

Digital geologic map of part of the Thompson Falls 1:100,000 quadrangle, Idaho

Open-File Report 99-438

Prepared in cooperation with the Idaho Geological Survey

1999

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. The digital database is not meant to be used or displayed at any scale larger than 1:100,000 (e.g., 1:62,500 or 1:24,000).

U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY

² U.S. Geological Survey, Spokane, WA 99201

¹ Idaho Geological Survey, University of Idaho, Moscow, ID 83844

Table of Contents

INTRODUCTION	1
DESCRIPTION OF MAP UNITS	2
DATA SOURCES, PROCESSING, AND ACCURACY	5
GIS DOCUMENTATION	8
Linear Features Areal Features Point Features Source Attributes	10 12
OBTAINING DIGITAL DATA	
OBTAINING PAPER MAPS	14
REFERENCES CITED	15
APPENDIX A - TRANSFORMATION REPORT FOR THOMPSON FALLS GIS	16
APPENDIX B - LIST OF DIGITAL FILES IN THE THOMPSON FALLS GIS	18
APPENDIX C - ARC/INFO MACRO LANGUAGE PROGRAM (TF100K.AML) USEI GEOLOGIC MAP OF THE THOMPSON FALLS QUADRANGLE	
APPENDIX D - METADATA (TF100K.MET)	22
List of Figures	
Figure 1. Index map showing the geographic extent of the mapped areafold Figure 2. Location map showing sources of compilation dataFigure 3. Explanation for the simplified digital geologic map of the Thompson Falls quadra Figure 4. Simplified digital geologic map of the Thompson Falls 1:100,000 quadrangle, ID Figure 5: Relationships between feature attribute tables and look-up tables	3 angle, ID 6 7

Introduction

The geology of the Thompson Falls 1:100,000 quadrangle, Idaho was compiled by Reed S. Lewis in 1997 onto a 1:100,000-scale greenline mylar of the topographic base map for input into a geographic information system (GIS). The resulting digital geologic map GIS can be queried in many ways to produce a variety of geologic maps. Digital base map data files (topography, roads, towns, rivers and lakes, etc.) are not included: they may be obtained from a variety of commercial and government sources. This database is not meant to be used or displayed at any scale larger than 1:100,000 (e.g., 1:62,500 or 1:24,000).

The map area is located in north Idaho (Fig. 1). This open-file report describes the geologic map units, the methods used to convert the geologic map data into a digital format, the Arc/Info GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet.

We thank Steve Box, Tom Frost, and Brian White for their technical reviews and Nancy Shock for a digital review.

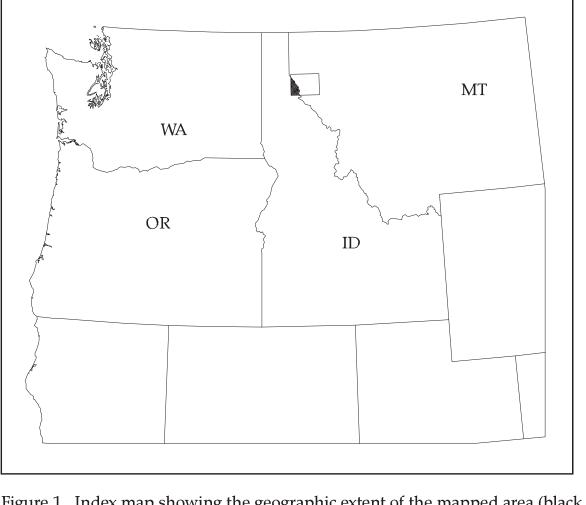


Figure 1. Index map showing the geographic extent of the mapped area (black fill) and the Thompson Falls quadrangle with respect to the Pacific Northwest.

Description of Map Units

The geologic map was compiled primarily from Griggs (unpublished field maps dated 1961-1969, 1973), Harrison and others (1986), Hobbs and others (1965), Hosterman (1956) and Ransome and Calkins (1908) (see Fig. 2, areas 1-6). Additional map sources used were Gibson and others (1941), Schalck (1989), Shenon (1938), Umpleby and Jones (1923), and B.G. White (written commun., 1997) (see Fig. 2, areas A-E).

