

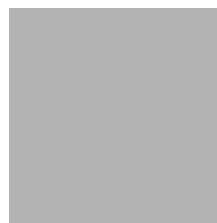

LEVEL II SCOUR ANALYSIS FOR  
BRIDGE 24 (MANCUS00070024) on  
U.S. ROUTE 7, crossing  
LYE BROOK,  
MANCHESTER, VERMONT

---

U.S. Geological Survey  
Open-File Report 97-390

Prepared in cooperation with  
VERMONT AGENCY OF TRANSPORTATION  
and  
FEDERAL HIGHWAY ADMINISTRATION




LEVEL II SCOUR ANALYSIS FOR  
BRIDGE 24 (MANCUS00070024) on  
U.S. ROUTE 7, crossing  
LYE BROOK,  
MANCHESTER, VERMONT

By SCOTT A. OLSON

---

U.S. Geological Survey  
Open-File Report 97-390

Prepared in cooperation with  
VERMONT AGENCY OF TRANSPORTATION  
and  
FEDERAL HIGHWAY ADMINISTRATION



Pembroke, New Hampshire

1997

U.S. DEPARTMENT OF THE INTERIOR  
BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY  
Gordon P. Eaton, Director

---

For additional information  
write to:

District Chief  
U.S. Geological Survey  
361 Commerce Way  
Pembroke, NH 03275-3718

Copies of this report may be  
purchased from:

U.S. Geological Survey  
Branch of Information Services  
Open-File Reports Unit  
Box 25286  
Denver, CO 80225-0286

# CONTENTS

|                                                                       |    |
|-----------------------------------------------------------------------|----|
| Introduction and Summary of Results .....                             | 1  |
| Level II summary .....                                                | 7  |
| Description of Bridge .....                                           | 7  |
| Description of the Geomorphic Setting .....                           | 8  |
| Description of the Channel .....                                      | 8  |
| Hydrology .....                                                       | 9  |
| Calculated Discharges .....                                           | 9  |
| Description of the Water-Surface Profile Model (WSPRO) Analysis ..... | 10 |
| Cross-Sections Used in WSPRO Analysis .....                           | 10 |
| Data and Assumptions Used in WSPRO Model .....                        | 11 |
| Bridge Hydraulics Summary .....                                       | 12 |
| Scour Analysis Summary .....                                          | 13 |
| Special Conditions or Assumptions Made in Scour Analysis .....        | 13 |
| Scour Results .....                                                   | 14 |
| Riprap Sizing .....                                                   | 14 |
| References .....                                                      | 18 |
| Appendices:                                                           |    |
| A. WSPRO input file .....                                             | 19 |
| B. WSPRO output file .....                                            | 22 |
| C. Bed-material particle-size distribution .....                      | 30 |
| D. Historical data form .....                                         | 32 |
| E. Level I data form .....                                            | 38 |
| F. Scour computations .....                                           | 48 |

## FIGURES

|                                                                                                                                                                 |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1. Map showing location of study area on USGS 1:24,000 scale map .....                                                                                          | 3  |
| 2. Map showing location of study area on Vermont Agency of Transportation town<br>highway map .....                                                             | 4  |
| 3. Structure MANCUS00070024 viewed from upstream (August 6, 1996) .....                                                                                         | 5  |
| 4. Downstream channel viewed from structure MANCUS00070024 (August 6, 1996) .....                                                                               | 5  |
| 5. Upstream channel viewed from structure MANCUS00070024 (August 6, 1996) .....                                                                                 | 6  |
| 6. Structure MANCUS00070024 viewed from downstream (August 6, 1996) .....                                                                                       | 6  |
| 7. Water-surface profiles for the 100- and 500-year discharges at structure<br>MANCUS00070024 on U.S. Route 7, crossing Lye Brook,<br>Manchester, Vermont ..... | 15 |
| 8. Scour elevations for the 100- and 500-year discharges at structure<br>MANCUS00070024 on U.S. Route 7, crossing Lye Brook,<br>Manchester, Vermont .....       | 16 |

## TABLES

|                                                                                                                                                                          |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1. Remaining footing/pile depth at abutments for the 100-year discharge at structure<br>MANCUS00070024 on U.S. Route 7, crossing Lye Brook,<br>Manchester, Vermont ..... | 17 |
| 2. Remaining footing/pile depth at abutments for the 500-year discharge at structure<br>MANCUS00070024 on U.S. Route 7, crossing Lye Brook,<br>Manchester, Vermont ..... | 17 |

## CONVERSION FACTORS, ABBREVIATIONS, AND VERTICAL DATUM

| Multiply                                                                         | By      | To obtain                                                                          |
|----------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------|
| <b>Length</b>                                                                    |         |                                                                                    |
| inch (in.)                                                                       | 25.4    | millimeter (mm)                                                                    |
| foot (ft)                                                                        | 0.3048  | meter (m)                                                                          |
| mile (mi)                                                                        | 1.609   | kilometer (km)                                                                     |
| <b>Slope</b>                                                                     |         |                                                                                    |
| foot per mile (ft/mi)                                                            | 0.1894  | meter per kilometer (m/km)                                                         |
| <b>Area</b>                                                                      |         |                                                                                    |
| square mile (mi <sup>2</sup> )                                                   | 2.590   | square kilometer (km <sup>2</sup> )                                                |
| <b>Volume</b>                                                                    |         |                                                                                    |
| cubic foot (ft <sup>3</sup> )                                                    | 0.02832 | cubic meter (m <sup>3</sup> )                                                      |
| <b>Velocity and Flow</b>                                                         |         |                                                                                    |
| foot per second (ft/s)                                                           | 0.3048  | meter per second (m/s)                                                             |
| cubic foot per second (ft <sup>3</sup> /s)                                       | 0.02832 | cubic meter per second (m <sup>3</sup> /s)                                         |
| cubic foot per second per square mile<br>[(ft <sup>3</sup> /s)/mi <sup>2</sup> ] | 0.01093 | cubic meter per second per square kilometer [(m <sup>3</sup> /s)/km <sup>2</sup> ] |

## OTHER ABBREVIATIONS

|                 |                                 |       |                                  |
|-----------------|---------------------------------|-------|----------------------------------|
| BF              | bank full                       | LWW   | left wingwall                    |
| cfs             | cubic feet per second           | MC    | main channel                     |
| D <sub>50</sub> | median diameter of bed material | RAB   | right abutment                   |
| DS              | downstream                      | RABUT | face of right abutment           |
| elev.           | elevation                       | RB    | right bank                       |
| f/p             | flood plain                     | ROB   | right overbank                   |
| ft <sup>2</sup> | square feet                     | RWW   | right wingwall                   |
| ft/ft           | feet per foot                   | TH    | town highway                     |
| JCT             | junction                        | UB    | under bridge                     |
| LAB             | left abutment                   | US    | upstream                         |
| LABUT           | face of left abutment           | USGS  | United States Geological Survey  |
| LB              | left bank                       | VTAOT | Vermont Agency of Transportation |
| LOB             | left overbank                   | WSPRO | water-surface profile model      |

In this report, the words “right” and “left” refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, “sea level” refers to the National Geodetic Vertical Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

In the appendices, the above abbreviations may be combined. For example, USLB would represent upstream left bank.

# **LEVEL II SCOUR ANALYSIS FOR BRIDGE 24 (MANCUS00070024) ON U.S. ROUTE 7, CROSSING LYE BROOK, MANCHESTER, VERMONT**

**By Scott A. Olson**

## **INTRODUCTION AND SUMMARY OF RESULTS**

This report provides the results of a detailed Level II analysis of scour potential at structure MANCUS00070024 on U.S. Route 7 crossing Lye Brook, Manchester, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.

The site is in the Taconic section of the New England physiographic province in southwestern Vermont. The 8.13-mi<sup>2</sup> drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the primary surface cover consists of brush and trees.

In the study area, Lye Brook has an incised, sinuous channel with a slope of approximately 0.03 ft/ft, an average channel top width of 66 ft and an average bank height of 11 ft. The channel bed material ranges from gravel to boulder with a median grain size ( $D_{50}$ ) of 90.0 mm (0.295 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 6, 1996, indicated that the reach was stable. Although, the immediate reach is considered stable, upstream of the bridge the Lye Brook valley is very steep (0.05 ft/ft). Extreme events in a valley this steep may quickly reveal the instability of the channel. In the Flood Insurance Study for the Town of Manchester (Federal Emergency Management Agency, January, 1985), Lye Brook's overbanks were described as "boulder strewn" after the August 1976 flood.

The U.S. Route 7 crossing of Lye Brook is a 28-ft-long, two-lane bridge consisting of one 25-foot concrete span (Vermont Agency of Transportation, written communication, September 28, 1995). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 45 degrees to the opening while the opening-skew-to-roadway is 55 degrees.

At the time of construction, the downstream channel was relocated (written communication, Dan Landry, VTAOT, January 2, 1997). A levee on the downstream right bank was also constructed and is protected by type-4 stone-fill (less than 60 inches diameter) extending from the bridge to more than 300 feet downstream. Type-2 stone fill (less than 36 inches diameter) covers the downstream right bank from the bridge to more than 300 feet downstream. Type-2 stone-fill also extends from the bridge to 220 feet upstream on both upstream banks. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.

Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge is analyzed since it has the potential of being the worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.

Contraction scour for all modelled flows ranged from 1.0 to 1.6 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour computations for the left abutment ranged from 14.5 to 16.1 ft. with the worst-case occurring at the 100-year discharge. Abutment scour computations for the right abutment ranged from 6.9 to 10.4 ft. with the worst-case occurring at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.

It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

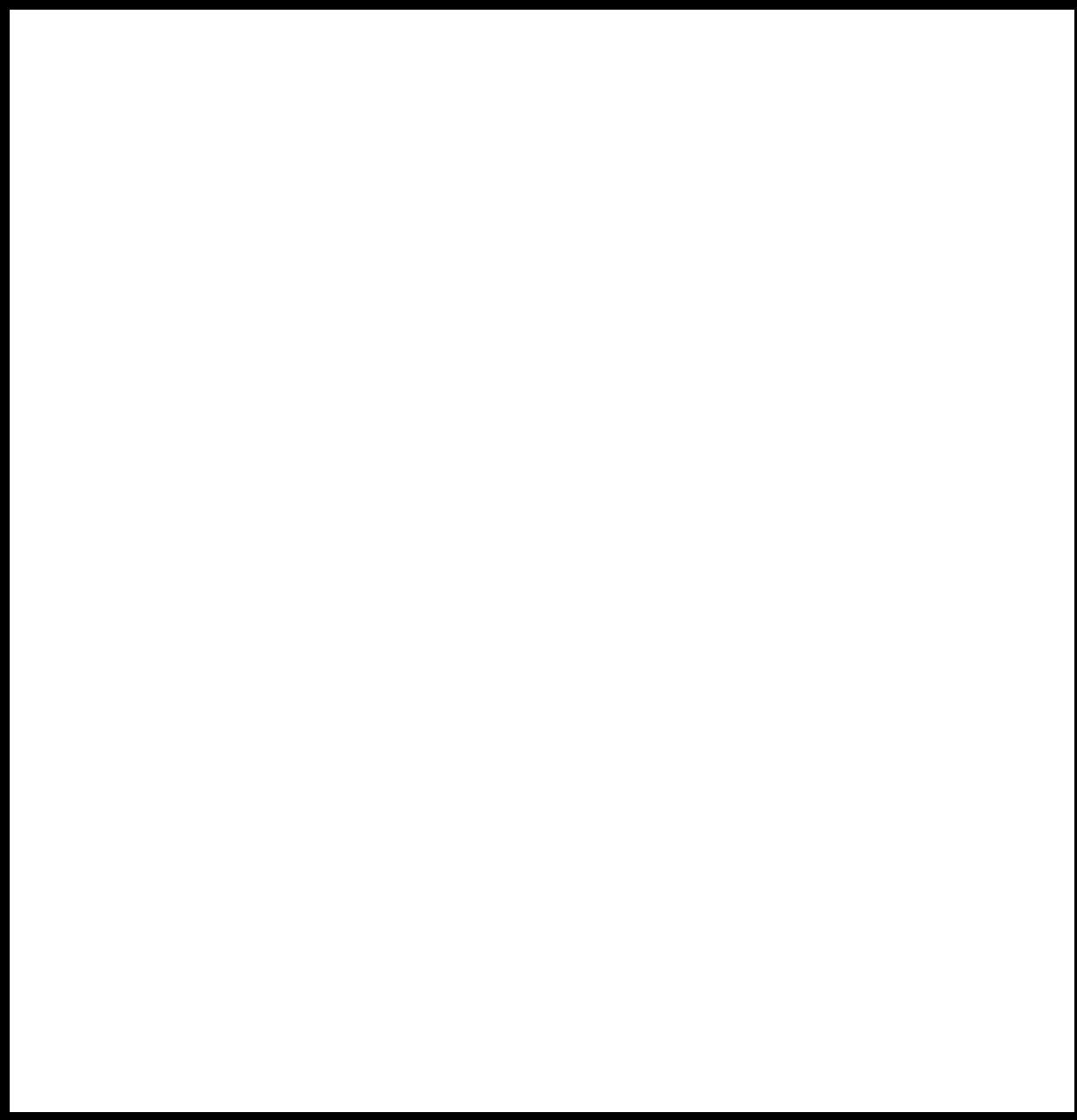



Figure 1. Location of study area on USGS 1:24,000 scale map.

Figure 2. Location of study area on Vermont Agency of Transportation town highway map.





## LEVEL II SUMMARY

**Structure Number** MANCUS00070024      **Stream** Lye Brook  
**County** Bennington      **Road** US7      **District** 1

### Description of Bridge

**Bridge length** 28 ft      **Bridge width** 44.8 ft      **Max span length** 25 ft  
**Alignment of bridge to road (on curve or straight)** Straight  
**Abutment type** Vertical, concrete      **Embankment type** Sloping  
**Stone fill on abutment?** No      **Date of inspection** 8/6/96  
Type-2, along the upstream banks and the downstream right bank.  
Type-4 along the downstream right bank/levee.

Abutments and wingwalls are concrete.

Y      45

**Is bridge skewed to flood flow according to Y ' survey?**      **Angle**

There is a moderate channel bend in the downstream reach. This downstream channel reach was relocated when the bridge was constructed.

**Debris accumulation on bridge at time of Level I or Level II site visit:**

|                 | <b>Date of inspection</b><br><u>8/6/96</u>            | <b>Percent of channel blocked horizontally</b><br><u>0</u> |
|-----------------|-------------------------------------------------------|------------------------------------------------------------|
| <b>Level I</b>  | <u>8/6/96</u>                                         | <u>0</u>                                                   |
| <b>Level II</b> | <u>Moderate. Upstream banks are heavily forested.</u> |                                                            |

**Potential for debris**

August 6, 1996. There is a man-made levee along the downstream right bank.

**Describe any features near or at the bridge that may affect flow (include observation date)**

## Description of the Geomorphic Setting

**General topography** Upstream the channel is in a very steep, narrow, mountainous valley.

Downstream the channel enters a delta.

**Geomorphic conditions at bridge site: downstream (DS), upstream (US)**

**Date of inspection** 8/6/96

**DS left:** Steep channel bank to moderately sloped highway embankment.

**DS right:** Man-made levee covered by type-4 stone-fill.

**US left:** Steep channel bank to high terrace.

**US right:** Steep channel bank to steeply sloped overbank.

## Description of the Channel

|                                 |         |                      |                     |
|---------------------------------|---------|----------------------|---------------------|
| <b>Average top width</b>        | 66      | <b>Average depth</b> | 11                  |
|                                 | Cobbles |                      | Boulder (fill)      |
| <b>Predominant bed material</b> |         | <b>Bank material</b> | Sinuous, but stable |

with semi-alluvial channel boundaries. The downstream channel has been redirected.

