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SUMMARY

This summary is presented in a non-technical format for the aid of land-use planners and
other non-scientific personnel,

The assessment of the resource potential of the Routt National Forest and the Middle Park
Ranger District of the Arapaho National Forest, Colorado (referred to as "the Forest" in this
report) was made to assist the U.S. Forest Service in fulfilling the requirements of Title 36,
Chapter 2, part 219.22, Code of Federal Regulations and to supply resource information so that
the mineral resources of the Forest can be considered along with other resources in land-use
planning. The Middle Park Ranger District of the Arapaho National Forest is included in this
report on the Routt National Forest because the two areas are administered by the staff of the
Routt National Forest and are included in a single planning document.

This report discusses the potential for as yet undiscovered mineral and energy resources
within the Forest. All available information regarding mineral deposits or occurrences and energy
resources, as of June 1994, was assembled to assess the mineral and energy potential. Geological
and geophysical maps were compiled at a scale of 1:250,000 (pl. 1-3 ). Mineral and energy
potential maps were also created for deposit types within the Forest.

Although most of the Forest is north of the productive Colorado mineral belt, the Forest
has a history of mineral exploration and some mining development. The molybdenum mine at
Henderson is located just outside the southeastern boundary of the Forest and the Northgate
district, in the northeastern part of the Forest, was an important producer of fluorspar. Deposits
of gold, silver, lead, zinc, copper, fluorspar, uranium, and vanadium have been exploited from
mines and prospects within the Forest. Some production of the industrial minerals mica,
vermiculite, crushed and lightweight aggregate, and sand and gravel has also occurred. Coal beds
and oil and gas reservoirs have been identified within and adjacent to the Forest, and geothermal
waters from hot springs in the area have been used for recreational purposes.

Character and Geologic Setting

The Routt National Forest and the Middle Park Ranger District of the Arapaho National
Forest cover about 1.2 million acres in north-central Colorado. Seven mountain ranges and parts
of six counties are within the Forest. The Forest consists primarily of forested land at higher
elevations separated by rolling hills, sage-covered valleys, and broad meadows. Elevations range
from about 6,800 ft at Mad Creek to more than 12,900 ft at Clark Peak in the Medicine Bow
Mountains. Within the Forest, the Continental Divide trends north-south through the Park Range,
turns east-west to follow the crestline of the Rabbit Ears Range, and then turns southward
towards the Vasquez Mountains in the southern part of the Forest. North-and east-flowing
streams drain into the Platte River and south- and west-flowing streams drain into the Colorado
River.

The geology of the Forest varies considerably in character; rocks range in age from nearly
2 billion year-old granitic and mafic intrusive and metamorphic rocks to modern stream gravels
(plate 1). In the northwestern part of the Forest the Elkhead Mountains contain Upper
Cretaceous- through Tertiary-age (see geologic time chart in Appendix 1) sedimentary rocks
crosscut by Upper Tertiary intrusions, dikes, and sills. Within this area the Miocene Hahns Peak
stock has particular importance because ore has been mined from the surrounding breccia (Gale,



1906; Vanderwilt, 1947). Small patches of volcanic lava flows and breccias also overlie the
sedimentary rocks locally.

The central part of the Forest consists of a north-trending belt of mountains that includes
the southern part of the Sierra Madre, the Park Range, and the northern part of the Gore Range.
The core of these ranges is made up of Proterozoic metamorphic and granitic rocks while the
flanks of the ranges are composed of Paleozoic sedimentary rocks. The Sierra Madre and the
Park Range consist of Proterozoic gneisses, amphibolite, and migmatite, and younger mafic and
granitic plutons. The northern Gore Range consists mainly of Proterozoic granite with isolated
outcrops of Paleozoic sedimentary rocks.

The northeastern part of the Forest is in the Medicine Bow Mountains, and consists mainly
of Proterozoic granite and hornblende gneisses. Just outside the Forest boundary in this area, the
Independence Mountain thrust fault separates Paleozoic and Tertiary age sedimentary rocks from
the Proterozoic rocks. At the southern extension of the range, the Never Summer Mountains
consist of Proterozoic biotite gneiss and migmatite intruded by shallow-level Tertiary stocks and
dikes. Tertiary-age sedimentary rocks are exposed west of the Never Summer thrust fauit.

To the west of the Never Summer Mountains, the Rabbit Ears Range separates the North
Park basin from the Middle Park basin. In the Rabbit Ears Range, Tertiary-age sedimentary and
volcanic rocks are intruded by small Tertiary intermediate-composition porphyries.

The southeastern part of the Forest includes parts of the Williams Fork and Vasquez
Mountains. These ranges consist primarily of Proterozoic granite and gneisses with Tertiary-age
sedimentary rocks exposed in the valley between the ranges. Faulting is prevalent in this area and
cuts across all rock types. The Williams Fork thrust fault at the western boundary of the Forest
juxtaposes Proterozoic granite and gneiss over Cretaceous sedimentary rocks.

Mineral Resources

In this report, mineral resource information is given in terms of mineral deposit types and
their geologic settings. Mineral deposit types are defined by geologic characteristics of known
deposits that may occur within or near the Forest. Each deposit type may be represented by a
known mine or mining district. For the discussion that follows, each mineral deposit type has
been assigned a letter designation (A, B, or C, etc.) for distinction on figures and tables within the
text. Definitions of terms used in the assessment of potential are summarized in Appendix 2. All
available information was assembled and analyzed according to the procedures outlined by Shawe
(1981) and Taylor and Steven (1983). This study is based primarily on information from
published sources but also includes unpublished data from previous studies.

The Forest contains several mines and mining districts and includes part of the productive
Colorado Mineral Belt. No major quantities of metallic minerals have been produced from mines
within the Forest (Neubert, 1994). Minor production occurred from the late 1800's though the
early 1970's, and exploration for metals continues today. Areas within the Forest displaying
substantial evidence of metallic mineralization, but only minor production, include the Hahns
Peak, Pearl, Teller, and La Plata-Dailey mining districts, the Greenville Mine area, and the
Parkview and Poison Ridge intrusive centers (Neubert, 1994).

Three areas within or adjacent to the Forest have records of major production. The
Northgate district, an important fluorite producer, is in the northeastern part of the Forest. This









Table 1. Resource potential of lands in the Routt National Forest and Middle Park Ranger
District of the Arapaho National Forest, Colorado, classified according to type of deposit.

[The Routt National Forest and Middle Park Ranger District of the Arapaho National Forest
contain a total of about 2,028 miZ. Figures in columns under each category of resource potential
are in mi® and are rounded to the nearest mi®. Letters preceeding the deposit type reference the
deposit type as discussed in the text.]

Type of Deposit Resource Potential
High Moderate

Locatable resources

A. StockworkMo ................ 14 59
B. PorphyryCu .................. 1 79
C. Polymetallicvein ............... 159 5
D. Stratabound massive sulfides . ... .. 123 364
E. Fluosparveins ................. 51 0
F. VeinU....................... 1 6
G. Sandstone U-V ................ 7 32
H. Placergold . ................... 5 6
I. PGE inultramaficrocks . ... ... ... 1 0
J. U-Th-REE in pegmatites . ........ 4 2

Total Locatable Resources . .. .. ... 366 547

Leasable resources

K. Coal......................... digitize  digitize
L. Conventional and subthrust oil and gas 0 1,120
M. Coalbed methane ............... 0 225
N. Basin-centeredgas .............. 0 0
O. Oilin fractured shales ........... 0 188

Total Leasable Resources ......... 0 1,622



Table 2. Description of areas of locatable and leasable resources in the Routt National Forest
and Middle Park Ranger District of the Arapaho National Forest, Colorado.

[Level of resource potential and certainty explained in Appendix 2. Map areas are shown on
figures 14-23 and 37-41 and Plate 1. --do-- indicates the entry is the same as the one above it]

Map Resource Commodities

area potential

Stockwork Mo

Al H/C Mo, Cu, Pb, Zn, Ag, Au
A2 H/C Mo, Cu, Pb, Zn, Ag, Sn, Nb
A3 M/C Mo, Cu, Pb, Zn, Ag, Sn, Au
Porphyry Cu

B1 M/C Cu, Mo, Pb, Zn, Ag, Au

B2 H/C Cu, Mo, Pb, Zn, Ag

B3 H/C Cuy, Mo, Pb, Zn, Ag, Au, As
Polymetallic veins

Ci H/C Ag, Au, Cu, Pb, Zn

C2 H/C Pb, Zn, Ag, Mo

C3 M/B Cu, Pb, Mo, Ag, W

C4 H/C Cu, Pb, An, Mo, As, Cd, Sb
Cs M/B Ag, As, V Zn, Co, Sn, W
Cé6 H/C Cu

(o) H/C Cu, Mo, Pb, As, Ag, W, Zn, Sn
Stratabound massive sulfides

D1 H/C Cu, Pb, Zn

D2 M/B --do--

D3 H/C --do--

Fluospar veins

El H/C F

E2 H/C --do--

E3 H/C --do--

Vein uranium

F1 M/B U

F2 H/C --do--




Table 2. Description of areas of locatable and leasable resources in the Routt National Forest
and Middle Park Ranger District of the Arapaho National Forest, Colorado—Continued.

Map Resource Commodities
area potential

Sandstone uranium-vanadium

Gl M/C UV
G2 H/C --do--
G3 M/B --do--
G4 H/C --do--
Placer gold

H1 M/C Au
H2 H/B --do--
H3 H/C --do--
H4 H/C --do--
H5 H/C --do--
H6 M/B --do---
H7 M/B --do---
PGE in ultramafic rocks

I1 H/C Pt, Pd
12 H/C --do--
U-Th-REE in pegmatites

n M/C U, Th, REE
J2 H/C --do--
J3 H/C --do--
J4 M/B --do--
J5 H/C --do--
Coal

K1 H/B Coal
K2 M/B --do--
K3 L/C --do--



Table 2. Description of areas of locatable and leasable resources in the Routt National Forest
and Middle Park Ranger District of the Arapaho National Forest, Colorado—Continued.

Map Resource Commodities
area potential

Conventional and subthrust gas accumulations

L1 M/B Gas
L2 M/B --do--
L3 M/B --do--
L4 L/C --do--
LS L/B --do--
L6 L/B --do--
Coalbed methane

Ml M/C Coalbed methane
M2 L/D --do--
Basin-centered gas

N1 L/C Gas
Oil in fractured shales

01 M/D Oil
02 M/D --do--
03 L/C --do--




area was the second largest producer of fluorite in Colorado and accounted for approximately 32
percent of the total fluorspar production in Colorado before it closed in the early 1970's (Brady,
1975). To the southwest of Northgate, the Crystal district also produced fluorite until the 1970's.
The Henderson Mine, located just outside the southeastern part of the Forest, was a major
producer of molybdenum.

Energy Resources

Areas in the Forest underlain by Paleozoic through Tertiary sedimentary rocks
have been intermittently explored for oil and gas since 1928. Three oil fields have been
discovered in the Elkhead Mountains and Flat Tops area. Although no coal production has been
recorded from the Forest, major mines operate near the Forest and parts of two major coal fields
extend into the Forest. Coal occurs in several formations in the Forest. Geothermal springs are
known in the town of Steamboat Springs and several miles to the north at Strawberry Park Hot
Springs.

Undiscovered Mineral and Energy Resources

Mineral and energy resources are classified into three types: locatable, leasable,
and salable. Areas rated as favorable for the occurrence of these resources are shown on figures 1
and 2. Tables 1 and 2 summarizes the mineral potential for each area; figure 1 shows areas of
potential for all locatable minerals and figure 2 shows areas of potential for all leaseable minerals.

Locatable Minerals
Locatable minerals include most metals and industrial minerals categorized by the
General Mining Law of 1872. Ten principal types of deposits of locatable minerals were
considered in this assessment and are listed below and in tables 1 and 2. Each summary of the
deposit type includes

a brief description of the geologic setting and the associated metals, and the location of principal
areas favorable to host these resources. Each deposit type is assigned a letter designation for
distinction on figures and tables within this report.

A. Stockwork molybdenum.—Formed in the upper parts of granite bodies and in the adjacent
country rock; deposits are valuable mainly for molybdenum, but also contain tungsten, tin, and
bismuth. The area around Hahns Peak and a small area in the Never Summer Mountains have
high potential for molybdenum in small stockwork deposits. An elongate area in the
southeasternmost part of the Forest, near the Henderson mine, has moderate potential for
undiscovered small stockwork deposits of molybdenum.

B. Stockwork copper-molybdenum.—Formed in shattered portions of granitic intrusions and the
surrounding country rock; deposits contain copper and molybdenum with byproduct gold,
tungsten, and tin, and traces of silver, lead, and zinc. Two small areas in the Rabbit Ears
Range have high potential for stockwork copper-molybdenum deposits. A large east-west-
trending area, consisting of several shallow plutons, along the crest of the Rabbit Ears Range
has moderate potential for stockwork copper-molybdenum.

C. Polymetallic veins.—Related to Proterozoic (?), Laramide, and Tertiary igneous activity;



deposits contain lead, zinc, silver, copper, and gold with minor molybdenum, tin, tungsten,
bismuth, and antimony. Major areas favorable for this deposit type include the Williams Fork
Mountains area, the northern part of the Park Range, and the Never Summers Mountains the
eastern part of the Forest.

. Stratabound sulfides in Proterozoic rocks.—Deposited in volcanic and sedimentary rocks in a
submarine environment during Proterozoic time; later metamorphism converted the volcanic
and sedimentary rocks to amphibolite, calc-silicate, and felsic gneisses. These deposits contain
lead, zinc, silver, copper, and gold. A large northeast-trending zone in the northern part of the
Park Range has high potential for massive sulfide deposits associated with calc-silicate and
amphibolite host rocks. A large area of moderate resource potential encloses this high
potential area. In the southeastern part of the Forest, a medium-sized area has high potential
for massive sulfides; this area has several mines and prospects containing copper, lead, and
zinc.

. Fluorspar veins.—Formed from hot solutions associated with igneous intrusions; deposits
contain fluorspar and minor amounts of barite. Three areas within the Forest have high
potential for vein fluorospar: the northern part of the Forest, near the Northgate deposits; the
Crystal mining district, on the eastern side of the Park Range; and the Delaney Butte area east
of the Forest in North Park.

Vein uranium.—Formed from hot solutions associated with igneous intrusions; deposits
contain uranium and other trace elements. A small area in the southeastern part of the Forest,
near Jones Pass, has high potential for uranium in veins associated with fractures in granitic
rock. On the southwest side of the Gore Range, near Morrison Creek, a small area has
moderate potential for vein uranium associated with granitic rock.

. Sandstone uranium-vanadium.—Formed during diagenesis of sandstone units; deposits
contain uranium, vanadium, and minor amounts of copper. Two areas have high potential for
sandstone-hosted uranium and vanadium: a north-south trending, elongate area near Rabbit
Ears Pass and the Troublesome mining district northeast of Kremmling. Two small areas have
moderate potential for sandstone-hosted uranium and vanadium: along Norris Creek on the
east side of the Park Range and a north-south trending elongate area near Rabbit Ears Pass.

. Placer gold —Deposited in streams or slope washes that traversed or eroded gold-bearing
rock; deposits contain gold and minor quantities of silver. Three small areas near Hahns Peak
have high potential for gold in placer deposits and one small area has moderate resource
potential. On Independence Mountain, just outside the Forest east of Mt. Zirkle, one area has
moderate and one area has high resource potential for small placer deposits. An area north of
the Rabbit Ears Range on the Forest boundary has moderate potential for gold.

Platinum group elements in ultramafic rocks.—Formed from gravity settling and convection
processes in intrusive basaltic magmas. Near Elkhorn Mountain in the northernmost part of
the Park Range, a small area within the Elkhorn complex has high potential for platinum-
group elements; a small area between Bear and Lone Pine Creeks on the east side of the Park
Range also has high potential for platinum-group elements.

U-Th-REE in pegmatites.—Formed from crystallization of minerals from residual melts of
granitic bodies. Three areas have high and two areas have moderate potential for U, Th, and
REE in pegmatites. These areas occur within the north-central part of the Forest in the
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granitic rocks of the Park Range.

Leasable Minerals
The first major change in the Mining Law of 1872 came with the passage of the Mineral

Leasing Act of 1920. The 1920 Act placed the following minerals under the leasing law: oil, gas,

coal, oil shale, sodium, potassium, phosphate, native asphalt, bituminous rock, and sulfur.

Geothermal energy was added to the list of leaseable minerals by the Geothermal Steam Act of

1970. The principal leasable minerals in the Forest are listed below and areas favorable for

resources are briefly described. Hot springs are present in the town of Steamboat Springs and

about 8 mi to the north at Strawberry Park Hot Springs. The extent of these springs has been
outlined in previous studies and there is no potential for undiscovered springs in the remaining
parts of the Forest.

K. Coal.—Formed from the decomposition and alteration of organic remains in deltaic
environments. One area in the northwestern part of the Forest has high potential for coal. An
area of moderate potential is in the southwestern part of the Forest in the Flat Tops, and an
area of low potential is in the eastern part of the Forest in the Rabbit Ears Range.

L. Conventional oil and gas.—Formed in near-shore and coastal-plain environments from the
decay of hydrocarbons in source rocks. Three large areas in the Forest have moderate
potential and five large areas have low potential for further conventional discoveries of oil and
gas.

M. Coalbed methane.—Generated during the maturation process of coal. One small area in the
northwest part of the Forest in the Elkhead Mountains has moderate potential, and one small
area in the southwest part of the Forest in the Flat Tops has low resource potential for
coalbed methane accumulations.

N. Basin centered gas.—Formed in near shore and coastal plain environments from the decay of
hydrocarbons in source rocks. A small area in the western part of the Elkhead Mountains has
low resource potential for basin-centered gas.

O. Fractured shale-oil accumulations.—Formed in near-shore and coastal-plain environments
from the decay of hydrocarbons in source rocks. Shale is the source rock and the reservoir
rock; oil can be produced where shale is thermally mature and fractured. Three areas in the
western part of the Forest have moderate potential for fractured shale-oil accumulations, and
one large area in the eastern part of the Forest has low potential.

11



Salable Minerals

Salable minerals, as defined in the Materials Act of 1947, include petrified wood, sand,
dimension stone, gravel, pumice, cinders, perlite, and some clay. Salable minerals in the Forest
include crushed aggregate, dimension stone, sand, and gravel.

Crushed aggregate.—Numerous sources of crushed aggregate are present in the Forest in
the Elkhead Mountains, the Park and Medicine Bow Ranges, and the Flat Tops. Aggregate
includes sandstone, volcanic rocks, granite, basalt, landslide material, and glacial drift. Uses are
roadway building, concrete, railroad ballast, rip rap, and fill.

Dimension stone.—Some decorative dimension stone is produced locally in the Forest in
the Park Range, Elkhead Mountains, and Flat Tops. Moss or lichen-covered granite and
sandstone are used for interior or exterior facing in homes or buildings.

Sand and gravel. —Numerous deposits of sand and gravel are located along the Elk and
Colorado Rivers and their major tributaries within the Forest. Uses include concrete work and
products, fill material, plastering sands, and snow and ice control.

Quantitative Assessment of Metallic Resources Using Grade-Tonnage Models

At the request of the U.S. Forest Service, the U.S. Geological Survey provides subjective
probabilistic estimates of undiscovered mineral resources that might exist within the Forest.

Based on the geology, geophysics, geochemistry, and production records of known deposits in
the Forest, deposit types were defined and compared to other similar deposits worldwide. The
number of undiscovered deposits of median size on the grade-tonnage curve likely to be present in
the Forest was estimated at the 90th, SOth, 19th, Sth, and 1st percentiles; the first percentile is the
likelihood of occurrence with a 1 percent probability. Using the computer program MARK3,
tonnages for undiscovered deposits in the Forest were estimated from known tonnages and grades
of deposits worldwide. Esitmates do not consider any of the economics involved in extracting the
metals.

Only three mineral deposit types have sufficient grade and tonnage information for
assessment using MARK3: massive sulfide deposits in Proterozoic rocks, porphyry copper
deposits, and placer gold deposits. All remaining deposits known in the Forest lack sufficient data
for the quantitative assessment.

For massive sulfide deposits, the number of undiscovered deposits was estimated to be 0,
0, 1, 1, and 2 at the 90th, 50th, 10th, 5th, and 1st percentiles, respectively (estimates for the
remaining deposits are presented in the same order of percentiles). Estimates of mean metal
content in undiscoved massive sulfide deposits in the Forest are: 3,200 tonnes of copper, 1,900
tonnes of zinc, 180 tonnes of lead, 0.05 tonnes of gold, and 2.9 tonnes of silver in 48,000 tonnes
of total ore. For porphyry copper deposits, the number of undiscovered deposits was estimated to
be 0, 0, 1, 1, and 2. Estimated mean metal contents are 109,000 tonnes copper, 1,600 tonnes
molybdenum, 2.6 tonnes gold, and 17 tonnes silver in a total of 20,000,000 tonnes of ore. For
placer gold, the number of undiscovered deposits was estimated at 0, 0, 1, 1, and 1. Estimated
mean metal content is 0.6 tonnes of gold and 0.003 tonnes of silver in 3,900,000 tonnes of ore.
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INTRODUCTION

This report presents an assessment of the mineral and energy potential of the Routt
National Forest and the Middle Park Ranger District of the Arapaho National Forest, referred to
as "the Forest" in this report. The Middle Park Ranger District of the Arapaho National Forest is
included in this report because the two areas are administered by the staff of the Routt National
Forest and are included in a single planning document. The Middle Park Ranger District is east of
the Routt National Forest and includes parts of the Gore and Rabbit Ears Ranges and the Williams
Fork and Vasquez Mountains. For simplicity, only figure 3 distinguishes the Middle Park Ranger
District; in all other plates and figures, the district is included within the Forest boundary.

This mineral resource assessment was produced to assist the U.S. Forest Service in
fulfilling the requirements of the Code of Federal Regulations (36CFR 219.22) and to supply
information and interpretations necessary for mineral resources to be considered along with other
kinds of resources in land-use planning. This report addresses the potential for undiscovered
mineral and energy resources in the Forest and is based upon information available as of May
1994. The identified, or known, mineral and energy resources of the Forest were studied by the
U.S. Bureau of Mines (Neubert, 1994).

Geographic Setting

The Routt National Forest and the Middle Park Ranger District of the Arapaho National
Forest cover approximately 1.2 million acres in north-central Colorado. Parts of six counties are
within the Forest: Routt, Jackson, Grand, Moffat, Rio Blanco, and Garfield. Five separate parcels
comprise the Forest (fig. 3), and consist of primarily forested land at higher elevations separated
by rolling hills and valleys of brush and meadows. The largest parcel borders Wyoming and
includes the Elkhead Mountains and the Park and Gore Ranges. Small scattered parcels along the
crest of the Medicine Bow Mountains comprise the northeasternmost part of the Forest. The
central parcel borders Rocky Mountain National Park and includes the Rabbit Ears Range and
part of the Never Summer Mountains. The two southern parcels share borders with White River
National Forest: the southwestern parcel includes part of the Flat Tops Primitive Area and the
southeastern parcel includes the Williams Fork and Vasquez Mountains.

The Continental Divide lies within the Forest along the crests of the Park and Rabbit Ears
Ranges and forms part of the Forest boundary in the Never Summer and Vasquez Mountains.
Elevation in the Forest ranges from about 6,800 ft at Mad Creek to over 12,900 ft at Clark Peak
in the Medicine Bow Mountains. The Forest also partially encloses two topographic basins,
North Park and Middle Park, located along the eastern slopes of the Park and Gore Ranges. The
Rabbit Ears Range divides the mostly flat-lying, sage-covered North Park from the hills and
valleys of Middle Park.

Most of the tributaries that drain the Forest flow into the Colorado River, with the
exception of the tributaries that drain into North Park and flow into the North Platte River.
Numerous alpine lakes dot the topography, particularly in the Mount Zirkel Wilderness Area, and
Steamboat Lake and Lake Catamount are located just outside the Forest (pl. 1). Access to the
Forest is provided by several improved and unimproved roads from U.S. Highway 40 and State
Highways 9, 125, and 131. The major communities near the Forest are Steamboat Springs,
Walden, Kremmling, Craig, and Yampa.
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Methods for Identifying Favorable Areas for Undisovered Mineral Resources

Mineral and energy resources include three categories: locatable resources, leaseable
resources, and salable resources. Areas favorable for the occurrence of these resources are
summarized on figures 1 and 2. Areas within the Forest that were rated as favorable for specific
types of as yet undiscovered resources are similar to those that are productive deposits elsewhere
in the Forest or in other parts of the United States.

Mineral and energy resources are specified in terms of deposit types and their geologic
settings. Deposit types are based on geologic characteristics of known deposits within or close to
the Forest. Most of the mineral deposit types are exposed in mines or prospects. The boundaries
of favorable areas are based on a combination of geologic, geochemical, and geophysical critiera.
A letter designation (A, B, C, and so forth) is used to represent the deposit type in the text and on
the various figures and plates. Definition of terms used in this assessment of mineral potential for
each deposit type are summarized in Appendix 2.

All available information was assembled and analyzed according to the procedures
outlined by Shawe (1981) and Taylor and Steven (1983). Mineral and energy resource potential
information is presented in detail on plate 1 and is summarized on figures 1 and 2. This study is
based primarily on published literature but includes unpublished data from studies in progress.

Previous Assessments

Parts of the Forest have been previously assessed for mineral and energy resources by the
U.S. Geological Survey. These areas include the Flat Tops Primitive area, the Mount Zirkel
Wilderness, the Williams Fork Roadless Area, the Service Creek Roadless area, and the Never
Summer, Rawah, and Vasquez Peak Wilderness Study Areas (fig. 4). In addition, a small Bureau
of Land Management Wilderness Study Area that adjoins the Forest was also studied (fig. 4)
(Dickerson and McDonnel, 1989). Published reports describe the geology and evaluate the
mineral potential of each area. References for each report are in table 3.
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Table 3. Previous studies that cover parts of the Routt National Forest and Middle Park Ranger
District of the Arapaho National Forest, Colorado.

[NURE, National Uranium Resource Evaluation]

Study Area Reference

Flat Tops Primitive Area ........... Mallory and others (1966)

Williams Fork Roadless Area. ....... Theobald and others (1985); Barton (1985b)

St. Louis Peak Roadless Area ....... Theobald and others (1985); Barton (1985a)

Vasquez Peak Wilderness Study Area . Theobald and others (1985); Barton (1985c)

Mt. Zirkel Wilderness Study Area . ... Snyder and others (1981); (Snyder, 1987b)

Service Creek Roadless Area ... ..... Schmidt and others (1984)

Rawah Wilderness Study Area . . ... .. Motooka and others (1979); Pearson and others
.............................. (1982)

Neota-Flat Top Wilderness Study Areas Pearson and others (1981)
Never Summer Wilderness Study Area . Pearson and others (1981)

Craig 1°x2°NURE .............. Bolivar and others (1979); Craig and others (1982)

Rawlins 1°x2°NURE ............ Weaver and others (1978)

Cheyenne 1°x2°NURE ... ........ Trexler (1978)

Greeley 1°x2°NURE ............ Bolivar and others (1978); Youngquist and others
.............................. (1981)

Denver 1°x2°NURE . ............ Bolivar and others (1978); Shettel and others
.............................. (1981)

Leadville1° x2°NURE ........... Planner and others (1981)

Craig 1° x 2° and
Rawlins 1° x 2° detailed NURE ... Shannon and others (1981)
Hahns Peak and Pearl Districts . . . . . .. Allen (1982)

17



GEOLOGY
By Margo 1. Toth and Sandra J. Soulliere

The geology of the Forest was compiled from published geologic maps at a scale of
1:250,000. Most of the geology was modified from the Craig 1° x 2° quadrangle (Tweto, 1976)
but parts of the Denver (Bryant and others, 1981), Leadville (Tweto and others, 1978), and
Greeley (Tweto and others, 1978) 1°x 2° quadrangles were also used. Detailed geology is in
other publications (Snyder, 1980a, b, ¢ and d; Braddock and Cole, 1990).

Geologic History

The geologic history of the Forest encompasses almost 2 billion years and is characterized by
complex structural and rock-forming events. Excellent papers by Tweto (1980), Wallace (1990),
De Voto (1990), and Reed and others (1993) describe the geologic setting and tectonic history of
Colorado. Hedge and others (1986) describe the Proterozoic of the Rocky Mountain region and
Tweto (1987) describes the nomenclature of Proterozoic rocks in Colorado. Much of the
following discussion is drawn from these sources.

Within the area of the Forest, the oldest rocks are Early Proterozoic. Volcanic and
sedimentary formations were accreted onto the margin of the Archaen Wyoming craton and
metamorphosed to gneiss, schist, and migmatite at about 1.7 Ga (billion years) ago. During Early
(1.7 Ga) and Middle Proterozoic (1.4 Ga) time these rocks were intruded by large granitic
plutons. Within the Forest, Proterozoic rocks make up the core of most of the major mountain
ranges (plate 1). The Proterozoic rocks are cross-cut by well-defined, northeast-trending faults
and shear zones of the Colorado Lineament, which was initially formed in the Proterozoic
(Warner, 1978) and was reactivated later. The northern margin of this lineament, known as the
Mullen Creek-Nash Fork shear zone, traverses southeastern Wyoming.

The next major geologic event occurred during early and middle Paleozoic time when a thick
sequence of marine and non-marine sediments was deposited on the Proterozoic rocks. InLate
Paleozoic time, two elements of the Ancestral Rocky Mountains, the Uncompahgre highland and
the Ancestral Front Range, were formed. The Ancestral Front Range occupied much of the area
currently encompassed by the Forest. Parts of the Ancestral Rocky Mountains may have attained
altitudes of as much as 5,000 to 10,000 feet above sea level (Mallory, 1971). Uplift of the
Ancestral Rockies caused older sedimentary rocks to be eroded and in places the Proterozoic
basement was partially exposed. Sedimentary rocks were deposited in a large basin that formed
between the Uncompahgre and Front Range and also locally on the newly exposed Proterozoic
basement rocks.

During Mesozoic time mountain-building decreased and inland seas covered the area,
depositing marine and nonmarine sediments. Clastic sediments were deposited in early Mesozoic
time as erosion of the highlands contined. Continental, marginal-marine, and complexly
intertonguing marine and non-marine sediments were deposited through the rest of the Mesozoic.

The final exit of the sea marked the beginning of the Laramide orogeny, which produced most
of the present primary mountain ranges in central Colorado. During this orogeny, plutonic rocks
were emplaced along a northeast-trending zone in central Colorado coincident with the major
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Proterozoic structures. Streams eroded older sedimentary rocks and these deposits accumulated
in structural basins formed during Late Cretaceous and Tertiary time.

During late Cenozoic time, crustal extension associated with formation of the Rio Grande rift
farther south caused development of the present basin and ranges. Extension was accompanied
by intrusion of a wide variety of granitic rocks 28 to 23 Ma, by eruption of volcanic rocks 33 to
30 Ma, and by intrusion and eruption of rhyolite and basalt 20 Ma to 7.6 Ma.

A major period of glaciation began in the area of the Forest about 500,000 years ago and was
repeated as recently as 12,000 years ago. During the height of glaciation, ice almost totally
covered the higher ranges and the valleys were filled with glaciers. The modern alpine
topography with deep U-shaped valleys that is seen today is largely a product of glacial erosion.

Description of Rock Units
Proterozoic rocks

The most widespread rocks in the Forest are Proterozoic metamorphic and plutonic rocks,
exposed in the core of most of the major mountain ranges. The rocks fall into five lithologic
groups and are of two ages, 1.7 Ga and 1.4 Ga.

Two of the groups of metamorphic rocks occur in the Forest: hornblende gneiss, amphibolite,
and calc-silicate gneiss (Xfh, plate 1), and biotite gneiss and migmatite (Xb, plate 1). These rocks
are typically metamorphosed to upper amphibolite or sillimanite facies and are structurally and
stratigraphically complex. The hornblende gneiss, amphibolite, and calc-silicate gneiss are
dominant in the northern part of the Forest in the Park Range. Smaller amounts are present in the
Medicine Bow Mountains, Never Summer Mountains, and in the southeastern part of the Forest
in and near the Vasquez Mountains. Before metamorphism, the hornblende gneiss and
amphibolite were probably mafic lava flows, near-surface intrusions, or layers of basaltic ash that
were deposited in sea water; the carbonate-rich layers and calc-silicate gneiss likely were
carbonate sediments. The biotite gneiss and migmatite crop out in small isolated areas in the Park
Range and Gore Range, in large parts of the Never Summer Mountains, and as a large,
continuous body in the southeastern part of the Forest in the Williams Fork Range and Vasquez
Mountains. Before metamorphism, the gneiss and migmatite probably were marine deposits of
graywacke and shale and felsic volcanic rocks.

The Routt and Berthoud Plutonic suites make up the remaining Proterozoic rocks in the
Forest. Rocks of the Routt Plutonic suite are 1.7 Ga in age and consist of a mafic and a granitic
suite of plutons; rocks form the Berthoud Plutonic suite are 1.4 Ga in age and consist only of
granitic plutons.

The 1.7-Ga mafic plutons in the northern part of the Park Range (Xm, plate 1) are small,
homogenous, and consist of biotite-hornblende quartz diorite . The largest, the Elkhorn Mountain
pluton, extends from in the northwestern part of the Park Range across the Wyoming border.

The mafic plutons grade into 1.7 Ga granitic rocks, but elsewhere angular inclusions of of mafic
plutons occur in graniatic rocks, indicating that they are distinctly older than the granite (Snyder,
1987b). '

The 1.7-Ga granitic rocks include foliated quartz monzonite and granodiorite (Xg, plate 1) of
the Rawah and Boulder Creek batholiths (Tweto, 1987). The largest continuous outcrop of these
rocks is in the core of the Gore Range, but significant amounts also occur in the northern Park
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Range closely associated with calc-silicate gneisses, in the Medicine Bow Mountains, and in the
southeastern part of the Forest in the Williams Fork Mountains. The granitic plutons are
generally concordant with the enclosing gneisses, and contain biotite and (or) hornblende. The
bodies were intruded during and immediately following the folding and metamorphism of the
gneiss and migmatite complex.