- Qa ALLUVIAL DEPOSITS (HOLOCENE)--Stream deposits in modern drainages.
- Qg GLACIAL DEPOSITS (QUATERNARY)--Poorly sorted and poorly stratified, unconsolidated deposits principally of glacial origin. Includes till in lateral and ground moraines as well as outwash and minor modern stream alluvium.
- Tsm SEDIMENT (MIOCENE)--Unconsolidated, poorly sorted, fluvial sediment 70 to 330 m above the present stream levels. Ranges in size from clay to boulders and is derived from local sources (Hosterman, 1956).
- Kms MONZONITE AND SYENITE (CRETACEOUS)--Small stocks of hornblende monzonite, porphyritic hornblende monzonite, alkali-feldspar syenite, and pyroxene syenite (Schlack, 1989). Age determinations have yielded conflicting dates, but emplacement ages of about 100 Ma are likely (Marvin and others, 1984; Schlack, 1989).
- Ysp STRIPED PEAK FORMATION (MIDDLE PROTEROZOIC)--Interbedded quartzite and argillite with some arenaceous dolomitic beds; usually thinly bedded (Hobbs and others, 1965). Colors range from purplish gray and very pale pink to gray and green. Mud cracks and ripple marks common.
- Ywu WALLACE FORMATION, UPPER MEMBER (MIDDLE PROTEROZOIC)—Predominantly thinly laminated medium- to dark-gray argillite; some interbedded light-gray quartzite and arenaceous dolomite (Hobbs and others, 1965).
- Ywml WALLACE FORMATION, MIDDLE AND LOWER MEMBERS, UNDIVIDED (MIDDLE PROTEROZOIC)--Light-gray dolomitic and calcareous quartzite interbedded with medium- to dark-gray argillite (Hobbs and others, 1965). Some impure dolomite beds near top. Ripple marks, small scale crossbedding, and molar-tooth and ovoid structures in some layers. Mapped as Ywl by Hobbs and others (1965).

Primary sources:

- 1. Griggs, unpub. mapping a.
- 2. Griggs, unpub. mapping b.
- 3. Harrison and others, 1986
- 4. Hobbs and others, 1965
- 5. Hosterman, 1956
- 6. Ransome and Calkins, 1908

Additional Map References

- A. Gibson and others, 1941
- B. Schalck, 1989.
- C. Shenon, 1938.
- D. Umpleby and Jones, 1923
- E. White, B.G., unpub mapping.

Figure 2. Location map showing primary sources of compilation data (areas 1-6) and additional map references (A-E).

- Ysr ST. REGIS FORMATION (MIDDLE PROTEROZOIC)--Thick-bedded impure to pure quartzite at base, grading upward to interbedded and interlaminated impure quartzite and argillite that comprise bulk of formation (Hobbs and others, 1965). Characteristically thin bedded and many layers laminated. Predominantly purplish red and grayish red; argillite is darker. Some carbonate-bearing beds, mostly in upper part. Ripple marks, mud cracks, and mud-chip breccia in some layers.
- Yr REVETT FORMATION (MIDDLE PROTEROZOIC)--Thick-bedded white to light-gray quartzite containing interbedded impure and nearly pure quartzite in upper and lower parts, and a few widely spaced argillite partings (Hobbs and others, 1965). Crossbedded and laminated in part.
- Ybk BURKE FORMATION (MIDDLE PROTEROZOIC)--Light- to greenish-gray fine-grained impure quartzite with lesser amounts of nearly white to light-gray nearly pure to pure quartzite (Hobbs and others, 1965). Beds predominantly 5 to 20 cm thick. Ripple marks and pseudoconglomerate are common.
- Ypu PRICHARD FORMATION, UPPER MEMBER (MIDDLE PROTEROZOIC)--Light-gray to nearly white pure to impure quartzite interbedded with laminated argillite (Hobbs and others, 1965). Quartzite beds 5 to 45 cm thick. Ripple marks and graded bedding are common.
- Ypl PRICHARD FORMATION, LOWER MEMBER (MIDDLE PROTEROZOIC)--Banded dark-gray argillite, laminated in part; weathers rusty red (Hosterman, 1956).