8/6/96

**Vegetative cover** Trees and brush with some field grasses.

**DS left:** Trees and brush with some field grasses.

**DS right:** Trees and brush with some field grasses.

**US left:** Trees and brush with some field grasses.

**US right:** Y

**Do banks appear stable?** -

**date of observation.**

None. August 6, 1996.

**Describe any obstructions in channel and date of observation.**

## Hydrology

Drainage area 8.13  $mi^2$

Percentage of drainage area in physiographic provinces: (approximate)

| Physiographic province/section | Percent of drainage area |
|--------------------------------|--------------------------|
| New England/Taconic            | <u>100</u>               |

Is drainage area considered rural or urban? Rural Describe any significant urbanization: None.

Is there a USGS gage on the stream of interest? No

USGS gage description --

USGS gage number --

Gage drainage area mi<sup>2</sup> No

Is there a lake/p .....

1,620 Calculated Discharges 2,670  
Q100  $ft^3/s$  Q500  $ft^3/s$

The 100- and 500-year discharges are based on a drainage area relationship,  $[(8.13/9.5) \exp 0.75]$  with flood frequency estimates at the mouth of Lye Brook in the Flood Insurance Study for the Town of Manchester (Federal Emergency Management Agency, 1985). The discharges compared well with results of several empirical methods for determining flood frequency estimates (Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1957a&b; Talbot, 1887)

## Description of the Water-Surface Profile Model (WSPRO) Analysis

*Datum for WSPRO analysis (USGS survey, sea level, VTAOT plans)* USGS survey

*Datum tie between USGS survey and VTAOT plans* Not available.

---

*Description of reference marks used to determine USGS datum.* RM1 is a standard brass disk set in top of the upstream end of the left abutment (elev. 500.21 ft, arbitrary survey datum).  
RM2 is a chiseled X on top of the downstream end of the left abutment (elev. 498.50 ft, arbitrary survey datum).

---

### Cross-Sections Used in WSPRO Analysis

| <i><sup>1</sup>Cross-section</i> | <i>Section Reference Distance (SRD) in feet</i> | <i><sup>2</sup>Cross-section development</i> | <i>Comments</i>                                       |
|----------------------------------|-------------------------------------------------|----------------------------------------------|-------------------------------------------------------|
| EXITX                            | -53                                             | 1                                            | Exit section                                          |
| FULLV                            | 0                                               | 2                                            | Downstream Full-valley section (Templated from EXITX) |
| BRIDG                            | 0                                               | 1                                            | Bridge section                                        |
| RDWAY                            | 22                                              | 1                                            | Road Grade section                                    |
| APPRO                            | 95                                              | 2                                            | Modelled Approach section (Templated from APTEM)      |
| APTEM                            | 126                                             | 1                                            | Approach section as surveyed (Used as a template)     |

<sup>1</sup> For location of cross-sections see plan-view sketch included with Level I field form, Appendix E.  
 For more detail on how cross-sections were developed see WSPRO input file.

### **Data and Assumptions Used in WSPRO Model**

Hydraulic analyses of the reach were done by use of the Federal Highway Administration's WSPRO step-backwater computer program (Shearman and others, 1986, and Shearman, 1990). The analyses reported herein reflect conditions existing at the site at the time of the study. Furthermore, in the development of the model it was necessary to assume no accumulation of debris or ice at the site. Results of the hydraulic model are presented in the Bridge Hydraulic Summary, Appendix B, and figure 7.

Channel roughness factors (Manning's "n") used in the hydraulic model were estimated using field inspections at each cross section following the general guidelines described by Arcement and Schneider (1989). Final adjustments to the values were made during the modelling of the reach. Channel "n" values for the reach ranged from 0.045 to 0.050.

Critical depth at the exit section (EXITX) was assumed as the starting water surface. Normal depth at the exit section was computed by use of the slope-conveyance method outlined in the user's manual for WSPRO (Shearman, 1990) and was determined to be supercritical but within 0.4 feet of critical depth. The slope used for the computation was 0.030 ft/ft determined from surveyed thalweg points downstream of the structure.

The surveyed approach section (APTEM) was moved along the approach channel slope (0.015 ft/ft) to establish the modelled approach section (APPRO), one bridge length upstream of the upstream face as recommended by Shearman and others (1986). This approach also provides a consistent method for determining scour variables.

For all flows, the bridge was also modelled as a culvert so that results could be compared with those obtained using bridge routines. Results of the culvert routines indicate that normal depths are 0.8 to 1.0 feet above critical depths within the constriction. It is assumed that convergence to normal depth is possible in the structure. However, the downstream water surfaces (FULLV) for all modelled flows are below the critical water surfaces in the bridge. Thus, near the downstream face of the bridge the water surface must pass through critical depth and the defaults to critical depth are allowed. This is true for the 500-year water-surface profile as well, although it is unsubmerged orifice flow. Values found in the Bridge Hydraulics Summary on page 12 and used in the scour computations reflect the critical water surface in the bridge section.

## Bridge Hydraulics Summary

*Average bridge embankment elevation* 500.3 ft  
*Average low steel elevation* 498.7 ft

*100-year discharge* 1,620 ft<sup>3</sup>/s  
*Water-surface elevation in bridge opening* 492.5 ft  
*Road overtopping?* Y *Discharge over road* 6 ft<sup>3</sup>/s  
*Area of flow in bridge opening* 120 ft<sup>2</sup>  
*Average velocity in bridge opening* 13.4 ft/s  
*Maximum WSPRO tube velocity at bridge* 16.7 ft/s

*Water-surface elevation at Approach section with bridge* 497.5  
*Water-surface elevation at Approach section without bridge* 492.2  
*Amount of backwater caused by bridge* 5.3 ft

*500-year discharge* 2,670 ft<sup>3</sup>/s  
*Water-surface elevation in bridge opening* 493.5 ft  
*Road overtopping?* Y *Discharge over road* 584 ft<sup>3</sup>/s  
*Area of flow in bridge opening* 142 ft<sup>2</sup>  
*Average velocity in bridge opening* 14.5 ft/s  
*Maximum WSPRO tube velocity at bridge* 18.4 ft/s

*Water-surface elevation at Approach section with bridge* 500.3  
*Water-surface elevation at Approach section without bridge* 493.7  
*Amount of backwater caused by bridge* 6.6 ft

*Incipient overtopping discharge* 1,510 ft<sup>3</sup>/s  
*Water-surface elevation in bridge opening* 492.3 ft  
*Area of flow in bridge opening* 115 ft<sup>2</sup>  
*Average velocity in bridge opening* 13.1 ft/s  
*Maximum WSPRO tube velocity at bridge* 16.3 ft/s

*Water-surface elevation at Approach section with bridge* 497.1  
*Water-surface elevation at Approach section without bridge* 492.0  
*Amount of backwater caused by bridge* 5.1 ft

## Scour Analysis Summary

### Special Conditions or Assumptions Made in Scour Analysis

Scour depths were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analysis are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

Contraction scour was computed by use of Laursen clear-water contraction scour equation (Richardson and others, 1995, p. 32, equation 20). Since, flow was in contact with the upstream low chord in the 500-year model, the results of the Chang and Umbrell pressure flow scour equations (Richardson and others, 1995, pp. 144-146) were also found for this discharge. The results of both the Chang and the Umbrell equation were 0.0 ft of scour. Both the 100-year and the incipient roadway-overtopping discharges, which were free surface flows, had scour results from the Laursen equation of at least 1.0 ft of scour. The fact that scour for a larger discharge is less than scour for a smaller discharge is not logical for the conditions at this site. The cause of the discrepancy is due to the significant drop in water-surface, 7.7 ft, from the upstream to downstream sides of the bridge during the 500-year event and the fact that the hydraulic properties at the upstream face of the bridge are applied to the pressure flow equations and hydraulic properties of the downstream face are applied to the Laursen equation. The discrepancy was resolved by estimating the hydraulic properties at the downstream bridge face for the 500-year discharge (critical depth) and applying these to the Laursen equation. This gave results which were consistent with the 100-year and incipient roadway-overtopping discharge--more flow through the bridge, more scour.

Abutment scour was computed by use of the Froehlich equation (Richardson and others, 1995, p. 48, equation 28). Variables for the Froehlich equation include the Froude number of the flow approaching the embankments, the length of the embankment blocking flow, and the depth of flow approaching the embankment less any roadway overtopping.

## Scour Results

| <i>Contraction scour:</i> | <i>100-yr discharge</i> | <i>500-yr discharge</i> | <i>Incipient<br/>overtopping<br/>discharge</i> |
|---------------------------|-------------------------|-------------------------|------------------------------------------------|
|                           |                         |                         | <i>(Scour depths in feet)</i>                  |

### *Main channel*

|                          |      |      |      |
|--------------------------|------|------|------|
| <i>Live-bed scour</i>    | --   | --   | --   |
| <i>Clear-water scour</i> | 1.1  | 1.6  | 1.0  |
|                          | 33.3 | 45.0 | 30.1 |
| <i>Depth to armoring</i> | --   | --   | --   |
| <i>Left overbank</i>     | --   | --   | --   |
| <i>Right overbank</i>    | —    | —    | —    |

### *Local scour:*

|                       |      |      |      |
|-----------------------|------|------|------|
| <i>Abutment scour</i> | 16.1 | 14.5 | 15.8 |
| <i>Left abutment</i>  | 7.3  | 10.4 | 6.9  |
| <i>Right abutment</i> | —    | —    | —    |
| <i>Pier scour</i>     | --   | --   | --   |
| <i>Pier 1</i>         | —    | —    | —    |
| <i>Pier 2</i>         | —    | —    | —    |
| <i>Pier 3</i>         | —    | —    | —    |

## Riprap Sizing

| <i>Abutments:</i>     | <i>100-yr discharge</i> | <i>500-yr discharge</i> | <i>Incipient<br/>overtopping<br/>discharge</i> |
|-----------------------|-------------------------|-------------------------|------------------------------------------------|
|                       |                         |                         | <i>(D<sub>50</sub> in feet)</i>                |
|                       | 2.3                     | 2.8                     | 2.2                                            |
| <i>Left abutment</i>  | 2.3                     | 2.8                     | 2.2                                            |
| <i>Right abutment</i> | --                      | --                      | --                                             |
| <i>Piers:</i>         | --                      | --                      | --                                             |
| <i>Pier 1</i>         | —                       | —                       | —                                              |
| <i>Pier 2</i>         | —                       | —                       | —                                              |

SI

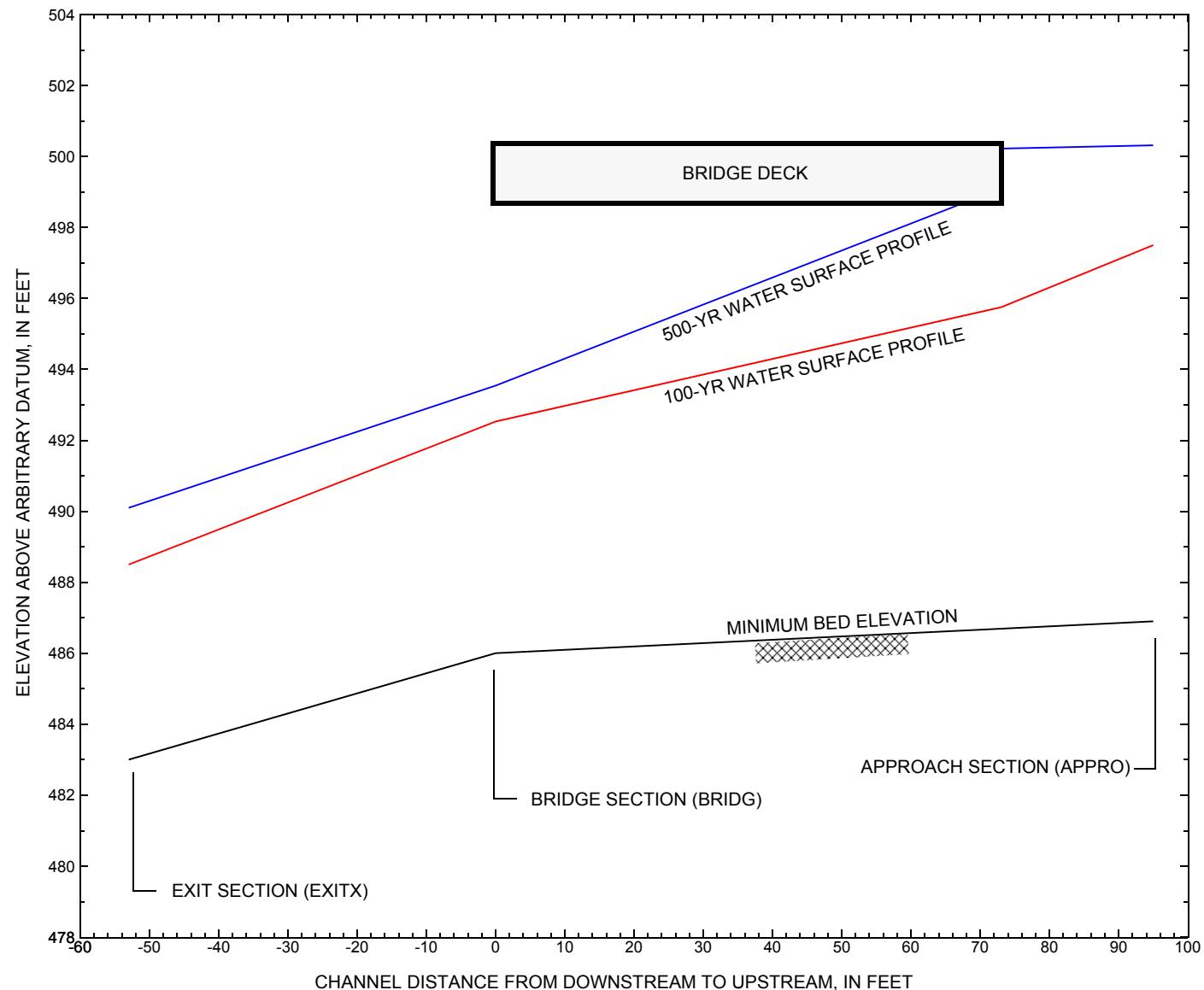



Figure 7. Water-surface profiles for the 100- and 500-yr discharges at structure MANCUS00070024 on U.S. Route 7, crossing Lye Brook, Manchester, Vermont.