The 1.4-Ga intrusive rocks are composed of massive to gneissic biotite granite, quartz
monzonite, and granodiorite (Yg, plate 1). These bodies have the following occurrences: large
continuous bodies of the Sherman batholith in the Medicine Bow Mountains, one northeast-
elongate, continuous body of the Mt. Ethel pluton in the central part of the Gore Range, and fault
slivers of the Silver Plume batholith in the Williams Fork Mountains. Contacts with the country
rock range from sharp to diffuse. Rocks from these units lack metamorphic foliation, and most
are discordant with the enclosing gneisses. This plutonic event was largely anorogenic.

Paleozoic Rocks

Lower Paleozoic rocks in the Forest (M€, plate 1) include the following sedimentary units:
Leadville Limestone (Lower Mississippian), Gilman Sandstone (Mississippian or Devonian), Dyer
Dolomite (Mississippian (?) and Devonian, Parting Sandstone (Devonian), and the Sawatch
Quartzite (Upper Cambrian). The units are only present as isolated outcrops on the southwestern
flank of the Gore Range. The maximum combined thickness of the lower Paleozoic rocks is less
than 350 feet.

Middle and upper Paleozoic rocks in the Forest include the State Bridge Formation (Lower
Triassic to Lower Permian), Goose Egg Formation (Permian), Satanka Shale (Permian), Maroon
Formation (Lower Permian to Middle Pennsylvanian), Weber Sandstone (Lower Permian to
Middle Pennsylvanian), the Eagle Valley Evaporite (Middle and Upper Pennsylvanian), and the
Minturn Formation (Middle Pennsylvanian). These formations contain conglomerate, sandstone,
mudstone, shale, gypsum, anhydrite, and minor amounts of limestone. Many of the formations
have a characteristic maroon or red color. These formations either pinch out or are truncated
against the western flank of the Gore Range; only small, isolated outcrops are present in the
Forest.

Mesozoic Rocks

Mesozoic rocks in the Forest include the following sedimentary units: Lance Formation
(Upper Cretaceous), Fox Hills Sandstone (Upper Cretaceous), Lewis Shale (Upper Cretaceous),
Mesaverde Group (Upper Cretaceous), Pierre Shale (Upper Cretaceous), Mancos Shale (Upper
Cretaceous), Colorado Group (Upper Cretaceous), Dakota Sandstone (Upper and Lower
Cretaceous), Morrison Formation (Upper Jurassic), Curtis Formation (Middle Jurassic),
Sundance Formation (Middle Jurassic), Entrada Sandstone (Middle Jurassic), the Nugget
Sandstone (Lower Jurassic), Glen Canyon Sandstone (Lower Jurassic), Chinle Formation
(Triassic), and the Chugwater Group (Triassic), (Ku, Ju, and TPu, plate 1). The lower of these
units consists dominantly of sandstone and conglomerate; shale becomes more prevalent in the
upper part of the section. The Mesozoic rocks crop out in small, elongate, north-trending areas
along the flanks of the Gore and Park Ranges. Extensive outcrops of Cretaceous rocks are west
of the Gore Range in the Flat Tops, but only the Mancos Shale crops out within the Forest.
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Middle Tertiary Rocks

Middle Tertiary rocks are moderately widespread in the Forest except in the Park and Gore
Ranges. Four groups crop out in the Forest: 1) Oligocene Rabbit Ears volcanic field, 2)
Oligocene and Late Miocene calc-alkaline hypabbysal intrusives, 3) Late Miocene compositionally
diverse intrusive and extrusive rocks, and 4) Miocene basalt and basaltic andesite flows.

The oldest of the Tertiary igneous rocks in the Forest are those in the Rabbit Ears Volcanics,
which extends southward from the crest of the Rabbit Ears Range into Middle Park (Tv, plate 1).
The Rabbit Ears Volcanics were erupted 30-33 Ma ago (Izett, 1966, Naeser and others, 1973).
The volcanics range in thickness from 0-100 ft in the southern areas to as much as 800 ft thick in
the northern outcrop area. The Rabbit Ears Volcanics consist of a complexly interlayered
sequence of breccias, lahars, and tuffs, and a few thin, discontinuous trachyandesite and
trachybasalt lava flows; the tuffs are generally rhyolitic and are slightly welded to nonwelded.
Fragments in breccia vary widely in color and texture, and range in composition form silicic to
intermediate. Fragments in the south are less than 2 ft in diameter, and in the north blocks as
much as 5 ft in diameter are common, suggesting a northern source area. Trachyandesite lava
flows are interlayered in the upper part, and trachybasalt lavas have been found only at the base.

Most of the Oligocene and Late Miocene hypabsyal intrusive rocks in the Forest crop out in
an east-west trending belt in the Rabbit Ears Range that extends from Baker Mountain in the
Rabbit Ears Range on the west to the Never Summer Mountains on the east (Ti, plate 1). Two
other occurrences of these rocks are in or near the Forest: a medium-sized pluton at the southern
end of the Gore Range and the small, Red Mountain plug (associated with molybdenum), just
outside the southeastern boundary of the Forest (pl. 1). The rocks range in age from 22.7 to 28.8
Ma (Izett, 1966, Naeser and others, 1973) although most of them are Oligocene in age (older
than 24 Ma). Compositions range from dacite to rhyolite. Most of the intrusive rocks are fine- to
medium-grained and are strongly porphyritic in texture.

Compositionally diverse Late Miocene rocks crop out in two fairly limited areas: west of the
Park Range in the Elkhead Mountains and high in the Park Range in the area around Walton Peak
and Rabbit Ears Pass (To, plate 1). Most of the rocks in the Elkhead Mountains are 7.6 to 11.5
Ma in age and occur as hypabyssal stocks, sills, and dikes. Intrusive rocks in the Elkhead )
Mountains range in composition from basalt to rhyodacite and include alkalic varieties of these
compositions; the more felsic rocks are concentrated in the central area around Hahns Peak. In
the area around Walton Peak and Rabbit Ears Pass a large area of trachybasaltic volcanic rocks
(Tv, plate 1) is intruded by small, intermediate-composition porphyries. One porphyry just west
of Rabbit Ears Pass area has an age of 17.0 Ma (Snyder, 1980b); the trachybasalt flows were
erupted from between 17 and 20 Ma.

Miocene basaltic and basaltic andesite flows are in the southwestern part of the Forest,
predominantly in the area of the Flat Tops (Tb, plate 1). The basalts are part of a bimodal
assemblage that includes small rhyolitic dikes and flows on the eastern side of the Flat Tops. The
basaltic rocks are dense, black, and alkalic and form flows 5 to 200 ft thick; they include
interbedded tuffs and volcanic conglomerates.

Late Cretaceous and Tertiary Rocks
Late Cretaceous and Tertiary rocks in the Forest include the following Formations: Middle
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Park Formation (Paleocene and Upper Cretaceous(?)), Wasatch Formation (Eocene and
Paleocene), Coalmont Formation (Eocene and Paleocene), Fort Union Formation (Paleocene),
White River Formation (Oligocene), Troublesome Formation (Miocene and Oligocene), Browns
Park Formation (Miocene), and North Park Formation (Miocene) (KTs, plate 1). These units
were deposited in local structural basins and small grabens that formed during Tertiary time. The
rocks are made of claystone, siltstone, limestone, sandstone, and conglomerate; locally they
contain beds of volcanic ash. Extensive outcrops are present to the west of the Park Range in the
Sand Wash basin and east of the Park and Gore Ranges in North and Middle Parks.

Quaternary and Pliocene (?) Unconsolidated Deposits
Holocene alluvium is in drainages and fans across the Forest and consists of gravel, sand, and
silt. Extensive landslide of Holocene and Pleistocene age occur along the east side of the Gore
Range and in the Elkhead Mountains. The landslides deposits consist of shaly material with
variable amounts of boulders of sandstone and basalt. Pleistocene glacial till and outwash in the
Gore Range consist of boulders, gravel, and sandy deposits. Pliocene (?) gravel deposits are on
Gravel Mountain in the eastern part of the study area near the Continental Divide.

Colorado Mineral Belt

In Colorado, most of the important hydrothermal mineral deposits are part of an elongate
zone known as the Colorado Mineral Belt (Tweto, 1963) (fig. 5), which extends from the San
Juan Mountains in southwestern Colorado to the eastern margin of the Front Range, northwest of
Denver. The belt contains a large number of mineral deposits associated with numerous felsic to
intermediate intrusive and volcanic rocks of Late Cretaceous to late Tertiary age. The Colorado
Mineral Belt cutsacross both pre-Cretaceous structural trends and the present north-south
topographic grain of the southern Rocky Mountains. Only the southeasternmost part of the
Forest falls within the Mineral Belt.
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Structural Geology

Rocks in the Forest have a complex structure that reflect events in Proterozoic, Paleozoic,
Early Mesozoic, and late or post-Miocene. Many of the major structures were complicated by
recurrent movements and intrusion of Proterozoic and Tertiary plutons.

Three major systems of Proterozoic faults and shear zones are recognized in the Forest (plate
1) (Tweto, 1980). A fault system trending north-northwest is widespread; some elements of this
system originated before the emplacement of the 1.7 Ga plutons but other elements postdate
emplacement of the 1.4 Ga granitic plutons. The Gore fault on the west side of the Gore Range is
typical of these structures (plate 1).

A system trending northeast is expressed mainly by strongly developed shear zones that cut
across the trend of major mountain ranges. This system was active principally during and
following intrusion of the 1.4 Ga granitic suite, although it may have originated earlier (Tweto,
1980). The shear zone in the northern Park Range between Soda Creek and North Fork Fish
Creek is one of the best developed of these zones in the Forest (plate 1). Rocks in these zones
are typically ground or "mylonitized" to very fine grained rocks.

The third system of faults is an east-west trending fault system that parallels major lithologic
contacts in the basement rock; this system is only present in the northernmost part of the Forest
close to the Wyoming border. To the north of the Forest in Wyoming, a similar structure called
the Mullen Creek-Nash Fork shear zone separates Archean basement rocks to the north of the
zone from Early Proterozoic rocks to the south of the zone. The shear zone is interpreted to
represent a collision boundary between the Archean craton to the north and Proterozoic island arc
terrane to the south (Hills and Houston, 1979).

Uplift of the Ancestral Rocky Mountains reactivated Proterozoic structures, such as the Gore
fault, as well as forming new faults. The Gore fault bounded the western side of the Ancestral
Front Range; aprons of coarse arkosic sediment were deposited next to the fault in the central
Colorado trough.

Tectonic uplift, folding, and faulting were also associated with the Laramide orogeny in latest
Cretaceous time. Several of the major Laramide uplifts occupy the sites of Late Paleozoic uplifts.
The Medicine Bow, Park, and Gore Ranges occupy the site of the late Paleozoic Front Range
highland (Tweto, 1980). Most of the uplifts formed by reactivation of Late Paleozoic and
Proterozoic faults, but new faults, such as the Williams Fork Range thrust (plate 1), were also
formed. The thrust faults were originally interpreted to be near-surface expressions of steep
faults formed by vertical forces(Tweto, 1980), but recent research indicates that many thrusts
flatten beneath mountain uplifts and were formed by horizontal forces (Erslev, 1992). Large,
deep structural basins formed concurrently with the Laramide uplifts, and sediments deposited in
the basins are a principal record of the Laramide orogeny. North Park, Middle Park, and Sand
Wash basin are examples of these basins (plate 1).

Laramide tectonism waned in the Eocene and was replaced by erosion, sedimentation, uplift,
local folding, and normal faulting related to crustal extension. Block faulting reactivated many
Laramide and Proterozoic faults, renewing uplift of many of the mountain ranges. Several faults
of Late Miocene age occur along the western side of the Park Range. The Steamboat Springs
fault has as much as 900 ft of movement (Izett, 1975). Extension formed the north-northwest
trending Rio Grande rift zone, which may extend as far north asWyoming (Tweto, 1979).
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GEOCHEMISTRY
By Steven M. Smith

Geochemical Surveys

Geochemical data used in the assessment of the Forest were obtained pnmanly from samples
collected and analyzed for previous mineral assessments. Sample data are in the U.S. Geological
Survey Branch of Geochemistry's National Geochemical Data Base (described by Hoffman and
Marsh, 1994). These data were derived from USGS analyses of 1,701 rock, 2,460 stream-
sediment, and 475 heavy-mineral-concentrate samples, taken for previous resource assesments of
wilderness areas (table 3), and National Uranium Resource Evaluation (NURE) project analyses
of 3,256 stream-sediment samples taken for uranium resource assessments of 1° x2°
quadranges (table 3). Data for another 206 stream-sediment samples from the Hahns Peak and
Pearl mining districts (Allen, 1982) also were added; altogether, 8,098 samples are represented.
The NURE data were combined from the Cheyenne, Craig, Denver, Greeley, Leadville, and
Rawlins 1° x 2° quadrangle reconnaissance studies and from detailed follow-up studies in the
Craig and Rawlins 1° x 2° quadrangles (table 3). Published data were included from USGS
mineral-resource assessments of the Flat Tops Primitive Area, the St. Louis Peak, Service Creek,
and Williams Fork Roadless Areas, the Neota-Flat Top, Never Summer, Mt. Zirkel, Rawah, and
Vasquez Peak Forest Service Wilderness Study Areas (table 3) and unpublished data were
included from analyses performed in support of USGS geologic mapping throughout the region.

Method of Study

The data contain analytical values for 62 different elements, although no single sample was
analyzed for all of these elements. Eighteen elements commonly associated with mineral deposits
were selected for primary use in this study: antimony, arsenic, bismuth, cadmium, chromium,
cobalt, copper, gold, lead, mercury, molybdenum, nickel, silver, tin, tungsten, uranium, vanadium,
and zinc.

The use of three separate sample media, analyzed by various techniques at different
laboratories, precluded simply combining raw data into one interpretable data base. For each
sample medium, data were separated by project (table 3) and analytical method, and were divided
into five classes; low background, high background, slightly anomalous, moderately anomalous,
and highly anomalous. The four threshold values (table 4) between these five classes were
determined by examining data frequency histograms in conjunction with crustal abundance data
(Parker, 1967, Fortescue, 1992), spatial distribution patterns, multi-element correlations, and
geology. In most cases, the four threshold values were the same or similar for samples from
projects analyzed by the same laboratory and method. Exceptions are noted in table 4.
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Table 4. Threshold values used to divide concentration ranges of elements in different sample media into five classes: low background,
high background, slightly anomalous, moderately anomalous, and highly anomalous.

[Values in parts per million. (a), threshold of high background class (lowest high background value); (b), threshold of slightly anomalous class (lowest slightly anomalous value); (c), threshold of
moderately anomalous class (lowest moderately anomalous value): (d), threshold of highly anomalous class (lowest highly anomalous value); n.a., not analyzed; -, unused classes below the lower
detection limits of the analytical method; aa, threshold values for additional analyses by atomic absorption spectroscopy]

NURE stream- USGS stream- Other stream- Heavy-mineral-
Element sediment samples sediment samples sediment samples' concentrate samples Rock samples

@@ © @ (@) ®) ) @ @ ®) ©) @) @ &) ©) @ (@ ® ) @
Ag ...... - - 210 05 1 5 10 05 1 510 - 2 3 50 0.5 5 50 500
As...... 12 20 30 50 10 20 30 40 n.a. — 140 200 1000 -- 140 200 1000
Au ...... - - 004 05 - —0.02 0.5 n.a. - - - 50 - -7 10

0.030.05 0.5 2aa 0.010.02 0.2 1aa

Bi...... n.a. - - n.a. - 14 20 100 - — 10 100
Cd ...... -- 57 - - - - n.a. - - - - - - 20 100
Co..... 16 25 50 75 30 50 70 100 12 18 30 70 50 100 300 700 20 50 100 1000
ce ... 100 200 300 800 200 500 1000 5000 40 70 100 500 200 500 1000 5000 100 500 1000 5000
Cu...... 40 60 100 500 40 60 100 500 40 60 100 500 30 50 100 500 50 100 1000 10000
Hg ...... n.a. n.a. n.a. n.a. 0.1 0205 2
Mo' ..... - - - 4 3510 2 n.a. 10 50 100 500 2 15 50 200
Ni...... 35 65 100 500 70 100 200 500 30 70 100 500 30 70 200 700 70 200 1000 5000
PH’..... 20 35 100 200 35 55 100 200 20 35100 200 200 500 1000 2000 50 100 700 10000
Sb...... -2 4 9 - - - n.a. - — 140 200 - 70 100 150
Sn...... - 10 16 30 - 10 16 30 n.a. 20 50 100 300 7 10 20 70
U.... 715 30 60 n.a. n.a. n.a. 5 30 50 500
V... 120 160 250 400 200 300 500 700 n.a. 200 500 700 1000 150 300 500 1000
W..... - 15 20 40 - - 30 50 n.a. 70 150 500 1000 35 50 500 1000
Zn ...... 150 175 250 500 90 150 250 500 90 150 250 500 — 300 700 2000 75 200 1000 10000

! Stream-sediment samples from Allen (1982)
2 Co, Cr, and Pb thresholds used for USGS stream-sediment samples from the Service Creek Roadless Area are 50-70-100-150 (Co); 300-700-1000-5000 (Cr); and 100-150-200-300 (Pb).
Mo thresholds used for USGS stream-sediment samples from the Rawah and Never Summer Wilderness Areas are 3-7-15-20.
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Data that fall within each class were assigned a "weight" value from 0 to 4; low background
(0), high background (1), slightly anomalous (2), moderately anomalous (3), and highly
anomalous (4). A new data set, composed of the assigned weight values for each element and
sample medium, was created. Point plot maps were made from the new data set for all 18
elements. Areas containing samples with "weight" values of two, three, or four were identified as
geochemically anomalous. This method allowed interpretations to be made from geochemical
maps that simultaneously displayed all available element data. Multi-element suite maps also were
created by plotting the sums of selected element weights. These maps were used to distinguish
geochemically anomalous areas that have mineral potential from areas that have anomalies
unrelated to mineral deposits.

Most of the samples containing elevated concentrations of base and precious metals and
related elements are associated with known mining districts and mineral deposits. The following
section describes the geochemical anomalies within and proximal to the Forest. Most descriptions
are given with respect to areas of known deposits; other anomalies are referenced to local
prominent geographic features. The general locations of the anomalous areas are on figure 3 and
mining districts are on figure 5; more detailed location information is on plate 1.

Results
Hahns Peak Mining District

Samples from the Hahns Peak mining district (fig. 5) and surrounding gold placers contained
anomalous concentrations of antimony, arsenic, lead, molybdenum, silver, and zinc (for locations
see Snyder and others, 1981). Silver and arsenic were found at highly anomalous concentrations
in stream-sediment samples; zinc, lead, molybdenum, and antimony also were determined to be
moderately anomalous in at least one sample. One rock sample had moderately anomalous
concentrations of arsenic and antimony. The anomalies are probably related to disseminated
silver-lead-zinc mineral deposits associated with the Tertiary Hahns Peak porphyry stock (Young
and Segerstrom, 1973).

Cam Claims Area
Samples from this area in the Never Summer Mountains contained anomalous concentrations
of arsenic, bismuth, molybdenum, and zinc (for locations see Pearson and others, 1981). One
stream-sediment sample contained 500 parts-per-million (ppm) zinc which is considered highly
anomalous. Two rock samples contained anomalous concentrations of arsenic and molybdenum,;
bismuth and zinc also were found at moderately anomalous concentrations in rock samples. The
CAM claims are in exposed mineralized Proterozoic gneiss.

Henderson-Urad Molybdenum Area
Highly anomalous concentrations of lead, tin, tungsten, and zinc and moderately anomalous
concentrations of gold and copper are in stream-sediment samples around the Henderson and
Urad molybdenum deposits (fig. S) (for locations see Theobald and others, 1985; Barton, 1985c).
Each of the stream-sediment samples contained zinc in concentrations greater than 1,000 ppm and
are among the highest stream-sediment zinc values in the study area. These deposits are classic
examples of Climax-type molybdenum porphyry deposits (White and others, 1981).
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Mt. Cumulus

Stream-sediment and rock samples collected on the west side of Mt. Cumulus in the Never
Summer Mountains contained elevated concentrations of arsenic, bismuth, lead, molybdenum, tin,
silver, and zinc (for locations see Pearson and others, 1981). Zinc concentrations were
anomalously high in most of the stream-sediment samples and one rock sample contained greater
than 1 percent Zn. Stream-sediment samples were characterized by an association of moderate to
highly anomalous concentrations of zinc, lead, molybdenum, and tin plus slightly anomalous
silver. Geochemically anomalous rock samples were distinguished by zinc-cadmium-lead, tin-
arsenic, molybdenum-arsenic, or lead-silver-bismuth associations. The anomalies in the area are
thought to be associated with the Tertiary Mt. Cumulus stock.

Vasquez Peak Molybdenum Anomalous Area

The area of the Vasquez Mountains (fig. 3) is characterized by high background
concentrations of molybdenum and tin in rock and stream-sediment samples with moderately to
highly anomalous concentrations of arsenic, bismuth, gold, lead, molybdenum, silver, and tin (for
locations see Theobald and others, 1985; Barton, 1985c). Slightly to moderately anomalous
concentrations of molybdenum are in several rock and heavy-mineral-concentrate samples. One
rock contained an anomalous concentration of tin and several heavy-mineral-concentrates
contained moderately to highly anomalous tin. Slightly anomalous concentrations of lead were
determined in rock and heavy-mineral-concentrate samples. Arsenic was highly anomalous in two
rock samples. Several heavy-mineral concentrates contained moderately to highly anomalous
concentrations of silver, gold, or bismuth. One concentrate sample contained the highest gold and
silver values (300 ppm Au and 200 ppm Ag) in samples from the Forest. A single stream-
sediment sample in the same area contained 0.48 ppm gold. The anomalies are probably
associated with a Tertiary stock in Proterozoic granite.

Bear Creek-Lone Pine Creek Anomalous Area
Three rock samples in this area on the northeast side of the Park Range contained anomalous
concentrations of cobalt, copper, nickel, and chromium (for locations see Snyder and others,
1981). Another rock had anomalous concentrations of bismuth, copper, chromium, and silver.
These anomalies are associated with an exposure of Proterozoic peridotite.

Elkhorn Mine Area

The anomaly at the Elkhorn mine just south of the Wyoming border in the Park Range is
characterized by elevated concentrations of silver, gold, cadmium, copper, mercury, lead,
antimony, and zinc in six rock samples (for locations see Snyder and others, 1981). The analyzed
rocks contained as much as 500 ppm cadmium, 3000 ppm silver, 1,000 ppm antimony, 1 percent
copper, 1 percent lead, and 20 percent zinc. Several stream-sediment samples have been collected
in the Elkhorn mine area; none of these samples contained anomalous metal concentrations. The
anomalies are associated with mineralized pods and veins in Proterozoic gabbro in the vicinity of
the Elkhorn mine.

Red Canyon-Crystal Mining District
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Ten rock samples from the Red Canyon-Crystal district (fig. 5) have moderately to highly
anomalous concentrations of arsenic, molybdenum, and mercury (for locations see Snyder and
others, 1981) . These anomalies are probably related to fault zones in Proterozoic granite that
have been prospected for fluorite and uranium.

Spring Claims Area
Two spring-sediment samples collected for the National Uranium Resource Evaluation
program east of the Park Range in North Park contained highly anomalous concentrations of
uranium, including the maximum value (385 ppm U) in the Forest geachemical data base for
location see Bolivar and others, 1979; Craig and others, 1982). The Spring claims cover an area
with uranium enrichment in peat.

Diamond Park Area
Geochemical samples from the Diamond Park area in the northern part of the Park Range
contained anomalous concentrations of bismuth, copper, lead, molybdenum, silver, and tungsten
(for locations see Snyder and others, 1981). Bismuth, copper, lead, and molybdenum values were
moderately to highly anomalous in rock samples. Silver and tungsten were anomalous in rock and
stream-sediment samples. Known deposits in the area consist of small mineralized quartz veins
associated with fault zones in Proterozoic gneiss.

Beaver Creek Area (Farwell Mining District)

Geochemical samples from the Beaver Creek area of the Farwell mining district just east of
Hahns Peak contained elevated concentrations of arsenic, bismuth, copper, gold, lead,
molybdenum, tin, tungsten, silver, and zinc (for locations see Snyder and others, 1981). Rock
samples were characterized by moderately to highly anomalous concentrations of copper,
bismuth, tin, molybdenum, gold, silver, and tungsten, and low concentrations of lead and zinc.
Several stream-sediment samples were characterized by anomalous zinc, lead, and silver
concentrations. Molybdenum was also anomalous in two stream-sediment samples. The
anomalies are probably associated with mineralized Proterozoic pegmatite, schist, and gneiss.

Dailey (Atlantic) Mining District

Geochemical anomalies of copper, lead, molybdenum, silver, tin, and zinc are in the Dailey
mining district (fig. 5) (for locations see Theobald and others, 1985; Barton, 1985¢c). Rock
samples contained weakly anomalous concentrations of molybdenum, lead, and silver, and
isolated moderately anomalous concentrations of lead, tin, and zinc. One heavy-mineral-
concentrate sample was highly anomalous in copper, tin, and zinc and moderately anomalous in
silver, molybdenum, and lead. Other heavy-mineral-concentrate samples contained moderate to
high single element anomalies of silver, copper, lead, or zinc. These geochemical anomalies are
associated with mineralized shears and faults in Middle Proterozoic Silver Plume Granite.

King Solomon Mine Area (Farwell Mining District)

Three rock samples from the King Solomon mine area just east of Hahns Peak contained
moderately to highly anomalous concentrations of copper, bismuth, zinc, lead, and silver (for
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locations see Snyder and others, 1981). One stream-sediment sample also contained anomalous
silver. The King Solomon mine exposes mineralized Proterozoic gneiss.

La Plata Mining District

Highly anomalous concentrations of antimony, arsenic, cadmium, copper, lead, molybdenum,
silver, tin, and zinc are in several rock samples from this district (fig. 5) (for locations see
Theobald and others, 1985; Barton, 1985b). Three rocks contained 1 to 1.5 percent lead, five
rocks had greater than 1 percent zinc, five rocks had 1 percent or greater arsenic, and two rocks
contained high silver (1,000 and 1,500 ppm Ag). Heavy-mineral-concentrate samples collected in
this area have slightly to moderately anomalous concentrations of copper, molybdenum, and tin.
The anomalies are associated with mineralized faults and shear zones in Middle Proterozoic Silver
Plume Granite.

Teller Mining District

Numerous geochemical anomalies are in the Teller mining district (fig. 5) (for locations see
Pearson and others, 1981). Elements with elevated concentrations include antimony, arsenic,
cadmium, copper, gold, lead, molybdenum, silver, tin, and zinc. Silver was present in moderately
to highly anomalous concentrations in rock and stream-sediment samples. The district also
contains moderately to highly anomalous molybdenum in rock samples; one sample contained
greater than 2,000 ppm. Analyses of five rocks showed arsenic concentrations that were greater
than 10 percent. Two rock samples contained greater than 500 ppm cadmium. Concentrations of
antimony range as high as 1,500 ppm in rock samples. Lead was highly anomalous in several rock
samples (four determinations were greater than 1.5 percent) and in stream-sediment samples. Six
rock samples contained zinc in quantities from 1 to 12 percent; several stream-sediment samples
were also highly anomalous in zinc. Gold, copper, and tin were at anomalous concentrations in
rock samples. Most stream-sediment samples from the district contained anomalous
concentrations of silver, lead, and zinc; scattered stream-sediment samples also contained
anomalous concentrations of arsenic, cobalt, copper, and molybdenum. The Teller district mines
and prospects were excavated in mineralized fracture zones and veins in Proterozoic granite and
schist. Silver was probably the primary target of exploration (Pearson and others, 1981).

Red Elephant Mountain Area
One rock sample collected from this area in the northeast part of the Park Range near Mt.
Zirkel contained anomalous concentrations of bismuth, copper, gold, lead, and silver (for
locations see Snyder and others, 1981). None of the stream-sediment samples from this area were
anomalous in metals. The anomalous rock came from a mineralized zone in steeply dipping
layered gneiss (Patten, 1987).

Beaver Creek-Norris Creek Area
Anomalous concentrations of molybdenum and uranium were determined in stream-sediment
samples from this area on the east side of the Park Range (for locations see Snyder and others,
1981). No rock samples with anomalous metals were analyzed from the area. The anomalies are
probably associated with local uranium enrichment in the Upper Jurassic Morrison Formation.
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Beaver Creek Area

Elevated uranium and molybdenum concentrations were found in rocks from the Beaver
Creek area southeast of Kremmling (for locations see Snyder and others, 1981). The maximum
uranium value of the entire data set was at this location (1180 ppm U). Four other rock samples
from this area contained anomalous concentrations of uranium. Molybdenum was found at
moderately to highly anomalous concentrations in five rock samples. The anomalies are probably
associated with exposures of uranium-enriched Upper Cretaceous(?) and Paleocene Middle Park
Formation.

Spencer Heights Area
Rock samples from the Spencer Heights area east of the Forest in the Cache la Poudre
contained highly anomalous concentrations of uranium, as much as 872 ppm (for locations see
Pearson and others, 1981). The anomaly is associated with uranium mineralization in a broad
shear zone and pegmatite dikes cutting granitic gneiss.

Greenville Mine Area

Several geochemical samples from the Greenville mine and vicinity (fig. 5) contained elevated
concentrations of antimony, bismuth, cadmium, copper, lead, silver, tin, tungsten, and zinc (for
locations see Snyder and others, 1981). Copper, lead, and zinc were each in rock samples at
concentrations greater than 10 percent. Moderately and highly anomalous concentrations of
silver, bismuth, cadmium, antimony, and tin were in selected rock samples. A few rocks
contained anomalous concentrations of gold and almost every rock contained molybdenum in
slightly anomalous concentrations. Thirteen stream-sediment samples were collected by Snyder
(1987a) downstream from the Greenville mine. At a distance of about 1 kilometer downstream
from the mine, the concentrations of copper, lead, and silver in these samples dropped from highly
anomalous to low background levels; zinc was still slightly anomalous 2 kilometers downstream.
This suggests, at least within the Park Range, that stream-sediment anomalies are locally derived.
The anomalies at the Greenville mine are associated with a metamorphosed massive sulfide
deposit (Snyder, 1987a).

Lower Slavonia Mining District
This area in the headwaters of Gilpin Creek in the Park Range contains geochemical anomalies
of antimony, bismuth, cadmium, copper, gold, lead, silver, tin, and zinc (for locations see Snyder
and others, 1981). Rock samples contained highly anomalous concentrations of each of these
elements. Only one stream-sediment sample from the area had anomalous copper concentrations.

Upper Slavonia Mining District
The Upper Slavonia district in the headwaters of Gilpin Creek in the Park Range contains
enriched concentrations of antimony, bismuth, cadmium, copper, gold, lead, mercury,
molybdenum, silver, tin, and zinc (for locations see Snyder and others, 1981). Rock samples
contained anomalously high values for many of these elements; greater than 500 ppm cadmium, 2
percent copper, 1.5 percent lead, 19 percent zinc, and greater than 10 ppm mercury. Three
stream-sediment samples had anomalous concentrations of copper, lead, or zinc.
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Pearl Mining District

Geochemical samples from the Pearl mining district (fig. 5) and the associated mineralized
area on Independence Mountain contained anomalous concentrations of bismuth, cadmium,
copper, gold, lead, mercury, silver, tin, tungsten, and zinc (for locations see Snyder and others,
1981). Most of the rock samples from the area were highly anomalous in copper, lead, zinc,
silver, gold, and bismuth. A few rock samples were moderately or highly anomalous in cadmium,
mercury, or tungsten. Stream-sediment samples were slightly to moderately anomalous in zinc
and silver, with a few samples having slightly anomalous concentrations of copper, lead, and
tungsten.

Poison Ridge Area (A.O. Porphyry Copper Deposit)

No geochemical samples from the Poison Ridge area (fig. 5) were in the data base. Kinney
and others (196€) report anomalous molybdenum, lead, and copper in rock samples as well as
very anomalous concentrations of copper, lead, zinc, and molybdenum in stream-sediment
samples. The anomalies are related to the A.O. porphyry copper deposit associated with a
Tertiary quartz latite porphyry stock. Karimpour (1982) reported that rock samples from
exploration drill holes contained anomalous concentrations of copper (as much as 4400 ppm),
molybdenum (140 ppm), gold (0.45 ppm), silver (2.74 ppm), and tungsten (10 ppm).

Peak 9731-Elkhorn Complex Area
This area near the Wyoming border in the Park Range contains anomalous concentrations of
cobalt, chromium, and nickel (for locations see Snyder and others, 1981). Rock and stream-
sediment samples show the same geochemical signature of anomalous chromium and cobalt
associated with slightly anomalous nickel. The anomaly is associated with gabbros and peridotite
in the Elkhorn igneous complex.

Big Creek Area

A weak geochemical anomaly of slightly elevated concentrations of antimony, arsenic,
cadmium, copper, gold, mercury, tungsten, vanadium, and zinc was in the Big Creek area on the
western side of the Park Range (for locations see Snyder and others, 1981). Two rock samples
have anomalous concentrations of vanadium, cadmium, and zinc. Stream-sediment samples were
characterized by slightly anomalous concentrations of arsenic, gold, copper, mercury, antimony,
tungsten, and zinc. The anomalies are probably related to massive sulfide-type mineralization in
Proterozoic schist and layered gneiss.

Continental Divide-Fish Creek Reservoir Anomalous Area
A single rock sample collected on or near the Continental Divide west of Fish Creek Reservoir
contained highly anomalous concentrations of gold, cobalt, molybdenum, and vanadium;
moderately anomalous concentrations of silver and arsenic; and slightly anomalous concentrations
of copper and nickel (for locations see Snyder and others, 1981). No additional information
about the source of this mineralized sample or the type of rock analyzed is available in the data
base.
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Morrison Creek-Beaver Creek Anomalous Area
Two stream-sediment samples from the vicinity of Morrison and Beaver Creeks, (8 miles west
of Yampa, Colorado) contained highly anomalous concentrations of silver, arsenic, vanadium, and
zinc with moderately anomalous concentrations of cobalt, tin and tungsten (for locations see
Schmidt and others, 1984). The concentration of silver here is one of the highest values for the
Forest study area (69 ppm). No sources for these anomalies are known.