Data Sources, Processing, and Accuracy

Lewis'greenline mylar inked with the geologic data was electronically scanned to create a raster digital image, converted to vector, polygon and point GIS layers, and minimally attributed by a contractor (Optronics Specialty Co., Inc., Northridge, CA). This initial product, with latitude and longitude registration tics digitized from the scanned image, was remitted to the U.S. Geological Survey in an Arc/Info EXPORT format in scanner units. The tic points were used to transform the digital files to calculated latitude-longitude points for a Universal Transverse Mercator (zone 11, with a -5,000,000 m y-offset) map projection. The RMS errors¹ resulting from the file transformations were small (7.350 meters, see Appendix A). The digital files were then augmented with an interim geologic map data model (or data base), further attributed and edited, and then plotted and compared to the original greenline mylar of the geologic map to check for digitizing and attributing errors. All processing by the U.S. Geological Survey was done in Arc/Info version 7.1.1 installed on a Sun Ultra workstation.

The overall accuracy (with respect to the location of lines and points) of the digital geologic map (see Figs. 3 and 4 for pagesize versions) is probably no better than +/- 7 meters. This digital database is not meant to be used or displayed at any scale larger than 1:100,000 (e.g., 1:62,500 or 1:24,000).

-

¹ The root mean square error (RMS error) describes the deviation between the tic locations in the input file and those in the output file. It is an indication of the quality of the derived transformation and is a measure of the quality of the original scanned materials. The transformation report of errors for each tic point is given in Appendix A.

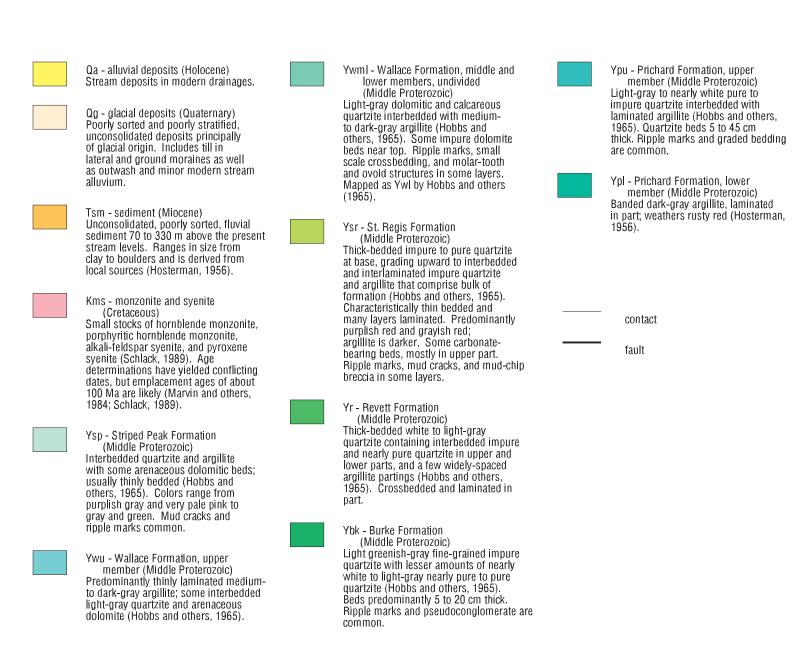


Figure 3. Explanation for the Simplified Digital Geologic Map of the Thompson Falls 1:100,000 quadrangle, Idaho

