())
exit(1);

st_close(sudsfil);

fclose(grmfil);

exit(0);
}

sudsfspec);
printf("Output GRM filespec: %s\n\n", grmfspec);

//
int wr_traces(void) {
long 1, total;
int typ;
long inp, len;
REC *rec;

¢

-

- Version %.4s\n",

reserved.\n\n");

’

ST2GRM.C Monday, August 17, 1992 3:42 pm Page 3

char _huge *ptr, _huge *data;
for(1=0; l<num _recs; l++) {
printf("\rProcessing %1d of %ld traces”, 1l+l, num recs);
rec = db+l;
st_seek(sudsfil, rec->st_offset, 0);
inp = st_get(&ptr, &typ, &len, sudsfil);
if(typ != DESCRIPTRACE) {

fprintf(stderr, "\nERROR: Fatal error accessing SUDS filet\n");
return(0);

}
data = ptr + sizeof (SUDS_DESCRIPTRACE); |
total = 0;

while(total+CHUNK <= rec->length) {
if(fwrite(data, CHUNK, 1, grmfil) 1= 1) {
fprintf(stderr, "\nERROR: Write error to output file\n");
return(0);
}
data += CHUNK;
total += CHUNK;

}

if(fwrite(data, (size t)(rec—>1ength-totau), 1, grmfil) 1= 1) {
fprintf(stderr, "\nERROR: Write error td output file\n");
return(0);

}
st_free(ptr, (int)inp);
}
return(1);
}
//

int wr_grm_head(void) {
long 1, offset = 0, bytes, bytes_written;
HID hid;
HST hst;
HPN hpn;
REC *rec;
long header_bytes;
char *ptr;

printf("\rWriting GRM header ")

// Header must be multiple of 512 bytes (8 structs)
header bytes = ((((num _recs - 1) / 8) + 1) * 8) * STRUCT_SIZE;

// Output the HID struct

strcpy(hid.tag.ctid, "HID " };

1l xdr(&hid.tag.ltid);

hid.bytes = header_bytes;

1 xdr(&hid.bytes Y:

hid.id = 0;

hid.who.n = 0;

strncpy(hid.who.str, " ", 4);
ms2grm_time(&hid.time, eff time);

£36

ST2GRM.C Monday, August 17, 1992 3:42 pm Page 4

if(fwrite(&hid, sizeof(hid), 1, grmfil) (=1)
fprintf(stderr, "\nERROR: Write error to output file\n");
return(0);

}
bytes written = sizeof(hid);

// Output the HST struct

strcpy(hst.tag.ctid, "HST ");
l:xdr(&hst.tag.ltid);

hst.set = 0;

mg2grm_time(&hst.time, base_time);
hst.net.n = 4;

1l _xdr(&hst.net.n);

strncpy(hst.net.str, net, 3);

hst.net.str(3] = ' *;
hst.dev.n = 0;
strncpy(hst.dev.str, " ", 3);

hst.rate = 1.0 / rate;
f_xdr(&hst.rate);
hst.inc = 2;

1l xdr(&hst.inc);
hst.bits = 0;
hst.mc = -99;

1l xdr(&hst.mc);
hst.vm = =-99.0;
f_xdr(&hst.vm);
hst.sync = 0;
1_xdr(&hst.sync);

if(fwrite(&hst, sizeof(hst), 1, grmfil) =1) {
fprintf(stderr, "\nERROR: Write error to output file\n");
return(0);

bytes written += sizeof(hid);

/] Write out HPN structs
for(1=0; l<num_recs; l++) {
rec = db+l;

strcpy(hpn.tag.ctid, "HPN ");

1l _xdr(&hpn.tag.ltid);

hpn.set = 0;

hpn.pin = rec->chan;

1l xdr(&hpn.pin);

hpn.name.n = 8;

1_xdr(&hpn.name.n);

strncpy(hpn.name.str, rec->stn, 4

strncpy(&hpn.name.str(4], " ",

hpn.type.n = 4;

1_xdr(&hpn.type.n);

strncpy(hpn.type.str, " ", 4)
hpn.type.str[(0] = toupper(rec->comp);

)7
4);

hpn.rtc = (long)((rec->ist - base_time) / rate) + 1;

hpn.key = offset;
1_xdr(&hpn.key);
offset += rec->length;

hpn.n = rec->length;

1 _xdr(&hpn.n);
hpn.mask = 0;

hpn.trc = -2147483647;

C37

ST2GRM.C Monday, August 17, 1992 3:42 pm

1_xdr(&hpn.trc);

if(fwrite(&hpn, sizeof(hpn), 1, grmfil) I= 1) {

fprintf(stderr, "\nERROR: Write error to output file\n");

return(0);

}
bytes _written += sizeof (hid);
}

// Fill out the header
bytes = header bytes-bytes_written;
if(bytes > 0) {
if((ptr = (char *)malloc((size_t)bytes)

fprintf(stderr, "\nERROR: Unable to allo ate memory!\n");

return(0);

}
memeset (ptr, 0, (size t)bytes):
if(fwrite(ptr, 1, (slze t)bytes, grmfil)

return(0);

}
free(ptr);
}

return(1);
}

== NULL)

= bytes) {
fprintf(stderr, "\nERROR: Write error to output file\n");

//
// Convert MSTIME to GRM file TIME struct
void ms2grm_time(TIME *grm, MS_TIME ms) {

long date, time;

int year, mon, day, hour, min;

double sec;

decode_mstime(ms, &year, &mon, &day, &hour, &m

// GRM da<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>