Other Occurrences

Silver—The maximum silver value (79 ppm) in the stream-sediment data set was in a NURE
sample from the Service Creek drainage within the Service Creek Roadless Area. Two more
samples in the Silver Creek drainage, within the Service Creek Roadless Area, contained
anomalous silver values. The source of these anomalies is not known. Three NURE stream-
sediment samples with anomalous concentrations of silver were collected on the northeast flank of
Independence Mountain west of State Highway 125 and the Forest boundary. Possibly, silver
may have come from the conglomerates on the crest of Independence Mountain, which may also
have been the source for gold placers on the southwest flank (Hail, 1965).

Arsenic.—Two stream-sediment samples with anomalous arsenic values were collected in the
Pagoda Peak-Sand Peak area northwest of the Flat Tops Primitive Area. No sources for the
anomalies are known.

Bismuth.—One rock sample, from the north side of Buffalo Mountain in the Soda Creek
drainage basin, contained anomalous concentrations of bismuth, copper, and mercury. The source
of the metal anomaly is unknown. Several claims and prospects in this area are assumed to have
been located for uranium exploration (Snyder, 1987a).

Cadmium.—Localities of stream-sediment samples with slightly anomalous values of cadmium
are scattered widely throughout the Forest. Almost none of these localities coincide with areas of
known mineral deposits or with localities containing anomalous cadmium in rock samples. The
anomalous stream-sediment samples were analyzed by the same laboratory and method. The
anomalous cadmium sample distribution pattern and the lack of correlation with known cadmium
occurrences suggests that these anomalies are random and possibly due to analytical variation
near the lower determination limit of the analytical method.

Cobalt.—A broad cobalt anomaly in NURE stream-sediment samplesoccurs in Flat Tops
Primitive Area. These samples are associated with Tertiary basalt flows that cover the area
(Tweto, 1976; Tweto and others, 1978). A similar cobalt anomaly is associated with exposures of
the Proterozoic Elkhorn igneous complex in the northern part of the Forest. Mafic rock types,
including the basalts in the Flat Tops Primitive Area and the gabbro and peridotite sequences in
the Proterozoic Elkhorn igneous complex, are commonly enriched in cobalt, chromium, nickel,
and vanadium. A cobalt anomaly over exposures of these rock types may not be related to
unusual or economic concentrations of cobalt or associated elements but merely represents high
background levels of cobalt. Several rock samples in the area of Simpson Mountain between
Service Creek and Silver Creek within the Service Creek Roadless Area contained slightly
anomalous concentrations of cobalt. The source of these anomalies is not known.

Chromium.—The distribution of elevated chromium in stream-sediment samples is similar to
that of cobalt, nickel, and vanadium and correlates with exposures of Tertiary basalt in the Flat
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Tops Primitive Area and exposures of the Elkhorn complex. Chromium values also were slightly
to moderately anomalous in rock samples in the Simpson Mountain area. These anomalous
chromium values are attributed to high backgournd in mafic rocks.

Copper. —One rock sample with a highly anomalous copper concentration and a moderately
anomalous mercury concentration was collected from the vicinity of the Continental Divide just
west of Round Mountain near the southern boundary of the Mt. Zirkel Wilderness. The source of
these anomalies is not known. Another rock sample, collected on the north side of Buffalo
Mountain in the Soda Creek drainage basin contained anomalous concentrations of copper,
bismuth, and mercury. The source of the anomalous rock is unknown. Another rock sample with
anomalous copper concentration was collected from the Kelly Lake area just west of the Rawah
Wilderness. Pearson and others (1982) describe an outcrop of copper-bearing rock at this
locality. Copper Ridge, just north of Steamboat Springs, is the source of an additional rock
sample with anomalous copper.

Gold —The maximum value for gold in the stream-sediment data set (7.42 ppm Au) was
determined in a sample from the drainage basin just south of Threemile Creek on the northeast
flank of Independence Mountain. The source of this gold is probably the same conglomerates
thought to be responsible for the placers on the southwest side of Independence Mountain (Hail,
1965). Another stream-sediment sample that contained a highly anomalous concentration of gold
(1.06 ppm) was collected outside of the Forest in the Soda Creek drainage basin, 1 mile north of
Steamboat Springs. The source of this gold is not known. Two stream-sediment samples from
the northeast flank of Bear Mountain and just outside the Mt. Zirkel Wilderness contained
anomalous gold values. The source for these samples may be mineralized rock similar to that in
the Upper Slavonia district just west of the Continental Divide. Two stream-sediment samples,
collected southwest of Rand and in the Willow Creek drainage basin just north of the Forest
boundary, contained anomalous concentrations of gold. The source of this gold is probably in the
upper Willow Creek drainage basin and may lie within the Forest.

Lead.—A cluster of anomalous lead concentrations in heavy-mineral-concentrate samples was
found in the headwaters of Keyser Creek within the St. Louis Peak Roadless Area. These
samples were also anomalous in tungsten and zinc. Theobald and others (1985) suggests that
these anomalies are associated with small massive sulfides deposits.

Mercury.—One rock sample from the Continental Divide, just west of Round Mountain,
contained moderately anomalous concentrations of mercury and copper. A group of four rock
samples from the north side of Buffalo Mountain in the Soda Creek drainage basin contained
slightly to moderately anomalous concentrations of mercury. One of these samples was also
anomalous for copper. The source of these anomalies are unknown.

Molybdenum.—The entire southern half of the Rawah Wilderness contains slightly to
moderately anomalous concentrations of molybdenum in stream-sediment samples. Pearson and
others (1982) suggested that the Proterozoic granites in the Wilderness contained elevated
molybdenum. Four stream-sediment samples with anomalous concentrations of molybdenum
were collected in the Silver Creek drainage basin within the Service Creek Roadless Area. No
source is known for these anomalies. One rock sample in the Northgate fluorite mining district
(fig. 5) was highly anomalous in molybdenum. Similar molybdenum enrichment was associated
with the fluorite deposits in the Red Canyon-Crystal mining district (fig. 5).
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Nickel —Almost every stream-sediment or rock sample with elevated nickel concentrations
collected in the Forest region is associated with the common mafic rock geochemical signature of
cobalt-nickel-chromium-vanadium. The Tertiary basalts in the Flat Top Primitive Area and the
Elkhorn complex are delineated by anomalous nickel concentrations in stream-sediment samples.
The Simpson Mountain area also has slightly anomalous nickel concentrations in rock samples.

Tin.—A number of stream-sediment samples collected in Big and Little Red Parks northwest
of Hahns Peak (fig. 5) contained anomalous tin values. The Fish Creek area west of Steamboat
Springs contains three stream-sediment sample localities and one rock sample locality with
anomalous tin. Several rock samples and two stream-sediments samples that were collected in the
Service Creek Roadless Area between Service Creek and Silver Creek contained anomalous
concentrations of tin. No sources are known for these anomalies. '

Uranium.—Five rock samples collected along the west side of lower Troublesome Creek
contained anomalous concentrations of uranium and molybdenum. These rocks, from the upper
Oligocene and Miocene Troublesome Formation of Middle Park, may reflect sandstone-hosted
uranium enrichment. One stream-sediment sample containing anomalous concentrations of
uranium and zinc was in the Agua Fria area. The uranium is associated with a pegmatite in
Proterozoic quartz monzonite (Snyder, 1987a). One rock sample, containing 896 ppm uranium,
was collected just north of U.S. Highway 40 before the descent into the Harrison Creek drainage.
This anomaly is unrelated to known sources. A stream-sediment sample in the Service Creek
drainage also contained anomalous concentrations of uranium without a known source.

Vanadium.—The distribution of vanadium is similar to that of cobalt, chromium, and nickel as
discussed above. In addition to slight enrichment in rock samples near Simpson Mountain, nearby
stream-sediment samples in Silver Creek contained anomalous concentrations of vanadium.
Several rocks in the Byers Peak region of the St. Louis Peaks Roadless Area contained anomalous
concentrations of vanadium. The sources of these anomalies are not known.

Tungsten.—Heavy-mineral-concentrate samples collected from the upper Keyser Creek
drainage basin were anomalous in tungsten, lead, and zinc. Small massive sulfide mineral deposits
may be responsible for the anomaly (Theobald and others, 1985). Several stream-sediment
samples from the Rawah Wilderness were highly anomalous in tungsten. This same region is also
high in molybdenum. The elevated tungsten and molybdenum values may be related to the
granitic terrain.

Zinc.—Anomalous zinc was associated with anomalous lead and tungsten in heavy-mineral-
concentrate samples collected from the Keyser Creek region.

GEOPHYSICAL STUDIES
By Viki Bankey and James A. Pitkin

Previous Studies

Geophysical studies were made of six Forest Service wilderness study areas within or adjacent
to the Forest: the Mt. Zirkel Wilderness and northern Park Range vicinity (Daniels, 1987); the
Rawah Wilderness (Pearson and others, 1982); the Comanche-Big South, Neota-Flat Top, and
Never-Summer Wilderness study areas (Pearson and others, 1981); the Indian Peaks study area
(Pearson and U.S. Bureau of Mines, 1980); the Gore Range-Eagle's Nest Wilderness (Tweto and
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others, 1970); and the Vasquez Peak Wilderness and vicinity (Moss and Abrams, 1985). Other
geophysical studies in the area were made by Behrendt and others (1969) and Johnson and others
(1984). Figure 6 shows areas included in these published reports that provide both maps and
interpretations of geophysical anomalies.

Three sets of geophysical data, comprising gravity, aeromagnetic, and radiometric maps, were
compiled from previous studies (figs. 7 and 8) and interpreted for the area of the Forest.

Gravity Data

The complete Bouguer gravity anomaly map (fig. 8) was produced using edited gravity data
from 4,200 stations collected over the past several decades; the data were extracted for this study
from the Defense Mapping Agency gravity data base, available from the National Geophysical
Data Center, Boulder, Colo. Gravity measurements were obtained at single stations, and
contoured values were mathematically interpolated between stations. These data were projected
using a UTM projection having a central meridian of longitude 107°W. and a base latitude of 0°.
These data were gridded at a spacing of 1.2 mi (2 km) using the minimum curvature algorithm in
the MINC computer program by Webring (1981). The data were contoured at 2 mGal using the
CONTOUR computer program by Godson and Webring (1982).

Large, broad gravity anomalies caused by regional geologic features can often hide small
anomalies that may be geologically significant for mineral assessments. To focus on shallower,
more local anomalies, a derivative gravity map (pl. 2) was calculated from the Bouguer gravity
grid using the computer program FFTFIL (Hildenbrand, 1983) to remove or filter anomaly
wavelengths longer than about 42 mi (70 km). The filter was selected to eliminated 100 percent
of the wavelengths greater than 48 mi (80 km), to pass 100 percent of the wavelengths less than
36 mi (60 km), and to pass a linear percentage of the wavelengths between these values. This
"high-pass" derivative map emphasizes anomalies produced by shallow sources and suppresses the
longer wavelength anomalies that are related to deep sources.

The horizontal gradient of the gravity field was calculated using the method of Cordell and
Grauch (1985), which results in high gradient values where the gravity field changes intensity over
short distances across the map. The maximum gradient trends are plotted on the contour map (pl.
2) as heavy, somewhat discontinuous lines. These sinuous lines of maximum gradient commonly
follow geologic boundaries resulting from measurable density contrasts. The method best reflects
the surface projection of vertical boundaries between shallow units; boundaries dipping less than
90° will be offset from the maximum gradient (Blakely and Simpson, 1986). These inaccuracies
are less apparent at regional scales (Grauch and Cordell, 1987).

Gravity anomalies occur from the juxtaposition of rocks that have measurable density
contrasts caused by structural or geologic features such as faults, folds, downwarps, intrusions,
basin fill, lithologic contacts, or facies changes.

The number and quality of gravity stations limits the accuracy of anomaly definition, especially
in mountainous terrain where station spacing is often sparse. As a result, gravity stations may be
too widely spaced to define or locate small mineral deposits, especially if density variations caused
by a hydrothermal system are not large and the geologic setting is complex. However, on a
regional scale, gravity mapping is a useful tool for locating structural breaks, folds, or zones of
weakness, and for delineating intrusions.

36



107°%0’ 1070 108%0’ 106°00°

l [N, | ] T
“.Johnson & others, 1984
N T WYOMING
a0 — a0
.\1
Daniels*,
40%0' -
o0
,eé
&S Tweto Mbéss &
o and Abfdms
@‘9 others vd
¢
70
] 5 10 mi )
| | 1
107'50" 10700 106°30’ 106°00°

Figure 6. Map showing areas of previous geophysical studies. See References section of thi:
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Figure 7. Map showing location of aeromagnetic surveys used to compile acromagnetic map.

Letter Elevation Line spacing  Dir. Survey area Year Reference

onmap (ft) (mi) flown

A 400 a.t. 3 mi E-W  CraigNURE 1978 LKB Resources (1979)
B 12,000 bar. 2mi N-S North Park west 1972 USGS (1978)

C 13,000 bar. 2 mi E-W  North Park central 1965 USGS (1978)

D 400 a.t. 1mi N-S Front Range NURE 1977 Geometrics (1979a,b)
E 14,000 bar. 1 mi E-W  Wolcott-Boulder 1967 usgs (1968)

[Line spacing refers to distance between flight lines; Dir. refers to the direction the survey was flown;
Elevation refers to the elevation of the survey flown, either at constant barometric elevation (bar) or constant
clearance above terrain (a.t.)]
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Aeromagnetic Data

Figure 7 is a reference map for previous aeromagnetic surveys showing location, flight-line
spacing and direction, and original flight elevation of surveys. A magnetic anomaly map of the
Forest (pl. 3) was produced from these surveys. Data from these surveys were projected using a
UTM projection having a central meridian of longitude 107" W. and a base latitude of 39° N. The
data were initially gridded at a spacing of 1/3 to 1/4 the flight-line spacing, then were regridded to
1 km. The Definitive International Geomagnetic Reference Field (DGRF), updated to the date
and elevation of each survey, was removed before merging, using a program by Sweeney (1990).
The total-intensity magnetic anomaly map (pl. 3) shows regional magnetic anomalies; for more
detail, refer to the original magnetic maps referenced in figure 8 that are plotted at a larger scale.

Aeromagnetic anomalies are caused by rocks that contain significant amounts of magnetic
minerals (magnetite being the most common); these anomalies reflect variations in the amount and
type of magnetic material and the shape and depth of the body of rock. In general, igneous and
metamorphic rocks contain enough magnetic minerals to generate magnetic anomalies, whereas
sedimentary rocks are commonly non-magnetic.

All magnetic bodies act as secondary magnets in the Earth's magnetic field and may produce
positive and negative anomaly pairs (dipole anomalies). In Colorado, polarity effects typically
show up as local lows along the northern side of a magnetic high. In some cases, the polarity
lows are too diffuse to be seen or are obscured by the fields of other nearby magnetic bodies.
Polarity lows may complicate the interpretation of primary magnetic anomalies. Another
complicating factor in magnetic anomaly interpretation is the remanent magnetization direction of
the rock, which may differ from the present-day magnetic field direction. If the remanent
magnetization is sufficiently strong and in a different direction, the anomaly will be changed in
amplitude, or shifted away from the source, or both. High-intensity magnetic lows may indicate
igneous rocks that acquired their magnetic properties during a period of magnetic field reversal,
such magnetic lows are associated with some outcrops of Tertiary basaltic rocks on the White
River uplift. Reversals in older intrusive rocks (such as the Proterozoic rocks) may no longer
cause a magnetic low because the magnetization of the rocks tends to decay over time and
eventually will align itself with the direction of the present day Earth's magnetic field.

Aeromagnetic anomaly maps are important tools in mapping surficial and buried igneous
rocks. Aeromagnetic data can be used to locate and estimate depths to igneous intrusions that
may be related to possible mineral deposits. Rings of magnetic highs with central or reentrant
lows may indicate porphyry systems in which hydrothermal alteration has destroyed preexisting
magnetic minerals. Local magnetic highs may exist where hydrothermal alteration or contact
metamorphism has created secondary magnetic minerals, as for example, in a magnetite-bearing
ore body.

Aeromagnetic anomaly maps have some limitations in locating mineral deposits. Some of the
known mineral deposits in the Forest have no distinctive acromagnetic expression—the
Henderson molybdenum deposit is one example. Mineral deposits without associated magnetite
or pyrrhotite are not expected to create magnetic highs. Some shallow deposits associated with
magnetic intrusions may be severed from that source by subsequent faulting. Other deposits may
have lost their early-stage magnetite during subsequent hydrothermal alteration. Tertiary stocks
that intrude magnetic Proterozoic crystalline rocks could create small magnetic lowns or highs
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over the stocks, or show no anomalies at all, depending on the relative magnetizations of both
stock and surrounding rocks.

Physical Properties of Rocks

Earlier studies in the Forest and vicinity that provide measurements of density and
susceptibility of various rock types are summarized in table 5.
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Table 5. Average susceptibility and density values for rocks in the Routt National Forest and and
Middle Park Ranger District of the Arapaho National Forest and vicinity, Colorado [n.a. not
available] .

Rock type Number of Susceptibility Density
samples (cgs units) (g/cm®)

Danicls, 1987 (Mt. Zirkel area)
1.8 b.y. gabbro and mafic intrusions 8 1.8x103 na
1.7 b.y. quartz monzonite - Buffalo Mtn. 2 1.8x10° n.a
1.7 b.y. quartz monzonite - other 9 0.1x10°% n.a
1.4 b.y. quartz monzonite - Marguerite 2 41x10° na
1.4 b.y. quartz monzonite - other 3 0.46x 10? na
Proterozoic pelitic schists - chloritized 1 8.6x10° na
Proterozoic pelitic schists 3 0.02x 103 na
Proterozoic gedrite gneiss 1 6.2x10° na
Proterozoic hornblende gneiss 2 0.65x10° na
Proterozoic metasedimentary and 12 0.33x10° na

metavolcanic rocks, undifferentiated
Tertiary Browns Park Formation, altered 4 0.024 x 103 n.a
Tertiary Browns Park Formation, altered 4 0.114x 10? na
Tertiary intrusives, olivine-bearing 4 2.68x 103 na
Tertiary intrusives 6 0.732x 10° n.a
Moss and Abrams, 1985 (Vasquez Peak and vicinity)
Tertiary intrusive rocks

rhyolite (altered) n.a. 0.35x10°% 2.38

quartz monzonite na. 0.5x 103 na.

unaltered average n.a. n.a. 2.62
Cretaceous sedimentary rocks

Pierre Shale na. non-magnetic 2,61

Dakota Sandstone na. non-magnetic 252

Niobrara Formation n.a. non-magnetic 2.66
Proterozoic intrusive rocks

Silver Plume Granite na. 0.6x10? 2.67

Boulder Creek Granodiorite na 1.2x10% 2.66

gabbro na. 10.3x10° 3.03
Proterozoic metamorphic rocks

homblende gneiss na 1.6x 103 2.89-

biotite gneiss n.a. 0.5x10% 2.74

sillimanite gneiss na. 0.9x10? 2.76

amphibolite and

calc-silicate gneiss na. 1.0x103 2.80
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Table 5. Average susceptibility and density values for rocks in the Routt National Forest and and
Middle Park Ranger District of the Arapaho National Forest and vicinity, Colorado—Continued.

Rock type Number of  Susceptibility  Density
samples (cgs units)  (g/cm’)

Case, 1967 (Colorado Mineral Belt)
Proterozoic granitic rocks 35 na. 2.65
Proterozoic metamorphic rocks 46 na. 279
Tertiary porphyritic rocks 64 na. 265
Tweto and Case, 1972 (Leadville 30-minute quadrangle)
Proterozoic rocks n.a. 0.32x10%-4.5x10%  2.75
Paleozoic sandstones and

quartzites n.a. 0 2.63
Paleozoic dolomites and

limestones n.a. 0 2.80
Paleozoic, upper

(undifferentiated) n.a. 0 2.50
Cretaceous and Tertiary

intrusive rocks n.a. 0.46x103-2.67x10°  2.63

Isaacson and Smithson, 1976 (Sawatch Range, Elk and West Elk Mountains)

Proterozoic rocks 36 n.a. 2.71
Tertiary granitic rocks 27 n.a. 2.63

mpbell an || 986 (Holy Cross Wilderness area and vicinity)
Proterozoic intrusive rocks n.a. 0.68 x 107 n.a.
Proterozoic metamorphic rocks n.a. 0.3x10% n.a.
Proterozoic granites na. 0.5x103 na.
Cretaceous-Tertiary

intrusive rocks na. 0.58 x 10° na.
Behrendt and others, 1969 (Park Range, North Park); Plouff, 1961 (Roberts Tunnel)
Proterozoic metamorphic rocks n.a. n.a. 2.84
Proterozoic granitic rocks n.a. n.a. 2.64
Mesozoic sedimentary rocks n.a. n.a. 2.60
Cenozoic sedimentary rocks n.a n.a. 2.40
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Proterozoic rocks in and near the Forest have a wide range of measured magnetic
susceptibilities and densities. The Proterozoic granitoid and gabbroic rocks are generally the most
magnetic (Moss and Abrams, 1985); Proterozoic metamorphic rocks are generally moderately
magnetic, although Proterozoic metasediments may be relatively non-magnetic (Daniels, 1987).
Proterozoic migmatites and biotite gneisses appear to be more magnetic than granites in some
parts of the Gore Range, in the southern part of the Forest (Daniels, 1987).

In and near the Forest, amphibolites and gabbros are the densest of the common Proterozoic
rocks, whereas some granites and felsic metamorphic rocks have lower densities (Behrendt and
others, 1969; Moss and Abrams, 1985). As a group, the Proterozoic rocks are significantly
denser than Tertiary intrusive rocks (Case, 1967; Behrendt and others, 1969; Brinkworth, 1973;
Moss and Abrams, 1985). Oligocene intrusives are among the least dense rocks in the study area
(Moss and Abrams, 1985).

Density measurements of Mesozoic and Tertiary sedimentary rocks to the west and southwest
in the central Colorado Plateau (Plouff, 1961) vary from 2.3 to 2.6 grams/cubic centimeter
(g/cm®). Mesozoic and Tertiary rocks in the study area are lithologically similar (Behrendt and
others, 1969) and may have similar densities. The few available measurements of magnetic
susceptibility of these rocks indicate that they are virtually nonmagnetic.

Some Tertiary plutons are magnetic and produce conspicuous positive anomalies (Moss and
Abrams, 1985; Daniels, 1987), but where altered, they may produce relative magnetic lows or
plateaus in the regional magnetic field. Other Tertiary intrusions have low susceptibilities and
generate no magnetic highs; they may even produce magnetic lows where they intrude more
magnetic Proterozoic rocks (Moss and Abrams, 1985; Campbell and Wallace, 1986).

No measurements of remanent magnetizations for the rocks in the Forest and vicinity are
available. Pearson and U.S. Bureau of Mines (1980) suggest that the mid-Proterozoic Silver
Plume granite may be reversely magnetized, but the amount of remanence is unknown. On the
magnetic anomaly map the Silver Plume granite appears less magnetic than surrounding rocks
where it crops out in the study area.

Interpretations of Gravity and Magnetic Data
Regional Features

Regional northeast-trending magnetic and gravity highs, lows, and gradients occur across the
study area and beyond and have been noted previously. The northeast-trending grain in a regional
aeromagnetic map of the area has been interpreted as part of a Proterozoic zone or belt of en
echelon shears 200 miles wide that extends from the Grand Canyon to south of the Black Hills
(Case, in Zietz and others, 1969). Pratt and Zietz (1973) interpreted the alignment of magnetic
anomalies from Rangely, CO, to 6 mi south of Julesburg, CO, as a major basement structural
discontinuity that may have controlled the location of the Tertiary volcanic centers of the Rabbit
Ears Range and Never Summer Mountains. Prodehl and Lipman (1989) recognized that the
dominant structural grain of Proterozoic rocks parallels accretion boundaries, primarily the
Mullen Creek-Nash Fork zone of continental suturing of Archean and Proterozoic crust in
southeastern Wyoming. Major Proterozoic shear zones, such as the Soda Creek-Fish Creek,
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Homestake, Berthoud Pass, and Idaho Springs-Ralston shear zones, parallel this trend. These
northeast-trending zones were recognized by Lovering (1935) and Tweto and Sims (1963) as
influencing the location of Laramide intrusives and related ore deposits in the Colorado mineral
belt.

Warner (1978, 1980) proposed a middle Proterozoic wrench fault system of the San Andreas
type that encompasses the area between the Mullen Creek-Nash Fork shear zone at its northern
boundary and the Homestake shear zone—an area about 100 mi wide that covers the entire Forest
study area. Warner postulates that this zone, which he named the Colorado Lineament, can be
traced from the Grand Canyon to Lake Superior, and probably ceased as a wrench-fault system
about 1,700 m.y. ago. Regardless of the origin—tilted bedding planes, shear zones, or wrench
fault systems—these northeast-trending anomalous areas are of interest in mineral formation
because they are probably zones of crustal weakness that may have provided pre-existing conduits
for later intrusions and possible mineralizing fluids.

Case (Zietz and others, 1969) also notes an east-west trend in the aeromagnetic data,
especially in the western part of the state, but including the east-west-trending Independence
Mountain fault (within the Forest) and Proterozoic fold axes in the Front Range (east of the
Forest).

Tweto (1987) has postulated that the Rawah batholith encompasses a much larger area than is
mapped in the Medicine Bow Mountains. He has included outcropping granitic rocks in the Gore
and Park Ranges as part of this batholith and cites boreholes that penetrated similar rock in North
Park and southwest of the Park Range as evidence of continuity beneath cover. Rock
composition within this batholith varies from granite, quartz diorite, and quartz monzonite, with
numerous inclusions of more mafic igneous rocks. This variation in rock composition results in
varying shapes and intensities of magnetic anomalies.

The southernmost part of the study area lies on the northern edge of an extensive 30-50 mGal
(milligals) gravity low, called the Colorado Mineral Belt gravity low (Case, 1965), that trends
southwest from the Front Range to the San Juan Mountains and cuts across many Laramide
features. This gravity low is attributed to a low-density, silicic, batholithic mass of Late
Cretaceous to Tertiary age that is postulated to underlie a large part of the Colorado Mineral Belt
(Crawford, 1924; Case, 1967). An intracrustal origin for the gravity low, having an apex within a
few thousand feet of the surface, a depth extending 40,000 ft below sea level, and a width
averaging 15-20 mi, can be demonstrated by gravity models (Case, 1965, Tweto and Case, 1972;
Isaacson and Smithson, 1976). Because this gravity low does not continue northward into the
Forest, we can predict that mineralization of the type associated with the low-density batholith
and the related Colorado mineral belt will not be present in the study area.

For the purposes of discussing local geophysical features, the Forest is divided into five areas:
the Park and Gore Ranges, including the Mt. Zirkel Wilderness area; the Medicine Bow
Mountains; the Rabbit Ears and Never-Summer Mountains; the Williams Fork Mountains,
including the Vasquez Wilderness area; and the Flat Tops (fig. 4). Geophysical anomalies show
poor correlation with mapped rocks in the northwestern part of the Forest near the Elkhead
Mountains, and this area is not included in detailed interpretation. Magnetic anomaly numbers on
plate 3 have been assigned as shown in table 6.
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Table 6. References for magnetic anomaly prefixes on plate 3.

Prefix Author Area Reference

DZ Daniels Mt. Zirkel Wilderness Daniels (1987)

BP Behrendt  North Park and vicinity Behrendt and others (1969)
FR Flanagan Rawah Wilderness Pearson and others (1982)
FC Flanagan Comanche Pearson and others (1982)

MV Moss Vasquez Peak Moss and Abrams (1985)
VR Bankey  Routt National Forest this report

Park and Gore Ranges and the
Mt. Zirkel Wilderness Area

Behrendt and others (1969) conducted a geophysical study of the North Park basin and
surrounding mountains, using gravity, aeromagnetic, and seismic data. Their discussion of gravity
and magnetic anomalies in the Park Range and Medicine Bow Mountains (fig. 7) is summarized
here and augmented with more detailed or current interpretation where appropriate.

Gravity anomalies arise in this area from contrasts between Proterozoic metamorphic and
plutonic rocks, and between Cenozoic sedimentary and older sedimentary rocks. The
Independence Mountain thrust sheet north of North Park is associated with a gravity high that
increases northward to the Wyoming border. This gravity high is bifurcated by a north-south-
trending gravity low (plate 2) that may indicate a sedimentary basin below the thrust plate or may
be caused by low-density igneous rocks. Gravity lows caused by low-density basin fill are at the
deepest parts of the North Park syncline and the Walden syncline, outside the Forest.

High-pass filtering of the Bouguer gravity data (plate 2) shows a northeastern continuation of
the Mt. Ethel pluton gravity low beyond the mapped extent of the pluton. Magnetization
contrasts are not associated with this pluton. The gravity low encompasses the Walden syncline,
reaches lower values just southwest of the Medicine Bow range-front fault, and continues across
the northernmost Medicine Bow Mountains where granitic rocks are mapped. A gravity model
of the Mt. Ethel pluton shows a granitic body with a density contrast of 0.2 g/cm® between the
granite and surrounding rocks (Behrendt and others, 1969). Although low gravity values in North
Park partially result from a syncline filled with low-density rocks, the trend and extent of the
gravity low and correlation with magnetic gradients seem to confirm Behrendt and others'
conclusion that buried granitic rocks are a contributing cause of this broad gravity low.

Behrendt and others (1969) concluded that positive magnetic anomalies in the Park Range and
Medicine Bow Mountains are caused by Proterozoic rocks of varying composition, some having
estimated magnetite content of as much as 1 percent. From geophysical evidence, they inferred
the presence of high-density gneisses and schists, but later geologic mapping shows intermixing of
unmetamorphosed igneous rocks (quartz monzonites and diorites) with crystalline metavolcanic
and metasedimentary rocks (Snyder 1980a,1980b, 1980c, and 1980d). Because the magnetic
variation within these units may be greater than the variation between units, determination of rock
type based on magnetic mapping is not possible in this area.

A northeast-trending magnetic high (BP1) extends from the eastern Park Range, North Park,
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and the Medicine Bow Mountains. Behrendt and others modeled two gravity and magnetic
profiles along this magnetic feature. Magnetic models show a complex basement terrane
composed of blocks of varying amounts of mafic material, consistent with Tweto's hypothesis
(1987) that the Rahwah batholith underlies this region and trends northeast-southwest. Gravity
modeling suggests that rocks in the Medicine Bow Mountains have higher densities (2.90 g/cm®)
than rocks in the Park Range (2.80 g/cm®). The maximum thickness of the sediment fill in North
Park is 3.2 mi (5.3 km), and vertical uplift is at least 4.0 mi (6.7 km) for the Medicine Bow
Mountains and 3.8 mi (6.4 km) for the Park Range, relative to North Park.

North-south gravity profiles through the Park Range and Medicine Bow Mountains by
Johnson and others (1984) show that the Proterozoic island-arc crust south of the Mullen Creek-
Nash Fork zone is thicker than the Archean Wyoming cratonic crust north of the zone, in
agreement with recent seismic studies (Mooney, 1991). A density of 2.85 g/cm® for pelitic schists
and gneisses (Johnson and others, 1984) is equivalent to high-density schists and gneisses of
assumed density of 2.90 g/cm® (Behrendt and others, 1969). South of 40° 30' N. latitude, a
gravity high is attributed to both pelitic schist and gneiss and a body of Tertiary volcanic rocks
having a density of 2.90 g/cm® (Johnson and others, 1984). The volcanic rocks do not appear
magnetic on plate 3. Johnson and others (1984) suggest that the density of the Mt. Ethel granite
may be 2.65 g/cm* The granite body is bounded on the south by the northeast-trending Soda
Creek-Fish Creek mylonitic shear zone (Snyder, 1980b), a recurrently reactivated zone of
movement that controlled the emplacement of the pluton (Tweto, 1987).

Mt. Zirkel and northern Park Range

In the northern Park Range, magnetic anomalies that appear shallow (using anomaly size and
intensity) may be caused by Proterozoic granites and metamorphic rocks, which are associated
with polymetallic veins, or may indicate areas of Tertiary intrusive rocks such as the Hahn's Peak
intrusion, which are associated with disseminated silver-lead-zinc mineral deposits (Smith, fig. 16,
this report). Tertiary intrusions in proximity to Mt. Ethel batholithic rocks are also linked
elsewhere in the Forest to fluorospar veins (Toth, this report). Other evidence such as
geochemical anomalies must be used to determine the significance of positive magnetic anomalies
in this area.

Daniels (1987) interpreted aeromagnetic anomaly data for the Mt. Zirkel Wilderness area and
vicinity, and his work is summarized here, with additional comments where applicable. Anomalies
DZ1-DZ6 on plate 3 can be modelled as buried or exposed Proterozoic rocks, but Daniels (1987)
also suggested that they could be caused by subsurface Tertiary intrusions, indicating a higher
mineral potential in areas of magnetic highs. However, anomaly DZ4 is not a likely Tertiary
intrusion as reinterpreted here.

Positive anomaly DZ4 is attributed to the highly magnetic Elkhorn Mountain gabbro, and the
anomaly continues west and southwest of the exposed pluton, indicating a buried extension about
equal to its exposed mass. A small positive anomaly northeast of magnetic high DZ4 is associated
with ultramafic rocks where there is a high potential for platinum group elements (fig. 22). A
large gravity high is also associated with this gabbro. High-pass filtering of the gravity data
prepared for this report (Plate 2) shows this positive gravity anomaly to be centered on the
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outcrop, with positive values continuing northwest into Wyoming and southwest as a positive
gravity ridge. Although small outcrops of Xm rocks are found near magnetic anomalies DZ3 and
DZ6, the main gravity and magnetic anomalies do not continue eastward in the Forest, and we
conclude that this mafic body does not have a significant eastward buried extent.

Positive magnetic anomalies DZ1 and DZ2 are located on the western edge of the Mount
Ethel pluton. The grain-size and composition at the western edge of the pluton changes from
medium-grained biotite granite and quartz monzonite to a swarm of coarse-grained pink aplite
and leucogranite porphyry dikes (Snyder, 1987b), but this compositional change in itself would
not account for positive magnetic anomalies. Quartz monzonite porphyry or more mafic
granodioritic rocks are likely sources of anomalies DZ1, DZ2, and perhaps DZ3 (Daniels, 1987),
whose model across anomalies DZ1 and DZ2 suggests a burial depth of nearly 0.6 mi (1 km) to
the top of each intrusion. No gravity anomalies are associated with magnetic anomalies DZ1-DZ3
(plate 2).