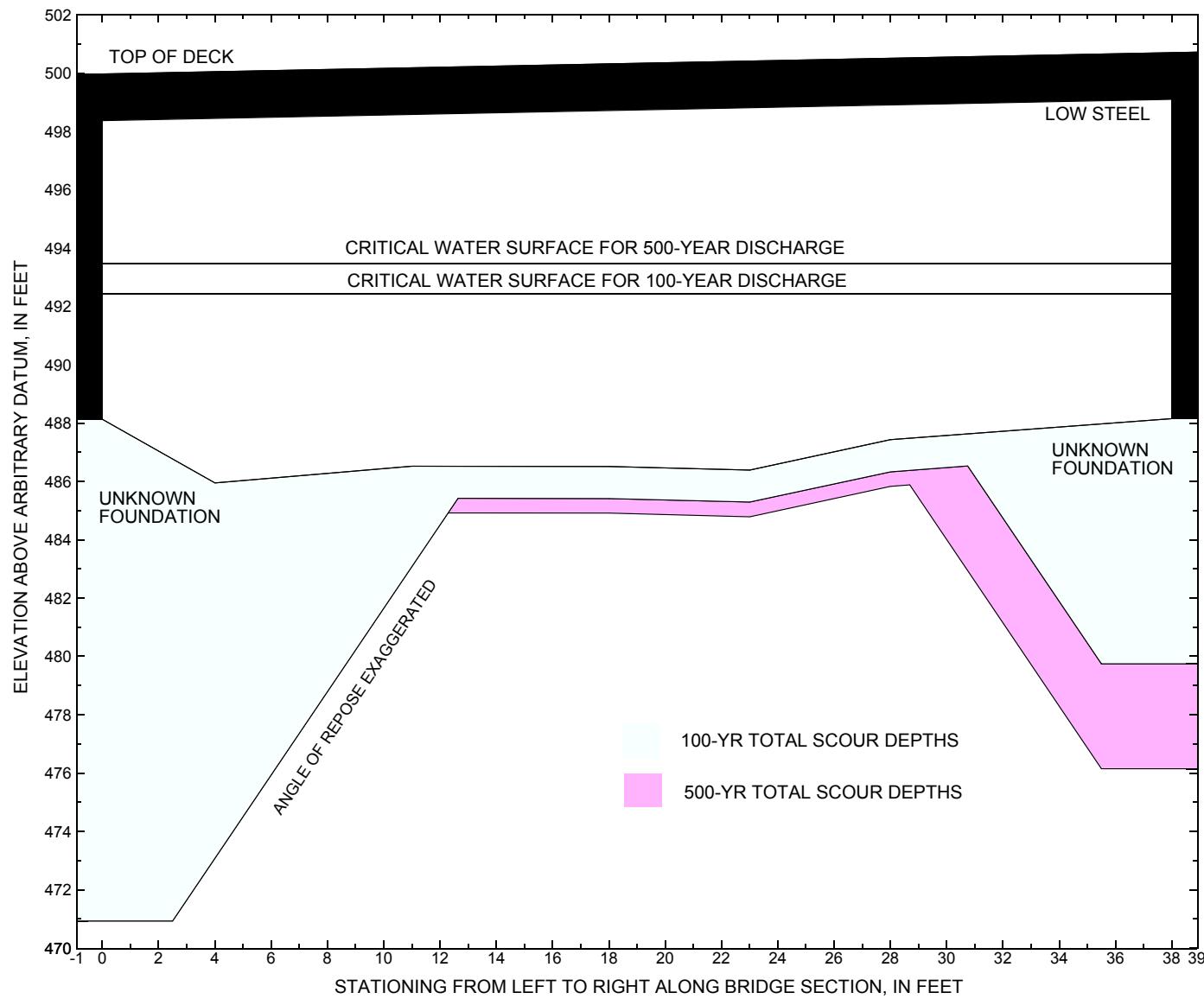



Figure 8. Scour elevations for the 100-yr and 500-yr discharges at structure MANCUS00070024 on U.S. Route 7, crossing Lye Brook, Manchester, Vermont.

**Table 1.** Remaining footing/pile depth at abutments for the 100-year discharge at structure MANCUS00070024 on U.S. Route 7, crossing Lye Brook, Manchester, Vermont.  
[VTAOT, Vermont Agency of Transportation; --,no data]

| Description                                      | Station <sup>1</sup> | VTAOT minimum low-chord elevation (feet) | Surveyed minimum low-chord elevation <sup>2</sup> (feet) | Bottom of footing elevation <sup>2</sup> (feet) | Channel elevation at abutment/pier <sup>2</sup> (feet) | Contraction scour depth (feet) | Abutment scour depth (feet) | Pier scour depth (feet) | Depth of total scour (feet) | Elevation of scour <sup>2</sup> (feet) | Remaining footing/pile depth (feet) |
|--------------------------------------------------|----------------------|------------------------------------------|----------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------|--------------------------------|-----------------------------|-------------------------|-----------------------------|----------------------------------------|-------------------------------------|
| 100-yr. discharge is 1,620 cubic-feet per second |                      |                                          |                                                          |                                                 |                                                        |                                |                             |                         |                             |                                        |                                     |
| Left abutment                                    | 0.0                  | --                                       | 498.4                                                    | --                                              | 488.1                                                  | 1.1                            | 16.1                        | --                      | 17.2                        | 470.9                                  | --                                  |
| Right abutment                                   | 38.0                 | --                                       | 499.1                                                    | --                                              | 488.2                                                  | 1.1                            | 7.3                         | --                      | 8.4                         | 479.8                                  | --                                  |

1. Measured along the face of the most constricting side of the bridge.

2. Arbitrary datum for this study.

**Table 2.** Remaining footing/pile depth at abutments for the 500-year discharge at structure MANCUS00070024 on U.S. Route 7, crossing Lye Brook, Manchester, Vermont.  
[VTAOT, Vermont Agency of Transportation; --, no data]

| Description                                      | Station <sup>1</sup> | VTAOT minimum low-chord elevation (feet) | Surveyed minimum low-chord elevation <sup>2</sup> (feet) | Bottom of footing elevation <sup>2</sup> (feet) | Channel elevation at abutment/pier <sup>2</sup> (feet) | Contraction scour depth (feet) | Abutment scour depth (feet) | Pier scour depth (feet) | Depth of total scour (feet) | Elevation of scour <sup>2</sup> (feet) | Remaining footing/pile depth (feet) |
|--------------------------------------------------|----------------------|------------------------------------------|----------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------|--------------------------------|-----------------------------|-------------------------|-----------------------------|----------------------------------------|-------------------------------------|
| 500-yr. discharge is 2,670 cubic-feet per second |                      |                                          |                                                          |                                                 |                                                        |                                |                             |                         |                             |                                        |                                     |
| Left abutment                                    | 0.0                  | --                                       | 498.4                                                    | --                                              | 488.1                                                  | 1.6                            | 14.5                        | --                      | 16.1                        | 472.0                                  | --                                  |
| Right abutment                                   | 38.0                 | --                                       | 499.1                                                    | --                                              | 488.2                                                  | 1.6                            | 10.4                        | --                      | 12.0                        | 476.2                                  | --                                  |

1. Measured along the face of the most constricting side of the bridge.

2. Arbitrary datum for this study.

## SELECTED REFERENCES

Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.

Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geological Survey Water-Supply Paper 1849, 213 p.

Benson, M. A., 1962, Factors Influencing the Occurrence of Floods in a Humid Region of Diverse Terrain: U.S. Geological Survey Water-Supply Paper 1580-B, 64 p.

Bradley, J. N., 1978, Hydraulics of Bridge Waterways: Federal Highway Administration Hydraulic Design Series No. 1, 111pp.

Brown, S.A. and Clyde, E.S., 1989, Design of riprap revetment: Federal Highway Administration Hydraulic Engineering Circular No. 11, Publication FHWA-IP-89-016, 156 p.

Federal Highway Administration, 1983, Runoff estimates for small watersheds and development of sound design: Federal Highway Administration Report FHWA-RD-77-158

Federal Emergency Management Agency, 1980, Flood Insurance Study, Town of Manchester, Bennington County, Vermont: Washington, D.C., January 3, 1985.

Froehlich, D.C., 1989, Local scour at bridge abutments *in* Ports, M.A., ed., Hydraulic Engineering--Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18.

Hayes, D.C., 1993, Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia: U.S. Geological Survey Water-Resources Investigation Report 93-4017, 23 p.

Interagency Advisory Committee on Water Data, 1982, Guidelines for determining flood flow frequency: U.S. Geological Survey, Bulletin 17B of the Hydrology Subcommittee, 190 p.

Johnson, C.G. and Tasker, G.D., 1974, Progress report on flood magnitude and frequency of Vermont streams: U.S. Geological Survey Open-File Report 74-130, 37 p.

Lagasse, P.F., Schall, J.D., Johnson, F., Richardson, E.V., Chang, F., 1995, Stream Stability at Highway Structures: Federal Highway Administration Hydraulic Engineering Circular No. 20, Publication FHWA-IP-90-014, 144 p.

Laursen, E.M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53.

Potter, W. D., 1957a, Peak rates of runoff in the Adirondack, White Mountains, and Maine woods area, Bureau of Public Roads

Potter, W. D., 1957b, Peak rates of runoff in the New England Hill and Lowland area, Bureau of Public Roads

Richardson, E.V. and Davis, S.R., 1995, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 204 p.

Richardson, E.V., Simons, D.B., and Julien, P.Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016.

Ritter, D.F., 1984, Process Geomorphology: W.C. Brown Co., Debuque, Iowa, 603 p.

Shearman, J.O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p.

Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.

Talbot, A.N., 1887, The determination of water-way for bridges and culverts.

U.S. Department of Transportation, 1993, Stream stability and scour at highway bridges, Participant Workbook: Federal Highway Administration Publication FHWA HI-91-011.

U.S. Geological Survey, 1968, Manchester, Vermont 7.5 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps, Scale 1:24,000.

**APPENDIX A:**  
**WSPRO INPUT FILE**

# WSPRO INPUT FILE

T1 HYDRAULIC ANALYSIS  
 T2 MANCHESTER BRIDGE #024 OVER LYME BROOK  
 T3 USGS PEMBROKE, NH 12/24/96  
 \*  
 J3 6 29 30 552 553 551 5 16 17 13 3 \* 15 14 23 21 11 12 4 7 3  
 \*  
 Q 1620 2670 1510  
 SK 0.030 0.030 0.030  
 \*  
 XS EXITX -53  
 \* -159., 494.63 -95., 494.14 -70., 497.04 -26., 497.32  
 GR -26., 497.32 -21., 496.52 -12., 491.61 0., 484.21  
 GR 2., 483.82 8., 483.49 11., 483.02 15., 483.67  
 GR 20., 484.37 30., 486.36 43., 494.79 54., 498.61  
 N 0.028 0.050  
 SA -21  
 \*  
 XS FULLV 0 \* \* \* 0.024  
 \*  
 BR BRIDG 0 498.74 55  
 GR 0., 497.37 1., 488.13 4., 485.95 11., 486.52  
 GR 18., 486.51 23., 486.39 28., 487.43 38., 488.15  
 GR 38., 498.39 34., 499.10 5., 498.37 0., 497.37  
 N 0.045  
 CD 4 73 2 500.8 43  
 \*  
 XR RDWAY 22  
 GR -144., 503.27 -105., 501.18 -49., 497.02 -41., 499.12  
 GR -28., 499.37 -2., 499.76 -2., 500.62 0., 500.69  
 GR 38., 501.73 41., 501.80 41., 500.90 109., 503.24  
 GR 193., 505.60  
 \*  
 XT APTEM 126  
 GR -33., 504.77 -29., 501.69 -16., 496.61 0., 488.55  
 GR 3., 488.20 6., 487.57 13., 487.38 16., 487.67  
 GR 19., 488.30 29., 489.61 41., 496.65 48., 497.72  
 GR 48., 499.45 54., 500.46 79., 504.27  
 \*  
 AS APPRO 95 \* \* \* 0.015  
 GT  
 N 0.050  
 \*  
 HP 1 BRIDG 492.53 1 492.53  
 HP 2 BRIDG 492.53 \* \* 1614  
 HP 2 RDWAY 497.45 \* \* 6  
 HP 1 APPRO 497.45 1 497.45  
 HP 2 APPRO 497.45 \* \* 1620  
 \*  
 HP 1 BRIDG 493.54 1 493.54  
 HP 2 BRIDG 493.54 \* \* 2062  
 HP 1 BRIDG 499.10 1 499.10  
 HP 2 BRIDG 499.10 \* \* 2062  
 HP 2 RDWAY 499.96 \* \* 584  
 HP 1 APPRO 500.31 1 500.31  
 HP 2 APPRO 500.31 \* \* 2670  
 \*  
 HP 1 BRIDG 492.29 1 492.29

## WSPRO INPUT FILE (continued)

```
HP 2 BRIDG    492.29 * * 1510
HP 1 APPRO    497.09 1 497.09
HP 2 APPRO    497.09 * * 1510
*
EX
ER
```

The following is the input file for the culvert routines. The results of the culvert routines were compared to the bridge routine results.

```
T1          HYDRAULIC ANALYSIS / WSPRO CULVERT ROUTINES
T2          MANCHESTER BRIDGE #024 OVER LYME BROOK
T3          USGS  PEMBROKE, NH           1/22/97
*
Q          1614 2062 1510
WS          489.93 491.40 489.76
*
CV    BRIDG    0 10.9 73 485.1 486.5 1
CG          111 147 262
CC          * * * 0.045
*
EX
ER
```

**APPENDIX B:**

**WSPRO OUTPUT FILE**

# WSPRO OUTPUT FILE

HYDRAULIC ANALYSIS  
 MANCHESTER BRIDGE #024 OVER LYME BROOK  
 USGS PEMBROKE, NH  
 12/24/96

CROSS-SECTION PROPERTIES: ISEQ = 3; SECID = BRIDG; SRD = 0.  
 WSEL SA# AREA K TOPW WETP ALPH LEW REW QCR  
 1 120. 9754. 21. 31. 1613.  
 492.53 120. 9754. 21. 31. 1.00 1. 38. 1613.

VELOCITY DISTRIBUTION: ISEQ = 3; SECID = BRIDG; SRD = 0.  
 WSEL LEW REW AREA K Q VEL  
 492.53 0.5 38.0 120.2 9754. 1614. 13.43  
 X STA. 0.5 4.4 6.2 7.8 9.4 10.9  
 A(I) 11.6 6.7 5.9 5.5 5.2  
 V(I) 6.95 12.05 13.79 14.64 15.61  
 X STA. 10.9 12.3 13.8 15.2 16.6 18.0  
 A(I) 5.1 4.9 4.9 4.9 4.9 4.9  
 V(I) 15.84 16.53 16.40 16.59 16.58  
 X STA. 18.0 19.4 20.8 22.2 23.6 25.2  
 A(I) 4.8 4.9 4.9 5.0 5.3  
 V(I) 16.71 16.61 16.33 16.12 15.27  
 X STA. 25.2 27.0 29.0 31.1 33.7 38.0  
 A(I) 5.7 5.8 6.1 7.1 11.2  
 V(I) 14.28 13.89 13.19 11.42 7.22

VELOCITY DISTRIBUTION: ISEQ = 4; SECID = RDWAY; SRD = 22.  
 WSEL LEW REW AREA K Q VEL  
 497.45 -54.8 -47.4 1.6 30. 6. 3.76  
 X STA. -54.8 -52.7 -52.0 -51.6 -51.2 -50.9  
 A(I) 0.2 0.1 0.1 0.1 0.1 0.1  
 V(I) 1.80 2.60 2.95 3.42 3.63  
 X STA. -50.9 -50.7 -50.4 -50.2 -50.0 -49.9  
 A(I) 0.1 0.1 0.1 0.1 0.1 0.1  
 V(I) 3.91 4.19 4.33 4.51 4.62  
 X STA. -49.9 -49.7 -49.5 -49.4 -49.2 -49.1  
 A(I) 0.1 0.1 0.1 0.1 0.1 0.1  
 V(I) 4.82 4.97 4.96 5.05 5.00  
 X STA. -49.1 -48.9 -48.8 -48.6 -48.3 -47.4  
 A(I) 0.1 0.1 0.1 0.1 0.1 0.1  
 V(I) 4.97 4.79 4.35 3.78 2.51

CROSS-SECTION PROPERTIES: ISEQ = 5; SECID = APPRO; SRD = 95.  
 WSEL SA# AREA K TOPW WETP ALPH LEW REW QCR  
 1 432. 42599. 67. 72. 6218.  
 497.45 432. 42599. 67. 72. 1.00 -19. 48. 6218.