Positive magnetic anomaly DZS, at Big Agnes Mountain near Mt. Zirkel, has a source
modeled below 1 mi (1.5 km) (Daniels, 1987). Felsic gneiss, pelitic schist, and granite, with small
intrusions of pegmatite and ultramafic rock exposed at the surface cannot account for anomaly
DZS; thus an ultramafic source at depth is required. A gravity high associated with magnetic
anomaly DZ5 supports the presence of a more mafic, dense body at depth.

Positive magnetic anomalies DZ6 and VRS are located at and southeast of Farwell Mountain.
These anomalies have gravity highs associated with them, which suggests a different source than
anomalies DZ1-3. Gabbro crops out just east of anomaly DZ6. The lack of physical correlation
between the gabbro outcrop and the anomaly might be explained by destruction of magnetite by
mineralization in the nearby Farwell mining district.

Positive magnetic anomalies form a northeast-trending ridge, VR1, north of and parallel to the
Mount Ethel pluton. A gravity high correlates with this ridge. Massive sulfide deposits are
associated with the eastern and western parts of the ridge; and the ridge of magnetic and gravity
high values, coupled with the preferred northeast direction of the anomalies, indicates the possible
extent of such deposits. The actual source of the anomalies is undetermined: either a structural
high or a variation in rock type could account for this feature.

A north-south-trending ridge of magnetic highs (VR2) is associated with rocks on the upper
plate of a thrust mapped just east of the Elkhorn Mountain gabbro, in an area of outcropping
quartz monzonite and non-magnetic metavolcanics. Throughout the northern Park Range,
correlation of magnetic anomalies with Proterozoic igneous rocks is variable: some positive and
negative magnetic anomalies reflect variations in the magnetization of quartz monzonites and
granitic rocks, whereas other magnetic anomalies may indicate small buried intrusions of unknown
composition. Without other confirming evidence of intrusions that may be associated with
mineral deposits, magnetically anomalous areas such as this ridge must be regarded as suggestive
of intrusions but cannot be confirmed. In this case, a north-south-trending gravity low correlates
with the magnetic ridge, a pattern that elsewhere resembles anomalies caused by magnetic
Tertiary intrusions, which are frequently less dense than Proterozoic rocks. Behrendt and others
(1969) attributed this gravity low to a sedimentary basin below the thrust plate, but granitic rocks
also have low densities and could cause the gravity low.

The horizontal gradient of the magnetic field was calculated, and this gradient map shows two
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northeast-trending magnetic gradients that cross the northern part of the Forest: VRG3 extends
from Glen Eden in the southwest to the northeastern corner of the Forest, and VRG4 parallels
VRGS3 across the Park Range and approximately 15 miles south. These gradients encompass a
magnetically low area that includes the Elk River valley (and thus is partially topographically
controlled) but that continues northeastward to include the Independence thrust sheet. These
trends could reflect unmapped shear zones or structural grains in Proterozoic rocks.

Southern Park Range and Gore Range

Magnetic gradient BPG2 follows the southern boundary of the Mount Ethel pluton and is
associated with the Soda Creek-Fish Creek shear zone. South of the gradient, magnetic low BP3
is located just east of Mt. Werner. This low is not topographically related, and has no associated
gravity expression. Gneissic rocks (Xfh) mapped in the area correlate poorly with the low,
because the rocks are widespread elsewhere over the Park Range with no corresponding intense
low. Tweto (1987) has inferred from borehole data that a northeast-trending wedge of largely
metasedimentary rock (Xb) underlies this area. The range of rock types within this Xb unit
(biotite gneiss, migmatite, marble, and calc-silicate rocks) vary widely in susceptibility ranges, and
presumably a non-mafic type predominates in this area. Another possible source is a buried,
reversely magnetized, mafic intrusion of similar density to Proterozoic diorite or monzonite (but
not Mt. Ethel pluton-type rocks, which are less dense). Precambrian basement north of this zone
is primarily felsic and hornblendic gneiss (Xfh), whereas south of the zone basement is granitic
rock of the Routt plutonic suite (Tweto, 1987).

Two small, northeast-trending positive anomalies (labeled VR6) at and northeast of Blacktail
Mountain are superimposed upon generally high magnetic values of Proterozoic granitic rocks.
The limited aerial extent and sharp gradients of anomalies VR6 suggest shallow sources, possibly
intrusions. One of the anomalies is associated with a mapped Tertiary basalt; however, other
similar outcrops of basalt have no related positive magnetic anomalies. Alternatively, anomalies
VR6 could indicate more highly magnetic areas of Proterozoic rocks.

In the Gore Range, an abrupt east-west gradient (VRG7) separates high magnetic values to
the north from lower magnetic values to the south. Negative magnetic anomaly VRS8 is part of a
northeast-trending, magnetically low zone that continues through the Rabbit Ears Range and the
Never Summer Range (including anomaly FC4), where its southern boundary is associated with
the Skin Gulch Shear Zone. It is part of a major magnetic feature that crosses the Routt study
area and beyond, traversing the Flat Tops, following the northwest border of the Rabbit Ears
Range, cutting through Cameron Pass-Specimen Mountain, and continuing across the northern
part of the front Range along the Cache la Poudre River to Fort Collins. This magnetic zone is
more than 120 mi (200 km) long and between 12 mi (20 km) and 30 mi (50 km) wide. This zone
is a major basement discontinuity, and as previously mentioned (Pratt and Zietz, 1973;
Brinkworth, 1973), may have controlled emplacement of the Tertiary volcanic rocks in the Rabbit
Ears Range and elsewhere along its length. A northeast-trending gradient, VRG10, follows the
southern boundary of this zone of weakly magnetic rocks.

Positive magnetic anomalies VR9 A-C are shallow, local features that fall within the larger
zone of magnetic low values. Anomaly VR9B correlates with mapped Tertiary mafic intrusive
rocks, which are the likely sources of all three of these positive magnetic anomalies. A positive

49



gravity anomaly on the high-pass filtered map (plate 2) correlates with this area of magnetic
anomalies, reflecting the denser mafic rocks found here.

Medicine Bow Mountains
Rawah Wilderness Area

Clusters of magnetic highs in the southern Medicine Bow Mountains are similar in pattern and
trend to magnetic highs to the southeast in the Front Range (Pearson and others, 1982). These
magnetic highs are separated by a northeast-trending, deep magnetic low described earlier that
here follows major faults in the Medicine Bow Mountains.

The magnetic highs in the Medicine Bow Mountains are intensified where magnetic rocks are
in high topographic relief, but analysis of the topography (Pearson and others, 1982)
demonstrates that many anomalies are not solely caused by topograpic changes. The dominant
granitic rocks of the Rawah batholith are moderately magnetic, based on measurements of
similar-aged granites (table 5) and on the generally high magnetic valies here, but the intensity of
the associated magnetic field appears to vary locally. Localized magnetic highs (FR1, FR2, FR3,
FR6, and FR7 on plate 3) may arise from more mafic rocks at a depth of a few kilometers,
enhanced by clusters of shallower inclusions.

A northeast-trending magnetic low (FR4) is postulated by Flanagan as the result of a
combination of weakly magnetic inclusions, oxidation of magnetite along faults, and a
topographic low. Magnetic low FR4 is centered on mapped polymetallic vein deposits of Cu and
Ag and has been used to help define the favorable terrane for polymetallic veins in this area, on
the assumption that it may be associated with either a buried intrusion of low magnetization or
with hydrothermal alteration that destroyed magnetic material.

A north-south-trending magnetic low, FRS, parallels the Laramie River valley but lies east of
and above the valley floor. This anomaly, located 1 mi west of a mapped reverse fault, is
interpreted as a wedge of Phanerozoic sedimentary rock beneath Proterozoic crystalline rocks
thrust over it (Pearson and others, 1982).

Rabbit Ears Range and Never Summer Mountains

The section of the Forest that includes the Rabbit Ears Range and Never Summer Mountains
lies within the broad, northwest-trending magnetic low described in the section on the Gore
Range. Within this broad area of low magnetic values, short-wavelength magnetic highs in the
Rabbit Ears Range correlate with both volcanic and intrusive rocks. Magnetic highs of similar
extent and amplitude along the continental divide show that intrusive rocks are also shallowly
buried beneath Cenozoic sedimentary rocks. Mapped volcanic rocks south of the divide and in
the Never Summer Mountains do not have associated magnetic anomalies, due in part to
topographic effects of lower elevations in this area. Gravity values are poorly correlated to
mapped rock units, including the exposed volcanic rocks.

The lack of gravity expression and the reduced amplitudes of magnetic anomalies in the
Never Summer Mountains indicate shallow depth to the bases of the source bodies of the
magnetic anomalies as a result of the thin Never Summer thrust plate overlying a structural trough
of low-density sedimentary rocks (Behrendt and others, 1969). North-south gradients in the
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magnetic data (anomaly BPG4) and gravity data, with increasing values to the east, suggest that
the Never Summer Mountains are separated from the Front Range by a north-trending fault that
parallels the Laramie River fault (FRS5) to the north.

Comanche-Neota-Never Summer Study Areas

Flanagan (Pearson and others, 1981) studied gravity and magnetic data of the Comanche-Big
South, Neota-Flat Top, and Never Summer Wilderness Study areas (fig. 4), and his work is
reviewed here.

Positive magnetic anomaly FC1 is caused by the Tertiary Mount Richthofen granodiorite,
bounded on the south by the Mt. Cumulus rhyolite-porphyry stock. The Mount Richthofen stock
generates no gravity anomaly, whereas a prominent gravity low where Mt. Cumulus rocks crop
out is evident on the gravity map (plate 2) and shows a buried east-west extension of the Mt.
Cumulus stock. The Teller mining district of polymetallic veins is associated with the western
flank of the gravity low, and a Climax-type molybdenum occurrence is associated with the gravity
minimum. Positive magnetic anomalies FC3A and FC3B are located south and north respectively
of the Mt. Cumulus stock, suggesting that the stock is non-magnetic or is reversely magnetized.
A regional gravity map by Flanagan in Pearson and others (1981), which was made using a
slightly different method of anomaly filtering than that used to create plate 2, shows local gravity
lows at Mt. Cumulus, at Jack Creek, and west of Specimen Mountain. These anomalies may
reflect shallow plutons that are connected at depth. The aeromagnetic data used for this report
(plate 3) are of higher quality than those used by Flanagan, and they reveal a greater number of
shallow magnetic highs and lows on the Never Summer thrust plate that may be associated with
unexposed Tertiary intrusions and possible mineralization.

Negative magnetic anomaly FC2, east of and parallel to positive magnetic anomaly FC1, is
thought to be a southward continuation of the Laramie River fault marked by anomaly FRS to the
north. This discontinuous north-south anomaly can be traced as far south as Shadow Mountain
Reservoir.

A northeast-trending magnetic low reaches its lowest values at FC4. This magnetic low was
described earlier in the sections on the Gore Range and the Rabbit Ears Range. This low has been
interpreted as the result of destruction of magnetic minerals along fault zones (Pearson and
others, 1981), which may account for a small part of the magnetic low, but the extent and
intensity is much larger than expected if due solely to alteration.

Local positive anomaly FCS5 is within the regional magnetic low. The source is not exposed
but may be a small intrusive Tertiary(?) plug, a local area of more magnetic facies of Proterozoic
(?) granite, or a dike swarm of unknown age.

Williams Fork Mountains Area
Vasquez Peak, St. Louis Peak, and Williams Fork Study Areas

Moss and Abrams (1985) studied the gravity and magnetic fields of the Williams Fork
Roadless Area, in the southeasternmost part of the Forest (fig.3), and the Vasquez Peak
Wilderness Study Area and St. Louis Peak Roadless Area northeast of the Williams Fork
Roadless Area. Rocks exposed in this area include Proterozoic intrusive and metamorphic rocks.
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Measurements of rock properties (table S) show that the Proterozoic Silver Plume granite is less
dense and less magnetic than the metasedimentary gneisses and schists.

Moss and Abrams (1985) selected six small areas of low gravity values and magnetic highs or
lows that might indicate either buried Oligocene stocks, or varying magnetic mineral content of
Proterozoic intrusive or metamorphic rocks. Positive magnetic anomalies MV1A and MV1B may
reflect more mafic rocks within a sequence of Proterozoic metasedimentary rocks. Anomalies
MV3 and MV4 are associated with Proterozoic gabbro outcrops. Positive magnetic anomaly
MVS5 and MV6 may arise from Boulder Creek Granodiorite. Magnetic high MV8 was interpreted
by Brinkworth (1973) as caused by an early Tertiary intrusive and attributes a similar buried
intrusive to magnetic high MV2.

An east-northeast-trending gravity low on the gravity map (plate 2) is bounded by the Lake
Shear zone on the northwest and the Straight Creek fault zone on the southeast. The gravity low
marks the presuined exposed and buried extent of the Silver Plume batholith. The gravity high
northwest of this low is associated with denser, more mafic metamorphic rocks.

Two deep, northeast-trending magnetic lows dominate the magnetic anomaly map in the
Williams Fork region. The northernmost of the two (labelled MV7) follows St. Louis Creek. The
southernmost magnetic low (VR11) crosses topography and roughly correlates with the northern
part of the Silver Plume batholith. A northeast-trending positive magnetic ridge separates the two
lows, and the St. Louis Lake shear zone corresponds to the magnetic gradient between this
positive ridge and magnetic low VR11. This ridge corresponds to a gravity gradient that Moss
and Abrams postulated was the contact between Silver Plume granite and metamorphic rocks;
however, this does not explain the northern magnetic low. Two possible causes for the northern
low: Silver Plume granitic rocks lie beneath St. Louis Creek, or the source is a non-magnetic
phase of Proterozoic rocks unidentified in this area. A gravity low on the high-pass gravity map
correlates with the eastern part of magnetic anomaly MV7, suggesting granite as a source; or
alternatively could reflect less-dense sediments filling Frasier Valley.

A northwest-trending gravity low correlates with decreased magnetic values in the
northwestern Williams Fork Mountains and suggests a wedge of sedimentary rocks beneath the
Williams Fork thrust plate. Magnetic anomalies are continuous and not offset along the Williams
Fork Mountains thrust. The source of these anomalies is probably basement rocks in the shallow
footwall.

Tertiary intrusive rocks, not exposed in this area, are believed responsible for base- and
precious-metal mineralization, such as the subvolcanic Oligocene stock associated with the
Henderson molybdenum deposit southeast of the Forest. Brinkworth (1973) studied the
aeromagnetic and gravity maps of the Climax area and the Front Range. Because of the
importance of molybdenum in the southern part of the study area, his work comparing the Climax
and Red Mountain (Henderson mine) intrusive complexes is included here.

The Oligocene stocks associated with nearby molybdenum deposits have the lowest density
of all rocks in the area and may be delineated by gravity lows (Brinkworth, 1973). However,
gravity data are sparse in this remote region, and the gravity field near the large Henderson
molybdenum deposit a few miles east of the Williams Fork Roadless Area shows only a slight
negative deflection in the Bouguer gravity field (fig. 6). High-pass filtering, however, has
removed the strong regional gravity low caused by the batholith associated with the Colorado
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mineral belt, and a residual gravity low just east of the Forest boundary attributed to the Silver
Plume batholith also correlates with the Henderson mine (plate 2). Part of this gravity low could
be caused by the subsurface Tertiary intrusive associated with mineralization of subvolcanic
rhyolite (averaging 2.49 g/cm?®) and altered country rocks. The negative gravity anomaly
continues to the northeast and suggests that any related mineralized areas are more probably east
or north, outside the Forest.

The Colorado Mineral Belt gravity low encompasses the area of plutons related to
molybdenum enrichment, including the Red Mountain stock and other outlying rhyolitic plutons
such as the Montezuma, Leavenworth, and Cabin Creek stocks and the Revenue Mountain and
Handcart Gulch stocks, south of the Forest (Brinkworth, 1973). All of these stocks have
common volcanic origins; they have components associated with separate intrusive events and
hydrothermal episodes, and they are located near major Proterozoic shear zones that may have
localized igneous activity at pre-existing zones of crustal weakness. However, each intrusion is
eroded to a different level, Brinkworth (1973) calculated that the Climax stock is 3,000 ft more
deeply eroded than the Red Mountain stock. Neither the Climax nor the Red Mountain stocks
have much magnetic expression, but the flight lines are at least 0.5 mi away from the stock
outcrops.

Flat Tops
The magnetic field of the Flat Tops is characterized by several high-frequency, small positive
anomalies over some basalt outcrops. These small anomalies are superimposed on
long-wavelength, deep-source anomalies that are probably caused by magnetic contrasts within
the Proterozoic basement. Insufficient gravity and magnetic data limits further interpretation in
the southwestern part of the Forest.

AERIAL GAMMA-RAY RADIOACTIVITY
Introduction

Aerial gamma-ray radioactivity data for the Forest are from spectrometer surveys flown
during the U.S. Department of Energy National Uranium Resource Evaluation (NURE) program
(ca 1974-1983). NURE surveys that include parts of the Forest are those for the Craig (LKB
Resources, Inc., 1979), Denver (Geometrics, 1979a), Greeley (Geometrics, 1978), and Leadville
(Geometrics, 1979b) 2° quadrangles. Aerial gamma-ray data (aeroradioactivity) from these
surveys were used to prepare an aeroradioactivity database for the Forest. Other compilations of
NURE data that include the Forest are Phillips, Duval, and Ambroziak (1993) and Duval, Jones,
and others (1995).

Aecroradioactivity is the measurement of terrestrial radioactivity with instruments operated in
low-flying aircraft. The source of the radioactivity measured is the near-surface rock-and-soil (to
12-in depth) where the primary gamma-ray emitting isotopes are from the natural radioelements
potassium (K), uranium (U), and thorium (Th). NURE aerial systems were quantitatively
calibrated at sites of known radioelement concentrations, permitting quantitative reporting of
survey data in percent (%) for K and parts per million (ppm) for U and Th (assuming equilibrium
in the respective decay series). The near-surface distribution of K, U, and Th generally reflects
bedrock lithology and modifications due to weathering, erosion, transportation, ground water
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movement, and hydrothermal alteration. Common rock types readily discriminated by
aeroradioactivity measurements include more radioactive (greater concentrations of radioactive
minerals) felsic igneous rocks, arkosic sandstones, and most shales, and less radioactive (lesser
concentrations) mafic igneous rocks, (clean) quartzose sandstones, and most limestones.

Aerial flight-line spacing for the Forest database is 3-mi east-west and 12-mi north-south for
the Craig and Leadville 2° quadrangles and 1-mi east-west and 4-mi north-south for the Greeley
and Denver 2° quadrangles. A minimum-curvature algorithm (Webring, 1981) was applied to the
flight line data, producing K, U, and Th 1.8-mi square grids, which comprise the Forest database.
Most of the Forest is within the Craig 2° quadrangle and the bulk of the database is derived from
data for that quadrangle; thence the choice of 1.8-mi for grid cell-size. The grids were used to
prepare K, U, and Th color and black-and-white maps at 1:250,000- and 1:500,000-scales for use
in the assessment and gray-scale maps at 1:1,000,000-scale for inclusion in this report. Grids of
the ratios U:Th and K:Th were also prepared and maps were made at the several scales.

Discussion

K, U, Th, U:Th, and K:Th aeroradioactivity gray-scale contour maps of the Forest are shown
(respectively) in figures 9, 10, 11, 12, and 13. The Forest boundary is shown on each map and
geographic locations shown on the maps are described in figure titles. Bodies of water, such as
Lake Granby and Green Mountain Reservoir, have no measurable aeroradioactivity. However,
the grids used to make figures 9-13 were not masked to show no data for lakes and reservoirs,
and any discernable gray-scale values for any bodies of water should be ignored.

The near-surface distribution patterns of K, U, and Th as displayed by aeroradioactivity maps
are often similar, resulting from common rock-type associations for these elements. However,
discontinuities in the patterns can reflect significant mineralogic discontinuities, such as the
contrasting properties of felsic and mafic igneous rocks. Th generally has a more consistent
distribution pattern than K or U, likely resulting from Th being the least mobile of these elements.
For this reason, Th is used as the stable denominator in U:Th and K:Th ratios, thereby
highlighting subtle variations in U and K distribution. Of particular interest are variations from
the 0.25 ratio on figure 12. The ratio for normal crust is 1:4 or, in the case of figure 4, 0.25.
Values on figure 12 greater than 0.25 suggest relative enrichment of U, values less than 0.25
suggest relative depletion of U.
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Interpretation

Natural radioelement distribution for the Routt National Forest as demonstrated in the
grey-scale contour maps (figs. 9-13) has a varied pattern that reflects the diverse geology of the
Forest.

Areas of notably higher radioactivity within the Forest include a sizeable area of 1.8 to 2.0 %
K, 2.6 t0 3.9 ppm U, and 10 to 13 ppm Th northeast of Steamboat Springs that reflects the
presence of 1.4-Ba granite of the Mt Ethel pluton, a smaller area of 1.8 t0 2.0 % K, 2.6 t0 3.0
ppm U, and 11 to 13 ppm Th north of Northgate at the Forest boundary that also relates to
1.4-Ba granite, and an area 0f 2.0 t0 2.2 % K, 3.4 t0 3.9 ppm U, and 11 to 13 ppm Th southeast
of Rand where the source rocks are Tertiary arkosic sedimentary rocks of the Coalmont and
Middle Park Formations. The area of higher radioactivity that includes the Mt Ethel pluton
extends farther north on the U map compared with the same feature on the K and the Th maps,
suggesting relatively enhanced U in the adjoining 1.7-Ba metamorphic rocks, a lithologic
occurrence substantiated by higher (>0.34) U:Th values. In North Park between the western and
eastern parts of the Forest, the distinct pattern of varied and frequently higher radioactivity (2.0 to
24%K, 3.0t03.9 ppm U, 11 to 14 ppm Th) relates mostly to arkosic sedimentary rocks of the
Tertiary Coalmont Formation. The U:Th and K:Th ratios for the area between Walden and Rand
show relatively mundane patterns indicating relatively similar radioactive lithologies; from west of
Rand and Northgate to the Forest boundary, the U:Th (>0.35) and K:Th (>0.30) ratios include
strong positive often non-coincident features which indicate U- and K-dominant radioactive
lithologies.

The radioelement data show a distinct northeast trend that includes the Mt Ethel pluton,
extends past Northgate to the northeast, and extends southwest to include an isolated U relative
high of 3.0 to 3.4 ppm (40° 07'N.1at., 107° 28'W.long.) in Cretaceous sedimentary rocks at the
southwest corner of the Forest. Radioelement concentrations for the trend range from low to
high, include a variety of rock types, and parallel the strong northeast trend of bedrock outcrops
and topography south of the Mt Ethel pluton. The trend is most pronounced in the U data, but is
also apparent in K and in Th; coincidence of the three radioelements is demonstrated by lack of
expression in the U:Th and K:Th ratios.

In the Forest north of the area of higher concentrations that include the Mt Ethel pluton,
relatively low values of 0.7 to 1.4 % K, 0.7 to 1.4 ppm U, and 1.5 to 6 ppm Th characterize
1.7-Ba metasedimentary, metavolcanic, and plutonic rocks. This area includes several
K-distinctive features, including a zone of 1.6 to 2.0 % K in metamorphic and plutonic rocks that
trends northeast from Round Mountain (40° 30'N.lat., 106° 54'W. long.) through Pearl (40°
59'N.lat., 106° 33'W.long.). North of Columbine, a distinct low of 0.7 to 1.0 %6 K, 0.7 to 1.0 ppm
U, and 1.5 to 5 ppm Th reflects the low radioelement concentrations of the Elkhorn Mountain
gabbro. West of Columbine, the Forest has moderate values of 1.0 t0 2.0 % K and 1.4 t0 2.6
ppm U and low values of 1.5 to 7 ppm Th for Cretaceous sedimentary rocks and Tertiary
sedimentary, volcaniclastic, and intrusive rocks. Several of the intrusives have distinctive K of 1.4
to 1.8 % and K:Th of >0.28. In the northwest part of the Forest, in the western Elkhead
Mountains west of Columbine, low values of 0.7t0 1.2 % K, 1.0 to 1.8 ppm U, and 1.5 to 6 ppm
Th characterize sedimentary and volcaniclastic rocks.

In the Forest immediately south of the Mt Ethel pluton, relatively low concentrations of 0.7 to
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1.4 % K and 1.5 to 6 ppm Th and moderate values of 1.4 to 2.6 ppm U for an area of 1.7-Ba
metamorphic and plutonic rocks indicate radioactive lithologies similar to those for similar rocks
north of the Mt Ethel pluton. Farther south in the Forest and including the northern part of the
Gore Range, radioelement concentrations are generally moderate to low with some K-distinctive
areas for mostly 1.7-Ba granitic rocks. Two 3-element relative highs occur southeast of
Steamboat Springs in the Forest in 1.7-Ba granitic rocks, and have possible poly-metallic vein
deposit significance. One is about 17-mi southeast of Steamboat Springs in the Service Creek
drainage at about 40° 17'N. lat, 106° 40'W.long, where radioelement concentrations are 1.8 to 2.2
%K, 2.6t03.0ppm U, 9 to 11 ppm Th, no U:Th expression, and distinct K:Th of <0.18. The
other is 20-mi south-southeast of Steamboat Springs between the Morrison and Silver Creek
drainages at about 40° 12'N.1at., 106° 45'W.long., where concentrations are 1.8 t0 2.0 % K, 2.2 to
2.6 ppm U, 11 to 12 ppm Th, nU:Th expression, and distinct K:Th of <0.18. East and northeast
of the Service Creek feature and 15 to 25 mi north-northwest of Kremmling, partly within the
Forest, distinct U relative highs as much as 3.4 ppm and U:Th of >0.35 are suggestive of U
deposits in Cretaceous sedimentary rocks.

The southwestern part of the Forest has undistinguished radioelement expression, with mostly
low concentrations of 0.7 to 1.2 % K, 0.7 to 1.8 ppm U, and 1.5 to 7 ppm Th for Cretaceous and
Tertiary sedimentary rocks and Tertiary basalt. The previously discussed U high (40° 07'N.lat.,
107° 28'W.long.) is just outside the Forest in Cretaceous rocks.

Other occurrences of 1.4-Ba granite include areas where one radioelement is more distinct
than the other two, reflecting radioactive lithologic differences between similar rock types. One is
a K-distinct (1.8 to 2.2 %) feature about 12-mi northeast of Northgate outside the Forest.
Another is the Th-distinct (12 to 14 ppm) feature with associated 1.8 to 2.0 % K and 2.6 to 3.0
ppm at the southeast corner of the Middle Park Ranger District of the Arapaho National Forest
which is related to the Silver Plume batholith and includes the Urad and Henderson Mo ore
bodies.

That part of the Forest on the east side of North Park has varied radioactivity expression,
reflecting source rocks with different radioactive lithologies. At Baker Mountain (not labeled on
figs) about 16-mi east-southeast of Rand and outside of the Forest, a Th-dominant feature (11 to
13 ppm) with coincident K (1.8 to 2.0 %) and U (2.2 to 3.0 ppm) highs reflects plutonic rocks
with potential for Mo porphyry deposits.

Southeast of Kremmling, radioelement data for the Middle Park Ranger District of the
Arapaho National Forest has northwest trends reflecting the Williams Range thrust fault.
Radioelement concentrations vary appreciably with the previously discusses Th feature of the
1.4-Ba Silver Plume batholith being the most prominent. A notable feature is an area of >0.20
K:Th east of Green Mountain Reservoir where the source rocks are 1.7-Ba metamorphic and
granitic rocks.

Analysis of Radioelement data by NURE Aerial Contractor
U.S. Department of Energy NURE program procedures for each 2° quadrangle included
analysis of the aerial survey radioelement data to determine the possibility of U deposit
occurrence. The radioelement data (U, K, Th) and their ratios (UK, U:Th, ThK) in profile form
were analyzed statistically with surficial geologic data to calculate standard deviations from the
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mean per radioelement quantity per geologic unit. Areas along flight lines that fit statistical
(generally at least one standard deviation above the mean for U, U:K, U:Th) and geologic criteria
were termed significant anomalies; areas along flight lines that had U, UK, and U:Th anomalies
(generally) at least two deviations above the mean, and had geologic characteristics that were
appropriate for U deposits, were termed preferred anomalies. For differences in anomaly
definition between quadrangles, the appropriate report (in the DOE GJBX series) should be
consulted. K and Th statistics were used to help understand the geology in the vicinity of possible
U deposits.

The Craig 2° quadrangle (LKB Resources, Inc., 1979) includes most of the Forest and 2 of 53
preferred U anomalies determined for the quadrangle occur within the Forest. Both are in the
northern part of the Forest, in the Park Range. One is about 2-mi east-southeast of Columbine in
an area of 1.4 to 1.8 ppm U where it is associated with the Tertiary felsic intrusion of Hahn's
Peak. The anomaly is of relatively limited dimension and is not apparent in the small-scale
radioelement maps of this report. It is in an area of relatively higher U:Th and K:Th because Th is
relatively low (1.5 to 5 ppm).

The other preferred anomaly within the Forest is about 13-mi west of Northgate in an area of
2.2 to 2.6 ppm U where the source rock is Proterozoic felsic and hornblendic gneiss. It is in an
area of relatively higher U:Th (>0.35) because of low Th (1.5 to 5 ppm); K is low (1.0 to 1.2 %)
and K:Th is moderate and obscure.

As many as 11 preferred U anomalies are near or adjacent to the Forest, none of which are
associated with known U occurrences. (in the following text, the U, K and Th features discussed
are from the NURE statistical analysis; some are apparent in maps of this report, some are not). 8
of these anomalies have Cretaceous shale (Mancos primarily) as the source rock; all have good
expression in U and its ratios because of slight or no expression in K and Th; locations includes
sites northwest of Steamboat Springs, north and south of the southwest part of the Forest, and in
several locales in Middle Park along the contact with the Gore Range. The other 3 anomalies are
also well expressed in U and (generally) not in K and in Th and are in the Kremmling-Granby
area; one is just northeast of Whitely Peak where the source rock is Tertiary intrusive igneous
rock intruded into Pierre Shale; one is in intermediate volcanic rocks of Tertiary age; the third is
in the Middle Park Formation.

NURE procedures culminated in evaluation of the favorability of specific 2° quadrangles for
the occurrence of U deposits, published in the DOE PGJ/F series. Geological, geochemical,
geophysical, and mining data were used, although tight deadlines on occasion resulted in aerial
gamma-ray survey and/or geochemical data not being used because of not being available at the
time the evaluation was done. The evaluation of the Craig 2° quadrangle utilized the aerial survey
and the geochemistry and resulted in one area that includes part of the Forest being judged
favorable for U deposits. This area includes the approximate western half of the southwest part
of the Forest and is described as follows (Craig, L.C., and others, 1982, p. 1):

"Area D is in the Salt Wash Member of the Morrison Formation (Upper Jurassic) in the

southwestern part of the Craig Quadrangle and uranium deposits are classed as

nonchannel-controlled peneconcordant sandstone-type deposits (Subclass 244). The
favorable Area is essentially a projection of the Meeker mining district based on the

regional stratigraphy of the Salt Wash Member, and the presence of relatively thick,
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high-energy sandstone beds containing carbonaceous trash. No airborne radiometric,

water or stream-sediment, or drill-hole anomalies support the favorable assignment.”

The Salt Wash Member of the Morrison Formation does not crop out in the southwestern part
of the Forest: the favorable judgment is based on subsurface stratigraphic extrapolation.
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MINERAL RESOURCES—LOCATABLE MINERALS
By Sandra J. Soulliere and Margo L Toth

Locatable minerals include all minerals for which exploration, development, and production
are regulated under the Federal General Mining Law of 1872. Most metallic minerals and a large
group of nonmetallic or industrial minerals are included in this group. The U.S. Bureau of Mines
has identified and described all the known mines and prospects in the Forest and some of the
following is taken from that report (Neubert, 1994).

MINING AND EXPLORATION HISTORY

The earliest known mining in the area occurred in Prehistoric times, as evidenced by a
quartzite quarry near Rabbit Ears Pass. Archaeologists have recently discovered the remains of a
stone-age quarry mined by nomadic tribes for quartzite as late as 8,000 years ago and as early as
500 years ago (Rocky Mountain News, 1993; Daily Camera 1993). The remains of about 200
quarry pits are in an area within the Forest known as Windy Ridge, about 15 mi southeast of
Steamboat Springs. '

Modern mining from areas within or near the Forest began in the late 1800's with the
discovery of gold placer deposits below Hahns Peak. Major quantities of metallic minerals have
not been produced from the Forest (Neubert, 1994). Minor mineral production was recorded
between 1860 and the early 1970's, from several mines and mining districts within and adjacent to
the Forest. These areas include the Elkhorn, Hahns Peak, Pearl, Crystal, Northgate, Teller, and
La Plata-Dailey mining districts, and the Greenville mine area (fig. 5). Areas within the Forest
explored for metallic minerals and areas where mining has occurred but production is unknown
include the following: Slavonia, Fish Creek, Blue Ridge, and Slater mining districts, and the
Parkview and Poison Ridge intrusive centers in the Rabbit Ears Range. Although exploration for
mineral deposits is ongoing, the last major production in the area was recorded in 1973 from
fluorite deposits at the Northgate mining district.

The molybdenum mine at Henderson (fig. 5) is located just outside the boundary of the
southeastern parcel of the Forest. The Northgate mining district (fig. 5), the second major fluorite
producer in Colorado, includes parts of the northeastern parcel of the Forest. Some of the largest
concentrations of mineral deposits in the Rocky Mountain region are just south of the Forest in an
area known as the Colorado Mineral Belt. The Colorado Mineral Belt is an elongate zone of
hydrothermal mineral deposits that extends from the San Juan Mountains in southwestern
Colorado to the Front Range northwest of Denver (Tweto and Sims, 1963). A large
concentration of mineral deposits and numerous intrusive and volcanic rocks of Late Cretaceous
to Late Tertiary age characterize the belt. The belt extends into the southeastern part of the
Forest (fig. 4).

POTENTIAL FOR UNDISCOVERED MINERAL RESOURCES
LOCATABLE MINERALS
The Routt National Forest and the Middle Park Ranger District of the Arapaho National
Forest were evaluated for 10 locatable mineral deposit types (pl. 1, fig. 1). In the following
sections, the characteristics of the known deposits in the Forest are briefly summarized, and
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assessment criteria are established. The assessment criteria were used to evaluate areas within the
Forest for the potential for each deposit type. Specific areas within the Forest that met the criteria
were delineated and assigned a rating of either moderate or high potential; areas of low potential
were not outlined for metallic resources (Gourdarzi, 1984). These ratings refer to the likelihood
for the occurrence of a given deposit type. Levels of certainty, labeled A through D, were also
assigned to qualify the data; level A indicates the least amount of supporting data and level D the
greatest. Definitions and explanations of the mineral resource rating system are in Appendix 2.
On figures 1-2, 14-23, and plate 1, areas of high potential are shown in red and areas of moderate
potential are shown in pink. Each mineral deposit type was assigned a letter and number
designation to more easily distinguish each type on a map or figure in the report. These letter-
number designations are shown on the figures and plate 1.

STOCKWORK MOLYBDENUM (A)

COMMODITIES, BYPRODUCTS, AND TRACE METALS
The commodity is molybdenum; byproducts are commonly tungsten, bismuth, and tin.

HOST ROCKS
The deposits are in or associated with Tertiary granitic plutons. Ore may also occur in the
country rocks, including Proterozoic crystalline rocks and Paleozoic and Mesozoic sedimentary
rocks.

STRUCTURAL CONTROL
Stockwork veins form in fractures produced by the intrusion of a small stock at very shallow
crustal levels. The joint pattern may be controlled by joint patterns within the host pluton or by
bedding, joints, or faults outside the pluton. Stockwork veins can occur in any brittle rock that
can be shattered repeatedly, including the host pluton and favorable country rocks.

AGE
In Colorado, stockwork molybdenum deposits are Oligocene and younger in age.

DEPOSIT DESCRIPTION

Stockwork molybdenum deposits occur in epizonal granitic plutons. Stocks emplaced during
multiple phases of intrusion and alteration are the most favorable for hosting stockwork deposits.
Favorable plutons have porphyritic textures, associated intrusive breccias and pebble dikes, and
commonly have radial dikes. Source rocks have greater than 76 percent SiO,, high trace amounts
of fluorine, rubidium, yttrium, and niobium; and low trace amounts of barium, strontium, and
zirconium.

Ore minerals occur in a complex network of stockwork quartz veins but disseminated flakes
of molybdenite are also present in the host granite. Quartz, molybdenite, potassium feldspar,
pyrite, fluorite, and phlogopite are the dominant vein minerals; a variety of other minerals may
also be present, including topaz, cassiterite, and magnetite. The ore zone occurs above the central
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igneous complex and also overlaps it; the general morphology of the zone is an inverted bowl.
Peripheral veins contain lead, zinc, silver, and gold. Copper may be present but is rare in this type
of stockwork system (White and others, 1981).

Wall rocks exhibit pervasive hydrothermal alteration. Assemblages of alteration minerals are
zoned outward from potassium feldspar in the system center to quartz-sericite-pyrite and argillic
alteration to propylitic assemblages along the outer margins. Oxidized pyrite in the phyllic zone
commonly produces a red halo above and around the deposit. Early potassic alteration in
intrusions was generated by fluids derived by magmatic processes and later quartz and sericite
formed by mixing with fluids of meteoric origin (Hannah and Stein, 1986).

GEOCHEMICAL SIGNATURE
Stream-sediment samples typically contain anomalous concentrations of molybdenum, lead,
tungsten, silver, tin, and gold, although some of these elements are more abundant in the
peripheral vein systems. Rock samples contain anomalous concentrations of molybdenum, silver,
tungsten, bismuth, and fluorine.

GEQOPHYSICAL SIGNATURE

Plutons are expected in the gravity low of the Colorado Mineral Belt, which is associated with
a large, unexposed batholith. Within this area, favorable terrane may be associated with a smaller,
residual gravity low in the southeast part of the Forest.

Proterozoic granitic host rocks are often the most magnetic rocks in the Forest and commonly
have associated magnetic highs. Tertiary granitic host rocks may or may not be magnetic and are
less dense than Proterozoic rocks, especially where extensively altered. Gravity lows, with or
without associated magnetic highs, may indicate Tertiary intrusive rock.

Host plutons are noteably radioactive because of the elevated concentrations of K, U, and Th
that characterize granitic/felsic igneous rocks, and consequently are detectable by radioactivity
measurements, dependent on surface exposure.

KNOWN DEPOSITS
There are no known deposits in the Forest. However, a deposit is present at Red Mountain,
just outside the southeastern border of the Forest near Berthoud Pass.

ASSESSMENT CRITERIA
Presence of a Tertiary, fluorine-rich, high-silica pluton.
Multi-stage igneous activity.
Stocks emplaced at very shallow crustal levels in a Tertiary extensional environment.
Extensive hydrothermal alteration within and around the stock.
Presence of molybdenite in veins and stockwork veinlets and as disseminated flakes.
Anomalous molybdenum concentrations in rocks and stream-sediment samples.

IS il e

ASSESSMENT
Area A1 —A small target area around Hahns Peak in the north-central part of the Forest has
high resource potential for molybdenum in stockwork deposits (pl. 1, fig.14), with certainty
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Figure 14. Mineral resource map for stockwork molybdenum deposits (A) in the Routt National
Forest and Middle Park Ranger District of the Arapaho National Forest, Colorado
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level C. In this area, a composite laccolithic intrusion of latite and quartz latite is present, and
includes a central cone-shaped body of intrusive breccia. Hydrothermal alteration consists of
early albitization, followed by a later phase of propylitic, argillic, phyllic, and advanced argillic
mineral assemblages zoned around the breccia cone sheet (Cascaceli, 1984). Stockwork veins of
silica, pyrite, and molybdenite are present, and galena, sphalerite, chalcopyrite occur locally.
Minor amounts of auriferous pyrite, argentiferous tetrahedrite, and trace covellite are also locally
present.

Area A2.—A small target area in the northeastern part of the Forest in the Never Summers
Mountains has high mineral resource potential for molybdenum in stockwork deposits (pl. 1, fig.
14), with certainty level C. Within this area, the Tertiary Mount Cumulus stock has intruded
highly fractured Proterozoic igneous and metamorphic rocks and younger sediments. The stock is
rhyolitic in composition and contains molybdenite and pyrite in miarolitic cavities and along joints
(Pearson and others, 1981). Anomalous concentrations of fluorine, lead, zinc, silver, tin, and
niobium are in sediment samples from surrounding drainages. The body occupies a distinctive
magnetic high and a gravity low, although the gravity low could be due to the effects of thrusting.
The stock has expression in the K, U, and Th aeroradioactivity maps (figs.9-11), reflecting its
rhyolitic composition and probable surface expression. Although no large molybdenum deposits
have been found, the unexplored interior of the stock is permissive for a deposit.

Area A3.—In the southeasternmost part of the Forest, a northeast-trending area has moderate
potential for molybdenum in stockwork deposits (pl. 1, fig. 14), with certainty level C. Rock and
stream sediment samples from this area contain anomalous concentrations of molybdenum, lead,
zinc, silver, and minor copper, tin, and gold. Pyrite, fluorite, and molybdenite are present in many
of the samples (Theobald and others, 1985). The area occurs within the Colorado Mineral Belt
and is adjacent to the Henderson mine, a known stockwork molybdenum system with previous
metal production. The northeast part of the area has relatively elevated values in the K, U, and
especially the Th data (figs. 9-11), and the Henderson mine (outside the forest) has a distinct Th
character.

ECONOMIC SIGNIFICANCE
The U.S. currently exports molybdenum and has almost half the world's identified resources,
most of which occur in deposits of this type (U.S. Bureau of Mines, 1993). Resources of
molybdenum are adequate to supply world needs for the foreseeable future.

PORPHYRY COPPER (B)

COMMODITIES, BYPRODUCTS, AND TRACE METALS
Commodities are copper and molybdenum; byproducts are gold, tungsten, and tin; trace
metals include silver, lead, and zinc.

HOST ROCKS

Host rocks include Late Cretaceous and Tertiary granitic rocks, Proterozoic crystalline rocks,
and some Mesozoic sedimentary rocks.
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STRUCTURAL CONTROL
Stockwork veins form in fractures produced by the intrusion of a small stock at very shallow
crustal levels. The joint pattern may be controlled by joint patterns within the host pluton or by
bedding, joints, or faults outside the pluton. Stockwork veins can occur in any brittle rock that
has been shattered repeatedly including the host pluton and favorable country rocks. Favorable
plutons occur along intersections of regional fault systems.

AGE
Porphyry copper deposits are Late Cretaceous to Late Eocene in age.

DEPOSIT DESCRIPTION

Porphyry copper deposits are a combination of disseminations and stockwork veins that occur
in the shattered portions of an intrusive and in the surrounding country rocks. The upper and
outer margins of the intrusive have been shattered from adjustment during cooling or from the
high vapor pressure of late mineralizing fluids. Granitic plutons that have multiple phases of
intrusion are the most favorable for these types of deposits. Compositions of these plutons range
from monzogranite to granite in the Forest. Stocks are most commonly porphyritic; they have
radial dikes and associated breccias.

Disseminated ore is most common in the core of the intrusion, and veinlets of ore are
dominant toward the outer margins of the intrusivion and in the country rock. The richest ore
zone occurs where disseminations are still dominant over veinlets (Lowell and Guilbert, 1970).
The primary sulfides consist of pyrite, chalcopyrite, bornite, and molybdenite. Other minerals that
may be present include sphalerite, galena, gold and silver minerals, wolframite, and cassiterite. A
pyrite-rich shell usually occurs just outside of the main ore zone. Erosion and weathering of the
metal-bearing portions of the intrusions releases copper, giving rise to a zone of supergene sulfide
enrichment. The oxidation of pyrite in the argillic zone commonly produces a large red-colored
halo above and around the deposit.

Porphyry copper deposits show pervasive hydrothermal effects that extend into the
surrounding wallrocks. Assemblages of alteration minerals exhibit systematic spatial and temporal
relationships with respect to one another. Characteristic alteration assemblages are zoned
outward from potassium feldspar in the system center to quartz-sericite-pyrite and argillic
alteration; propylitic assemblages occur along the outer margins.

GEOCHEMICAL SIGNATURE
The deposits have anomalous concentrations of copper, molybdenum, zinc, lead, silver, and
local tungsten, boron, and strontium anomalies. In panned concentrates, tin, tungsten,
molybdenum, and fluorine may be present in anomalous concentrations.

GEOPHYSICAL SIGNATURE
Plutons are expected in the gravity low of the Colorado Mineral Belt, which is associated with
a large, unexposed batholith. Within this area, favorable terrane may be associated with a smaller,
residual gravity low in the southeast part of the Forest.
Proterozoic granitic host rocks are often the most magnetic rocks in the Forest and commonly
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have associated magnetic highs. Tertiary granitic host rocks may or may not be magnetic and are
less dense than Proterozoic rocks, especially where extensively altered. Gravity lows, with or
without associated magnetic highs, may indicate Tertiary intrusive rock. Granitic host rocks can
be distinctive in aeroradioactivity maps, dependent on surface exposure, because of relatively
higher radioelement (K, U, Th) concentrations.

KNOWN DEPOSITS

One known deposit is in the Forest at Poison Ridge in the Rabbit Ears Range. The Poison
Ridge deposit has been estimated to contain 51 million tons of rock averaging 0.22 percent
copper in the hypogene zone, and 3.3 million tons averaging 0.70 percent copper in the supergene
zone (Karimpour, 1982). The Anaconda Company estimated 36-45 million tons averaging 0.15-
0.20 percent copper, possibly an additional 90 million tons averaging 0.05 percent copper, and
trace amounts o+ gold for the Poison Ridge deposit (Anaconda Document Collection, file
93304.01, 1981).

ASSESSMENT CRITERIA
Presence of a Late Cretaceous to Tertiary monzogranite to granite intrusion.
Extensive hydrothermal alteration in and around the pluton.
Presence of chalcopyrite and molybdenite.
Anomalous copper and molybdenum concentrations in rock and stream-sediment samples.

Rl ol s e

ASSESSMENT :

Area B1.—A large east-west trending area along the crest of the Rabbit Ears Range has
moderate resource potential for copper and molybdenum in porphyry copper deposits, (pl. 1, fig.
15), with certainty level C. Several Tertiary hyabyssal plutons crop out within this area, including
the one at Poison Ridge that contains identified copper resources. Some of the plutons have
alteration pattern assemblages typical of porphyry copper-molybdenum deposits and have
anomalous concentrations of copper, lead, zinc, silver, molybdenum, and (or) gold in rocks and
stream sediment samples (Karimpour and Atkinson, 1983; Spicker, 1973). Magnetic data indicate
that several plutons of similar size are buried beneath the Rabbit Ears Volcanics at the western
edge of the area of potential. The plutons are along an east-west trend that is likely to be a
Proterozoic lineament and a zone of weakness.

Area B2.—A small target area on Parkview Mountain has high mineral resource potential for
copper and molybdenum in copper porphyry deposits (pl. 1, fig. 15), with certainty level C.
Parkview Mountain is within the area of moderate potential outlined in B1, but veinlets and
disseminations of copper, lead, zinc, silver, and molybdenite are present (Spicker, 1973).
Alteration is moderate to intense and consists of locally pervasive quartz-sericite-pyrite with local
zones of silica stockworks.

Area B3.—In the headwaters of the Illinois River, a small target area surrounding an intrusive
body has high resource potential for copper and molybdenum in porphyry copper deposits (pl. 1,
fig. 15), with certainty level C. In this location, a bedded breccia pipe of quartz
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latite composition contains anomalous concentrations of copper, lead, zinc, gold, silver,
molybdenum, and arsenic (Metzger, 1974) Alteration is pervasive and consists of chlorite and
sericite. The breccia pipe lies near the intersection of two major linear intrusive trends: the Rabbit
Ears intrusives to the west and the intrusives of the Never Summer Range to the north.

ECONOMIC SIGNIFICANCE
The U.S. currently has almost half the world's identified resources of molybdenum and had a
very small (3 percent) import reliance for copper in 1992 (U.S. Bureau of Mines, 1993).

POLYMETALLIC VEINS (C)

COMMODITIES, BYPRODUCTS, AND TRACE METALS
Commodities include lead, zinc, silver, copper, and gold with minor molybdenum, tin,
tungsten, bismuth, and antimony.

HOST ROCKS
Host rocks vary in lithology. Most deposits occur in faults, fractures, or shear zones in
Proterozoic igneous and metamorphic rocks. Other host rocks include Tertiary-age granitic
plutons, dikes, and Paleozoic sedimentary rocks. Brittle or easily fractured rocks are particularly
susceptible to mineralization.

STRUCTURAL CONTROL
Location of vein deposits is controlled by permeability of host rock. Most deposits are near
or adjacent to faults, fractures, fault intersections, and breccia or shear zones although some occur
near intrusive contacts.

AGE
Ages of mineralization are Late Cretaceous and Tertiary. Host rocks may be of any pre-
intrusive age.

DEPOSIT DESCRIPTION
Veins occur in a wide variety of host rocks and are related to Late Cretaceous and Tertiary
granitic plutons. Vein and vein systems are controlled by the distribution and size of fractures and
are commonly modified by movement along the fractures both during and after vein filling.
Wallrock alteration adjacent to the vein is common, with the most intense alteration a few feet
from the vein.

GEOCHEMICAL SIGNATURE
Geochemical anomalies vary with the composition of the individual vein. Lead, zinc, copper,
silver, gold, arsenic, antimony, manganese, and barium are most commonly in stream-sediment
and rock samples. Element dispersal from individual veins may not be great enough to produce a
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detectable anomaly in stream-sediment samples.

GEOPHYSICAL SIGNATURE

Most veins are too small to be detected by regional gravity and magnetic surveys. Some
intrusives and major structures exhibit prominent anomalies and steep gradient zones in the
magnetic- and gravity-anomaly data. Many areas of known veining and wallrock alteration are
characterized by magnetic highs, however, delineating these highs requires very detailed
geophysical surveys. Electrical resistivity and other site-specific ground surveys are successful at
locating veins. However, no such data were available for this assessment. Host rocks can have
distinct aeroradioactivity expression, dependent on lithology, surface expression, and detail of
aerial survey.

KNOWN DEPOSITS
Known vein deposits include the La Plata mine in the La Plata mining district, the Endomile
mine in the Teller district, an area of small claims in the Slater district, the Elkhorn mine in the
vicinity of the Encampment district, the Service Creek claims area east of Rabbit Ears Pass,
Buffalo Pass and Buffalo Ridge area in the Zirkel Wilderness, and the Hahns Peak/Farwell
Mountain district.

ASSESSMENT CRITERIA
Presence of vein deposits in the vicinity.
Presence of base or precious metals in rock or stream-sediment samples.
Presence of faults, breccia or shear zones, fault intersections, or intrusive contacts.
Presence of plutonic or hypabyssal igneous bodies of Late Cretaceous or Tertiary age.

Ealiadi S e

ASSESSMENT

Area C1.—In the northwest part of the Forest, the area around Elkhorn Mountain has high
mineral resource potential for metals in polymetallic veins (pl. 1, fig. 16), with certainty level C.
Within this area, the Elkhorn mine contains elevated amounts of silver, gold, cadmium, copper,
mercury, lead, antimony, and zinc in rock samples. Stream-sediment samples from the area did
not contain anomalous concentration of metal values. The host rock is the Elkhorn gabbro, and
metals are found in pods and veins. The entire area is outlined by a magnetic high. The Elkhorn
gabbro is within a sizeable aeroradioactivity low (figs. 9-11), as mafic rocks are relatively
deficient in K, U, and Th concentrations.

Area C2.—In the northwest part of the Forest, the area around Farwell Mountain has high
mineral resource potential for metals in polymetallic veins (pl. 1, fig. 16), with certainty level C.
Several workings in this area include trenches which expose quartz veins and veinlets in gneiss.
Rock samples from this area contain anomalous to highly anomalous concentrations of copper,
bismuth, tin, molybdenum, gold, silver, and tungsten; lead and zinc are conspicuous for their lack
of anomalous values in the rock samples. Stream-sediment samples have anomalous
concentrations of lead, zinc, silver, and molybdenum. Host rock is pegmatite, schist, and gneiss.

Area C3.—A small area in the northern part of the Park Range at Diamond Park has
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moderate mineral resource potential for metals in polymetallic veins (pl. 1, fig. 16), with certainty
level B. Rock samples from this area have anomalous concentrations of bismuth, copper, lead,
and molybdenum, silver, and tungsten. The metals are found in small quartz veins associated with
fault zones in Proterozoic gneiss.

Area C4.—In the northeastern part of the Forest, the Teller mining district and surrounding
area has high mineral resource potential for metals in polymetallic veins (pl. 1, fig. 16), with
certainty level C. Numerous geochemical anomalies are in this area, including antimony, arsenic,
cadmium, copper, gold, lead, molybdenum, silver, tin, and zinc. Silver was present in anomalous
to highly anomalous amounts in rock samples (as much as 700 ppm Ag) and in stream-sediment
samples. The district also contained anomalous to highly anomalous molybdenum in rock
samples; one samplecontained greater than 2,000 ppm Mo. Five rocks analyzed contained more
than 10 percent arsenic. Two rock samples contained greater than S00 ppm cadmium. As much
as 1500 ppm Sb was found in rock samples. Lead was found to be highly anomalous in several
rock samples (four were greater than 1.5 percent Pb) and in stream-sediment samples. Six rock
samples contained zinc in quantities from 1 to 12 percent Zn, stream-sediment samples were also
highly anomalous in zinc. Gold, copper, and tin were also found at anomalous levels in rock
samples. Isolated stream-sediment samples contained anomalous concentrations of arsenic,
cobalt, copper, and molybdenum in addition to the ubiquitous silver, lead, and zinc. In the Teller
district, mines and prospects were located in mineralized fracture zones and veins in Proterozoic
granite and schist.

Area C5.—Moderate mineral resource potential for metals in polymetallic veins (pl. 1, fig. 16),
with certainty level B, exists in a small area on the southwest side of the Gore Range in and near
Morrison Creek. Two stream sediment samples from this vicinity contain highly anomalous
concentrations of silver, arsenic, vanadium, zinc, cobalt, tin, and tungsten. The value for silver
(69 ppm) is one of the highest values in the Forest. The host rock in this area is Proterozoic
granitic rocks. The granite is a distinct although moderate feature on the aeroradioactivity maps
(figs. 9-11).

Area C6.—At the north end of the Williams Fork Mountains, a small area on Copper
Mountain has high mineral resource potential for metals in polymetallic veins (pl. 1, fig. 16), with
certainty level C. Host rock in the area is isolated pegmatites lenses in gneiss. Rock samples
from the area have highly anomalous concentrations of copper, but other metals are present only
in low concentrations (Neubert, 1994).

Area C7.—In the southeasternmost part of the Forest a large northeast-trending area at the
southern extent of the Williams Fork Mountains has high mineral resource potential for metals in
polymetallic veins (pl. 1, fig. 16), with certainty level C. This area encompasses the Atlanta and
La Plata mining districts. Rock samples contain anomalous concentrations of molybdenum, lead,
arsenic, and silver, and isolated anomalous values of lead, tin, and zinc. Heavy-mineral-
concentrate samples have anomalous concentrations of copper, tin, zinc, silver, molybdenum,
lead. The area occupies several magnetic lows and is on the edge of the Colorado mineral belt
(fig. 5). The Straight Creek fault zone extends through the center of the area of potential. Metals
are associated with shears and faults in the Proterozoic Silver Plume granite.

ECONOMIC SIGNIFICANCE
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Polymetallic vein deposits have produced copper, lead, and zinc, and the precious metals gold
and silver. The U.S. has a net import reliance of 8 percent lead, 3 percent copper, and 34 percent
zinc; gold and silver are currently exported (U.S. Bureau of Mines, 1993). Porphyry copper
mines in the southwestern U.S. produce the major portion of this metal in the U.S., whereas the
mid-continent region produces most of the Nation's lead and zinc from large replacement
deposits. A major change in demand or price for these commodities would be needed to support
operation of small mines required to exploit vein deposits, although the presence of silver and
gold would certainly enhance the possibility of development. Because veins the Forest are likely
to be small, production from them is likely to have only local economic impact.

STRATABOUND MASSIVE SULFIDES (D)

COMMODITIES, BYPRODUCTS, AND TRACE METALS
Commodities include lead, zinc, silver, copper, and gold.

HOST ROCKS
Deposits are found in Proterozoic calc-silicate and hornblende gneiss, amphibolite, and felsic
gneiss units. Within the Forest, major areas of these rock types occur west of the Williams Fork
Thrust Fault, within the Never Summer Mountains, northwest of the Independence Mountain
thrust fault, and along the Park Range in the largest parcel of the Forest.

STRUCTURAL CONTROL
No regional scale structural control is evident; locally small-scale folds may have
concentrated ore. Deposits occur as stratabound layers, pods, or lenses within the host rock;
they tend to cluster and follow specific stratigraphic horizons.

AGE
Deposits have the same Proterozoic age as the enclosing host rock.

DEPOSIT DESCRIPTION

The term "massive" refers to the mineralization composed entirely of sulfides and does not
carry any size or textural connotation (Sangster, 1972). Principal ore minerals found in these
deposits are sphalerite, chalcopyrite, and galena, with minor amounts of silver and gold. Gahnite
(zinc spinel), magnetite, and silicates make up the matrix for the sulfide minerals. The sulfides
occur in small to large lenses and in laterally extensive zones of disseminated sulfides; all are
generally conformable to the layering in the enclosing gneisses and amphibolite. The sulfide ore
minerals weather to produce oxide, carbonate, and sulfate minerals.

Although most of the original textures and structures have been destroyed by intense regional
metamorphism and deformation, the stratabound deposits are generally considered to be
metamorphosed volcanic- or sedimentary-hosted sulfide deposits (Sheridan and others, 1990). In
these deposits, the sulfide minerals were syngenetically deposited with felsic and mafic volcanic
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and sedimentary rocks in a submarine environment. Deposition of the metals probably occurred
as the result of exhalative discharge of hydrothermal vents in the sea floor. Later metamorphism
converted the volcanic rocks to amphibolite, calc-silicate, and felsic gneisses. It is this later
metamorphism, along with deformation, that makes interpretation of the origin of these deposits
difficult to define. Varying interpretations concerning the origin and paleotectonic setting of the
deposits in northern Colorado and southern Wyoming have been proposed (Tweto, 1968; Giles,
1976,1987; Sheridan and others, 1990; Klipfel, 1992). The Forest therefore has potential for
several types of massive sulfide deposits. Recent work by Klipfel (1992) concluded that some
stratabound sulfide deposits in the northern Park Range were sedimentary exhalative deposits
related to volcanism that produced nearby Besshi-type and mixed Besshi-sedex (Broken Hill) type
deposits. According to Klipfel, deposition occurred in an ensialic rift setting rather than an island
arc setting as is currently accepted for this area. The area also may host Kuroko-type (Franklin
and others, 1981) volcanogenic massive sulfide deposits.

GEOCHEMICAL SIGNATURE
Geochemical signatures include anomalous concentrations of copper, lead, and zinc in stream-
sediment and rock samples.

GEOPHYSICAL SIGNATURE
Magnetic and gravity data are of minimal use in identifying favorable terranes. Magnetite-rich
zones can be detected with magnetic surveys, although most zones in this terrane are too small to
be detected by regional surveys. Deposits associated with felsic volcanic rocks (Kuroko type)
would have an aeroradioactivity signature, dependent on surface expression and detail of aerial
survey.

KNOWN DEPOSITS
Several stratabound massive sulfide deposits and related occurrences are within or near the
Forest, mainly in the northern Park Range and southern Sierra Madre. Mines in the Pearl district
near the community of Pearl and the Greenville mine, north of Steamboat Springs are considered
by Sheridan and others (1990) to be examples of stratabound sulfide deposits in amphibolite facies
terrane.

ASSESSMENT CRITERIA
Presence of Proterozoic gneiss, especially amphibolite and calc-silicate rocks.
Presence of geochemical anomalies of base and precious metals.
Metals conformable with layers.
Island-arc tectonic setting at the time of mineralization.

SN -

ASSESSMENT
Area D1.—A large northeast trending zone in the northern part of the Park Range has high
mineral resource potential for massive sulfide deposits (pl. 1, fig. 17), with certainty level C. This
area is underlain by favorable calc-silicate and amphibolite host rocks and stream sediment
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samples have anomalous concentrations of copper, lead, and zinc. Several mines and prospects
are in the area and rock samples contain chalcopyrite, galena, and sphalerite. Anomalous amounts
of silver, bismuth, cadmium, antimony, gold, molybdenum, and tin are also present in some rock
samples. A ridge of gravity and magnetic high extends from the Greenville mine on the west to
the Slavonia mine in the central part of the area. The area of potential was extended further to the
northeast to include the Pearl mine and to account for the general northeast trend of geophysical
data.

Area D2.—Enclosing the area of high potential D1, a large area of moderate potential (pl. 1,
fig. 17), certainty level B, is defined by outcrop of calc-silicate and amphibolite rock. Isolated
stream sediment samples within this area also contain anomalous concentrations of copper, lead,
and zinc. :

Area D3.—In the southeast part of the Forest, a medium-sized area has high resource
potential for massive sulfides (pl. 1, fig. 17), with certainty level C. This area is underlain by
favorable calc-silicate and amphibolite host rocks and stream sediment samples have anomalous
concentrations of copper, lead, and zinc. Pods and small masses of gossan derived from massive
pyrite bodies are common in the calcic metamorphic rocks, and some gossan retain geochemically
anomalous amounts of silver, lead, and zinc (Theobald and others, 1983).

ECONOMIC SIGNIFICANCE
The U.S. has a net import reliance of 8 percent lead, 3 percent copper, and 34 percknown
depositsent zinc; gold and silver are currently exported (U.S. Bureau of Mines, 1993).

FLUORSPAR VEINS (E)

COMMODITIES, BYPRODUCTS, AND TRACE METALS
The commodity is fluorspar.

HOST ROCKS
Dominantly 1.4 Ga Proterozoic granitic rock; lesser amounts of the White River Formation.

STRUCTURAL CONTROL
Deposits are concentrated along Laramide and rift-related Late Tertiary (?) extensional faults.

AGE
Deposits are of two ages: Laramide and Late Tertiary (?). Only the younger deposits have
been productive.

DEPOSIT DESCRIPTION
The following description is from Steven (1960). Fluorite veins and stringers occur along
faults in 1.4 Ga granitic rocks. The fluorite consists typically of botryoidal layers that formed as
successive encrustations along open fractures, or as finely granular aggregates replacing and
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cementing fault gouge and the White River Formation. The veins contain numerous open spaces
ranging from small pores to large cavities as much as 20 feet in width and several hundred feet in
diameter. Fluorite is the principal vein material and fragments of country rock and chalcedony or
finely granular quartz constitute the chief impurities. As much as 2 percent fine-grained pyrite is
locally disseminated through the fluorspar and adjacent wall rock, although generally it is very
sparse. Rounded fragments of wall rocks are in some of the open cavities along the vein. There
is a lack of any notable wallrock alteration.

Fluorite was deposited from dilute aqueous solution, predominantly meteoric water,
circulating though broken rock. Rounded fragments of wall rocks in open cavities of some veins
indicate that movement of the mineralizating solution was sufficient to move and abrade these
fragments. Stalactic growth in some of the veins indicates that, locally, mineralization occurred
both below and above the water table. The temperature of deposition ranged between 100 and
150° C.

In the Forest all veins occur within 1.4-Ga granite of the Mt. Ethel pluton and in Cenozoic
sediments overlying the granite. The Mt. Ethel pluton contains interstitial fluorite. Most of the
fluorite is magmatic and was deposited as the pluton crystallized, but some has been mobilized
after first deposition (Snyder, 1987b). Magmatic fluorite in the Mt Ethel pluton may have been
mobilized and redeposited as veins or breccias during Tertiary time. Alternatively, the source of
the fluorite may be a buried intrusion of Tertiary age.

This report only addresses vein fluorite of Tertiary age. Although magmatic fluorite is present
in the Mt. Ethel pluton, the potential for undiscovered resources of fluorite of this type of
occurrence is low.

GEOPHYSICAL SIGNATURE
Geophysical data may be used to infer the presence of buried plutons that could be the source
for the fluorite. Granitic host rocks will be prominent onaeroradioactivity (K, U, Th) maps,
dependent on surface expression.

GEOCHEMICAL SIGNATURE
Anomalous concentrations of fluorine in rocks and stream sediment samples.

KNOWN DEPOSITS
The Northgate mining district is in the northeasternmost part of the Forest. Most of the
production has come from the Fluorspar-Gero-Penbar and Fluroine-Camp Creek vein zones.
Since 1922, at least 109,700 tons was produced (Steven, 1960).

ASSESSMENT CRITERIA
1. Presence of Late (?) Tertiary, rift-related extensional faults .
Presence of 1.4 Ga granitic or other hard rocks in which open fractures can be maintained;
presence of extremely permeable rock.
3. Anomalous concentrations of fluorine in rocks.
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ASSESSMENT

Area E1.—A large area in the northern part of the Forest has high resource potential for
additional deposits of fluorite, with certainty level C (pl. 1, fig. 18). This area encompasses the
Northgate mining district, a past producer of fluorite. In this area, fluorite is present as veins and
stringers along faults in 1.4 Ga granitic rocks and Cenozoic sediments.

Area E2.—On the eastern side of the Park Range, the Crystal district has high resource
potential for additional deposits of fluorite, with certainty level C (pl. 1, fig. 18). The district
includes rocks of the 1.4-Ga Mt. Ethel pluton, and fluorite is present in fault breccias and veins
(Snyder, 1987b). The Crystal district occupies a magnetic and gravity high, and may be underlain
by a younger pluton that provided the source for the fluorite.

Area E3.—A small area on Delaney Butte east of the Park Range in North Park has high
resource potential for fluorite, with certainty level C (pl. 1, fig. 18). Vein fluorite is present in the
Proterozoic granite (Snyder, 1987b), an extension of the 1.4 Ga Mt. Ethel pluton.

ECONOMIC SIGNIFICANCE

The U.S. has a significant reliance upon import sources of fluorspar. In 1992, about 87
percent of the fluorspar was imported (U.S. Bureau of Mines, 1993). Within the U.S., deposits in
southern Illinois accounted for the majority of production. The Northgate district accounted for
about 32 percent of Colorado's production through 1973, and at one point accounted for about 10
percent of the nation's annual production (Brady, 1975). Production ceased in the Northgate
district in the Forest in 1973. Most of the near-surface easily minable fluorspar at Northgate has
been removed and expensive underground mining would be required to extract the remaining ore
(Neubert, 1994).

VEIN URANIUM (F)

COMMODITIES, BYPRODUCTS, AND TRACE METALS
Uranium deposits, with associated trace amounts of gold, silver, antimony, lead, zinc, and
molybdenum occur along fractures and faults in Proterozoic granites.

HOST ROCKS
Host rocks are Proterozoic granitic rock, gneiss, and pegmatite.

STRUCTURAL CONTROL
Deposits occur within or along fractures or breccia zones.

AGE
Probably Late Cretaceous to Tertiary.

DEPOSIT DESCRIPTION
This type of deposit occurs in silicified and brecciated veins along fault zones in Proterozic
granitic plutons of 1.7 Ga. Not much is known about the genesis of these deposits. Opinions have
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been divided between hydrothermal and supergene mechanisms (Nash and others, 1981), but fluid
inclusion studies seem to suggest hydrothermal processes, with later supergene enrichment.
Comparison to similar deposits suggest that the high concentrations of uranium and other metals
in the granites probably reflect uranium-enriched supracrustal rocks. This deposit is in contrast to
the Schwartzwalder-type of deposit found along the eastern side of the Front Range where
uranium deposits are found soley in Proterozoic metamorphic rocks (Wallace and Karlson, 1985).

GEOCHEMICAL SIGNATURE
A geochemical signature commonly associated with these deposits is uranium, mercury,
arsenic, antimony, fluorine, molybdenum, and tungsten.

GEOPHYSICAL SIGNATURE
There is no significant magnetic signature. Gamma-ray spectrometer surveys are appropriate
for exploration. Surficial deposits (less that 20 inches deep) would generate anomalies on
radiometric maps; deeper deposits may not be evident with this method. Aeroradioactivity (K,
U, Th) data will highlight host granites, and can locate vein systems, dependent on surface
expression and detail of aerial survey.