VELOCITY DISTRIBUTION: ISEQ = 5; SECID = APPRO; SRD = 95.  
 WSEL LEW REW AREA K Q VEL  
 497.45 -19.3 48.0 432.4 42599. 1620. 3.75  
 X STA. -19.3 -6.3 -2.7 -0.1 2.0 3.9  
 A(I) 38.6 25.7 22.1 20.0 18.6  
 V(I) 2.10 3.16 3.66 4.04 4.35  
 X STA. 3.9 5.7 7.3 9.0 10.6 12.2  
 A(I) 17.6 17.4 17.0 17.1 16.6  
 V(I) 4.59 4.64 4.78 4.74 4.87  
 X STA. 12.2 13.8 15.4 17.2 19.0 21.0  
 A(I) 17.1 16.9 17.9 17.8 19.0  
 V(I) 4.74 4.80 4.52 4.56 4.27  
 X STA. 21.0 23.1 25.5 28.1 31.5 48.0  
 A(I) 19.2 21.3 22.4 26.4 43.6  
 V(I) 4.21 3.80 3.61 3.07 1.86

# WSPRO OUTPUT FILE (continued)

HYDRAULIC ANALYSIS  
 MANCHESTER BRIDGE #024 OVER LYME BROOK  
 USGS PEMBROKE, NH  
 12/24/96

CROSS-SECTION PROPERTIES: ISEQ = 3; SECID = BRIDG; SRD = 0.  
 WSEL SA# AREA K TOPW WETP ALPH LEW REW QCR  
 1 142. 12343. 22. 33. 1.00 0. 38. 2067.  
 493.54 142. 12343. 22. 33. 1.00 0. 38. 2067.

VELOCITY DISTRIBUTION: ISEQ = 3; SECID = BRIDG; SRD = 0.  
 WSEL LEW REW AREA K Q VEL  
 493.54 0.4 38.0 142.0 12343. 2062. 14.53  
 X STA. 0.4 4.4 6.4 8.0 9.6 11.1  
 A(I) 14.0 8.3 6.8 6.6 6.0  
 V(I) 7.34 12.42 15.16 15.64 17.15  
 X STA. 11.1 12.6 14.0 15.4 16.8 18.2  
 A(I) 6.1 5.7 5.7 5.7 5.7  
 V(I) 17.00 18.18 18.03 18.24 18.23  
 X STA. 18.2 19.6 21.0 22.4 23.8 25.4  
 A(I) 5.6 5.6 5.7 5.9 6.2  
 V(I) 18.40 18.31 18.01 17.47 16.76  
 X STA. 25.4 27.1 29.1 31.2 33.7 38.0  
 A(I) 6.3 6.9 7.3 8.2 13.8  
 V(I) 16.30 15.04 14.17 12.54 7.49

VELOCITY DISTRIBUTION: ISEQ = 4; SECID = RDWAY; SRD = 22.  
 WSEL LEW REW AREA K Q VEL  
 499.96 -88.6 -2.0 92.9 5485. 584. 6.29  
 X STA. -88.6 -73.8 -69.5 -66.4 -64.0 -61.9  
 A(I) 8.1 5.4 4.8 4.2 3.9  
 V(I) 3.60 5.42 6.13 6.92 7.44  
 X STA. -61.9 -60.1 -58.4 -56.9 -55.5 -54.2  
 A(I) 3.8 3.6 3.4 3.4 3.3  
 V(I) 7.76 8.12 8.57 8.61 8.80  
 X STA. -54.2 -52.9 -51.7 -50.5 -49.4 -48.1  
 A(I) 3.3 3.3 3.3 3.4 3.5  
 V(I) 8.86 8.83 8.92 8.67 8.28  
 X STA. -48.1 -46.6 -44.5 -40.0 -30.6 -2.0  
 A(I) 3.8 4.2 5.5 6.9 11.8  
 V(I) 7.68 6.88 5.35 4.25 2.47

CROSS-SECTION PROPERTIES: ISEQ = 5; SECID = APPRO; SRD = 95.  
 WSEL SA# AREA K TOPW WETP ALPH LEW REW QCR  
 1 641. 70917. 83. 90. 1.00 -27. 56. 10118.  
 500.31 641. 70917. 83. 90. 1.00 -27. 56. 10118.  
 VELOCITY DISTRIBUTION: ISEQ = 5; SECID = APPRO; SRD = 95.  
 WSEL LEW REW AREA K Q VEL  
 500.31 -26.7 56.1 640.7 70917. 2670. 4.17  
 X STA. -26.7 -9.7 -5.2 -2.1 0.5 2.7  
 A(I) 58.7 37.6 32.5 30.3 27.3  
 V(I) 2.27 3.55 4.11 4.41 4.90  
 X STA. 2.7 4.7 6.6 8.5 10.3 12.2  
 A(I) 25.6 25.4 24.8 24.6 24.7  
 V(I) 5.22 5.25 5.38 5.42 5.40  
 X STA. 12.2 14.0 15.9 17.9 20.0 22.2  
 A(I) 24.2 25.4 25.3 26.8 26.7  
 V(I) 5.52 5.25 5.29 4.99 4.99  
 X STA. 22.2 24.7 27.3 30.4 35.0 56.1  
 A(I) 28.9 30.7 33.7 41.7 65.8  
 V(I) 4.61 4.35 3.96 3.20 2.03

# WSPRO OUTPUT FILE (continued)

HYDRAULIC ANALYSIS  
 MANCHESTER BRIDGE #024 OVER LYME BROOK  
 USGS PEMBROKE, NH 12/24/96

CROSS-SECTION PROPERTIES: ISEQ = 3; SECID = BRIDG; SRD = 0.  
 WSEL SA# AREA K TOPW WETP ALPH LEW REW QCR  
 1 115. 9161. 21. 31. 1. 1511.  
 492.29 115. 9161. 21. 31. 1.00 1. 38. 1511.

VELOCITY DISTRIBUTION: ISEQ = 3; SECID = BRIDG; SRD = 0.  
 WSEL LEW REW AREA K Q VEL  
 492.29 0.5 38.0 115.1 9161. 1510. 13.12  
 X STA. 0.5 4.4 6.2 7.8 9.3 10.8  
 A(I) 11.1 6.4 5.4 5.2 5.1  
 V(I) 6.80 11.76 13.87 14.61 14.79

X STA. 10.8 12.3 13.7 15.1 16.5 17.9  
 A(I) 4.8 4.9 4.7 4.6 4.6  
 V(I) 15.74 15.55 16.08 16.26 16.26

X STA. 17.9 19.3 20.7 22.1 23.6 25.2  
 A(I) 4.6 4.7 4.7 4.9 5.1  
 V(I) 16.32 16.22 15.94 15.40 14.83

X STA. 25.2 26.9 28.9 31.1 33.7 38.0  
 A(I) 5.3 5.7 5.8 6.7 10.6  
 V(I) 14.24 13.28 12.93 11.21 7.11

CROSS-SECTION PROPERTIES: ISEQ = 5; SECID = APPRO; SRD = 95.  
 WSEL SA# AREA K TOPW WETP ALPH LEW REW QCR  
 1 408. 39573. 65. 70. 5795.  
 497.09 408. 39573. 65. 70. 1.00 -18. 47. 5795.

VELOCITY DISTRIBUTION: ISEQ = 5; SECID = APPRO; SRD = 95.  
 WSEL LEW REW AREA K Q VEL  
 497.09 -18.4 46.9 408.4 39573. 1510. 3.70  
 X STA. -18.4 -5.9 -2.3 0.1 2.1 4.0  
 A(I) 36.6 24.4 20.6 18.5 17.7  
 V(I) 2.06 3.09 3.67 4.07 4.27

X STA. 4.0 5.8 7.4 9.0 10.6 12.2  
 A(I) 17.1 16.5 16.1 15.9 16.0  
 V(I) 4.41 4.57 4.70 4.74 4.72

X STA. 12.2 13.7 15.4 17.0 18.8 20.8  
 A(I) 15.9 16.2 16.4 17.3 17.9  
 V(I) 4.75 4.66 4.61 4.37 4.23

X STA. 20.8 22.9 25.2 27.8 31.0 46.9  
 A(I) 18.6 19.6 21.7 24.6 40.8  
 V(I) 4.06 3.84 3.48 3.07 1.85

# WSPRO OUTPUT FILE (continued)

HYDRAULIC ANALYSIS  
 MANCHESTER BRIDGE #024 OVER LYME BROOK  
 USGS PEMBROKE, NH 12/24/96

==015 WSI IN WRONG FLOW REGIME AT SECID "EXITX": USED WSI = CRWS.  
 WSI,CRWS = 488.34 488.56

| XSID:CODE | SRDL  | LEW   | AREA | VHD    | HF    | EGL    | CRWS   | Q     | WSEL   |
|-----------|-------|-------|------|--------|-------|--------|--------|-------|--------|
| SRD       | FLEN  | REW   | K    | ALPH   | HO    | ERR    | FR#    | VEL   |        |
| EXITX:XS  | ***** | -7.   | 149. | 1.84   | ***** | 490.40 | 488.56 | 1620. | 488.56 |
|           | -53.  | ***** | 33.  | 10205. | 1.00  | *****  | *****  | 1.00  | 10.88  |

==125 FR# EXCEEDS FNTEST AT SECID "FULLV": TRIALS CONTINUED.  
 FNTEST,FR#,WSEL,CRWS = 0.80 0.95 489.96 489.83  
 ==110 WSEL NOT FOUND AT SECID "FULLV": REDUCED DELTAY.  
 WSLIM1,WSLIM2,DELTAY = 488.06 499.88 0.50  
 ==115 WSEL NOT FOUND AT SECID "FULLV": USED WSMIN = CRWS.  
 WSLIM1,WSLIM2,CRWS = 488.06 499.88 489.83

|          |     |     |      |        |      |        |        |       |        |
|----------|-----|-----|------|--------|------|--------|--------|-------|--------|
| FULLV:FV | 53. | -7. | 153. | 1.74   | 1.28 | 491.67 | 489.83 | 1620. | 489.93 |
|          | 0.  | 53. | 34.  | 10624. | 1.00 | 0.00   | -0.01  | 0.96  | 10.58  |

<<<<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>>

==125 FR# EXCEEDS FNTEST AT SECID "APPRO": TRIALS CONTINUED.  
 FNTEST,FR#,WSEL,CRWS = 0.80 0.97 492.19 492.10  
 ==110 WSEL NOT FOUND AT SECID "APPRO": REDUCED DELTAY.  
 WSLIM1,WSLIM2,DELTAY = 489.43 504.30 0.50  
 ==115 WSEL NOT FOUND AT SECID "APPRO": USED WSMIN = CRWS.  
 WSLIM1,WSLIM2,CRWS = 489.43 504.30 492.10

|          |     |     |      |        |      |        |        |       |        |
|----------|-----|-----|------|--------|------|--------|--------|-------|--------|
| APPRO:AS | 95. | -8. | 155. | 1.70   | 2.21 | 493.90 | 492.10 | 1620. | 492.20 |
|          | 95. | 95. | 34.  | 10624. | 1.00 | 0.00   | 0.02   | 0.96  | 10.45  |

<<<<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>>

==215 FLOW CLASS 1 SOLUTION INDICATES POSSIBLE ROAD OVERFLOW.  
 WS1,WSSD,WS3,RGMIN = 497.46 0.00 492.55 497.02  
 ==260 ATTEMPTING FLOW CLASS 4 SOLUTION.  
 ==285 CRITICAL WATER-SURFACE ELEVATION A - S - S - U - M - E - D !!!!  
 SECID "BRIDG" Q,CRWS = 1614. 492.53

<<<<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>>

| XSID:CODE | SRDL | LEW | AREA | VHD   | HF    | EGL    | CRWS   | Q     | WSEL   |
|-----------|------|-----|------|-------|-------|--------|--------|-------|--------|
| SRD       | FLEN | REW | K    | ALPH  | HO    | ERR    | FR#    | VEL   |        |
| BRIDG:BR  | 53.  | 1.  | 120. | 2.80  | ***** | 495.33 | 492.53 | 1614. | 492.53 |
|           | 0.   | 53. | 38.  | 9762. | 1.00  | *****  | *****  | 1.00  | 13.42  |

| TYPE | PPCD  | FLOW | C     | P/A   | LSEL   | BLEN  | XLAB  | XRAB  |
|------|-------|------|-------|-------|--------|-------|-------|-------|
| 4.   | ***** | 4.   | 1.000 | ***** | 498.74 | ***** | ***** | ***** |

| XSID:CODE | SRD | FLEN  | HF    | VHD   | EGL    | ERR   | Q     | WSEL   |
|-----------|-----|-------|-------|-------|--------|-------|-------|--------|
| RDWAY:RG  | 22. | 22.   | 0.03  | 0.22  | 497.63 | 0.00  | 6.    | 497.45 |
| LT:       | 6.  | 7.    | -55.  | -47.  | 0.4    | 0.2   | 2.9   | 3.6    |
| RT:       | 0.  | ***** | ***** | ***** | *****  | ***** | ***** | *****  |

| XSID:CODE | SRDL | LEW  | AREA | VHD    | HF   | EGL    | CRWS   | Q     | WSEL   |
|-----------|------|------|------|--------|------|--------|--------|-------|--------|
| SRD       | FLEN | REW  | K    | ALPH   | HO   | ERR    | FR#    | VEL   |        |
| APPRO:AS  | 22.  | -19. | 433. | 0.22   | 0.16 | 497.67 | 492.10 | 1620. | 497.45 |
|           | 95.  | 25.  | 48.  | 42622. | 1.00 | 2.18   | 0.00   | 0.26  | 3.74   |

| M(G)  | M(K)  | KQ     | XLKQ | XRKQ | OTEL  |
|-------|-------|--------|------|------|-------|
| 0.123 | 0.000 | 44450. | -4.  | 34.  | ***** |

<<<<END OF BRIDGE COMPUTATIONS>>>>

FIRST USER DEFINED TABLE.

| XSID:CODE | SRD      | LEW  | REW     | Q     | K      | AREA | VEL    | WSEL   |
|-----------|----------|------|---------|-------|--------|------|--------|--------|
| EXITX:XS  | -53.     | -7.  | 33.     | 1620. | 10205. | 149. | 10.88  | 488.56 |
| FULLV:FV  | 0.       | -7.  | 34.     | 1620. | 10624. | 153. | 10.58  | 489.93 |
| BRIDG:BR  | 0.       | 1.   | 38.     | 1614. | 9762.  | 120. | 13.42  | 492.53 |
| RDWAY:RG  | 22.***** | 6.   | 6.***** | ***** | 0.     | 1.00 | 497.45 |        |
| APPRO:AS  | 95.      | -19. | 48.     | 1620. | 42622. | 433. | 3.74   | 497.45 |

SECOND USER DEFINED TABLE.

| XSID:CODE | CRWS   | FR#    | YMIN   | YMAX        | HF   | HO     | VHD    | EGL    | WSEL   |
|-----------|--------|--------|--------|-------------|------|--------|--------|--------|--------|
| EXITX:XS  | 488.56 | 1.00   | 483.02 | 498.61***** | 1.84 | 490.40 | 488.56 |        |        |
| FULLV:FV  | 489.83 | 0.96   | 484.29 | 499.88      | 1.28 | 0.00   | 1.74   | 491.67 | 489.93 |
| BRIDG:BR  | 492.53 | 1.00   | 485.95 | 499.10***** | 2.80 | 495.33 | 492.53 |        |        |
| RDWAY:RG  | *****  | 497.02 | 505.60 | 0.03*****   | 0.22 | 497.63 | 497.45 |        |        |
| APPRO:AS  | 492.10 | 0.26   | 486.92 | 504.30      | 0.16 | 2.18   | 0.22   | 497.67 | 497.45 |

# WSPRO OUTPUT FILE (continued)

HYDRAULIC ANALYSIS  
MANCHESTER BRIDGE #024 OVER LYME BROOK  
USGS PEMBROKE,NH 12/24/96  
\*\*\* RUN DATE & TIME: 01-21-97 12:46

==015 WSI IN WRONG FLOW REGIME AT SECID "EXITX": USED WSI = CRWS.  
WSI,CRWS = 489.72 490.13

| XSID:CODE | SRDL       | LEW  | AREA   | VHD        | HF     | EGL    | CRWS  | Q      | WSEL |
|-----------|------------|------|--------|------------|--------|--------|-------|--------|------|
| SRD       | FLEN       | REW  | K      | ALPH       | HO     | ERR    | FR#   | VEL    |      |
| EXITX:XS  | *****      | -10. | 216.   | 2.37 ***** | 492.50 | 490.13 | 2670. | 490.13 |      |
|           | -53. ***** | 36.  | 17436. | 1.00 ***** | *****  | 1.00   | 12.35 |        |      |

==125 FR# EXCEEDS FNTEST AT SECID "FULLV": TRIALS CONTINUED.  
FNTEST,FR#,WSEL,CRWS = 0.80 1.01 491.36 491.40

==110 WSEL NOT FOUND AT SECID "FULLV": REDUCED DELTAY.  
WSLIM1,WSLIM2,DELTAY = 489.63 499.88 0.50

==115 WSEL NOT FOUND AT SECID "FULLV": USED WSMIN = CRWS.  
WSLIM1,WSLIM2,CRWS = 489.63 499.88 491.40

==130 CRITICAL WATER-SURFACE ELEVATION A - S - S - U - M - E - D !!!!!  
ENERGY EQUATION N\_O\_T B\_A\_L\_A\_N\_C\_E\_D AT SECID "FULLV"  
WSBEG,WSEND,CRWS = 491.40 499.88 491.40

FULLV:FV 53. -10. 216. 2.37 \*\*\*\*\* 493.77 491.40 2670. 491.40  
0. 53. 36. 17436. 1.00 \*\*\*\*\* \*\*\*\*\* 1.00 12.35

<<<<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>>

==125 FR# EXCEEDS FNTEST AT SECID "APPRO": TRIALS CONTINUED.  
FNTEST,FR#,WSEL,CRWS = 0.80 0.97 493.74 493.63

==110 WSEL NOT FOUND AT SECID "APPRO": REDUCED DELTAY.  
WSLIM1,WSLIM2,DELTAY = 490.90 504.30 0.50

==115 WSEL NOT FOUND AT SECID "APPRO": USED WSMIN = CRWS.  
WSLIM1,WSLIM2,CRWS = 490.90 504.30 493.63

APPRO:AS 95. -11. 223. 2.22 2.17 495.94 493.63 2670. 493.72  
95. 95. 37. 17869. 1.00 0.00 0.00 0.98 11.95

<<<<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>>

==215 FLOW CLASS 1 SOLUTION INDICATES POSSIBLE ROAD OVERFLOW.  
WS1,WSSD,WS3,RGMIN = 500.70 0.00 494.77 497.02

==260 ATTEMPTING FLOW CLASS 4 SOLUTION.