KNOWN DEPOSITS
The only known occurrence of uranium-bearing veins, the Ray claims, occur about 0.5 mi
outside the southeastern boundary of the Forest near Jones Pass, in the Vasquez Mountains. The
eastern edge of the Vasquez Peak Wilderness area was rated as having low potential for uranium
in veins in faulted granites (Theobald and others, 1985).

ASSESSMENT CRITERIA
Evidence of uranium minerals.
Presence of faults, fractures, joints, or shear zones.
Presence of quartz veins or silicified faults.
Anomalous uranium radiactivity.

Ealiadl b o

: ASSESSMENT

Area F1.—On the southwest side of the Gore Range in the vicinity of Morrison Creek a small
area has moderate resource potential for vein uranium (pl. 1, fig. 19), with certainty level B. The
host rock in this area is Proterozoic granitic rock. Aeroradioactivity data show moderate values
of K, U, and Th (figs. 9-11) and geochemical data indicate a high U/Th value in a few samples. A
small magnetic high is also present within the area.

Area F2.—In the southeastern part of the Forest just southwest of Jones Pass a small area has
high resource potential for vein uranium (pl. 1, fig. 19), with certainty level C. The uranium
minerals autunite and uranophane are present along with abundant quartz veins in Proterozoic
granitic rocks in the area of the Ray claims. Faults, fractures, and joints are abundant and
silicified. The area has high aeroradioactivity (K, U, Th) values (figs. 9-11).

ECONOMIC SIGNIFICANCE
The number of producing uranium mines in the U.S. is relatively small and is likely to
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remain in this condition for the near future. Exploration and development of any uranium
resources in the Routt National Forest is unlikely in the foreseeable future due to the depressed
state of the uranium industry. Import and export figures for uranium are proprietary (U.S. Bureau
of Mines, 1993).

SANDSTONE URANIUM-VANADIUM (G)

COMMODITIES, BYPRODUCTS, AND TRACE METALS
Commodities are uranium and vanadium with copper byproduct.

HOST ROCKS
Host rocks include Paleozoic sedimentary rocks, in particular the Morrison Formation, the
Dakota Sandstone, the Troublesome Formation and the Middle Park Conglomerate.

STRUCTURAL CONTROL
Structural control is variable.
AGE
Mesozoic age.
DEPOSIT DESCRIPTION

Deposits form as microcrystalline uranium oxides, phosphates, carbonates, vanadates, and
silicates, and are deposited during diagenesis in locally reduced environments in fine- to medium-
grained sandstone beds (Turner-Peterson and Fishman, 1986). Some uranium minerals are also
deposited during redistribution at the interface between oxidized and reduced areas by ground
water. Interbedded shale and mudstone sequences are the source for the ore-related fluids.
Fluvial channels, braided-stream deposits, continental basin margins, and stable coastal plains are
the most characteristic settings for these deposits.

Deposits are usually massive and tabular in shape and ore bodies are nearly concordant with
gross sedimentary features of the host sandstone. Deposits may also occur as roll front bodies
that are crescent shaped and discordant to bedding in cross section. Tabular uranium occurs as
lenses within reduced sandstone, and roll-front deposits occur at interfaces between oxidized and
reduced ground.

GEOCHEMICAL SIGNATURE
Uranium, vanadium, molybdenum, selenium, silver, and copper are present in anomalous
concentrations.

GEOPHYSICAL SIGNATURE
No expression was recognized in regional aeromagnetic or gravity data. U aeroradioactivity
data can be a primary indicator dependent on surface expression and detail of survey.
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KNOWN DEPOSITS
Known deposits occur in the Beaver Creek-Troublesome district near Kremmling, near Norris
Creek on the east side of the Zirkel Wilderness, and at Rabbit Ears Pass.

ASSESSMENT CRITERIA
Presence of Morrison Formation, Dakota Sandstone, Troublesome Formation, or Middle Park
Conglomerate.
2. Alteration and oxidation of host rocks.
Presence of carbonaceous beds or other reductants that cause the deposition of uranium.
4. Presence of uranium in favorable units.
Anomalous uranium radioactivity dependent on surface expression

w

ASSESSMENT

Area G1.—An area on the east side of the Park Range along and near Norris Creek has
moderate resource potential for sandstone-hosted uranium and vanadium, with certainty level C
(pl. 1, fig. 20). The host rock is the Morrison Formation and background radioactivity readings
are above normal (Snyder, 1987a). No uranium minerals were identified.

Area G2.—A north-south trending elongate area in the vicinity of Rabbit Ears Pass has high
resource potential for sandstone-hosted uranium and vanadium, with certainty level C (pl. 1, fig.
20). Uranium is present mostly as carnotite within the uppermost 25 ft of the Dakota Sandstone;
carnotite forms grain coatings, concentrations replacing and surrounding carbonaceous material,
and fracture coatings (Malan, 1957).

Area G3.—An elongate area extending south from area G2 has moderate mineral resource
potential for sandstone-hosted uranium and vanadium, with certainty level B (pl. 1, fig. 20). This
area encompasses the upper portion of the Dakota Formation, favorable for uranium in area G2.
Geochemical data shows favorable U/Th ratios in this area. U (fig. 10) and U/Th (fig. 12)
aeroradioactivity data are relatively anomalous.

Area G4.—The Troublesome district, north of highway 40 between Kremmling and Hot
Sulphur Springs has high mineral resource potential for additional sandstone-hosted uranium and
vanadium, with certainty level C (pl. 1, fig. 20). Uranium occurs in the basal portions of the
Tertiary Troublesome Formation in sandstone lenses. Carnotite, autunite, schroeckingerite, and
unidentified vanadium minerals are present (Malan, 1957). Anomalous radioactivity is present in
widely scattered localities.

ECONOMIC SIGNIFICANCE
The number of producing uranium mines in the U.S. is relatively small and is likely to remain
in this condition for the near future. Exploration and development of any uranium resources in
the Routt National Forest is unlikely in the foreseeable future due to the depressed state of the
uranium industry. Import and export figures for uranium are proprietary (U.S. Bureau of Mines,
1993).
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PLACER GOLD (H)

COMMODITIES, BYPRODUCTS, AND TRACE METALS
Gold with minor silver.

HOST ROCKS
Host rocks include modern to Pleistocene age alluvium in stream sediments, colluvium or
slope wash deposits, and glacial -fluvial gravels and tills. Placers originate from erosion of veins
in Proterozoic and Paleozoic bedrock, although some placers may have been derived from the
reworking of paleoplacers, in particular the basal conglomerates of the Dakota Sandstone and the
Browns Park Formations.

STRUCTURAL CONTROL
Structure has little influence on the location or deposition of placer deposits. Deposits are
usually downstream from known precious-metal lode deposits, mostly related to veins in various
rock types. Irregular flow patterns of the streams separated light from heavy components of
stream sediment. Gold and other heavier minerals tend to be concentrated on the inside of
oxbows and in pools cut into bedrock. Gold is not generally dispersed throughout and constitutes
only a small part of the gravels.

AGE
Pliocene (?) or early Pleistocene deposition (Parker, 1974).

DEPOSIT DESCRIPTION

Placers are irregularly shaped accumulations of heavy minerals near the bottom of gravel
deposits. They range in size from a few feet to a few acres along stream beds or within landslide
deposits. Gold is concentrated in ribbons or streaks in individual channels that are normally 180
to 400 ft wide (Parker, 1974). Associated heavy-mineral black sands contain magnetite, chromite,
ilmenite, hematite, monazite, pyrite, zircon, garnet, and rutile.

Gold in placer deposits formed in modern alluvium and colluvium and in Pleistocene fluvial
sediments. Deposits are found at the base of stream gravels deposited along present-day streams
(Willow and Beaver Creeks), in terrace gravels related to these streams, in colluvium or slope
wash deposits (Little Red Park), alluvial fan deposits (Poverty Bar), and in Pleistocene glacial -
fluvial deposits. There are no placer deposits formed strictly by glacial activity; however,
glaciation can modify or destroy previously formed placer deposits (Parker, 1974). The placers in
the Forest have been worked almost exclusively for gold although the Bear Paw claims along the
South Fork of the Michigan River were staked to test for platinum-group elements. No platinum-
group elements have been found at this location.

GEOCHEMICAL SIGNATURE
Anomalous concentrations of gold, silver, and locally bismuth are present.

GEOPHYSICAL SIGNATURE
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Regional geophysical surveys are of little use, but local seismic surveys could be used to
determine the thickness of placer gravels. Ground magnetometers could be used to detect
magnetite and ilmenite that may be concentrated in the gold placers and to help locate shallowly
buried placers. U and Th aeroradioactivity from monazite, zircon, and other radioactive minerals
can be an indicator, dependent on surface expression and detail of survey.

KNOWN DEPOSITS

Areas within the Forest that have produced gold from placer deposits include the following:
the area along the South Fork of the Michigan River, between the confluence of Porcupine Creek
and the west boundary of the Never Summer Wilderness, which has been intermittently claimed
(Bear Paw group claims) for gold and PGE (Neubert, 1994); gravels along Beaver Creek, Ways
Gulch and Deep Creek (between 8,000 and 8,500 ft elevation) in the Hahns Peak mining district
(Parker, 1974); the Willow Creek Canyon area; hillslope placers at Little Red Park, north of
Hahns Peak (Parker, 1974), on Sawmill Creek, southwest of Walden, and the Independence
Mountain placer (Parker, 1974, p. 31). Poverty Bar, on the east side of Deep Creek just west of
the village of Hahns Peak, was the most productive placer in the Hahns Peak district. Total
production from placer deposits in the Hahns Peak district has been estimated to be from
$500,000 (Parker, 1974) to $2,200,000 (Lakes, 1909).

ASSESSMENT CRITERIA
Presence of alluvial or colluvial deposits downstream from known precious-metal deposits.
Presence of alluvial or colluvial gravels.
Anomalous concentrations of base and precious metals in panned-concentrate samples.

ASSESSMENT

Area H1—A small area on the north slope of Hahns Peak in Little Red Park was mined for
placer deposits (Parker, 1974) and is assigned a moderate resource potential for additional small,
undiscovered placer deposits, with a certainty level of C (pl.1, fig. 21). The source of the gold
may have been from disseminations in the porphyry at Hahns Peak. The gold at Little Red Park is
distinctive for its high silver content (Desborough, 1970).

Area H2.—Poverty Bar, on the south slope of Hahns Peak and west of the village of Hahns
Peak, was mined for placer deposits and is assigned a high potential for additional, small
undiscovered placer deposits, with a certainty level of B (pl. 1, fig. 21). Most of the placer gold
production from the Hahns Peak district came from the Poverty Bar placer (Neubert, 1994) and
the source of the gold may also have been from the Hahns Peak porphyry.

Area H3—A small area south of Hahns Peak, which includes part of the Beaver Creek
drainage and Ways Gulch, has been mined for placer deposits. This area is assigned a high
resource potential for additional, small, undiscovered placer deposits, with a certainty level of C
(pl.1, fig. 21). During reconnaissance studies in the 1960's, gold was recovered from placers in
Ways Gulch (Neubert, 1994) and small localized deposits may still host gold.

Area H4—The Willow Creek Canyon area was mined for placer deposits but production is
unknown (Snyder, 1987a). The area has a high resource potential for additional small,
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undiscovered placer deposits, with a certainty level of C (pl.1, fig. 21). Fine flakes of gold were
found in samples collected from placer material on or near bedrock (Snyder, 1987a).

Area H5.—Several drainages along Independence Mountain, just outside the Forest, have
produced gold from placer deposits and are included in the small outlined area (pl. 1, fig. 21).
This area has a high resource potential for additional undiscovered small placer deposits, with a
certainty level of C. Small placer operations were attempted at the head of Threemile Creek,
along Placer and Lawrence Draws, and along an unnamed draw between Placer Draw and
California Gulch (Hail, 1965, Parker, 1974). The source of the gold is unknown.

Area H6.—A small area south of Threemile Creek, on the northeast slope of Independence
Mountain has a moderate resource potential for small placer deposits, with certainty level B (pl.1,
fig. 21). Alluvial material is present in stream drainages and stream-sediment samples from this
area contained anomalous concentrations of gold.

Area H7.—A small area just outside the Forest boundary, near Rand, has a moderate resource
potential for small placer deposits, with certainty level B (pl. 1, fig. 21). Stream-sediment samples
from the area have anomalous concentrations of gold and silver.

ECONOMIC SIGNIFICANCE }

Gold is a commodity in high demand. Unlike lode-gold deposits, small placer deposits can
usually be worked at a relatively low cost, making them attractive to individuals or small
operations.  Although most of the known deposits have already been exploited, there is likely to
always be an interest in deposits within the Forest. Areas of potential in the Forest are small, have
already been well explored, and may only be exploited for recreational panning or mining
operations. The U.S. is currently exports gold (U.S. Bureau of Mines, 1993).

PGE IN ULTRAMAFICS (I)
COMMODITIES; BYPRODUCTS; AND TRACE METALS

The commodities are the platinum-group elements (PGE): osmium, iridium, ruthenium,
rhenium, platinum, and palladium. Other associated metals include chromium, nickel, and cobalt.

HOST ROCKS
Host rock for these types of deposits is altered peridotite.
STRUCTURAL CONTROL
None.
AGE
Proterozoic X.
DEPOSIT DESCRIPTION

In the Forest, platinum group minerals, and associated chromium, cobalt, and nickel, occur in
pods and layers in ultramafic rocks (Snyder, 1987a). These layers form from gravity settling and
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convection processes in intrusive basaltic magmas. Early formed crystals in these magmas settle
to the bottom of the magma chamber, forming continuous layers and pods of minerals. These
bodies generally range in composition from peridotite (olivine and pyroxene) at the base, through
gabbro (olivine, pyroxene, and plagioclase), to anorthosite (mostly plagioclase) at the top; not all
compositions are always present. PGE minerals, and chromium, cobalt, and nickel-bearing
minerals crystallize from the melt in the early stages and accumulate in the lower portions of these
bodies in the peridotite layers. Platinum-group elements occur as sulfide, arsenide, and sulphide-
arsenide minerals, commonly closely associated with copper-sulphide minerals. The precipitation
of sulphides minerals from a silicate melt is the most important phenomena in localizing and
concentrating the PGE; the actually mechanisms of this process are poorly understood.

GEOPHYSICAL SIGNATURE
Ultramafic plutons are commonly associated with magnetic and gravity highs and unusually
low K, U, and Th radioactivity.

GEOCHEMICAL SIGNATURE
Elevated concentrations of cobalt, chromium, and nickel are the most common. Silver, gold,
cadmium, copper, mercury, lead, antimony, and zinc are also present.

KNOWN DEPOSITS
There are no known deposits in the Forest. However, about 16 miles due north of the
northeastern most part of the Forest in Wyoming the New Rambler mine operated from 1900 to
1918 and produced more than 6,000 tons of Cu, Ag, Au, Pt, and Pd ore (McCallum and Orback,
1968).

ASSESSMENT CRITERIA
Presence of peridotite.
Anomalous concentrations of PGE, Co, Cr, Ni, and (or) Cu, Au, and Ag in soils, rocks, or
heavy-mineral concentrate samples.

ASSESSMENT

Area I1.—Near Elkhorn Mountain in the northernmost part of the Park Range a small area of
peridotite within the Elkhorn gabbro complex has high potential for PGE, with certainty level C
(pl. 1, fig. 22). The peridotite is a volumetrically minor part of the gabbro mass, but is well
exposed on peak 9,731 on the Continental Divide. Rock samples from this area contain
anomalous concentrations of platinum and palladium; one sample contains as much 0.03 ppm
platinum plus palladium (Snyder, 1987a).

Area I2.—A small area between Bear Creek and Lone Pine Creek on the east side of the Park
Range has high potential for PGE elements, with certainty level C (pl.1, fig. 22). This locality
contains a long, linear peridotite intrusive. Rock samples from this area contain anomalous
concentrations of platinum and palladium (Snyder, 1987a); one sample contained as
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much as 0.048 ppm platinum plus palladium.

ECONOMIC SIGNIFICANCE
The U.S. has a net import reliance of 94 percent for the platinum-group metals (U.S. Bureau
of Mines, 1993). The only mining of PGE ore in the U.S. in 1992 was in Montana at the
Stillwater complex. World resources are estimated at 100 million kilograms; U.S. resources are
estimated at 9 million kilograms. Any deposits within the Forest are likely to be small and of little
economic import.

U-TH-REE IN PEGMATITES (J)

COMMODITIES; BYPRODUCTS; AND TRACE METALS
The commodities are uranium, thorium, and the rare-earth elements.

HOST ROCKS
Pegmatites in Proterozoic granitic rocks.

STRUCTURAL CONTROL
U, Th, and REE minerals occur within pegmatites. There is no structural control except for
pegmatites that are emplaced in fault zones.

AGE
U-Th-REE pegmatites are of two ages: 1.4 Ga and 1.7 Ga. The younger pegmatites contain
more U-Th-REE than the older ones except for a few rare exceptions.

DEPOSIT DESCRIPTION

U-Th-REE minerals occur in pegmatites within granitic rocks. Pegmatites contain the
minerals that crystallized from the residual melt of a slowly crystallized, deeply buried granitic
magma body. This residual melt is commonly enriched in gaseous constituents such as H,0, P,
CL F, and S as well as the rare earth elements, U, Th, and the rare-earth elements.

Reported radioactive minerals include uraninite, zircon, xenotime, allanite, fergusonite,
euxentie, carnotite, black chalcedony or dark-purple fluorite, as well as secondary alteration
products such as autunite, uranophane, or gummite (Snyder, 1987a).

GEOPHYSICAL SIGNATURE
U and Th aeroradioactivity will be anomalous depending on surface expression and detail of
survey.

GEOCH.EMICAL SIGNATURE
Anomalous concentrations of U, Th, or REE in rocks and stream sediment samples.

KNOWN DEPOSITS
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There are no known deposits within the Forest.

ASSESSMENT CRITERIA

Pk

Presence of pegmatites
2. Anomalous concentrations of U, Th, or REE in rocks or stream sediment samples
Anomalous uranium and thorium radioactivity

w

ASSESSMENT

Six areas have moderate or high resource potential for U, Th, and REE in pegmatites. All of
these areas fall within the north-central part of the Forest in the granitic rocks of the Park Range.
The following information is from Snyder (1987a).

Area J1.—A small area on Farwell Mountain has moderate resource potential for U, Th, and
REE in pegmatites, with certainty level B (pl.1, fig. 23). Samples of pegmatites in this area
contained as much as 18.5 ppm thorium and 12.4 ppm uranium. Pegmatite muscovite has a
reported K-Ar age of 1.9 Ga (Segerstrom and Young, 1972).

Area J2.—Pegmatites in Mica Basin have high resource potential for U, Th, and REE, with
certainty level C (pl. 1, fig. 23). A few large specimens of uraninite or euxenite are reported from
a mica-beryl pit in pegmatite. One sample from the area assayed 86 percent uranium.

Area J3.—Pegmatites around Agua Fria Lake have high mineral resource potential for U, Th,
and REE, with certainty level C (pl.1, fig. 23). Samples from this area contain greater than 20
percent rare earth elements and yttrium, as much as 15,000 ppm Th, and 7,000 ppm uranium.
The area is within the prominent U and Th aeroradioactivity high (figs. 10 and 11) of the Mount
Ethel pluton.

Area J4.—An elongate zone along the Soda Creek shear zone has moderate potential for
U, Th, and REE, with certainty level B (pl.1, fig. 23). Several samples from the area contain
elevated values of uranium and thorium, ranging from 6.1 to 16.9 ppm and 12.6 to 34.4, ppm
respectively. The area is within the prominent U and Th aeroradioactivity high (figs. 10 and 11)
of the Mount Ethel pluton.

Area J5.—In the North Fork of Fish Creek a northeast-trending area has high resource
potential for U, Th, and REE in pegmatites, with certainty level C (pl. 1, fig. 23). Samples from
this area contained 3,000-7,000 ppm uranium (Beroni and McKeown, 1952; Beroni and Derzay,
1955). Beroni and McKeown (1952) reported uranium analyses of nine samples from the area
(20-540 ppm) and constructed an isoradioactivity map showing pod-shaped radioactive zones 1 to
20 feet in length. The Fair-U claims encompass much of this area. The area is within the
prominent U and Th aeroradioactivity high (figs. 10 and 11) of the Mount Ethel pluton.

ECONOMIC SIGNIFICANCE
The uranium market in the U.S. is relatively depressed and is likely to remain in this
condition for the near future. Import and export figures are proprietary (U.S. Bureau of Mines,
1993). Import data for thorium is not available, but large deposits of thorium occur elsewhere in
the U.S. in beach and stream placers, veins, and carbonatites. The U.S. exported rare-earth
metals in 1992, but previous to that had a net import reliance of 25 percent (U.S. Bureau of
Mines, 1993). Total undiscovered resources of rare earths are believed to be very large relative to
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expected demands.

MINOR OCCURRENCES

Industrial mica.—Mica Basin, on the northeast side of Big Agnes Mountain in the Mount
Zirkel Wilderness, was the site of many recorded mining claims in the late 1940's (Snyder, 1987a).
Many pegmatites, associated with gneiss and schist, in this area contain large mica crystals of
muscovite and biotite. The mica crystals contain parting planes that make the material scrap
grade (Snyder, 1987a). There is no recorded production of mica from this area or from other
sites in the Forest. Although pegmatites are fairly common in the Forest, most do not contain
minable quantities of mica or other commercially important minerals.

Uranium in wetlands.—Wetlands have the capacity for extracting metals, particularly
uranium, from ground and surface waters containing only very dilute concentrations of the metals
(Owen and others, 1992). Plutonic and volcanic rocks of the Forest may contain uranium
concentrations high enough to be feed into local wetlands. Uranium oxides dissolve readily in the
oxidizing, carbonate-bearing waters characteristic of most surface waters and near-surface
groundwaters, and they precipitate when these waters encounter reductants in the subsurface
(Owen and others, 1992). Organic-rich sediments found in wetlands act as reductants and may
concentrate uranium locally.

Wetland uranium normally does not have associated detectable gamma-ray radioactivity
because (1) about 500,000 years are needed for uranium to decay and produce sufficient gamma-
ray emitting daughters to result in measureable gamma-ray anomalies, and (2) the water present
can absorb most gamma-rays emitted by uranium daughter products.

Owen and others (1992) sampled wetland areas within the Forest and found that uranium
concentrations ranged between 2.4 and 62 ppm (parts per million) and are considered to be low to
moderately enriched. Twenty-two samples were collected from wetlands in and adjacent to the
Mount Zirkel Wilderness.

At the Spring claims, about 11 mi west of Walden, uranium-bearing peat beds in the
vicinity of uranium-bearing springs have been reported (Malan, 1957). The claims are located on
the lower eastern slope of Sheep Mountain, about a mile outside the Forest boundary. Uranium-
bearing meteoric waters reportedly issue from flat-lying clay, alluvium, and peat. The peat beds
provide a reducing environment that effectively precipitates uranium from the mineralized
meteroric waters. The peat beds appear to be a local feature; no uranium-bearing peat beds have
been mined at this location.

The only uranium deposit in the U.S. that is mined from surficial wetlands is on the north
fork of Flodelle Creek in northeastern Washington (Johnson and others, 1987). No production
has been recorded from the wetlands or peat bogs within the Forest.
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MINERAL RESOURCES - LEASEABLE MINERALS

The Mineral Leasing Act of 1920 amended the General Mining Law of 1872 and set up
regulations requiring prospect permits and leases to control the exploration, development, and
production of specified minerals. The Mineral Leasing Act placed the following under the leasing
law: oil, gas, coal, oil shale, sodium, potassium, phosphate, native asphalt, bitumen, and
bituminous rock. Geothermal energy was added to the list of leaseable minerals by the
Geothermal Steam Act of 1970.

Known occurrences of leaseable minerals were studied by the U.S. Bureau of Mines and
are described in Neubert (1994). The potential for undiscovered deposits of these minerals is
addressed in the following chapters of this report. Areas within the Forest were assigned a rating
of no, low, moderate, or high potential for the occurrence of undiscovered deposits. Levels of
certainty, labeled A through D, were also assigned to qualify the data; level A indicates the least
amount of supporting data and level D the greatest. Definitions and explanations of the mineral
resource rating system may be found in Appendix 2. On figures 2 and 36, figures 38-41, and plate
1, areas of high potential are shown in red and areas of moderate potential are shown in pink. For
ease in reading the plate, areas of low potential are only shown on the page-size figures and in
these cases are shown in a stripped pattern. Coal, oil, gas, coal bed methane, and geothermal
resources have been identified within or adjacent to the Forest. No potash, sodium, asphalt, or
phosphate resources are known in the Forest.
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COAL GEOLOGY AND RESOURCES (K)
By Laura N. Robinson Roberts and Carol L. Molnia

INTRODUCTION

This chapter in part reviews the coal geology of the Forest as described in previous
studies, and presents new resource estimates for coal in the northwest part of the Forest (Area
1, fig. 24) based on information obtained from wells drilled since earlier resource estimates
were made (Bass and others, 1955; Landis, 1959). A summary of coal resources compiled
from previous work for areas in and adjacent to the Forest is given in Neubert (1994). A new
estimate of totai hypothetical coal resources of Area 1 under less than 3,000 feet of overburden
is about 3.5 billion short tons (table 7). The resource estimates provided in this report are
highly speculative and a great deal of additional information is required to increase the
reliability of these figures. No information is available for the vast majority of the area
supposedly underlain by coal; major assumptions are made in terms of continuity of
coal-bearing intervals, both in terms of stratigraphic and structural setting.

The Forest covers portions of several counties in the northwestern part of Colorado.
Because the Forest consists of isolated parcels, number designations are assigned to its
different parts for ease of reference (fig. 24). Area 1, the main area of emphasis for this
chapter, is where new hypothetical coal resources were estimated. It is the northwestern part
of the Forest and includes the Elkhead Mountains. Area 2 is the central part of the Forest and
includes parts of the Park and Gore Ranges; Area 3 is the southwestern part of the Forest and
includes the Beaver, Dunkley and Little Flat Tops, Area 4 is the narrow northwest-southeast
trending Medicine Bow Mountains in the northeastern part of the Forest; Area § is the
east-central part of the Forest and includes the Rabbit Ears Range; and Area 6 is the
southeastern part of the Forest and includes the Williams Fork Range.

Parts of two major coal regions extend into the Forest (U.S. Geological Survey and
Colorado Geological Survey, 1977). The Green River Region extends into Area 1 from
Wyoming and from points west in Colorado (fig. 24) and also extends into the northwestern
corner of Area 3. Virtually all of the coals mined to date in the Colorado part of the Green
River region have come from the Yampa coal field, which is Colorado's greatest producer of
coal (Keystone Coal Industry Manual, 1993). Over 13 million tons of coal were produced
during 1990 from the Mesaverde Group. Most of the coal is burned at electric generating
plants in Craig and Hayden; however, several million tons are shipped annually by railroad to
power plants as far away as Texas and Nebraska. Although major mines are currently
operating in the Yampa Coal field, no coal production has been recorded from within the
bounds of the Forest. The most recent discussion of the history of coal mining activity in the
Yampa Coal field is given in a report by Neubert (1994).

The North Park Region covers most of Area S (fig. 24). The North Park and Middle
Park coal fields of this region are separated by the general east-west trending Rabbit Ears
Range. The North Park coal field contains significant coal resources in the Paleocene
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Table 7. Estimated hypothetical coal resources of Area 1 (in millions of short tons) according
to overburden category [In millions of short tons, values rounded to two significant figures]

Overburden thickness categories

Total Total Total
Formation 0-1,000 ft 1-2,000 ft 2-3,000 ft 0-3,000 ft 3-6,000 ft 0-6,000 ft

Subbituminous- beds 2.5 ft thick and greater

Fort Union 71 120 290 480 120 600
Lance (base) 340 230 250 820 860 1,700
subtotal 410 350 540 1,300 980 2,300

Bituminous- beds 1.2 ft thick and greater

Williams Fork 540 290 610 1,400 2,700 4,100
Iles 350 190 220 760 1,900 2,700
subtotal 890 480 830 2,200 4 600 6,800
Total 1,300 830 1,400 3,500 5,600 9,100
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Coalmont Formation in the Coalmont district (fig. 24) (Erdmann, 1941); however,
minable beds probably do not extend into Area 5. The Middle Park coal field contains rocks
equivalent to the coal-bearing Coalmont Formation in the North Park coal field (the Middle
Park Formation), but lack of data precludes a resource estimate in this area. Published
geologic maps that cover Area 5 of the Forest include Izett (1968); Izett and Barclay (1973);
Hail (1968); Kinney (1970); and Kinney and Hail (1970).

AREA 1

Area 1 occupies the southeastern part of the northwest-southeast trending Sand Wash basin
(fig. 25). Structure contours drawn on the top and base of the Williams Fork Formation in the
eastern Sand Wash basin indicate that strata dip generally less than 2° to the west (Tyler and
Tremain, 1993), except at the eastern margin of the basin, where Bass and others (1955)
measured dips of up to 23° in rocks of the Mesaverde Group in the southeastern part of Area
1. Figure 26 shows the surface distribution of Upper Cretaceous and Tertiary rocks and a
generalized cross section of those rocks from northwest to southeast across Area 1.

Upper Cretaceous coal-bearing strata include the Iles and Williams Fork Formations of the
Mesaverde Group, and the Lance Formation (fig. 27). Reports that discuss the distribution,
stratigraphy, and depositional environments of these formations in and near Area 1 include
Fenneman and Gail (1906), Bass and others (1955), Sharps (1962), Bader (1983), Irwin
(1986), Siepman (1986), Honey and Hettinger (1989), Roehler and Hansen (1989), and
Hamilton (1993).

The Iles Formation is about 1,600 ft thick and consists of interbedded light-brown,
light-gray and white sandstone, gray sandy mudstone, gray shale and coal (Bass and others,
1955). The contact between the Iles and Williams Fork is the top of the fine-grained,
massive, 100-ft-thick Trout Creek Sandstone Member (fig. 28). This member, which can be
traced for many miles across the eastern Sand Wash basin, was deposited in a nearshore
marine environment. Strata of the Williams Fork Formation are about 1,200 ft thick and are
similar to the those of the Iles Formation, including interbedded sandstone, mudstone and coal.

The youngest coal-bearing formation of Cretaceous age is the Lance (fig. 27), which is
about 1,200 feet thick and consists of continental deposits, including interbedded fine-grained
sandstone, gray mudstone, and a few coal beds. In a study of Upper Cretaceous and lower
Tertiary stratigraphy in the Sand Wash basin, Honey and Hettinger (1989) placed the regional
Cretaceous-Tertiary unconformity within a thick coarse-grained sandstone unit (their
"unnamed Cretaceous and Tertiary sandstone unit"), based on pollen dates. This unit is
distinguishable on electric logs of the few wells that penetrate it within or adjacent to the
Forest (fig. 29). However, for this report, and for convenience, the Lance-Fort Union
(Cretaceous-Tertiary) contact is placed at the top of this unit.

The Tertiary coal-bearing unit, the Paleocene Fort Union Formation (fig. 27), is about
1,000 ft thick and is composed chiefly of brown and gray sandstone and gray mudstone of
fluvial origin, and coal. Information on the Fort Union Formation in this area can be found in
Bass and others (1955), Beaumont (1979) Bader (1983), Irwin (1986), Honey and Hettinger
(1989), and Tyler and McMurray (1993).
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METHODS USED TO ESTIMATE COAL RESOURCES

Area 1 is the only area where coal resources were estimated for this study. Figures 30-33
show locations of drill holes and measured sections used in resource estimates in Area 1; tables
8 and 9 list sources of these data. The new coal resources for Area 1 are here classified as
"hypothetical” (refer to appendix). Hypothetical resources are defined by Wood and others
(1983) as tonnage estimates: (1) for regions where tonnage estimates are based on knowledge
of the geologic character of coal (for example, thickness trends based on knowledge of
depositional environments) and (2) for areas beyond a radius of three miles from a point of
measurement (for example, drill hole or outcrop). Although points of measurement exist
within the Forest that would make it possible to estimate resources for categories of higher
reliability (measured, indicated, and inferred categories; see Wood and others, 1983), it is
impractical to separate out these categories because there are so few points of measurement and
because they are so widely scattered.

By definition, hypothetical coal resources include coal beds to a depth of 6,000 ft that are
1.2 ft or more thick for bituminous coal and 2.5 ft or more thick for subbituminous coal. For
this report, the approach used to estimate hypothetical resources within the Forest is a
modification of the "extrapolated coal zone method" described in Wood and others (1983). It
is a modification because, for these estimates, the entire coal-bearing formation takes the place
of "coal zone."

Resource estimates were calculated and reported for coal in each of the formations of interest:
Iles, Willliams Fork, Lance and Fort Union Formations. Tonnage estimates were derived by
multiplying a weighted average thickness value of cumulative coal in the formation by the area
underlain by the formation. The weighted average thickness values and the areas were
calculated with the aid of the Interactive Surface Modeling (ISM) computer program developed
by Dynamic Graphics, Incorporated. Because the Mesaverde Group coals are bituminous in
rank, coal beds thinner than 1.2 feet are excluded from resource consideration in that Group,
and because Fort Union and Lance coals are subbituminous in rank, coal beds thinner than 2.5
feet are similarly excluded in those formations (Wood and others, 1983).

MESAVERDE GROUP COALS

Three different groups of coal beds occur in the Mesaverde Group (Bass and others,
1955; Fenneman and Gale, 1906). It is possible to identify these coal groups, in a general
way, in well logs examined for this study. The stratigraphic position of these coal groups are
shown on figure 28. The lower coal group consists of coal beds of the Iles Formation. The
middle coal group consists of coal beds between the base of the Williams Fork Formation and
the Twentymile Sandstone Member. The upper coal group consists of coal beds above the
Twentymile Sandstone and the top of the Williams Fork Formation.

Wells drilled on the Forest per se that penetrated the lower coal group (Iles Formation
coals) are #1- #4 (fig. 30). The thickest single bed in this group within the Forest is 5 ft
thick and the average is about 3 ft. These thicknesses are consistent with those Iles Formation
coal beds that are exposed within and adjacent to the Forest boundary in T. 9 N., R. 86 W.
(Bass and others, 1955 ) (fig. 30; table 9). Total cumulative coal thickness, determined from
the available data, for this group within the Forest ranges from 22 to 37 ft. The number of
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Figure 30a. Isopach map of cumulative coal in the Iles Formation in and near Area 1, including coals of the lower
coal group (terminloogy of Bass and others, 1955). Thickness values are in feet.
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Figure 30b. Isopach map of overburden; datum is top of Iles Formation in Area 1. Thickness values are in feet.
Drill holes represented by (o) and number, measured outcrop sections by (x) and number. See table 2 for the
location and source data for drill holes; see section 3 for the location, thickness, and source data for measured sections.

108



107° 22' 30" 107° 15 107° 7" 30"

T | T '
40° 52'30° = R. 90 W. RBOW. RB8W. R8T W. i R.B6W.
A ow | 4 /
} 1
- [ PR |
——! !
' L2 ‘g) / Inferred
_____ top of
T.ION.| ] WO Witiams Fork
1 Q ; Fm
-
[, / 1
I
1
L]
|
40045 |- \ -
LA 2
T.9N. 21
/ L/
151
X
9 1460
T.BN./ ° /40 143
0 2 4 O
{ | |
| 1

Figure 31a. Isopach map of overburden; datum is top of Williams Fork Formation in and near Areal,
including coals of the middle coal group and of the upper coal group (terminology of Bass and others,
1955). Thickness values are in feet. Hachures indicate area of local thinning.

107° 22 30" 107° 15' 107° 7' 30
{ { | j
|
40°52'30" |— R. 90 W. R.BOW. : R 88 W. R.87W. i R.B6 W.
] 140 I
r ol
LJ I \ \
T Y 2 %
“““ L %
T.10N. r‘--- Inferred outcrop
1 1 l(?p?f
| 1 Williams Fork Fm
by
‘ ) 6000 o
i
T Li
L)
L
40°45' |} \ -
I
|._.__.' 04 >
T.9N. ---I{:_/L— 231
] ] x
"-1
l_-l ------------- "-1'5'1_ -----
"ol \
o 34 E 1,
Ok? 9 146
T.8N.| o 2 4 Gmiles & ! 2 o ¥ X143
L | | ] g 5 o'0
| ' | o7 |

Figure 31b. Isopach map of overburden; datum is top of Williams Fork Formation in the Area 1. Thickness values
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Figure 32a. Isopach map of cumulative coal in the Lance Formation, in and near Area 1. Thickness
values are in feet.
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Figure 32b. Isopach map of overburden; datum is base of Lance Formation (top of Fox Hills Sandstone) in Area 1.
Thickness values are in feet. Drill holes represented by (0) and number, measured outcrop sections by (x) and number.
See table 2 for the location and source data for the drill holes; see table 3 for the location, thickness, and source data for

measured sections.
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Figure 33a. Isopach map of cumulative coal in the Fort Union Formation, in and near Area 1.
Thickness values are in feet.
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Figure 33b. Isopach map of overburden; datum is top of Fort Union Formation in Area 1. Thickness values are in feet.
Drill holes represented by (o) and number, measured outcrop sections by (x) and number. See table 2 for the location
and source data for drill holes; see table 3 for the location, thickness, and source data for measured sections.
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Table 8. Location data for drill holes shown in figures 30-33.

Well Ground

ID elev (ft) T.(N.) R. (W) Sec.  Quarter Well Name Owner

1 8533 10 87 26 ne se se 1 Grizzly-Federal - Sun Expl & Production
2 8380 9 87 24 SW W nw 4-24 California-Federal Buckhom Petroleum

3 8800 9 86 29 nw nw nw 1-29 Chevron Federal Chevron U.S.A.

4 7831 9 88 16 se nw 1 Madera-Federal Gulf Oil

5 8729 10 90 14 se SW 1 USA-Davis Pan American Petroleum
7 6852 8 88 14 nw ne sw 1-14 Murphy Ranch-Govt ~ Chambers Jerry

8 7307 10 90 28 SW SW 1 Welba Peak Unit Belco Petroleum

9 8427 8 87 3 nw sw se 1-3 Hayden Public Library  Dome Petroleum

10 9040 8 87 11 W nw se 1-11 Hayden Public Library Dome Petroleum

11 6999 9 89 35 ¢ Se SW 1 Federal Murfin Sutton

12 7090 9 89 19 se sw se 1-19 E. Van Tassel Conoco Inc.

13 7958 9 90 3 ne se ne 3-9-90 Villard Anadarko Production
14 8351 11 87 33 ¢ ne sw 1-B Colo-Federal Sunray Mid-Continent
15 7714 9 90 23 se nw nw 1 Federal Belco Occidental Petroleum
16 8150 10 90 26 Se se SW 1 Villard Midwest Oil

17 7886 10 90 27 SW SW ne A-1 Black Mountain Anadarko Production
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Table 9. Location and coal thickness data of measured outcrop sections (Bass and others, 1955) shown on
figure s 30-33.

Meas T.(N.) R.(W) Sec. Coal bed Number of beds
sec. ID thickness (ft) (if more than 1)
Iles Formation, lower coal group

148 9 86 20 5.0

i149 9 86 29 25

1150 9 86 32 47

i152 9 86 32 35

1153 9 86 32 4.8

1142 8 86 5 3.1

144 8 86 6 3.0

i145 8 86 6 46 2
w221 9 87 24 35

wl5s1 9 86 32 35

wl46 8 86 6 4.7 2
wl43 8 86 6 7.7

Lance Formation coal

L1220 9 87 19 6.5

L.260 9 88 24 2.8

L261 9 88 25 53 2
L262 9 88 26 3.7

L222 9 87 26 212 4
L1201 8 87 7 4.0

Fort Union coal
F343 8 89 2 4.5
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coal beds greater than 1.2 ft thick ranges from 7 to 12. The isopach map (fig. 30a) shows
distribution and trends of coal thickness and the overburden map (fig. 30b) shows the depth to
the top of the Iles Formation.

The Iles Formation (includes coal of the "lower coal group” of Bass and others (1955))
contains an estimated 2.6 billion tons of bituminous coal under less than 6,000 ft of
overburden in beds greater than 1.2 feet thick (table 7). This total represents about 29 percent
of the total of the four formations. However, more than 70 percent of Iles Formation coal in
Area 1 is deeper than 3,000 ft. Near the eastern margin of the basin, where the Iles Formation
is exposed at the surface, the dip of the strata containing the coal is up to 23° (Bass and others,
1955); therefore, there is only a narrow areal distribution of shallow coal (fig. 30b) away
from which the overburden rapidly thickens to the west.

The middle coal group (near the base of the Williams Fork Formation) contains the
thickest and most extensive coal beds of the three groups (fig. 31). The Wadge coal bed,
which is currently mined in the eastern part of the Yampa coal field, is in the lower part of this
group. Within the Forest, wells that were drilled through these coals are #1, #2 and #4 (fig.
31). The thickness of individual beds within the group ranges from 2 to 22 ft and total
cumulative thickness for the group reaches a maximum of 40 ft. Coal bed thicknesses of up to
7.7 ft were measured on the steeply dipping outcrops in and adjacent to the Forest boundary
(table 8).

The stratigraphic horizon where the upper coal group is expected to occur was logged in
hole #4 within the Forest; no coal beds were discernible from that log. This is also the case
for holes #14 and #11 just northeast and southwest of the Forest boundary, respectively (fig.
31). However, holes #7 and #9, outside the Forest boundary to the southeast, do show coal
beds at this horizon. Unfortunately, no data for this zone was recorded in the other wells
drilled within the Forest, (holes #1 and #2) because the logged interval started below the coal
zone. The cumulative thickness of both coal zones in the Williams Fork Formation is
represented on the isopach map (fig. 31a).

The Williams Fork Formation (includes coal of the "middle” and "upper coal group” of
Bass and others, 1955) contains almost half of all the coal within this part of the Forest. An
estimated 4.1 billion tons of bituminous coal may occur within 6,000 ft of the surface in beds
1.2 ft thick or greater (table 7). However, of this total, over 65 percent of the coal is deeper
than 3,000 ft. The isopach map of overburden (fig. 31b) shows that relatively shallow coals
may exist along the eastern margin of the basin but only in a narrow strip. Overburden
increases dramatically in a short distance to the west as the strata dip steeply toward the basin
axis. It should be noted that two of the three drill holes within the Forest that contain data on
Williams Fork coals were logged starting below the upper coal zone, so they do not have data
for the horizon that might include these coal beds. For this reason the isopachs (fig. 31a) may
represent a minimum cumulative thickness of coal along the eastern edge of Area 1.

Most of the coal of the Mesaverde Group is high-volatile C bituminous in apparent rank
but ranges from subbituminous B to high-volatile B bituminous (Bass and others, 1955;
Landis, 1959; Khalsa and Ladwig, 1981; Boreck and others, 1981). Coal in the extreme east
edge of the Yampa coal field is locally metamorphosed to anthracite due to by igneous
intrusions (Bass and others, 1955). For analyses of 21 coal samples from the Yampa coal
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field, the as-received sulfur values range from 0.4 to 0.9 percent; ash yields range from 4.0
to 20.0 percent, with a geometric mean of 8.1 percent; and calorific values range from 9,870
to 12,010 Btu/1b, with a geometric mean of 11,130 Btu/Ib (Khalsa and Ladwig, 1981).

The Mesaverde Group coals (Iles and Williams Fork Formations) have high coal resource
potential with certainty level C (fig. 34). This qualitative assessment is based on the proximity
of known coal resources (Yampa coal field) and the known distribution, thickness, depth,
quantity and quality of coal in these strata. Although Mesaverde Group coal underlies most of
Area 1, most of it is buried too deeply to be considered an economic resource.

LANCE FORMATION COALS

Only holes #4 and #5 provide data for Lance coals within the Forest, but several holes
outside the Forest added control points for cumulative coal thickness and overburden isopachs
(figs. 32). The majority of and the thickest coal beds of the Lance Formation occur within
less than 200 ft of the base of the formation (fig. 29). Within the Forest the thickest coal bed
encountered in drill holes is 6 ft thick, but most of the beds are 3-4 ft thick. Lance Formation
coal beds are typically thin, lenticular, and difficult to trace for any distance. On the outcrop
in sec. 26, T. 9 N., R. 87 W., a cumulative thickness of 21.2 ft of coal in 4 beds, near the
base of the Lance was measured in an interval of 75 ft (table 9).

The Lance Formation contains an estimated total of over 1.7 billion tons of
subbituminous coal in beds 2.5 feet thick or greater and under less than 6,000 ft of overburden
(table 7). This total represents about 18 percent of the total of the four formations. About 50
percent of the Lance coal is deeper than 3,000 ft. In contrast to the method used for the other
formations to determine overburden thickness, structure contours were drawn on the base of
the Lance rather than on the top. Because the Lance is about 1,200 ft thick, and because most
of the Lance coals occur near the base of the formation, it is a better representation of the
overburden thickness (fig. 32b).

In the early 1920's Lance coal was obtained from small wagon mines northeast of
Craigand in T. 7 N., R. 90 W. and T. 6 N., R. 89 W. (Bass and others, 1955). Lance coal is
of subbituminous B and C apparent rank (Murray, 1980) and has a calorific value, as mined,

~of about 9,700 Btu/lb (Bass and others, 1955). On an as-received basis, average sulfur
content and ash yields for 6 mine and outcrop samples in the Yampa coal field are 0.5 and 4.8
percent, respectively (Bass and others, 1955).

Based on the available information, the Lance Formation in Area 1 has a high potential
for coal resources, with certainty level B (fig. 34). Although coal in this formation underlies
most of Area 1, much of it is is thin and lenticular in nature and buried too deeply to be
considered an economic resource.

FORT UNION FORMATION COALS

There is almost no information about the Fort Union Formation within the Forest
boundary. It is exposed only in a small area in T.10 N., R. 88 W. and is otherwise
completely covered by younger sediments of the Wasatch and Browns Park Formations (fig.
26). Drill hole #5 (fig. 33) is the only drill hole within the Forest that provides data on this
unit, but as with the Lance Formation, wells to the west and south of the boundary provide
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control for maps necessary to make projections into the area with no data. Several studies of
Fort Union stratigraphy in the Sand Wash basin include isopach maps of cumulative thickness
of coal in the Fort Union Formation (Boreck and others, 1981; Tyler and McMurry, 1993;
Beaumont, 1979; Honey and Hettinger, 1989). Isopachs were projected into the Forest area
based on these previous interpretations; cumulative thickness of coal in the Fort Union
Formation appears to be thinning to the east toward the basin margin (fig. 33a). Almost all of
the coal beds occur in the lower part of the Fort Union Formation. Coal beds range in
thickness from less than 3 ft to a maximum of 17 ft, with an average thickness of about 5 ft.

The Fort Union Formation contains an estimated total of about 600 million short tons
of subbituminous coal under less than 6,000 ft of overburden in beds 2.5 feet thick or greater
(table 7). About 20 percent of this total is deeper than 3,000 ft. The Fort Union Formation
coal resource tonnage represents only seven percent of the total of the four formations.
Seventy-one million short tons are estimated to lie within 1,000 feet of the surface. This may
be a very high estimate. The isopach trends (fig 33a; 33b) indicate that the coal and
overburden are thinning toward the east; therefore, it is possible that the Fort Union
Formation is barren of coal where it comes within mining distance of the surface. It is not
known how much of the Fort Union Formation may have been removed by erosion prior to
deposition of the overlying Wasatch Formation. More information is needed to understand
which geologic controls may have affected this resource.

Fort Union coals range from subbituminous B or C in apparent rank in outcrops along
the southern, eastern, and northwestern margins of the basin to probably high-volatile A
bituminous in the deeper parts of the Sand Wash basin (Murray, 1980; Scott, 1993). There
are no analyses of coal in Forest Area 1, but analyses of five samples nearby in Routt and
Moffat Counties (of uncertain reliability due to thin overburden and probable weathering)
indicate that on an as- received basis, ash yields are about 5 percent and sulfur values are
about 0.3 percent, with a calorific value of about 9,850 Btu/lb (Bass and others, 1955, their
table 9).

The Fort Union Formation coals have high coal resource potential, with certainty level
B (fig. 34). The geologic characteristics of Fort Union coal beds indicate that their
cumulative thickness tends to thin to less than 5 ft thick toward the east in Area 1 as they
approach mining depth.

LIMITATION OF DATA

It is clear on the maps (figs. 30-33) that drill hole and outcrop data are sparse at best.
Of the 16 wells used for this study only five are within the Forest boundary, and of those five,
only one (hole #4) provides data for three of the four coal-bearing formations. The other
holes provide complete data for only one or two of the coal-bearing formations. Therefore,
these estimates of coal resources are highly speculative.

The contacts between the Wasatch and the Fort Union and between the Fort Union and
the Lance Formations are difficult to distinguish in well logs because these strata are fluvial
deposits mapped on the surface using characteristics that do not appear in subsurface
geophysical logs, such as color and fairly subtle differences in grain size. Also, picking a
contact between the marine and marginal marine units (i.e., Mancos/Iles; Williams
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Fork/Lewis; and Lewis/Fox Hills) is somewhat arbitrary because these units intertongue.
However, stratigraphic correlations of the coal-bearing formations across the study area must
be attempted in order to assign coal zones to the correct formation and in order to assign a
contact between formations for the purpose of constructing structure contour maps.
Documented stratigraphic information (Boreck and others, 1981; Bader, 1983; Honey and
Hettinger, 1989) was extrapolated into the Forest from south and west of the study area.

The cumulative coal thickness of the formations also had to be projected across the area
with sparse data from areas where documented coal thickness information exists.
Measurements of coal at the outcrop were generally used to delineate the distribution of the
coal and as a minimum thickness value for the isopachs. Outcrop measurements are
considered minimum values because they usually only represent a single coal bed in the
formation, whereas the isopachs represent cumulative coal thickness in the entire formation.
For the Iles and Williams Fork Formations (figs. 30a; 31a), general isopach trends were
drawn based on the estimated orientation of the shoreline that was present at the time of
deposition of the peat that formed the coal (Lillegraven and Ostresh, 1990; Hamilton, 1993;
Cobban and others, 1994). Isopach trends for the Lance and Fort Union Formation coals
(figs. 32a; 33a) were extrapolated into the Forest from trends determined in previous studies
from data to the west of the Forest (Boreck and others, 1981; Tyler and McMurry, 1993;
Beaumont, 1979).

Isopach maps of overburden (depths to the top of the Iles, Willliams Fork, and Fort
Union Formations; depth to the base of the Lance Formation) are constructed by subtracting
the elevation above sea level of the top or base of the coal-bearing formation from the
elevation of the ground surface. It must be stressed that the overburden isopachs on the top of
the Iles, Williams Fork and Fort Union Formations (figs. 30b, 31b, 32b) are absolute
minimums because coal beds in these formations commonly are near the base of the formation.
Therefore the overburden thickness to the stratigraphically highest coal in these formations is
actually greater than appears on the maps. Owing to the thickness of the formations, this
difference could be as much as 1,000 ft. The thickness of overburden to the base of the
Lance Formation (fig. 33b) was used because the coals are all within 200 ft of the base of the
formation. Therefore the overburden thickness on the highest coal is actually less than appears
on the map.

POTENTIAL FOR OTHER UNDISCOVERED COAL RESOURCES
AREAS 2, 4, AND 6
These areas have no coal resource potential based on the presence of predominantly
crystalline rocks and on the lack of coal-bearing rocks, with certainty level D (fig. 34).

AREA 3

The Iles Formation is the only coal-bearing formation in Area 3 and it occurs only in
the northwestern part; all younger coal-bearing rocks are eroded (Sharps, 1962). The Iles
Formation has moderate resource potential for coal, with certainty level B (fig. 34). Although
much of the coal is burned along the outcrop, Sharps (1962) did report a coal bed 3.5 ft thick
in this area.
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AREA §

Resource potential for coal in the Coalmont and Middle Park Formations is largely
unknown because of the lack of sufficient data; however, the potential is probably low, with
certainty level C (fig. 34). Published geologic maps of Area 5 did not report the occurrence of
coal in these formations. Although operating coal mines are located north of this area, the
geologic characteristics of the coal-bearing units indicate that the coal beds thin and pinch out
southward in the direction of Area 5.
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OIL, GAS, AND COALBED METHANE RESOURCES
By Craig J. Wandrey, Ben E. Law, Charles W. Spencer, and Charles E. Barker

INTRODUCTION

Over half the area within Routt National Forest and the Middle Park Ranger District of
the Arapaho National Forest is underlain by Proterozoic metamorphic and igneous rocks of the
Park, Gore, Rabbit Ears, Front Range, and the Never Summer Mountains (plate 1) and has no
potential for oil and gas production except beneath the Independence and Williams Fork
thrusts. The remaining lands of the Forest where Paleozoic through Tertiary sedimentary
rocks occur have been intermittently explored for oil and gas since 1928. This activity
resulted in the discovery of one oil field in the Elkhead Mountains and two oil fields in the
Flat Tops areas of the Forest (fig. 35). These fields are the California Park field discovered
in 1983 and abandoned in 1984, the Pinnacle field discovered in 1956 (presently shut-in), and
the Scott Hill field with three producing wells .

In the following discussion, the potential of conventional and unconventional
hydrocarbon accumulations are independently discussed. Conventional hydrocarbon
accumulations are discrete oil and gas deposits that occur in structural, stratigraphic and
combination traps. In contrast, unconventional hydrocarbon accumulations are regionally
extensive and cut across structural and stratigraphic boundaries. They also lack down-dip
water contacts. Unconventional accumulations in this region include basin-centered gas,
coalbed methane, and oil in fractured shale. Most of the discussion regarding reservoirs and
source rocks applies to most of northwest Colorado, or the North Park and Middle Park
basins.

CONVENTIONAL HYDROCARBON ACCUMULATIONS (L)

Reservoirs.—The principal conventional reservoirs on the National Forest lands include
the MiddlePennsylvanian Minturn Formation; the Permian and Pennsylvanian Weber
Sandstone and associated formations, the Upper Triassic Shinarump Sandstoneand Moenkopi
Formation; the Middle Jurassic Entrada Sandstone and Upper Jurassic Morrison Formation;
the Lower Cretaceous Dakota and Lakota Sandstones; and the Upper Cretaceous Frontier
Formation, Niobrara Formation, Morapos Sandstone Member of the Mancos Shale, Pierre
Shale, Mesaverde Group including the Almond Formation, and the Lewis Shale. Tertiary
reservoir rocks are absent through most of the area and where present are not considered to
have any potential. Porosity in theprincipal conventional reservoirs ranges from less than 10
to 20 percent and permeability ranges from less than 0.1 to 300 millidarcies. Reservoir
thickness ranges from 8 to 65 ft. Drilling depths to these reservoirs range from less than
1,000 to 10,000 ft.

Source rocks and geochemistry.—Possible hydrocarbon source rocks include the Middle
Pennsylvanian Belden Shale (Nuccio and Schenk, 1986; Waechter and Johnson, 1986), the
Permian Phosphoria Formation, the Upper Cretaceous Mowry Shale (Filmore, 1986),
Niobrara Shale, Mancos Shale, Pierre Shale, and Lewis Shale. In addition, the coal beds
contained in the Upper Cretaceous Mesaverde Group are likely sources of gas. The Belden
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Shale may be thermally overmature west of the Gore and Park Ranges and is absent from the
stratigraphic section east of the ranges. The Phosphoria and Cretaceous rocks are mature to
undermature with respect to hydrocarbon generation. The Paleozoic reservoirs may contain oil
with sulfur and sour gas. Mesozoic oil is low sulfur and the gas is sweet. Produced water
may vary from salty at depths of more than 5,000 ft and fresh at depths less than 2,000 ft.

Timing of generation and migration.—The present-day levels of thermal maturity were
probably achieved during Oligocene time. Most structural traps were most likely formed
during the Laramide orogeny; however some traps could have formed as early as
Pennsylvanian time west of the Gore and Park Ranges. Consequently, the temporal
relationships between hydrocarbon generation, migration, and development of structural traps
were favorable.

Traps and seals—Although reservoirs such as the Weber, Entrada, Shinarump,
Morrison, Dakota, and Frontier Formations potentially have stratigraphic traps, all
conventional fields in northwest Colorado and North Park Basin produce from structural traps.
Consequently, there is no compelling reason to expect the discovery of significant stratigraphic
accumulations. Structural traps could include small, tightly folded anticlines or faulted
anticlines. In North and Middle Parks anticlinal traps produce near the basin margins. The
numerous low-permeability shales in Paleozoic and Mesozoic rocks could provide adequate
seals.

Exploration status and resource potential. —The area is relatively maturely explored.
However, the area is structurally complex and has a long history of structural deformation
dating back to Proterozoic time. Some of the older structures may have been overlooked due
to concealment by younger, Tertiary rocks.

The area in the Elkhead Mountains is underlain by Cretaceous and Tertiary sedimentary
rock and has moderate potential for gas resources, with certainty level B (Area L1, fig. 36).

A certainty level of B is required because much of the area is covered by Tertiary sedimentary
rocks that may conceal older structures in the underlying rock units.

In the Flat Tops area (fig. 35), there are two small accumulations in structural traps;
the Pinnacle field, which produced from the Shinarump and Dakota, and the Scott Hill field,
which produced from the Weber, Dakota, and Frontier. Untested northwest-trending, surface
structures in the Flat Tops have moderate potential for gas resources, with certainty level B
(Area L2, fig. 36). Based on the cumulative production from the Pinnacle and Scott Hill
fields (less than 150 MBO) , it is unlikely that new discoveries in this area will exceed 1
million barrels of oil equivalent (MMBOE).

The area from the Rabbit Ears Range south to Corral Peaks between North and Middle
Park basins (Area L3, fig. 36) is underlain by Cretaceous and Tertiary sedimentary rocks
covered and intruded by Tertiary volcanics. The volcanics may conceal structural traps.
Immature to marginally mature source rocks in this area have oil but, several test wells have
had gas shows. The area has moderate potential for gas resources, with certainty level B. It is
unlikely that new discoveries in this area will exceed 6 BCF or 1 MMBOE.

The areas within the Forest on the southwest side of the Gore Range, along the eastern
side of the Park Range, and on the northwestern corner of the Williams Fork Mountains (Area
L4, fig. 36) have relatively thin sedimentary sections that are less conducive to gas generation
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and trapping. These areas have low potential for gas resources, with certainty level C.

SUBTHRUST HYDROCARBON ACCUMULATIONS

Reservoirs.—The most prospective reservoir rocks are the Jurassic Entrada Sandstone
and Morrison Formation, and the Cretaceous Dakota and Lakota Sandstones, Frontier
Formation, and Niobrara and Pierre Shales. Porosities range from 10 to 20 percent and
permeabilities range from less than 0.1 to 300 millidarcies. Reservoir thicknesses are
generally thinner in these basin margin settings and range from less than 8 to 60 ft.

Source rocks.—The Cretaceous Mowry Shale has probably the best source rock
potential (Filmore, 1986) and has been identified as a primary source rock in the adjacent
Greater Green River Basin. Thermal maturities are potentially higher in the subthrust due to
increased heating due io primarily to greater burial depths.

Timing of generation and migration.—Burial histories for North and Middle Park
basins indicate that maximum burial and thermal maturity occurred during Oligocene time
(Filmore, 1986; Maughan, 1988) with migration updip over short distances.

Traps and seals.—Pre-existing traps (anticlines and faulted anticlines) may be preserved
and enhanced beneath mountain-front thrusts. Proterozoic rocks in the hangingwall of the
thrust may also act as a trap in conjunction with an underlying thick, low-permeability shale
seal.

Exploration status and resource potential. —Thrust faults having a heave sufficient to
create or preserve traps of commercial size are: the Independence Mountain Thrust, where
Proterozoic rocks are thrust south as much as 12 miles over the Paleocene and Eocene
Coalmont Formation of North Park (Blackstone, 1977) and the Williams Fork Thrust on the
east side of the Blue River Valley where Proterozoic rocks of Williams Fork Mountains are
thrust westward over the Pierre Shale. The rocks of the subthrust have not been tested at
either the Independence Mountain or Williams Fork Thrusts. The potential for finding a 1
MMBCOE field under the Williams Fork Thrust is low, with certainty level B (Area LS, fig.
36). The potential is also low, with certainty level B (Area L6, fig. 36) for the Independence
Mountain Thrust because only a small area of the subthrust extends into the Forest. Resource
estimates are based on source rock potential and volume of potential reservoir rocks within the
National Forest (subthrust boundaries are highly speculative).

UNCONVENTIONAL HYDROCARBON ACCUMULATIONS
COALBED METHANE (M)

The coal-bearing units within the Forest include the Upper Cretaceous Iles, Williams
Fork, Almond, and Lance Formations and the Paleocene Fort Union Formation. Coal beds
also occur in the Lower Cretaceous Dakota Sandstone and Upper Cretaceous Frontier
Formation; however the coal beds in these units are so lenticular and thin that they are not
considered to have any potential for economic methane production. In order of decreasing
coalbed methane potential, the coal-bearing units are Williams Fork, Almond, Iles, Lance, and
Fort Union. The factors considered in this ranking include number of coal beds, cumulative
thickness of coal beds, quality of coal, coal rank, and gas content. The principal studies of
coalbed methane resources in the region include those by Boreck and others (1981), McCord
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(1984), Tremain (1990), Kaiser and others (1993), and Kaiser (1993). Coalbed methane gas is
sweet (low in sulfur), and water may be fresh to brackish with moderate bicarbonate content.

Coal beds in these Cretaceous and Tertiary rocks were deposited in environments that
include fluvial, delta-plain, and back-barrier depositional systems. The thicker and more
continuous coal beds in northwest Colorado occur in intervals or zones 100 to 1,200 ft thick.
There are as many as 30 coal beds in any single coal zone but more commonly there are four
to eight coal beds greater than 2 ft thick. Individual coal beds are as much as 40 ft thick.

Based on analyses of coal beds from the Sand Wash Basin, the rank of coal beds in the
various zones ranges from sub-bituminous B to high volatile bituminous B (0.45-0.75 percent
Ro, reflectance in oil). The coal is composed of humic organic matter; vitrinite is the main
coal maceral. Cleat development is good and is considered normal for sub-bitumuinous and
bituminous coal. The gas content of the coal ranges from 100 to 541 standard cubic feet per
ton (scf/ton) and the gas typically has large amounts of methane with lesser amounts of ethane
and heavier hydrocarbons. In some areas of the Sand Wash Basin, coalbed gas contains
carbon dioxide in amounts as high as 25 percent.

In the absence of specific test data, it can be assumed that all coal beds in the National
Forest contain gas; however the presence of large amounts of water in coals commonly
precludes economic rates of gas production. In areas like the San Juan Basin of New Mexico
and Colorado, dewatering programs have been very successful and structural or stratigraphic
traps are not necessary for production. However, in other areas, where there are large
amounts of water associated with the coal that cannot be economically dewatered, structural
traps are necessary for economic rates of gas production (Rice and Law, 1993).

Although no coalbed methane wells have been drilled in the Forest, regional data from
coalbed methane tests in the Sand Wash Basin indicate the presence of good gas contents and
all of the wells have encountered large volumes of water. In the absence of any conflicting
data, the coalbed methane potential within the Forest is considered low to moderate because of
the probable presence of large volumes of water. It is unlikely that there will be any
discoveries larger than 6 BCF of gas (1 MMBOE). The area of the Elkhead Mountains has
moderate potential for coalbed methane resources, with certainty level C (Area M1, fig. 37).
A small area outlined by outcrop of the Mesa Verde in the northwestern part of the Flat Tops
has low resource potential for coalbed methane resources, with certainty level D (Area M2,
fig. 37). This rating is assigned because of very shallow depths and limited presence of coal-
bearing rocks.

BASIN-CENTERED GAS ACCUMULATIONS (N)

Gas in basin-centered accumulations (also referred to as "tight gas reservoirs”) in the
National Forest include the Lower Cretaceous Dakota Sandstone and Upper Cretaceous
Frontier Formation. For the most part, the potential for basin-centered gas accumulations in
the Forest is low because the source rocks associated with low-permeability reservoirs in these
units are immature to slightly mature. Studies of basin-centered gas accumulations in the
Greater Green River Basin of Wyoming, Colorado, and Utah by Law (1984) have indicated
that at present-day depths of at least 8,000 ft and at levels of thermal maturity of 0.8 percent
Ro, before there is a high probability of encountering basin-centered gas accumulations. For
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National Forest and Middle Park Ranger District of the Arapaho National Forest, Colorado.

126



detailed descriptions of basin-centered gas accumulations, see Law and Spencer (1993). The
western part of the Elkhead Mountains area has some tight reservoir potential and thus has low
potential for gas resources, with certainty level C (Area N1, fig. 38). It is unlikely that there
will be any discoveries within the Forest that will exceed 1 MMBOE. Cretaceous tight
reservoirs generally produce sweet gas and they generally do not produce significant amounts
of water.

OIL IN FRACTURED SHALES (O)

Fractured shales in the Upper Cretaceous Mancos Shale in northwest Colorado produce
oil. The shales (including siltstone, calcareous shale, and limestone) are both the source rock
and reservoir rock. Oil production may occur in areas where the shales are thermally mature
and fractures are present, such as in areas of maximum flexure along the crests of anticlines
and monoclines, or in highly faulted areas. Because the production is fracture-related, well
productivity is highly variable and unpredictable. The oil is low-sulfur and wells do not
produce water. The California Peak Field, located in the Elkhead Mountains area of the
Forest (fig. 35), is the only fractured shale field in the Forest. This field is very small and
produced about 1,748 BO and 471 MCFG through 1991 (Colorado Oil and Gas Commission,
1992). Examples of fields outside the Forest producing oil from fractured shales include Buck
Peak, Grassy Creek, Tow Creek, and Coalmont (fig. 35). The producing interval in these
fields may be as thick as 50 ft. The source rocks are marine shales that contain 1 to 4 percent
organic matter. The oil was probably generated in Oligocene time, during maximum burial.
The oil is trapped by less brittle, unfractured shale.

The presence of small, tightly folded anticlines and faults in the Elkhead Mountains and
Flat Tops areas of the Forest present favorable conditions for the existence of fractured shales.
Both of these areas have moderate resource potential for oil, with certainty level D (Area Ol
and 02, fig. 39). Favorable conditions may also exist for the Niobrara Shale in the area of the
Rabbit Ears Range and southward into Middle Park (Area O3, fig. 39); this area has low
resource potential for oil, with certainty level C. It is unlikely that any discoveries will exceed
1 MMBO, but future exploration may include the drilling of horizontal and inclined wells that
have a better ability to intersect open fractures. Only a few wells have been drilled in
northwest Colorado using these methods.
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GEOTHERMAL RESOURCES
By Sandra J. Soulliere

No known geothermal springs are within Routt National Forest. However, several
geothermal springs are near the Forest including those at Steamboat Springs along the Yampa
River; Brand's Ranch Artesian well west of Walden; and Routt Hot Springs eight miles north
of the town of Steamboat Springs. These thermal springs occur in an area of high regional
geothermal gradient, in faulted rocks ranging from Proterozoic to Tertiary in age. The
presence of hot springs is independent of rock type but is dependent on both structure and the
presence of hydrothermal systems. The areal extent of possible hot springs has been estimated
for the Steamboat Springs vicinity (Pearl, 1979) and may include land within the Forest.

The town of Steamboat Springs, just outside the Forest boundary, takes its name from
one of the several mineral hot springs within the town limits, along the Yampa River. The
temperatures of these springs ranges from a low of 68°F to a high of 102°F (Barrett and Pearl
, 1978). Heart Spring, located at the southeast end of town, is the only developed spring and
its waters are used in the community pool. Extrapolation from geologic mapping and
geophysical studies suggests that these springs are fault-controlled (Christopherson, 1979;
Pearl, 1979). Pearl and others (1983) estimated that the Steamboat Springs reservoir has an
areal extent of 0.52 mi’,

A group of thermal springs known as the Routt Hot Springs, or Strawberry Park
Springs, are located approximately eight miles north of Steamboat Springs. These springs are
used commercially for recreational bathing and are located on private land within the Forest.
Five springs in this area discharge water between 124° and 147°F, at rates of 2 to 50 gallons
per minute (Barrett and Pearl, 1978). The springs are fault- and fracture-controlled and may
be part of the Steamboat Springs geothermal system. Pearl and others (1983) estimated that
the Routt Hot Springs reservoir has an areal extent of 0.5 to 0.75 mi’.