==220 FLOW CLASS 1 (4) SOLUTION INDICATES POSSIBLE PRESSURE FLOW.  
WS3,WSIU,WS1,LSEL = 494.12 499.52 499.69 498.74

==245 ATTEMPTING FLOW CLASS 2 (5) SOLUTION.

<<<<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>>

| XSID:CODE | SRDL     | LEW | AREA   | VHD        | HF     | EGL    | CRWS  | Q      | WSEL |
|-----------|----------|-----|--------|------------|--------|--------|-------|--------|------|
| SRD       | FLEN     | REW | K      | ALPH       | HO     | ERR    | FR#   | VEL    |      |
| BRIDG:BR  | 53.      | 0.  | 252.   | 1.04 ***** | 500.14 | 493.54 | 2062. | 499.10 |      |
|           | 0. ***** | 38. | 20814. | 1.00 ***** | *****  | 0.56   | 8.17  |        |      |

TYPE PPCD FLOW C P/A LSEL BLEN XLAB XRAB  
4. \*\*\*\*\* 5. 0.453 \*\*\*\*\* 498.74 \*\*\*\*\* \*\*\*\*\* \*\*\*\*\*

| XSID:CODE | SRD  | FLEN | HF   | VHD  | EGL    | ERR   | Q    | WSEL   |      |      |
|-----------|------|------|------|------|--------|-------|------|--------|------|------|
| RDWAY:RG  | 22.  | 22.  | 0.03 | 0.27 | 500.54 | -0.01 | 584. | 499.96 |      |      |
|           | Q    | WLEN | LEW  | REW  | DMAX   | DAVG  | VMAX | VAVG   | HAVG | CAVG |
| LT:       | 584. | 87.  | -89. | -2.  | 2.9    | 1.1   | 6.1  | 6.3    | 1.7  | 3.2  |
| RT:       | 0.   | 1.   | 41.  | 42.  | 0.0    | 0.0   | 4.0  | 221.2  | 0.8  | 3.0  |

| XSID:CODE | SRDL | LEW  | AREA | VHD    | HF   | EGL    | CRWS   | Q     | WSEL   |  |
|-----------|------|------|------|--------|------|--------|--------|-------|--------|--|
| SRD       | FLEN | REW  | K    | ALPH   | HO   | ERR    | FR#    | VEL   |        |  |
| APPRO:AS  | 22.  | -27. | 640. | 0.27   | 0.09 | 500.58 | 493.63 | 2670. | 500.31 |  |
|           | 95.  | 24.  | 56.  | 70866. | 1.00 | 2.14   | -0.01  | 0.26  | 4.17   |  |

FIRST USER DEFINED TABLE.

| XSID:CODE | SRD      | LEW       | REW  | Q         | K      | AREA | VEL    | WSEL   |
|-----------|----------|-----------|------|-----------|--------|------|--------|--------|
| EXITX:XS  | -53.     | -10.      | 36.  | 2670.     | 17436. | 216. | 12.35  | 490.13 |
| FULLV:FV  | 0.       | -10.      | 36.  | 2670.     | 17436. | 216. | 12.35  | 491.40 |
| BRIDG:BR  | 0.       | 0.        | 38.  | 2062.     | 20814. | 252. | 8.17   | 499.10 |
| RDWAY:RG  | 22.***** | 584.***** | 584. | 584.***** | 0.     | 1.00 | 499.96 |        |
| APPRO:AS  | 95.      | -27.      | 56.  | 2670.     | 70866. | 640. | 4.17   | 500.31 |

SECOND USER DEFINED TABLE.

| XSID:CODE | CRWS   | FR#    | YMIN   | YMAX        | HF   | HO     | VHD    | EGL    | WSEL   |
|-----------|--------|--------|--------|-------------|------|--------|--------|--------|--------|
| EXITX:XS  | 490.13 | 1.00   | 483.02 | 498.61***** | 2.37 | 492.50 | 490.13 |        |        |
| FULLV:FV  | 491.40 | 1.00   | 484.29 | 499.88***** | 2.37 | 493.77 | 491.40 |        |        |
| BRIDG:BR  | 493.54 | 0.56   | 485.95 | 499.10***** | 1.04 | 500.14 | 499.10 |        |        |
| RDWAY:RG  | *****  | 497.02 | 505.60 | 0.03*****   | 0.27 | 500.54 | 499.96 |        |        |
| APPRO:AS  | 493.63 | 0.26   | 486.92 | 504.30      | 0.09 | 2.14   | 0.27   | 500.58 | 500.31 |

# WSPRO OUTPUT FILE (continued)

HYDRAULIC ANALYSIS  
 MANCHESTER BRIDGE #024 OVER LYME BROOK  
 USGS PEMBROKE, NH  
 12/24/96

==015 WSI IN WRONG FLOW REGIME AT SECID "EXITX": USED WSI = CRWS.  
 WSI,CRWS = 488.17 488.37

| XSID:CODE | SRDL       | LEW | AREA  | VHD        | HF     | EGL    | CRWS  | Q      | WSEL |
|-----------|------------|-----|-------|------------|--------|--------|-------|--------|------|
| SRD       | FLEN       | REW | K     | ALPH       | HO     | ERR    | FR#   | VEL    |      |
| EXITX:XS  | *****      | -7. | 141.  | 1.77 ***** | 490.14 | 488.37 | 1510. | 488.37 |      |
|           | -53. ***** | 33. | 9469. | 1.00 ***** | *****  | 1.00   | 10.68 |        |      |

==125 FR# EXCEEDS FNTEST AT SECID "FULLV": TRIALS CONTINUED.  
 FNTEST,FR#,WSEL,CRWS = 0.80 0.94 489.81 489.64  
 ==110 WSEL NOT FOUND AT SECID "FULLV": REDUCED DELTAY.  
 WSLIM1,WSLIM2,DELTAY = 487.87 499.88 0.50  
 ==115 WSEL NOT FOUND AT SECID "FULLV": USED WSMIN = CRWS.  
 WSLIM1,WSLIM2,CRWS = 487.87 499.88 489.64

|          |     |     |      |                 |        |        |       |        |  |
|----------|-----|-----|------|-----------------|--------|--------|-------|--------|--|
| FULLV:FV | 53. | -7. | 146. | 1.66 1.28       | 491.42 | 489.64 | 1510. | 489.76 |  |
|          | 0.  | 53. | 33.  | 9933. 1.00 0.00 | -0.01  | 0.96   | 10.33 |        |  |

<<<<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>>

==125 FR# EXCEEDS FNTEST AT SECID "APPRO": TRIALS CONTINUED.  
 FNTEST,FR#,WSEL,CRWS = 0.80 0.97 492.00 491.93  
 ==110 WSEL NOT FOUND AT SECID "APPRO": REDUCED DELTAY.  
 WSLIM1,WSLIM2,DELTAY = 489.26 504.30 0.50  
 ==115 WSEL NOT FOUND AT SECID "APPRO": USED WSMIN = CRWS.  
 WSLIM1,WSLIM2,CRWS = 489.26 504.30 491.93

|          |     |     |      |                 |        |        |       |        |  |
|----------|-----|-----|------|-----------------|--------|--------|-------|--------|--|
| APPRO:AS | 95. | -8. | 147. | 1.65 2.23       | 493.65 | 491.93 | 1510. | 492.00 |  |
|          | 95. | 95. | 34.  | 9796. 1.00 0.00 | 0.01   | 0.97   | 10.31 |        |  |

<<<<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>>

==215 FLOW CLASS 1 SOLUTION INDICATES POSSIBLE ROAD OVERFLOW.  
 WS1,WSSD,WS3,RGMIN = 497.09 0.00 492.29 497.02  
 ==260 ATTEMPTING FLOW CLASS 4 SOLUTION.  
 ==285 CRITICAL WATER-SURFACE ELEVATION A - S - S - U - M - E - D !!!!!  
 SECID "BRIDG" Q,CRWS = 1510. 492.29

<<<<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>>

| XSID:CODE | SRDL | LEW | AREA | VHD              | HF     | EGL    | CRWS  | Q      | WSEL |
|-----------|------|-----|------|------------------|--------|--------|-------|--------|------|
| SRD       | FLEN | REW | K    | ALPH             | HO     | ERR    | FR#   | VEL    |      |
| BRIDG:BR  | 53.  | 1.  | 115. | 2.67 *****       | 494.97 | 492.29 | 1510. | 492.29 |      |
|           | 0.   | 53. | 38.  | 9171. 1.00 ***** | *****  | 1.00   | 13.11 |        |      |

| TYPE | PPCD | FLOW | C           | P/A          | LSEL  | BLEN  | XLAB  | XRAB  |
|------|------|------|-------------|--------------|-------|-------|-------|-------|
| 4.   | **** | 4.   | 1.000 ***** | 498.74 ***** | ***** | ***** | ***** | ***** |

| XSID:CODE | SRD | FLEN | HF | VHD | EGL | ERR | Q                                    | WSEL |
|-----------|-----|------|----|-----|-----|-----|--------------------------------------|------|
| RDWAY:RG  | 22. |      |    |     |     |     |                                      |      |
|           |     |      |    |     |     |     | <<<<EMBANKMENT IS NOT OVERTOPPED>>>> |      |

| XSID:CODE | SRDL | LEW  | AREA | VHD              | HF     | EGL    | CRWS  | Q      | WSEL |
|-----------|------|------|------|------------------|--------|--------|-------|--------|------|
| SRD       | FLEN | REW  | K    | ALPH             | HO     | ERR    | FR#   | VEL    |      |
| APPRO:AS  | 22.  | -18. | 409. | 0.21 0.16        | 497.31 | 491.93 | 1510. | 497.09 |      |
|           | 95.  | 25.  | 47.  | 39597. 1.00 2.18 | 0.00   | 0.26   | 3.70  |        |      |

| M(G)  | M(K)  | KQ     | XLKQ | XRKQ | OTEL  |
|-------|-------|--------|------|------|-------|
| 0.107 | 0.000 | 41562. | -4.  | 34.  | ***** |

<<<<END OF BRIDGE COMPUTATIONS>>>>

FIRST USER DEFINED TABLE.

| XSID:CODE | SRD      | LEW   | REW | Q     | K      | AREA | VEL       | WSEL   |
|-----------|----------|-------|-----|-------|--------|------|-----------|--------|
| SRD       | FLEN     | REW   | K   | ALPH  | HO     | ERR  | FR#       | VEL    |
| EXITX:XS  | -53.     | -7.   | 33. | 1510. | 9469.  | 141. | 10.68     | 488.37 |
| FULLV:FV  | 0.       | -7.   | 33. | 1510. | 9933.  | 146. | 10.33     | 489.76 |
| BRIDG:BR  | 0.       | 1.    | 38. | 1510. | 9171.  | 115. | 13.11     | 492.29 |
| RDWAY:RG  | 22.***** | ***** | 0.  | 0.    | 0.     | 0.   | 1.00***** |        |
| APPRO:AS  | 95.      | -18.  | 47. | 1510. | 39597. | 409. | 3.70      | 497.09 |

SECOND USER DEFINED TABLE.

| XSID:CODE | CRWS   | FR#   | YMIN   | YMAX             | HF   | HO          | VHD    | EGL    | WSEL |
|-----------|--------|-------|--------|------------------|------|-------------|--------|--------|------|
| SRD       |        |       |        |                  |      |             |        |        |      |
| EXITX:XS  | 488.37 | 1.00  | 483.02 | 498.61*****      | 1.77 | 490.14      | 488.37 |        |      |
| FULLV:FV  | 489.64 | 0.96  | 484.29 | 499.88 1.28      | 0.00 | 1.66        | 491.42 | 489.76 |      |
| BRIDG:BR  | 492.29 | 1.00  | 485.95 | 499.10*****      | 2.67 | 494.97      | 492.29 |        |      |
| RDWAY:RG  | *****  | ***** | 497.02 | 505.60 0.03***** | 0.21 | 497.26***** |        |        |      |
| APPRO:AS  | 491.93 | 0.26  | 486.92 | 504.30 0.16 2.18 | 0.21 | 497.31      | 497.09 |        |      |