Brand's Ranch artesian well, located just west of Walden, was originally an 800-ft
deep oil test hole. Two estimates of the reservoir's extent were made by Pearl (1979). One
estimate measured the extent to be limited to 0.36 mi’? around the well. The other estimate
extended the reservoir to include the projected faults south and approximately 1.3 mi north of
the well. This system encompasses an area of 1.5 mi’,

All of the geothermal springs in the vicinity of the Forest have been identified and their
extent estimated. Thorough investigations by the Colorado Geological Survey (Pearl and
Barrett, 1978; Pearl, 1979; Pearl and others, 1983) have not identified additional geothermal
resources near or within the Forest. Therefore, there is no potential for undiscovered
geothermal resources within the Forest, with certainty level C.

MINERAL RESOURCES—SALABLE MINERALS
By John S. Dersch, U.S. Forest Service
The Federal Minerals Act of 1947, as amended by the Multiple Surface Use Act of
1955, removed petrified wood, common varieties of sand and gravel, stone, pumice, volcanic
cinders (including scoria), and some clay from acquisition by either location or lease. These
minerals may be acquired from the U.S. Government only by purchase and are referred to as
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salable minerals. Several exceptions to the salable category are block pumice, perlite, and
forms of dimension stone such as travertine and high-quality marble. Determination that a
particular mineral is a salable mineral must be reviewed on case-by-case basis in light of past
legal decisions. Salable minerals generally have a low unit value (value per ton); their
exploitation is dependent on easy access to transportation, and generally they are used near the
production site.

Numerous crushed aggregate sites are within the Forest, some of which are currently
active. Needs are met by quarrying bedrock such as sandstone, volcanic rocks, granite, and
basalt. Dimension stone needs are met from moss or lichen covered granite and sandstones.

Sand and gravel resources are available from most major drainages, landslide deposits,
and glacial drift. Uses range from road fill, aggregate for concrete, macadam, mortar, and
other purposes. Schochow (1981) noted nine sand, sand and gravel, rubble, and borrow
material sites within the Forest.

The Forest is included in District 1, a Bureau of Mines designated area for the
northwestern counties of Colorado. The sand and gravel production in this area for 1992 was
560,000 short tons worth $19,600. The crushed aggregate production in 1991 was 43,000
short tons valued at $144,000.

MINERAL RESOURCE POTENTIAL—SALABLE MINERALS

The mineral resource potential is evaluated in this section. Income from the sale of
these minerals will vary according to accessibility, unit cost and value, and production.
Environmental factors have not been considered in this assessment.

CRUSHED AGGREGATE

Aggregate sources can be found in the Elkhead Mountains, the Park and Medicine Bow
Ranges, and the Flat Tops. The Elkhead Mountains consist of a sedimentary rock section
intruded by ubvolcanic Tertiary igneous rocks. The Park and Medicine Bow Ranges include a
granitic rock core intermixed with felsic and hornblendic gneisses. The Flat Tops are a
northerly dipping sedimentary package partially covered in the south by Tertiary Basalts.
Glacial drift can be found along the higher elevations in the Park Range.

Sandstone.—Sandstone occurs as distinct ridges and cap rock in Tertiary, Triassic, and
Cretaceous age rocks. The Browns Park Formation is a siltstone, claystone, and conglomerate
that is flat-lying to gently-dipping (< 10°). It is easily mined, crushed, and sorted by sizes.
Uses in the Forest are predominantly roadway construction, but also would include sand and
gravel for concrete work. The White River Formation is a tuffaceous siltstone and claystone
that is easily crushed and is used for sand and gravel needs or as binder in roadway
construction and general building needs. The Wasatch Formation is an arkosic sandstone,
mudstone, and conglomerate. These rocks are used for building roadway, and may satisfy
general building and concrete needs after crushing if sufficient fines are generated during
production. The Upper Triassic Chinle and Chugwater Formations are sandstones with
intermixed conglomerates, siltstones, mudstones, and shales. All are easily crushed providing a
wide range of sizes. Production would exclude the mudstone and shale units. Uses include
road building and concrete.

Volcanic rocks.—Numerous volcanic necks can be found on the northeast corner of the
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Flat Tops. Numerous Tertiary dikes or sills in the Elkhead Mountains east of Bears Ears
Mountain. They can both be crushed and used for base materials, particularly roadways and
railroad ballast. The necks, dikes, and sills are found as topographically resistant features that
can be removed to the ground surface with little visual impact.

Granite.—The Proterozoic granites within the Park Range are crushed for varied sized
aggregates used in roadway construction, rip rap, and railroad ballast. Sufficient fines are
usually produced as binder if needed. Local rock glaciers and talus slopes are a source of
material for crushing.

Scoria.—Tertiary basalt flows are found capping sedimentary units on the northeast
corner of the Flat Tops. The volume of material is probably limited. These flows can be used
for lightweight aggregate and concrete needs.

Landslide material. —These materials, usually consisting of sedimentary rocks, are
found at the northern end of the Flat tops. They can be crushed for general aggregate needs
such as roadway building, railroad ballast, rip rap, and fill.

Glacial drift.—The Quaternary glacial drift is found in the Park Range and requires
screening only to remove large-sized fragments. The large granitic sizes are easily crushed to
usable sizes. Reserves are local and limited. Uses would include roadway building, railroad
ballast, riprap, and fill.

DIMENSION STONE

Some dimension or decorative stone work occurs locally through free use and mineral
sale contracts. Moss or lichen-covered granite is used specifically for interior or exterior
facing in homes or buildings. In addition to the organic veneer, the color, texture, shape, and
crystal size of the granite are important. Hard, resistant sandstone can be cut and trimmed for
building facing if the bedding, texture, and colors are pleasing. Most use is local and involves
small quantities. Granitic rocks are found in the Park Range, and sandstones can be found in
either the Elkhead Mountains or the Flat Tops.

SAND AND GRAVEL
Sand and gravel deposits can be found along the Elk and Colorado Rivers and their
major tributaries within the Forest. The deposits must be screened and tested for specific uses.
Uses include concrete work and products, fill material, plastering sands, and snow and ice
control.
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PROBABILISTIC ASSESSMENT OF UNDISCOVERED METALLIC ENDOWMENT
USING GRADE-TONNAGE MODELS
By Theresa M. Cookro

INTRODUCTION

Subjective probabilistic estimates of undiscovered deposits and metal endowment are
provided by the U.S. Geological Survey for undiscovered mineral deposits and the metal
endowment within the Routt National Forest and the Middle Park Ranger District of the Arapaho
National Forest. The estimates are used to present geologic information in language that can be
used by economists and in land-use planning. The information is essential to governmental
agencies concerned with the future of federal lands. The probabilistic estimate involve three parts:
delineation of areas that are favorable for the types of mineral resources indicated by the
geological, geophysical and geochemical information; subjective estimation of the size and number
of undiscovered deposits which is indicated by historical occurrence and production data and a
comparison with grade and tonnage distribution curves of the mineral deposit models; and Mark3
computer program estimation of metal endowment based on grade and tonnage distributions from
the known deposits (Singer 1993, Singer and Cox, 1987; Singer and Ovenshine, 1979; and Mensie
and Singer, 1990; Root and others, 1992).

Before the assessment could be undertaken a comprehensive inventory of data from the
Forest was compiled. The data included the nature of the existing deposits, their locations, and
any available production records (Neubert, 1995). The inventory is used to determine if there is
sufficient data to identify the types of mineral deposits that occur within the Forest and to
determine whether undiscovered resources could be estimated. The data are combined with
geologic maps and geochemical and geophysical information to accurately delineate areas within
the Forest that are favorable for the occurrence of undiscovered resources.

Although several types of deposits were identified in the Forest, three grade and tonnage
models were used for the prediction of undiscovered deposits: Sierran Kuroko, porphyry copper,
and placer gold (Cox and Singer, 1986 and Singer, 1992). Estimations for other deposit types
were not possible because of insufficient data or the lack of a mineral deposit model in the
computer program. The resulting estimates of metal endowment are a useful tool but not a precise
measurements and should not be considered exact. The compilation of production data for
individual deposits in the study area, and for the deposits used in the grade tonnage curves is
quantitative. Some of the resource estimation methods are subjective and verification of the
results is impossible until the area, in years to come, is thoroughly explored.

Definitions of terms is presented in Appendix 4 and units of measurement are in Appendix
5.

ASSESSMENT METHOD
DELINEATION OF PERMISSIVE AREAS

An assessment team consisting of the geologists, geochemists, and geophysicists for the
project (S.J. Soulliere, M.I. Toth, V.Bankey, S.M. Smith, J.A. Pitkin and T.M. Cookro) was
assembled for the three-part assessment process. Compiling geological, geochemical, geophysical
and mineral resource data for the Forest was the first step in the assessment process. Deposit
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types that had characteristics that matched the characteristics defined by individual deposits models
were used to determine the probable mineral endowment. Areas were delineated within the Forest
as having high or moderate potential for undiscovered mineral resources. These areas predictably
may contain a deposit of the type being evaluated. The areas of moderate to high potential
correspond to areas where a number of characteristics, geologic, geophysical, geochemical, and
structural elements overlap. Areas of mineral potential were considered to extend to a reasonable
depth depending on the type of deposit and therefore do not always follow the map units.

GRADE TONNAGE MODELS AND ESTIMATION OF UNDISCOVERED DEPOSITS

Mineral deposit models and grade and tonnage curves comprise information from mineral
deposits throughout the world that have the specific characteristics found in the definition of each
model. Because the models have ore distributions (tonnage and grade) from many deposits of
a specific type, they can be applied locally to predict grades and tonnages of undiscovered
deposits. Some deposit types cannot be used because not enough background data is available to
use the models. The MARK 3 computer program can be used to determine undiscovered mineral
endowment, if the deposit model's grade and tonnage frequency distribution is similar to the
distribution of the estimated undiscovered ore deposits in the study area (Orris and Bliss, 1991;
Bliss, 1992; Singer, 1992; Mensie and Singer, 1990; and Singer and Cox, 1987; Singer and
Mosier, 1986; Cox and Singer, 1986; Bliss, 1992; Orris and Bliss, 1991). A test for the
applicability of the method is whether eighty percent of the expected number of deposits in the
Forest lie between the ninetieth and tenth percentile of the grade and tonnage curves. If not, the
estimates cannot be made and the mineral resource potential cannot be reported in terms of
endowment.

After the scientific team delineated areas favorable for the occurrence of mineral deposits,
the team's expert judgment was then used to subjectively estimate the number of undiscovered
deposits. Economics is not a factor in this determination. The members of the team who
estimated the highest or lowest number of unknown deposits were asked to explain their rationale
for estimation and a consensus was attained.

The number of undiscovered deposits was estimated at the following levels of probability:
90th, 50th, 10th, Sth, and 1st percentile. A 90th percentile would correspond to 90 percent
probability that one or more deposit are present. The least speculative of the five levels of
confidence is the 90th percentile. The number of deposits estimated for the 90th percentile is
influenced by the number of known deposits of a particular type in the Forest and the extent of
past exploration for those known deposits (Singer and Ovenshine, 1979).

A number of factors can be used for the estimates including the presence and amount of
unconsolidated surficial deposits, areas that have a greater number of geologic conditions
(surficial, or at depth) typical of a particular deposit type, the number of genetically related known
deposits in the area, geochemical anomalies, and the presence of favorable alteration zones. The
lower the percentile estimate the more speculative the data. Half of the estimated number of
deposits at each confidence level (90%, 50%, 10%, 5%, 1%) is expected to be larger than the
median tonnage for the specific grade and tonnage model (Cox and Singer, 1986; Singer, 1993).
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MARK3 COMPUTER PROGRAM

The estimated number of undiscovered deposits for each probability (90%, 50%, 10%,
5%, and 1%) are entered into a Monte Carlo computer simulator (MARK3) computer program.
The MARK 3 program randomly selects values from grade and tonnage frequency distributions
(created from a data base of known deposits in each model) to produce a probability distribution
(or probability curve) of the metal tonnages for the expected deposits (Drew and others, 1986;
Root and Scott, 1988; Root and others, 1992). The MARKS selects metal tonnages that would
likely be present together in the undiscovered deposits. The selection process consists of 4,999
iterations using a random number generator and the results are sorted to permit reporting of ore
and metal tonnages at the percentiles that were originally estimated (90, 50, 10, §, and 1).

MARK3 assumes the grades and tonnage distributions are representative of all deposits
with similar geologic, geophysical and geochemical attributes. Grade and tonnage variables are
made dependen: by treating them as individually normal or jointly bivariate normal (Root and
Scott, 1988), even though they are actually independent in nature and not normal. The
independent data cannot be used to predict grades and tonnages of deposits with similar attributes.
In order to make predictions the data is artificially made dependent by treating the median and
mean of the sampling distribution as equal to the median and mean of the grade and tonnage
values. The mean and the product of the grade and tonnage values is then set equal to the mean
of the metal content. Thus the two variables, grade and tonnage, are essentially brought into a
cumulative distribution function that is jointly bivariate (Drew and others, 1986; Root and Scott,
1988; and Root and others, 1992).

CALCULATION OF THE MEAN AND THE MEDIAN

The mean and median are both measures of central tendency. The mean is the arithmetic
average of the total estimated tonnage divided by the 4,999 tonnage estimations that were
performed. The median is the midpoint of the tonnage distribution. The mean is useful because
it is additive, so the mean amount of gold for all the expected deposits is the sum of gold means
from all of the models (Sierran Kuroko, copper porphyry, and placer gold). The median is not
additive but useful because it reflects the shape of the curve of tonnage frequency distributions,
or the ranking in a particular set of 4,999 iterations. The mean is strongly influenced by a few
large deposits (for example: a world class deposit) that are in the data sets, whereas the median
values are not. The median is a more conservative estimation of undiscovered resources. In our
estimations, the mean is a larger number than the median because grade and tonnage frequency
distributions are asymmetric, with a tail towards larger values A reason for this asymmetry is
the lowest values (grades and tonnages for mineral occurrences) in the frequency distribution are
not included because they are small and do not merit extensive exploration. Deposit models
realistically cannot contain all mineral occurrence data, because of their subeconomic nature.
This grade and tonnage data is rarely recorded in the literature but it would fall on the lower part
of the tonnage frequency distribution curves. Because of the lack of data each deposit model has
a specified minimum cutoff ore grade and minimum deposit size. Hence the mean is a higher
value and the difference in the mean and median are a measure of the skewness of the curve. It
is therefore important to pay attention to both mean and median because together they help to
understand the projected metal endowment.
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RESULTS

Although several types of deposits were identified in the Forest it was determined that
three deposit types are sufficiently understood to compare them with available deposit models, and
estimate undiscovered metallic resources. These models are: Sierran Kuroko (massive sulfide)
in Singer (1992); porphyry copper in Singer and others (1986); and placer gold in Orris and Bliss
(1986). The remaining deposit types in the Forest lack pertinent data for quantitative assessment.
The expected amount of contained metal for each metallic commodity associated with the deposit
type and the total metric tons of ore are reported in terms of five probability levels (30%, 50%,
10%, 5%, 1%). The 90th percentile means there is a 90 percent chance that undiscovered
deposits will contain at least the reported metric tons of metal and total ore. In order to determine
the value of mineable undiscovered resources the results must be subject to an economic analysis.

MASSIVE SULFIDE OR SIERRAN KUROKO DEPOSITS

The Sierran Kuroko grade and tonnage curves (Singer, 1992, p. 30-32) were modified for
this analysis; by using the lower half of the curve for the MARK3 simulation because the expected
range of grades and tonnages of the undiscovered deposits were comparable to only those grades
and tonnages on the lower half of the curve. Eighty percent of the expected number of deposits
in the Forest were considered be less than 310,000 metric tons, 1.4 percent copper, 1.3 grams per
metric ton gold and 32 grams per metric ton silver. This is below the midpoint of the curve so
it is more appropriate to use the lower half of the curve. The assessment team estimated that there
is a 90 percent chance of no undiscovered deposits; a SO percent chance of no undiscovered
deposits, a 10 percent chance for one deposit, a five percent chance for one deposit, and a 1
percent chance that there are two deposits. These estimates imply a mean of 0.33 undiscovered
deposits. The resulting assessment (table 10a and b) indicates that there is a 10 percent chance
that there is 190,000 total metric tons of undiscovered Sierran Kuroko (massive sulfide) ore in
the Forest. From this there could be a production of 4,200 metric tons copper, 6,600 metric tons
zinc, 0.14 metric tons of gold, and 8.9 metric tons silver. A five percent chance exists for
250,000 total metric tons of undiscovered ore containing 6,100 metric tons of copper, 13,000
metric tons of zinc, 870 metric tons of lead, 0.33 metric tons of gold, and 21 metric tons of silver.
And finally, a one percent chance exists for 360,000 total metric tons of undiscovered ore that
would produce 10,000 metric tons of copper, 27,000 metric tons of zinc, 5,000 metric tons of
lead, 0.92 metric tons of gold, and 46 metric tons of silver. The median of the total estimated ore
and metal content is zero, and the mean is 48,000 metric tons of ore containing, in metric tons:
3,200 copper, 1,900 zinc), 180 lead, 0.05 gold, 2.9 silver. The results of the MARK3 simulation
are reported to two significant figures.

PORPHYRY COPPER DEPOSITS
The porphyry copper grade and tonnage curves (Singer and others, 1986, p. 80-81) were
modified for this analysis, only the lower half of the curves were used for the MARK3 simulation.
Like the Sierran Kuroko model, it was also more appropriate to use the lower half of the curve
for the MARK 3 simulation because eighty percent of the expected number of deposits in the
Forest were below the midpoint of the curve, or less than 140 million metric tons that contain 56
percent copper. The assessment team estimated a 90 percent chance that there are not any
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Table 10a. Mean number of deposits and probability of zero deposits for quantitative estimates.

Sierran Kuroko Porphyry Copper Placer Gold

Expected mean number of deposits 0.33 0.33 0.6
Probability of zero deposits 70% 70% 70%

137



Table 10b. Quantitative estimates of undiscovered resources of Sierran Kuroko, porphyry copper,
and placer gold deposits in the Routt National Forest and and Middle Park Ranger District of the

Arapaho National Forest and vicinity, Colorado.

[Values in metric tonnes. Percentages in column headings refer to confidence levels for estimates of

undiscovered deposits occuring in the Forest]

Metal 90% 50% 10% 5% 1% mean
median
Sierran Kuroko (Massive Sulfide)

Number of deposits 0 0 1 1 2

Total Metric Tons 0 0 190,000 250,000 360,000 48,000

Contained metal for:
Copper 0 0 4,200 6,100 10,000 3,200
Zinc 0 0 6,600 13,000 27,000 1,900
Lead 0 0 0 870 5,000 180
Gold 0 0 0.14 0.33 0.92 0.05
Silver 0 0 8.9 21 46 2.9

Porphyry Copper

Number of deposits 0 1 1 2

Total metric tons 0 79,000,000 110,000,000 180,000,000 20,000,000

Contained metal for:
Copper 0 0 380,000 590,000 1,400,000 109,000
Molybdenum 0 0 2,000 8,900 35,000 1,600
Gold 0 0 3.2 19 57 2.6
Silver 0 0 0 120 410 17

Placer Gold

Number of deposits 0 0 1 1 1

Total metric tons 0 0 7,600,000 21,000,000 97,000,000 3,900,000

Contained metal for:
Gold 0 0 1.0 31 13.0 0.6
Silver 0 0 0 .009 .59 0.003
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porphyry copper deposits, a 50 percent chance that there are not any deposits, a 10 percent chance
for one deposit, a five percent chance for one deposit, and a one percent chance of 2 deposits.
These estimates imply a mean of 0.33 undiscovered deposits. The results of the simulation
suggest (table 10a and b) that there is a 10 percent chance that 79,000,000 total metric tons of ore
occurs within the Forest, from which here could be a production of 380,000 metric tons copper,
2000 metric tons molybdenum, and 3.2 metric tons of gold. A five percent chance exists for
110,000,000 total metric tons of undiscovered ore containing 590,000 metric tons of copper,
8,900 metric tons of molybdenum, 19 metric tons of gold, and 120 metric tons of silver. And
finally, a one percent chance exists for 180,000,000 total metric tons of undiscovered ore that
could contain 1,400,000 metric tons of copper, 35,000 metric tons of molybdenum, 57 metric tons
of gold, and 410 metric tons of silver. The median of the estimated total ore and metal content
is zero, and the mean is 20,000,000 metric tons of ore for various elements and the total metric
tons with the following metal content in metric tons: 109,000 copper, 1,600 molybdenum, 2.6
gold, 17 silver. The results of the MARKS3 simulation are reported to two significant figures.

PLACER GOLD DEPOSITS

The placer gold grade and tonnage curves (Yeend, 1986 and Orris and Bliss, 1986, p. 263-264)
were modified for this analysis, only the lower half of the curves were used for the MARK3
simulation because the expected deposits were considered small enough that eighty percent of the
expected number of deposits in the Forest were below the midpoint of the curve, or less than 1.1
million tons of ore containing 0.2 grams per metric ton gold. The assessment team estimated a
90 percent chance for no undiscovered placer gold deposits, a 50 percent chance for no deposits,
a 10 percent chance for one deposit, a five percent chance for one deposit, and a one percent
chance for one deposit. These estimates imply a mean of 0.6 undiscovered deposits. Silver is
reported even though silver was not historically produced from placers because it is present in
some of the placers and it is a resource that might some day be produced. The results of the
simulation (table 10 a and b) suggests that there is a 10 percent chance that the Forest may have
7,600,000 total metric tons of ore containing one metric ton gold and no silver. A five percent
chance exists for 21,000,000 total metric tons of undiscovered ore containing 3.1 metric tons of
gold, and 0.009 metric tons of silver. And finally, a one percent chance exists for 97,000,000
total metric tons of undiscovered ore containing 13 metric tons of gold and 0.59 metric tons of
silver. The median of the total estimated placer ore and contained metals is zero, and the mean
is 3,900,000 metric tons of ore containing in metric tons 0.6 gold, and 0.003 silver. The results
of the MARK3 simulation are reported to two significant figures.

SUMMARY OF ENVIRONMENTAL STUDIES
By Margo 1. Toth, Sandra J. Soulliere, and Steven M. Smith

MINES AND MINERALIZED AREAS
Metals in mineral deposits or mineralized areas are commonly contained in sulfide complexes.
When oxygen-rich waters react with these sulfide minerals, they often result in highly acidic
waters that contain potentially toxic elements such as zinc, copper, cadmium, and arsenic (Plumlee
and others, 1993). The presence of carbonate minerals such as calcite can help reduce the acidity
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and concentrtions of some but not all of these metals. Naturally occurring sulfide-rich rocks,
underground and open-pit mine workings, and mine waste dumps and tailings can be major
sources for acid waters and metals in the environment. The acid waters and toxic metals can
adversely affect water quality, aquatic life, wildlife, and agriculture.

Plumlee and others (1993) have shown that different mineral deposit types have characteristic
environmental signatures that are a function of geology, geochemical processes, climate, and
mining method. The geology or mineral content of a deposit and the geochemical processes that
affect the minerals control the acidity and amount of dissolved metals in water draining
mineralized areas. The local climate and mining methods used affect the rate of acid generation
and the extent of dispersion of potentially toxic metal elements. Environmental-geology models,
based upon these factors, can be used to predict the likely pre-mining and post-mining
environmental signatures associated with a deposit (Plumlee and others, 1993). Such an appraisal
can help identify and prioritize the study of existing hazardous mine sites and help predict and plan
for the environmental effects of any possible future development.

The major mines and mineralized areas within the Forest are shown in figure 5. Based on
geologic and geochemical considerations, only the following mining districts have any significant
likelihood of producing high-acid or high-metal waters: Hahns Peak, Pearl district, Greenville
mine, Teller district, La Plata-Dailey districts, and Poison Ridge. None of these areas are
currently known to produce high metal or high acid waters but only one of these areas, the
Greenville mine, was investigated during this study. Studies of waters draining some of the
tailings at the Greenvile mine showed near-neutral waters and low conductivity, indicating low
dissolved solids. All of these areas share some or all of the following criteria: extensive
alteration, high pyrite content, significant metal concentration, and lack of a carbonate buffer.
Additionally, red iron oxide precipitates have been reported in streams draining Poison Ridge
(Kinney and others, 1968) and the La Plata-Dailey mining districts (R.G. Eppinger, eprsonal
commun., 1994). These precipitates are commonly, but not exclusively, found in streams affected
by acid draingae from mineralized areas. Further study may be warranted in these areas.

The Colorado Water Quality Control Division (1989) has identified several tributaries of the
Yampa River that contain metal concentrations in water that exceed agricultural, water supply,
or aquatic life standards. The headwaters of two of these tributaries are in the Forest. Elk River,
from the South Fork to the Yampa River, has lead concentrations in water that exceed basic
standards for aquatic life. The source of this lead was attributed to subsurface mining although
no specific mines or districts were specified as the source. Trout Creek originates on the northeast
side of Pyramid Peak, and contains cadmium, copper, and mercury above basic aquatic life
standards from the Rio Blanco County line to Foidel Creek; below Foidel Creek to the Yampa
River concentrations of copper, iron, mercury, and zinc exceed basic standards for aquatic life and
manganese exceeds the water supply standard. The source of these metals appears to be coal
mines just outside the Forest boundary.

WATER QUALITY AND ATMOSPHERIC STUDIES
Work by John Turk of the U. S. Geological Survey (Turk and others, 1992; 1993; Turk and
Campbell, 1987) has shown a high acidity in snow in the north-central part of the Forest in the
Mt. Zirkel Wildemess. The effects of the increased acidity during spring thaw have not yet been
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investigated. Although the cause has not been identified, the increase may be an effect of coal-
fired power plants to the west of the mountain range in Craig and Hayden. The U.S. Forest
Service and U.S. Geological Survey have undertaken a study of lichens and mosses to determine
wheter the coal plants are the sources of pollutants and associated decreasing visibility within the
range (Rocky Mountain News, 9/1/94; 9/6/94; Larry Jackson, spoken commun., 1994). Results
from these studies are not yet available.
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APPENDIX 1: GEOLOGIC TIME CHART
Terms and boundary ages used by the U.S. Geological Survey in this report

AGE ESTIMATES
EON ERA PERIOD EPOCH OF BOUNDARIES
(Ma )
Holocene
Quaternary 0.010
Pleistocene 7
Neogene Pliocene 5'
Cenozoic Subperiod Miocene
Tertiary 24
Oligocene
Paleogene 38
Subperiod Eocene 55
Paleocene
66
Late
Cretaceous Eurty 26
a
138
Late
Mesozoic Jurassic Middle
Early
205
Late
Triassic Middle
Early
Phanerozoic ~240
Late
Permian Early
a
200
Late
Penngylvanian Middle
Carboniferous Early
Paleozoic Periods ~330
Mississippi Late
ississippian
Eal
ikl 3680
Late
Devonian Middle
Eal
Yy 410
Late
Silurian Middle
Early
435
Late
Ordovician Middle
Early
500
Late
Cambrian Middie
Early
~570t
Late Proterozoic
900
Proterozoic Middle Proterozoic
1,600
Early Proterozoic
2,500
Late Archean
3,000
Archean Middie Archean
3,400
Early Archean
—————————————————— 38007 — — }— — — — — =~
pre-Archean't
4,550

*Millions of years prior to A.D. 1950.
Rocks older than S70 m.y. also called Precambrian, a time term without specific rank. 1 5 9
Hinformal time term without specific rank.



APPENDIX 2: DEFINITIONS OF LEVELS OF MINERAL RESOURCE POTENTIAL AND

CERTAINTY OF ASSESSMENT

DEFINITIONS OF MINERAL RESOURCE
POTENTIAL

LOW mineral resource potential is assigned to areas where
geologic, geochemical, and geophysical characteristics
define a geologic environment in which the existence of
resources is unlikely. This broad category embraces
areas with dispersed but insignificantly mineralized
rock as well as areas with few or no indications of hav-
ing been mineralized.

MODERATE mineral resource potential is assigned to areas
where geologic, geochemical, and geophysical charac-
teristics indicate a geologic environment favorable for
resource occurrence, where interpretations of data indi-
cate a reasonable likelihood of resource accumulation,
and (or) where an application of mineral-deposit mod-
els indicates favorable ground for the specified type(s)
of deposits.

HIGH mineral resource potential is assigned to areas where
geologic, geochemical, and geophysical characteristics
indicate a geologic environment favorable for resource
occurrence, where interpretations of data indicate a
high degree of likelihood for resource accumulation,
where data support mineral-deposit models indicating
presence of resources, and where evidence indicates
that mineral concentration has taken place. Assignment
of high resource potential to an area requires some

positive knowledge that mineral-forming processes
have been active in at least part of the area.
UNKNOWN mineral resource potential is assigned to areas
where information is inadequate to assign low, moder-
ate, or high levels of resource potential.
NO mineral resource potential is a category reserved for a
specific type of resource in a well-defined area.

A. Available information is not adequate for determination
of the level of mineral resource potential.

B. Available information suggests the level of mineral
resource potential.

C. Available information gives a good indication of the
level of mineral resource potential.

D. Auvailable information clearly defines the level of min-
eral resource potential.

Abstracted with minor modifications from:

Goudarzi, G.H., compiler, 1984, Guide to preparation of mineral survey re-
ports on public lands: U.S. Geological Survey Open-File Report
84-787,p. 7-8.

Taylor, R.B., and Steven, T.A., 1983, Definition of mineral resource poten-
tial: Economic Geology, v. 78, no. 6, p. 1268-1270.

Taylor, R.B., Stoneman, R.J., and Marsh, S.P., 1984, An assessment of the
mineral resource potential of the San Isabel National Forest, south-cen-
tral Colorado, with a section on Salable minerals, by J.S. Dersch: U.S.
Geological Survey Bulletin 1638, p. 40—42.

Levels of Certainty
U/A H/B H/C H/D
High potential High potential High potential
m/8 m/C M/D
K Moderate potential Moderate potential Moderate potential
o
c
% Unknown
Q potential L/8 L/C L/D
©
=4 Low potential
3
Q Low Low
g
5 potential potential N/D
< N ial
g o potentia
]
=
A B C D

Level of Certainty

-
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APPENDIX 3: COAL RESOURCE CLASSIFICATION

RESOURCES OF COAL
AREA: (MINE,DISTRICT FIELD.STATE, ETC.) UNITS: (SHORT TONS)

IDENTIFIED RESOURCES UNDISCOVERED RESOURCES
S aTon PROBABILITY RANGE -
DEMONSTRATED m
PRODUCTION INFERRED or}
MEASURED | INDICATED HYPOTHETICAL | SPECULATIVE
caves INFERRED
R v
ECONOMIC ES RESERVES
[ [ + _
WARGINALLY INFERRED
L
MARGINAL RESERVES MARGINAL
ECONOMIC AESERVES
SUBECONOMIC INFERRED
SUBECONOMIC RESOURGES SUBECONOMIC
RESOURCES
T T
OTHER INCLUDES NONCONVENTIONAL MATERIALS
OCCURRENCES h |

BY:(AUTHOR) DATE:

A PORTION OF RESERVES OR ANY RESOURCE CATEGORY MAY BE RESTRICTED FROM EXTRACTION BY LAWS OR REGULATIONS.

FIGURE 1.—Format and classification of coal resources by reserves and subeconomic resources categories.

RESOURCES OF COAL
AREA: (MINE,DISTRICT.FIELD,STATE, ETC.) UNITS: (SHORT TONS)

IDENTIFIED RESOURCES UNDISCOVERED RESOURCES
CUMULATIVE

PRODUCTION DEMONSTRATED

INFERRED PROBABILITY RANGE
HYPOTHETICAL |

MEASURED] INDICATED SPECULATIVE

ECONOMIC < g
e"% e'(v
<
————— — A
S S S
= + =
MARGINALLY a© &
ECONOMIC &8 °
< "2
B\ &
&
e e e S - o
& - .'._ -
SUBECONOMIC INFERRED
SUBECOMOMIC RESOURCES| SUBECONOMIC
RESOURCES
OTHER ] o) !
OCCURRENCES INCLUDES NONCONVENTIONAI MATERIALS
BY:(AUTHOR)

DATE:
A PORTION OF RESERVES OR ANY RESOURE CATEGORY MAY BE RESTRICTED FROM EXTRACTION BY LAWS OR REGULATIONS.

FIGURE 2.—Format and classification of coal resources by reserve and inferred reserve bases and subeconomic and inferred sub-
economic resources categories
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APPENDIX 4: DEFINITION OF TERMS

Reserves: Eonomically recoverable mineral-bearing material in identified deposits (Brobst,
and Pratt, 1973). ,

Resources: Mineral-bearing material not yet discovered, or discovered material that currently
cannot be recovered (Brobst, and Pratt, 1973).

Identified resources: Specific bodies of mineral-bearing material whose location, quality,
and quantity are known from geologic evidence (Brobst, and Pratt, 1973). These resources
are not particularly evaluated as to feasibility of mining and can be economic, marginal or
subeconomic.

Undiscovered resources: Unspecified bodies of mineral-bearing material surmised to exist
on the basis of broad geologic knowledge and theory (Brobst and Pratt, 1973). These bodies
can occur in known mining districts or in geologic terranes that presently have no discoveries.
These resources are also not evaluated as to feasibility of mining and can be economic,
marginal or subeconomic.

Mineral deposit: an occurrence of sufficient size and grade that under the most favorable
circumstances could be considered to have economic potential (Cox and others, 1986).
Mineral occurrence: a concentration of a mineral that is considered valuable by someone
somewhere or that is of scientific or technical interest (Cox and others, 1986).

Ore deposit: a mineral deposit that has been tested and is known to be of sufficient size,
grade and accessibility to be producible and yield a profit (Cox and others, 1986).
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APPENDIX §: UNITS OF MEASUREMENT

The grade and tonnage curves used in this study contain grades either as grams or percent
per metric ton. Thus the estimated amounts of metallic resources within an undiscovered deposit
are reported in metric tons of metal. Other units of measurement are noted as they are reported.
Conversion factors useful for reading this report include the following:

1 troy ounce 31.1 grams

1 short ton 0.9072 metric ton (tonne)
1 troy ounce per short ton 34.285 parts per million
1 part per million (ppm) 1 gram per metric ton

1 percent (%) 10,000 ppm

1 metric ton 32,154 troy ounces
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