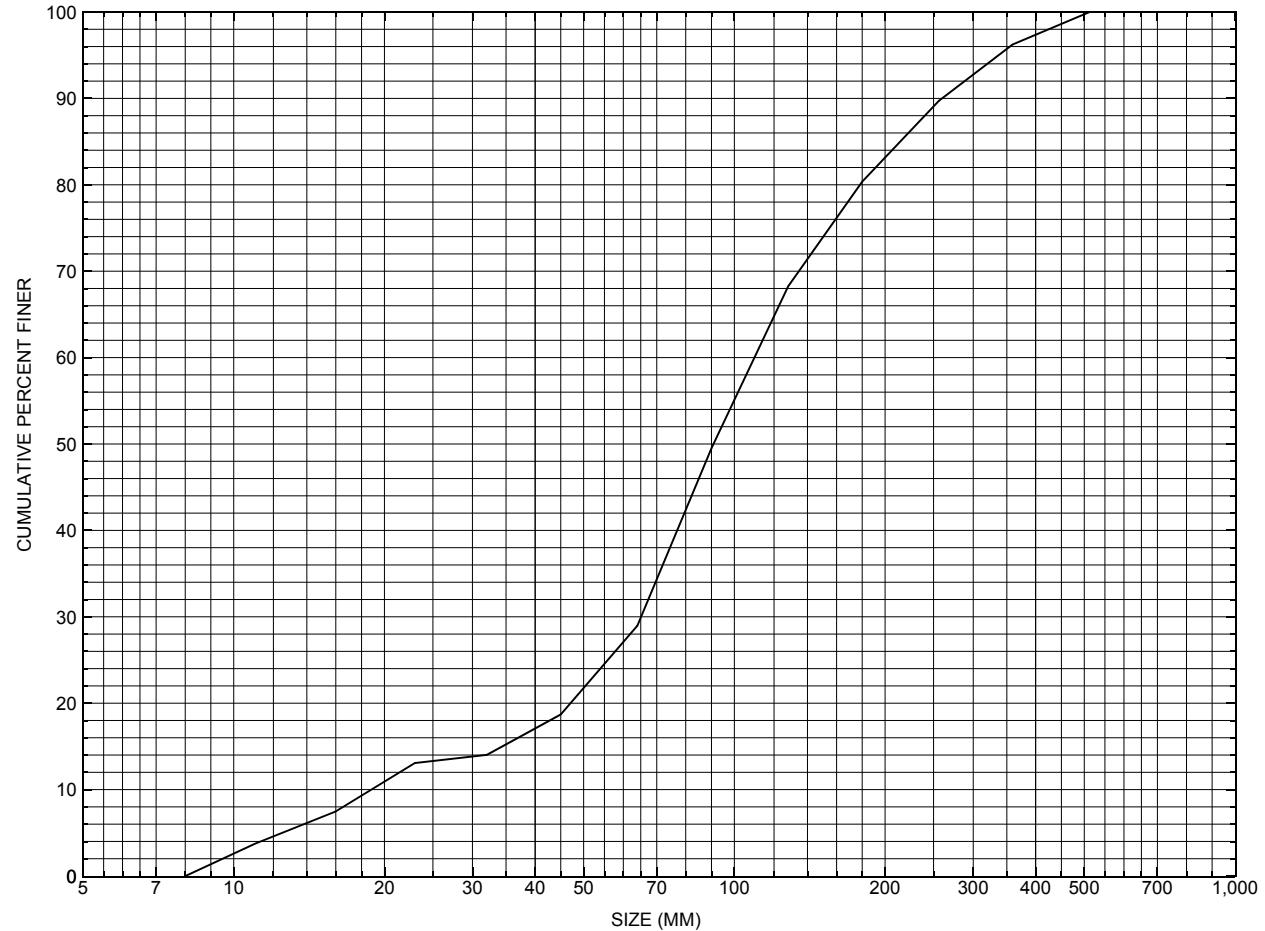
# WSPRO OUTPUT FILE (continued)

HYDRAULIC ANALYSIS / WSPRO CULVERT ROUTINES  
 MANCHESTER BRIDGE #024 OVER LYE BROOK  
 USGS PEMBROKE, NH 1/22/97

## CULVERT SUMMARY:

| ISHAPE | RISE    | SPAN   | BOTRAD | TOPRAD | CORNER |
|--------|---------|--------|--------|--------|--------|
| 1      | 147.00  | 262.00 | 0.00   | 0.00   | 0.00   |
| IEQNO  | CKE     | CN     | CVALPH | CVLENG | CVSLPE |
| 1      | 0.40    | 0.045  | 1.00   | 73.00  | 0.0192 |
| TWDEP  | QBBL    | HWIC   | HWOC   | OTFULL |        |
| 4.83   | 1614.00 | 9.84   | 10.70  | -4.36  |        |
| DSUBC  | ASUBC   | DSUBN  | ASUBN  |        |        |
| 5.54   | 120.87  | 6.38   | 139.40 |        |        |
| VELOT  | AOUT    | VELIN  | AIN    | HWE    |        |
| 13.35  | 120.87  | 11.58  | 139.40 | 495.80 |        |

## CULVERT SUMMARY:


| ISHAPE | RISE    | SPAN   | BOTRAD | TOPRAD | CORNER |
|--------|---------|--------|--------|--------|--------|
| 1      | 147.00  | 262.00 | 0.00   | 0.00   | 0.00   |
| IEQNO  | CKE     | CN     | CVALPH | CVLENG | CVSLPE |
| 1      | 0.40    | 0.045  | 1.00   | 73.00  | 0.0192 |
| TWDEP  | QBBL    | HWIC   | HWOC   | OTFULL |        |
| 6.30   | 2062.00 | 11.37  | 12.35  | -3.62  |        |
| DSUBC  | ASUBC   | DSUBN  | ASUBN  |        |        |
| 6.52   | 142.32  | 7.60   | 165.89 |        |        |
| VELOT  | AOUT    | VELIN  | AIN    | HWE    |        |
| 14.49  | 142.32  | 12.61  | 163.57 | 497.45 |        |

## CULVERT SUMMARY:

| ISHAPE | RISE    | SPAN   | BOTRAD | TOPRAD | CORNER |
|--------|---------|--------|--------|--------|--------|
| 1      | 147.00  | 262.00 | 0.00   | 0.00   | 0.00   |
| IEQNO  | CKE     | CN     | CVALPH | CVLENG | CVSLPE |
| 1      | 0.40    | 0.045  | 1.00   | 73.00  | 0.0192 |
| TWDEP  | QBBL    | HWIC   | HWOC   | OTFULL |        |
| 4.66   | 1510.00 | 9.47   | 10.29  | -4.53  |        |
| DSUBC  | ASUBC   | DSUBN  | ASUBN  |        |        |
| 5.30   | 115.62  | 6.09   | 133.03 |        |        |
| VELOT  | AOUT    | VELIN  | AIN    | HWE    |        |
| 13.06  | 115.62  | 11.45  | 131.88 | 495.39 |        |

APPENDIX C:

**BED-MATERIAL PARTICLE-SIZE DISTRIBUTION**



Appendix C. Bed material particle-size distribution for a pebble count in the channel approach of structure MANCUS00070024, in Manchester, Vermont.

**APPENDIX D:**  
**HISTORICAL DATA FORM**



Structure Number MANCUS00070024

### General Location Descriptive

Data collected by (First Initial, Full last name) L. Medalie

Date (MM/DD/YY) 09 / 28 / 95

Highway District Number (I - 2; nn) 01

County (FIPS county code; I - 3; nnn) 003

Town (FIPS place code; I - 4; nnnnn) 42850

Mile marker (I - 11; nnn.nnn) 003250

Waterway (I - 6) LYE BROOK

Road Name (I - 7):   

Route Number US7

Vicinity (I - 9) 1.4 MI S EXIT 4

Topographic Map Manchester

Hydrologic Unit Code: 2020003

Latitude (I - 16; nnnn.n) 43095

Longitude (I - 17; nnnnn.n) 73025

### Select Federal Inventory Codes

FHWA Structure Number (I - 8) 20001900240206

Maintenance responsibility (I - 21; nn) 01

Maximum span length (I - 48; nnnn) 0025

Year built (I - 27; YYYY) 1982

Structure length (I - 49; nnnnnn) 000028

Average daily traffic, ADT (I - 29; nnnnnn) 003750

Deck Width (I - 52; nn.n) 448

Year of ADT (I - 30; YY) 92

Channel & Protection (I - 61; n) 7

Opening skew to Roadway (I - 34; nn)   

Waterway adequacy (I - 71; n) 8

Operational status (I - 41; X) A

Underwater Inspection Frequency (I - 92B; XYY) N

Structure type (I - 43; nnn) 107

Year Reconstructed (I - 106) 0000

Approach span structure type (I - 44; nnn) 000

Clear span (nnn.n ft) 24.5

Number of spans (I - 45; nnn) 001

Vertical clearance from streambed (nnn.n ft) 10

Number of approach spans (I - 46; nnnn) 0000

Waterway of full opening (nnn.n ft<sup>2</sup>) 245

#### Comments:

According to structural inspection report dated 8/24/93, structure is a concrete rigid frame. Wings at the inlet and outlet are in good condition. The channel is straight entering the stone fill on the channel banks for a considerable distance US and DS. Currently, flow in the channel is over the entire width of the channel. There are concrete curbs with granite facings on each side of the structure. These curbs are in good condition with the exception of some minor map cracking. Overall, this structure is in good condition. Footings not exposed. Minor cracks on wings noted. No channel scour noted.

## Bridge Hydrologic Data

Is there hydrologic data available? Y if No, type *ctrl-n h* VTAOT Drainage area ( $mi^2$ ): 7.65

Terrain character: steep, mountainous, unstable

Stream character & type: -

Streambed material: boulders and gravel

Discharge Data (cfs): Q<sub>2.33</sub> 820 Q<sub>10</sub> 1000 Q<sub>25</sub> 1250  
Q<sub>50</sub> 1400 Q<sub>100</sub> 1520 Q<sub>500</sub> -

Record flood date (MM / DD / YY): - / - / - Water surface elevation (ft): -

Estimated Discharge (cfs): - Velocity at Q - (ft/s): -

Ice conditions (Heavy, Moderate, Light) : moderate Debris (Heavy, Moderate, Light): heavy

The stage increases to maximum highwater elevation (Rapidly, Not rapidly): rapidly

The stream response is (Flashy, Not flashy): -

Describe any significant site conditions upstream or downstream that may influence the stream's stage: -

Watershed storage area (in percent): - %

The watershed storage area is: - (1-mainly at the headwaters; 2-uniformly distributed; 3-immediately upstream of the site)

### Water Surface Elevation Estimates for Existing Structure:

|                              |                   |                 |                 |                 |                  |
|------------------------------|-------------------|-----------------|-----------------|-----------------|------------------|
| Peak discharge frequency     | Q <sub>2.33</sub> | Q <sub>10</sub> | Q <sub>25</sub> | Q <sub>50</sub> | Q <sub>100</sub> |
| Water surface elevation (ft) | <u>728.6</u>      | <u>729.4</u>    | <u>730.2</u>    | <u>730.8</u>    | <u>731.3</u>     |
| Velocity (ft / sec)          | <u>-</u>          | <u>-</u>        | <u>-</u>        | <u>12.0</u>     | <u>-</u>         |

Long term stream bed changes: -

Is the roadway overtopped below the Q<sub>100</sub>? (Yes, No, Unknown): - Frequency: -

Relief Elevation (ft): - Discharge over roadway at Q<sub>100</sub> ( $ft^3/sec$ ): -

Are there other structures nearby? (Yes, No, Unknown): - If No or Unknown, type *ctrl-n os*

Upstream distance (miles): - Town: - Year Built: -

Highway No. : - Structure No. : - Structure Type: -

Clear span (ft): - Clear Height (ft): - Full Waterway ( $ft^2$ ): -

Downstream distance (miles): \_\_\_\_\_ Town: \_\_\_\_\_ Year Built: \_\_\_\_\_  
Highway No. : \_\_\_\_\_ Structure No. : \_\_\_\_\_ Structure Type: \_\_\_\_\_  
Clear span (ft): \_\_\_\_\_ Clear Height (ft): \_\_\_\_\_ Full Waterway (ft<sup>2</sup>): \_\_\_\_\_

Comments:

**Hydraulic info from plans. Additional info: Estimated scour depth is 2.5 ft. Velocity of stream at design stage is 12 fps. Design discharge at Q50 is 1400 cfs. Ordinary high water elev at new structure is 725.1 ft. Design high water elev is 730.8 ft. Vertical clearance above design stage is 1.5 ft. Allowable water surface elevation is 732 ft (+/-) limited by top of frame at inlet.**

## USGS Watershed Data

### Watershed Hydrographic Data

Drainage area (DA) 8.132 mi<sup>2</sup>      Lake and pond area 0.15 mi<sup>2</sup>  
Watershed storage (ST) 1.67 %  
Bridge site elevation 780 ft      Headwater elevation 2941 ft  
Main channel length 6.749 mi  
10% channel length elevation 940 ft      85% channel length elevation 2580 ft  
Main channel slope (S) 323.99 ft / mi

### Watershed Precipitation Data

Average site precipitation \_\_\_\_\_ in      Average headwater precipitation \_\_\_\_\_ in  
Maximum 2yr-24hr precipitation event (I24,2) \_\_\_\_\_ in  
Average seasonal snowfall (Sn) \_\_\_\_\_ ft

## Bridge Plan Data

Are plans available? Y *If no, type ctrl-n pl* Date issued for construction (MM / YYYY): - / -  
Project Number FLH-F019-112 Minimum channel bed elevation: -  
Low superstructure elevation: USLAB - DSLAB - USRAB - DSRAB -  
Benchmark location description:  
**No Benchmark Information Available**

Reference Point (MSL, Arbitrary, Other): - Datum (NAD27, NAD83, Other): -  
Foundation Type: 1 *(1-Spreadfooting; 2-Pile; 3- Gravity; 4-Unknown)*  
If 1: Footing Thickness 2 Footing bottom elevation: -  
If 2: Pile Type: - *(1-Wood; 2-Steel or metal; 3-Concrete)* Approximate pile driven length: -  
If 3: Footing bottom elevation: -  
Is boring information available? - *If no, type ctrl-n bi* Number of borings taken: -  
Foundation Material Type: - *(1-regolith, 2-bedrock, 3-unknown)*  
Briefly describe material at foundation bottom elevation or around piles:  
**No Drill Boring Information Available**

Comments:

-

## Cross-sectional Data

Is cross-sectional data available? Y If no, type *ctrl-n xs*

Source (*FEMA, VTAOT, Other*)? VTAOT

Comments: -

|                        |  |  |  |  |  |  |  |  |  |  |  |
|------------------------|--|--|--|--|--|--|--|--|--|--|--|
| Station                |  |  |  |  |  |  |  |  |  |  |  |
| Feature                |  |  |  |  |  |  |  |  |  |  |  |
| Low cord elevation     |  |  |  |  |  |  |  |  |  |  |  |
| Bed elevation          |  |  |  |  |  |  |  |  |  |  |  |
| Low cord to bed length |  |  |  |  |  |  |  |  |  |  |  |

|                        |  |  |  |  |  |  |  |  |  |  |  |
|------------------------|--|--|--|--|--|--|--|--|--|--|--|
| Station                |  |  |  |  |  |  |  |  |  |  |  |
| Feature                |  |  |  |  |  |  |  |  |  |  |  |
| Low cord elevation     |  |  |  |  |  |  |  |  |  |  |  |
| Bed elevation          |  |  |  |  |  |  |  |  |  |  |  |
| Low cord to bed length |  |  |  |  |  |  |  |  |  |  |  |

Source (*FEMA, VTAOT, Other*)? \_\_\_\_\_

Comments:

|                        |  |  |  |  |  |  |  |  |  |  |  |
|------------------------|--|--|--|--|--|--|--|--|--|--|--|
| Station                |  |  |  |  |  |  |  |  |  |  |  |
| Feature                |  |  |  |  |  |  |  |  |  |  |  |
| Low cord elevation     |  |  |  |  |  |  |  |  |  |  |  |
| Bed elevation          |  |  |  |  |  |  |  |  |  |  |  |
| Low cord to bed length |  |  |  |  |  |  |  |  |  |  |  |

|                        |  |  |  |  |  |  |  |  |  |  |  |
|------------------------|--|--|--|--|--|--|--|--|--|--|--|
| Station                |  |  |  |  |  |  |  |  |  |  |  |
| Feature                |  |  |  |  |  |  |  |  |  |  |  |
| Low cord elevation     |  |  |  |  |  |  |  |  |  |  |  |
| Bed elevation          |  |  |  |  |  |  |  |  |  |  |  |
| Low cord to bed length |  |  |  |  |  |  |  |  |  |  |  |

**APPENDIX E:**  
**LEVEL I DATA FORM**



Structure Number MANCUS00070024

Qa/Qc Check by: EW Date: 9/27/96

Computerized by: EW Date: 9/27/96

Reviewed by: SAO Date: 2/24/97

### A. General Location Descriptive

1. Data collected by (First Initial, Full last name) L. MEDALIE Date (MM/DD/YY) 08 / 06 / 1996

2. Highway District Number 01

Mile marker 003250

County BENNINGTON 03

Town MANCHESTER 42850

Waterway (1 - 6) LYE BROOK

Road Name US 7

Route Number US 7

Hydrologic Unit Code: 02020003

3. Descriptive comments:

**LOCATED 1.4 MILES SOUTH OF EXIT 4. THE CHANNEL APPEARS TO HAVE BEEN CONSTRUCTED.**

### B. Bridge Deck Observations

4. Surface cover... LBUS 5 RBUS 5 LBDS 5 RBDS 6 Overall 5  
(2b us,ds,lb,rb: 1- Urban; 2- Suburban; 3- Row crops; 4- Pasture; 5- Shrub- and brushland; 6- Forest; 7- Wetland)

5. Ambient water surface... US 2 UB 2 DS 2 (1- pool; 2- riffle)

6. Bridge structure type 1 ( 1- single span; 2- multiple span; 3- single arch; 4- multiple arch; 5- cylindrical culvert; 6- box culvert; or 7- other)

7. Bridge length 28 (feet) Span length 25 (feet) Bridge width 44.8 (feet)

#### Road approach to bridge:

8. LB 1 RB 2 ( 0 even, 1- lower, 2- higher)

9. LB 1 RB 1 ( 1- Paved, 2- Not paved)

10. Embankment slope (run / rise in feet / foot):

US left \_\_\_\_\_ US right \_\_\_\_\_

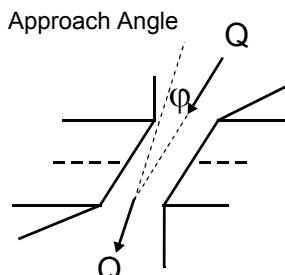
| 11.Type  | 12.Cond. | Protection | 13.Erosion | 14.Severity |
|----------|----------|------------|------------|-------------|
|          |          | LBUS       | RBUS       | RBDS        |
| <u>0</u> | -        | <u>2</u>   | <u>1</u>   |             |
| <u>0</u> | -        | <u>0</u>   | -          |             |
| <u>0</u> | -        | <u>2</u>   | <u>1</u>   |             |
| <u>2</u> | <u>1</u> | <u>0</u>   | -          |             |

Bank protection types: 0- none; 1- < 12 inches;

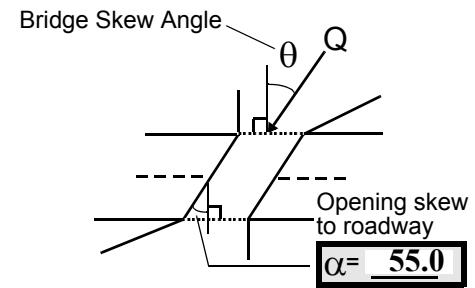
2- < 36 inches; 3- < 48 inches;

4- < 60 inches; 5- wall / artificial levee

Bank protection conditions: 1- good; 2- slumped;


3- eroded; 4- failed

Erosion: 0 - none; 1- channel erosion; 2- road wash; 3- both; 4- other


Erosion Severity: 0 - none; 1- slight; 2- moderate; 3- severe

#### Channel approach to bridge (BF):

15. Angle of approach: 0



16. Bridge skew: 45



17. Channel impact zone 1: Exist? Y (Y or N)

Where? RB (LB, RB) Severity 2

Range? 70 feet DS (US, UB, DS) to 120 feet DS

Channel impact zone 2: Exist? N (Y or N)

Where?   (LB, RB) Severity  

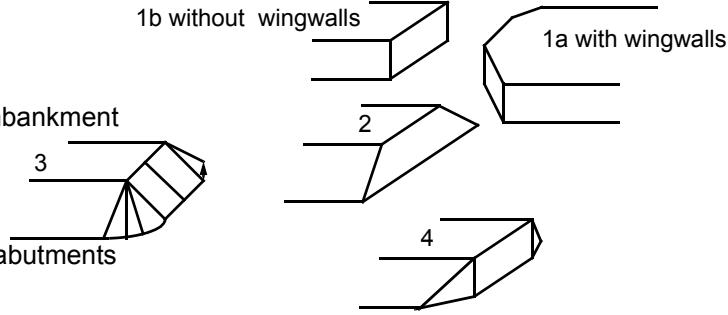
Range?   feet   (US, UB, DS) to   feet  

Impact Severity: 0- none to very slight; 1- Slight; 2- Moderate; 3- Severe

18. Bridge Type: 4

1a- Vertical abutments with wingwalls

1b- Vertical abutments without wingwalls


2- Vertical abutments and wingwalls, sloping embankment

Wingwalls parallel to abut. face

3- Spill through abutments

4- Sloping embankment, vertical wingwalls and abutments

Wingwall angle less than 90°.



19. Bridge Deck Comments (surface cover variations, measured bridge and span lengths, bridge type variations, approach overflow width, etc.)

**#4: At 110 feet upstream on the left bank, the surface cover is forest.**

**At 220 feet upstream on the right bank, the surface cover is forest.**

**#7: Measured bridge length = 27.4 feet (measured perpendicularly); span length = 25.4 feet, perpendicular to abutment; deck width parallel to abutments = 48 feet, and deck width perpendicular to curb = 40.5 feet.**

**#11: LBDS road embankment protection is the same as the bank protection.**

**#17: Maximum impact at 120 feet downstream.**

### C. Upstream Channel Assessment

|                      |                     |                       |                        |                       |
|----------------------|---------------------|-----------------------|------------------------|-----------------------|
| 21. Bank height (BF) | 22. Bank angle (BF) | 26. % Veg. cover (BF) | 27. Bank material (BF) | 28. Bank erosion (BF) |
| 20. SRD              | LB                  | RB                    | LB                     | RB                    |
| <u>58.5</u>          | <u>8.0</u>          | <u>      </u>         | <u>8.5</u>             | <u>      </u>         |

|   |   |      |     |   |   |
|---|---|------|-----|---|---|
| 1 | 1 | 5437 | 547 | 0 | 0 |
|---|---|------|-----|---|---|

|                |             |                   |           |                   |             |                  |           |
|----------------|-------------|-------------------|-----------|-------------------|-------------|------------------|-----------|
| 23. Bank width | <u>25.0</u> | 24. Channel width | <u>20</u> | 25. Thalweg depth | <u>57.5</u> | 29. Bed Material | <u>54</u> |
|----------------|-------------|-------------------|-----------|-------------------|-------------|------------------|-----------|

|                                                                                                                              |                                                        |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| 30. Bank protection type: LB <u>2</u> RB <u>2</u>                                                                            | 31. Bank protection condition: LB <u>1</u> RB <u>1</u> |
| SRD - Section ref. dist. to US face % Vegetation (Veg) cover: 1- 0 to 25%; 2- 26 to 50%; 3- 51 to 75%; 4- 76 to 100%         |                                                        |
| Bed and bank Material: 0- organics; 1- silt / clay, < 1/16mm; 2- sand, 1/16 - 2mm; 3- gravel, 2 - 64mm;                      |                                                        |
| 4- cobble, 64 - 256mm; 5- boulder, > 256mm; 6- bedrock; 7- manmade                                                           |                                                        |
| Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting                         |                                                        |
| Bank protection types: 0- absent; 1- < 12 inches; 2- < 36 inches; 3- < 48 inches; 4- < 60 inches; 5- wall / artificial levee |                                                        |
| Bank protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed                                                        |                                                        |

32. Comments (bank material variation, minor inflows, protection extent, etc.):

**#26: Left bank vegetation cover changes to type 3 beyond 110 feet upstream. Right bank surface cover changes to type 3 beyond 220 feet upstream.**

**#27: Bank material on both sides is the stone protection.**

**#30: LB protection extends from bridge face to 110 feet upstream. RB protection extends from 20 feet upstream (end of wingwall) to 220 feet upstream.**

Boulders are positioned across the channel at 83 feet upstream, creating a 1.5 feet drop. Another 1.5 feet drop exists at 94 feet upstream.

33. Point/Side bar present? Y (Y or N, if N type ctrl-n pb) 34. Mid-bar distance: 86 35. Mid-bar width: 17  
 36. Point bar extent: \*45 feet US (US, UB) to 120 feet US (US, UB, DS) positioned 50 %LB to 80 %RB  
 37. Material: 54  
 38. Point or side bar comments (Circle Point or Side; Note additional bars, material variation, status, etc.):  
 \* Measured from the downstream end of the USRWW, the bar extends to 20 feet upstream.

39. Is a cut-bank present? N (Y or if N type ctrl-n cb) 40. Where? - (LB or RB)  
 41. Mid-bank distance: - 42. Cut bank extent: - feet - (US, UB) to - feet - (US, UB, DS)  
 43. Bank damage: - (1- eroded and/or creep; 2- slip failure; 3- block failure)  
 44. Cut bank comments (eg. additional cut banks, protection condition, etc.):  
**NO CUT BANKS**

45. Is channel scour present? N (Y or if N type ctrl-n cs) 46. Mid-scour distance: -  
 47. Scour dimensions: Length - Width - Depth : - Position - %LB to - %RB  
 48. Scour comments (eg. additional scour areas, local scouring process, etc.):  
**NO CHANNEL SCOUR**

49. Are there major confluences? N (Y or if N type ctrl-n mc) 50. How many? -  
 51. Confluence 1: Distance - 52. Enters on - (LB or RB) 53. Type - (1- perennial; 2- ephemeral)  
 Confluence 2: Distance - Enters on - (LB or RB) Type - (1- perennial; 2- ephemeral)  
 54. Confluence comments (eg. confluence name):  
**NO MAJOR CONFLUENCES**

#### D. Under Bridge Channel Assessment

55. Channel restraint (BF)? LB 2 ... (1- natural bank; 2- abutment; 3- artificial levee)

| 56. Height (BF) |    | 57 Angle (BF) |    |
|-----------------|----|---------------|----|
| LB              | RB | LB            | RB |
| <u>19.5</u>     |    | <u>1.0</u>    |    |

| 61. Material (BF) |          | 62. Erosion (BF) |    |
|-------------------|----------|------------------|----|
| LB                | RB       | LB               | RB |
| <u>2</u>          | <u>7</u> | <u>7</u>         | -  |

58. Bank width (BF) - 59. Channel width - 60. Thalweg depth 90.0 63. Bed Material -

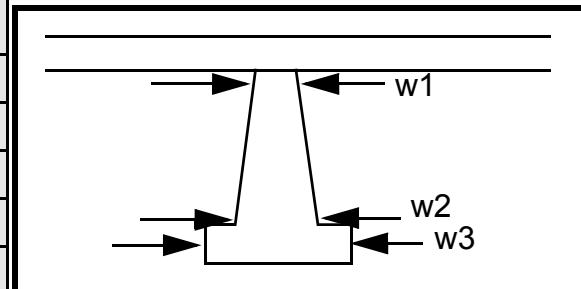
Bed and bank Material: 0- organics; 1- silt / clay, < 1/16mm; 2- sand, 1/16 - 2mm; 3- gravel, 2 - 64mm; 4- cobble, 64 - 256mm; 5- boulder, > 256mm; 6- bedrock; 7- manmade

Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting

64. Comments (bank material variation, minor inflows, protection extent, etc.):

**453**




83. Wingwall and protection comments (eg. undermined penetration, unusual scour processes, etc.):

-  
-  
-  
-  
-  
2  
1  
3  
3  
1  
1

Piers:

84. Are there piers? #82 (Y or if N type ctrl-n pr)

| 85.<br>Pier no. | width (w) feet |    |    | elevation (e) feet |      |      |
|-----------------|----------------|----|----|--------------------|------|------|
|                 | w1             | w2 | w3 | e@w1               | e@w2 | e@w3 |
| Pier 1          |                |    |    | 70.0               | 12.0 | 15.0 |
| Pier 2          |                |    |    | 37.5               | 15.0 | 31.0 |
| Pier 3          |                |    | -  | 75.0               | 14.0 | -    |
| Pier 4          | -              | -  | -  | -                  | -    | -    |



|                     |        |       |       |   |
|---------------------|--------|-------|-------|---|
| Level 1 Pier Descr. | 1      | 2     | 3     | 4 |
| 86. Location (BF)   | :      | and   | exte  |   |
| 87. Type            | Win    | dow   | nds   |   |
| 88. Material        | gwal   | nstre | from  |   |
| 89. Shape           | l      | am    | the   |   |
| 90. Inclined?       | pro-   | bank  | wing  |   |
| 91. Attack ∠ (BF)   | tec-   | pro-  | walls |   |
| 92. Pushed          | tion   | tec-  | to    |   |
| 93. Length (feet)   | -      | -     | -     | - |
| 94. # of piles      | is the | tion. | the   |   |
| 95. Cross-members   | same   | The   | chan  |   |
| 96. Scour Condition | as     | pro-  | nel   | N |
| 97. Scour depth     | upst   | tec-  | bank  | - |
| 98. Exposure depth  | ream   | tion  | s.    | - |

LFP, LTB, LB, MCL, MCM, MCR, RB, RTB, RFP

1- Solid pier, 2- column, 3- bent

1- Wood; 2- concrete; 3- metal; 4- stone

1- Round; 2- Square; 3- Pointed

Y- yes; N- no

LB or RB

0- none; 1- laterals; 2- diagonals; 3- both

0- not evident; 1- evident (comment);  
2- footing exposed; 3- piling exposed;  
4- undermined footing; 5- settled; 6- failed

99. Pier comments (eg. undermined penetration, protection and protection extent, unusual scour processes, etc.):

-  
-  
-  
-  
-  
-  
-  
-  
-

## E. Downstream Channel Assessment

100.

| SRD | Bank height (BF) |    | Bank angle (BF) |    | % Veg. cover (BF) |    | Bank material (BF) |    | Bank erosion (BF) |    |
|-----|------------------|----|-----------------|----|-------------------|----|--------------------|----|-------------------|----|
|     | LB               | RB | LB              | RB | LB                | RB | LB                 | RB | LB                | RB |
| -   | -                | -  | -               | -  | -                 | -  | -                  | -  | -                 | -  |

Bank width (BF)  Channel width  Thalweg depth  Bed Material

Bank protection type (Qmax): LB  RB  Bank protection condition: LB  RB

SRD - Section ref. dist. to US face % Vegetation (Veg) cover: 1- 0 to 25%; 2- 26 to 50%; 3- 51 to 75%; 4- 76 to 100%

Bed and bank Material: 0- organics; 1- silt / clay, < 1/16mm; 2- sand, 1/16 - 2mm; 3- gravel, 2 - 64mm;  
4- cobble, 64 - 256mm; 5- boulder, > 256mm; 6- bedrock; 7- manmade

Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting

Bank protection types: 0- absent; 1- < 12 inches; 2- < 36 inches; 3- < 48 inches; 4- < 60 inches; 5- wall / artificial levee

Bank protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed

Comments (eg. bank material variation, minor inflows, protection extent, etc.):

-  
-  
-  
-  
-  
-  
-  
-  
-  
-  
-  
-  
-  
-  
-  
-  
-  
-

101. Is a drop structure present?  (Y or N, if N type ctrl-n ds)

102. Distance:  feet

103. Drop:  feet

104. Structure material:  (1- steel sheet pile; 2- wood pile; 3- concrete; 4- other)

105. Drop structure comments (eg. downstream scour depth):

-  
-  
-  
-  
-  
-  
-

106. Point/Side bar present? - (Y or N. if N type ctrl-n pb) Mid-bar distance: - Mid-bar width: NO

Point bar extent: PIE feet RS (US, UB, DS) to        feet        (US, UB, DS) positioned        %LB to        %RB

Material:       

Point or side bar comments (Circle Point or Side; note additional bars, material variation, status, etc.):

Is a cut-bank present? 1 (Y or if N type ctrl-n cb) Where? 1 (LB or RB) Mid-bank distance: 573

Cut bank extent: 573 feet 0 (US, UB, DS) to 0 feet 45 (US, UB, DS)

Bank damage: 2 ( 1- eroded and/or creep; 2- slip failure; 3- block failure)

Cut bank comments (eg. additional cut banks, protection condition, etc.):

4

1

1

**LB protection extends from 12 feet downstream to over 300 feet downstream.**

Is channel scour present? RB (Y or if N type ctrl-n cs) Mid-scour distance: pro-

Scour dimensions: Length tec- Width tion Depth: exte Positioned nds %LB to fro %RB

Scour comments (eg. additional scour areas, local scouring process, etc.):

**m downstream bridge face to over 300 feet downstream.**

**Bank material both sides is boulder-sized protection.**

Are there major confluences?        (Y or if N type ctrl-n mc) How many?       

Confluence 1: Distance        Enters on        (LB or RB) Type        ( 1- perennial; 2- ephemeral)

Confluence 2: Distance        Enters on        (LB or RB) Type        ( 1- perennial; 2- ephemeral)

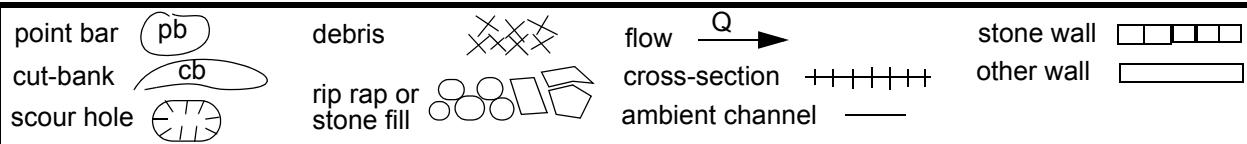
Confluence comments (eg. confluence name):

## **F. Geomorphic Channel Assessment**

107. Stage of reach evolution N

- 1- Constructed
- 2- Stable
- 3- Aggrated
- 4- Degraded
- 5- Laterally unstable
- 6- Vertically and laterally unstable

108. Evolution comments (*Channel evolution not considering bridge effects; See HEC-20, Figure 1 for geomorphic descriptors*):


**NO DROP STRUCTURE**

**Many small boulder “dams” with the largest at 116 feet downstream and 175 feet downstream. Each boulder dam creates a 1 to 1.25 feet drop in water level.**

**N**

-  
-  
-  
-  
-

### 109. G. Plan View Sketch



**APPENDIX F:**  
**SCOUR COMPUTATIONS**

## SCOUR COMPUTATIONS

Structure Number: MANCUS00070024  
 Road Number: US7  
 Stream: LYB BROOK

Town: MANCHESTER  
 County: BENNINGTON

Initials SAO      Date: 1/21/97      Checked: RF

Analysis of contraction scour, live-bed or clear water?

Critical Velocity of Bed Material (converted to English units)  
 $V_c = 11.21 * y_1^{0.1667} * D_{50}^{0.33}$  with  $S_s = 2.65$   
 (Richardson and others, 1995, p. 28, eq. 16)

| Characteristic                               | 100 yr | 500 yr | other Q |
|----------------------------------------------|--------|--------|---------|
| Total discharge, cfs                         | 1620   | 2670   | 1510    |
| Main Channel Area, ft <sup>2</sup>           | 432    | 641    | 408     |
| Left overbank area, ft <sup>2</sup>          | 0      | 0      | 0       |
| Right overbank area, ft <sup>2</sup>         | 0      | 0      | 0       |
| Top width main channel, ft                   | 67     | 83     | 65      |
| Top width L overbank, ft                     | 0      | 0      | 0       |
| Top width R overbank, ft                     | 0      | 0      | 0       |
| D <sub>50</sub> of channel, ft               | 0.295  | 0.295  | 0.295   |
| D <sub>50</sub> left overbank, ft            | --     | --     | --      |
| D <sub>50</sub> right overbank, ft           | --     | --     | --      |
| <br>                                         |        |        |         |
| y <sub>1</sub> , average depth, MC, ft       | 6.4    | 7.7    | 6.3     |
| y <sub>1</sub> , average depth, LOB, ft      | ERR    | ERR    | ERR     |
| y <sub>1</sub> , average depth, ROB, ft      | ERR    | ERR    | ERR     |
| <br>                                         |        |        |         |
| Total conveyance, approach                   | 42599  | 70917  | 39573   |
| Conveyance, main channel                     | 42599  | 70917  | 39573   |
| Conveyance, LOB                              | 0      | 0      | 0       |
| Conveyance, ROB                              | 0      | 0      | 0       |
| Percent discrepancy, conveyance              | 0.0000 | 0.0000 | 0.0000  |
| Q <sub>m</sub> , discharge, MC, cfs          | 1620.0 | 2670.0 | 1510.0  |
| Q <sub>l</sub> , discharge, LOB, cfs         | 0.0    | 0.0    | 0.0     |
| Q <sub>r</sub> , discharge, ROB, cfs         | 0.0    | 0.0    | 0.0     |
| <br>                                         |        |        |         |
| V <sub>m</sub> , mean velocity MC, ft/s      | 3.8    | 4.2    | 3.7     |
| V <sub>l</sub> , mean velocity, LOB, ft/s    | ERR    | ERR    | ERR     |
| V <sub>r</sub> , mean velocity, ROB, ft/s    | ERR    | ERR    | ERR     |
| V <sub>c-m</sub> , crit. velocity, MC, ft/s  | 10.2   | 10.5   | 10.1    |
| V <sub>c-l</sub> , crit. velocity, LOB, ft/s | ERR    | ERR    | ERR     |
| V <sub>c-r</sub> , crit. velocity, ROB, ft/s | ERR    | ERR    | ERR     |

### Results

Live-bed(1) or Clear-Water(0) Contraction Scour?

|                |     |     |     |
|----------------|-----|-----|-----|
| Main Channel   | 0   | 0   | 0   |
| Left Overbank  | N/A | N/A | N/A |
| Right Overbank | N/A | N/A | N/A |

Clear Water Contraction Scour in MAIN CHANNEL

$y_2 = (Q_2^2 / (131 * D_m^{(2/3)} * W_2^2))^{(3/7)}$  Converted to English Units  
 $y_s = y_2 - y_{\text{bridge}}$   
 (Richardson and others, 1995, p. 32, eq. 20, 20a)

| Bridge Section                                             | Q100    | Q500    | Other Q |
|------------------------------------------------------------|---------|---------|---------|
| (Q) total discharge, cfs                                   | 1620    | 2670    | 1510    |
| (Q) discharge thru bridge, cfs                             | 1614    | 2062    | 1510    |
| Main channel conveyance                                    | 3904    | 7044    | 3577    |
| Total conveyance                                           | 3904    | 7044    | 3577    |
| Q <sub>2</sub> , bridge MC discharge, cfs                  | 1614    | 2062    | 1510    |
| Main channel area, ft <sup>2</sup>                         | 120     | 142     | 115     |
| Main channel width (normal), ft                            | 21.5    | 21.5    | 21.5    |
| Cum. width of piers in MC, ft                              | 0.0     | 0.0     | 0.0     |
| W, adjusted width, ft                                      | 21.5    | 21.5    | 21.5    |
| Y <sub>bridge</sub> (avg. depth at br.), ft                | 5.58    | 6.60    | 5.35    |
| D <sub>m</sub> , median (1.25*D50), ft                     | 0.36875 | 0.36875 | 0.36875 |
| y <sub>2</sub> , depth in contraction, ft                  | 6.67    | 8.22    | 6.30    |
| ys, scour depth (y <sub>2</sub> -y <sub>bridge</sub> ), ft | 1.09    | 1.62    | 0.95    |

Pressure Flow Scour (contraction scour for orifice flow conditions)

Chang pressure flow equation  $H_b + Y_s = C_q * q_{br} / V_c$   
 $C_q = 1 / C_f * C_c$     $C_f = 1.5 * Fr^{0.43}$  ( $\leq 1$ )    $C_c = \text{SQRT}[0.10(H_b / (y_a - w) - 0.56)] + 0.79$  ( $\leq 1$ )  
 Umbrell pressure flow equation  
 $(H_b + Y_s) / y_a = 1.1021 * [(1 - w / y_a) * (V_a / V_c)]^{0.6031}$   
 (Richardson and others, 1995, p. 144-146)

|                                                       | Q100  | Q500  | OtherQ |
|-------------------------------------------------------|-------|-------|--------|
| Q, total, cfs                                         | 1620  | 2670  | 1510   |
| Q, thru bridge MC, cfs                                | 1614  | 2062  | 1510   |
| V <sub>c</sub> , critical velocity, ft/s              | 10.18 | 10.49 | 10.14  |
| V <sub>a</sub> , velocity MC approach, ft/s           | 3.75  | 4.17  | 3.70   |
| Main channel width (normal), ft                       | 21.5  | 21.5  | 21.5   |
| Cum. width of piers in MC, ft                         | 0.0   | 0.0   | 0.0    |
| W, adjusted width, ft                                 | 21.5  | 21.5  | 21.5   |
| q <sub>br</sub> , unit discharge, ft <sup>2</sup> /s  | 75.1  | 95.9  | 70.2   |
| Area of full opening, ft <sup>2</sup>                 | 120.0 | 252.0 | 115.0  |
| H <sub>b</sub> , depth of full opening, ft            | 5.58  | 11.72 | 5.35   |
| Fr, Froude number, bridge MC                          | 0     | 0.56  | 0      |
| C <sub>f</sub> , Fr correction factor ( $\leq 1.0$ )  | 0.00  | 1.00  | 0.00   |
| **Area at downstream face, ft <sup>2</sup>            | N/A   | 142   | N/A    |
| **H <sub>b</sub> , depth at downstream face, ft       | N/A   | 6.60  | N/A    |
| **Fr, Froude number at DS face                        | ERR   | 1.00  | ERR    |
| **C <sub>f</sub> , for downstream face ( $\leq 1.0$ ) | N/A   | 1.00  | N/A    |

|                                     |       |        |       |
|-------------------------------------|-------|--------|-------|
| Elevation of Low Steel, ft          | 0     | 498.74 | 0     |
| Elevation of Bed, ft                | -5.58 | 487.02 | -5.35 |
| Elevation of Approach, ft           | 0     | 500.31 | 0     |
| Friction loss, approach, ft         | 0     | 0.09   | 0     |
| Elevation of WS immediately US, ft  | 0.00  | 500.22 | 0.00  |
| ya, depth immediately US, ft        | 5.58  | 13.20  | 5.35  |
| Mean elevation of deck, ft          | 0     | 501.21 | 0     |
| w, depth of overflow, ft (>=0)      | 0.00  | 0.00   | 0.00  |
| Cc, vert contrac correction (<=1.0) | 1.00  | 0.97   | 1.00  |
| **Cc, for downstream face (<=1.0)   | ERR   | 0.79   | ERR   |

|                                  |     |       |     |
|----------------------------------|-----|-------|-----|
| Ys, scour w/Chang equation, ft   | N/A | -2.31 | N/A |
| Ys, scour w/Umbrell equation, ft | N/A | -3.39 | N/A |

\*\*=for UNsubmerged orifice flow only.

|                                    |     |      |     |
|------------------------------------|-----|------|-----|
| **Ys, scour w/Chang equation, ft   | N/A | 4.97 | N/A |
| **Ys, scour w/Umbrell equation, ft | N/A | 1.73 | N/A |

#### Armoring

$$Dc = [(1.94*V^2)/(5.75*\log(12.27*y/D90))]^{1/2} / [0.03*(165-62.4)]$$

$$\text{Depth to Armoring} = 3 * (1/Pc - 1)$$

(Federal Highway Administration, 1993)

|                                         |        |        |         |
|-----------------------------------------|--------|--------|---------|
| Downstream bridge face property         | 100-yr | 500-yr | Other Q |
| Q, discharge thru bridge MC, cfs        | 1614   | 2062   | 1510    |
| Main channel area (DS), ft <sup>2</sup> | 120    | 142    | 115     |
| Main channel width (normal), ft         | 21.5   | 21.5   | 21.5    |
| Cum. width of piers, ft                 | 0.0    | 0.0    | 0.0     |
| Adj. main channel width, ft             | 21.5   | 21.5   | 21.5    |
| D90, ft                                 | 0.8481 | 0.8481 | 0.8481  |
| D95, ft                                 | 1.1030 | 1.1030 | 1.1030  |
| Dc, critical grain size, ft             | 0.9481 | 1.0251 | 0.9214  |
| Pc, Decimal percent coarser than Dc     | 0.079  | 0.064  | 0.084   |
| Depth to armoring, ft                   | 33.25  | 44.98  | 30.06   |

#### Abutment Scour

##### Froehlich's Abutment Scour

$$Ys/Y1 = 2.27 * K1 * K2 * (a'/Y1)^{0.43} * Fr1^{0.61+1}$$

(Richardson and others, 1995, p. 48, eq. 28)

| Characteristic                                                                     | Left Abutment |          |         |          | Right Abutment |         |  |  |
|------------------------------------------------------------------------------------|---------------|----------|---------|----------|----------------|---------|--|--|
|                                                                                    | 100 yr Q      | 500 yr Q | Other Q | 100 yr Q | 500 yr Q       | Other Q |  |  |
| (Qt), total discharge, cfs                                                         | 1620          | 2670     | 1510    | 1620     | 2670           | 1510    |  |  |
| a', abut.length blocking flow, ft                                                  | 27.4          | 34.8     | 26.5    | 18.1     | 26.2           | 17      |  |  |
| Ae, area of blocked flow ft <sup>2</sup>                                           | 166           | 164      | 158     | 56       | 113            | 49.3    |  |  |
| Qe, discharge blocked abut., cfs                                                   | --            | --       | 562     | 119      | 289            | 101     |  |  |
| (If using Qtot_overbank to obtain Ve, leave Qe blank and enter Ve and Fr manually) |               |          |         |          |                |         |  |  |
| Ve, (Qe/Ae), ft/s                                                                  | 3.60          | 4.05     | 3.56    | 2.13     | 2.56           | 2.05    |  |  |
| ya, depth of f/p flow, ft                                                          | 6.06          | 4.71     | 5.96    | 3.09     | 4.31           | 2.90    |  |  |

--Coeff., K1, for abut. type (1.0, verti.; 0.82, verti. w/ wingwall; 0.55, spillthru)

|                                                                                |       |       |       |       |       |       |
|--------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|
| K1                                                                             | 0.82  | 0.82  | 0.82  | 0.82  | 0.82  | 0.82  |
| --Angle (theta) of embankment (<90 if abut. points DS; >90 if abut. points US) |       |       |       |       |       |       |
| theta                                                                          | 145   | 145   | 145   | 35    | 35    | 35    |
| K2                                                                             | 1.06  | 1.06  | 1.06  | 0.88  | 0.88  | 0.88  |
| Fr, froude number f/p flow                                                     | 0.256 | 0.262 | 0.257 | 0.213 | 0.217 | 0.212 |
| ys, scour depth, ft                                                            | 16.06 | 14.45 | 15.75 | 7.33  | 10.39 | 6.87  |

#### Abutment riprap Sizing

##### Isbash Relationship

$D50=y*K*Fr^2/(Ss-1)$  and  $D50=y*K*(Fr^2)^{0.14}/(Ss-1)$   
 (Richardson and others, 1995, p112, eq. 81,82)

| Downstream bridge face property                    | Q100 | Q500 | Other Q | Q100               | Q500 | Other Q |
|----------------------------------------------------|------|------|---------|--------------------|------|---------|
| Fr, Froude Number (DS)                             | 1    | 1    | 1       | 1                  | 1    | 1       |
| y, depth of flow in bridge (DS), ft                | 5.58 | 6.60 | 5.35    | 5.58               | 6.60 | 5.35    |
| Median Stone Diameter for riprap at: left abutment |      |      |         | right abutment, ft |      |         |
| Fr<=0.8 (vertical abut.)                           | ERR  | ERR  | ERR     | ERR                | ERR  | ERR     |
| Fr>0.8 (vertical abut.)                            | 2.33 | 2.76 | 2.24    | 2.33               | 2.76 | 2.24    |