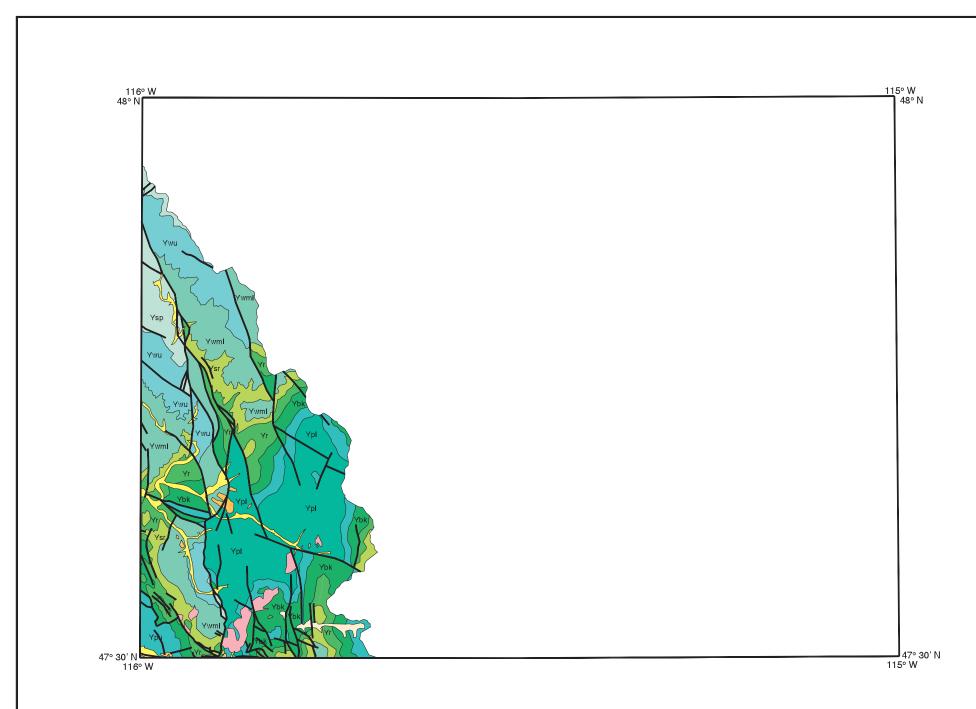


Figure 4. Simplified Digital Geologic Map of the Thompson Falls 1:100,000 quadrangle, Idaho

GIS Documentation

The digital geologic map of the Thompson Falls 1:100,000 quadrangle, Idaho includes a geologic linework arc attribute table, TF100K.AAT, that relates to the TF100K.CON, TF100K.STR and TF100K.REF files; a rock unit polygon attribute table, TF100K.PAT, that relates to the TF100K.RU and TF100K.REF files; and a geologic map symbol point attribute table, TFPNT.PAT, that relates to the TFPNT.SYM and TFPNT.REF files (see Fig. 5). These data files are described below.

Linear Features

Descriptions of the items identifying linear features such as contacts, boundaries (e.g., lines of latitude and longitude, state boundaries) and structures in the arc (or line) attribute table, TF100K.AAT, are as follows:

TF100K.A	AΤ		
ITEM NAME	ITEM TYPE	ITEM WIDTH	ATTRIBUTE DESCRIPTION
linecode	integer	3	Numeric code used to identify type of linear feature. Linecodes < 100 are used for contacts and boundaries which are described in the TF100K.CON file. Linecodes > 100 and < 600 represent structural features which are described in the TF100K.STR file.
name	character	30	Name given to structural feature.
source	integer	4	Numeric code used to identify the data source for the linear feature. Complete references for the sources are listed in the TF100K.REF file.

Attribute descriptions for items in the contact (and boundary) look-up table, TF100K.CON (for use with the PLOTTER.LIN lineset), are as follows:

TF100K.C	TF100K.CON			
ITEM NAME	ITEM TYPE	ITEM WIDTH	ATTRIBUTE DESCRIPTION	
linecode	integer	3	Numeric code (a value < 100) used to identify type of contact or boundary. (This item also occurs in TF100K.AAT.)	
symbol	integer	3	Line symbol number used by Arc/Info to plot line. (Symbol numbers refer to the PLOTTER.LIN lineset .)	
type	character	10	Major type of line, e.g., contact, state boundaries, lines of latitude and longitude used for neatlines.	
modifier	character	20	Line type modifier, i.e., approximate, concealed, gradational. No entry implies 'known.'	
certainty	character	15	Degree of certainty of contact or boundary, i.e., inferred, uncertain. No entry implies 'certain.'	
desc	character	100	Written description or explanation of contact or boundary.	

Arc attribute table and related Polygon attribute table and Point attribute table and related look-up tables: related look-up tables: look-up tables: tf100k.aat tf100k .pat tfpnt .pat linecode unit pttype name source symbol sourcelabel strike dip desc calcang tf100k.con tf100k.ru sym\$angle linecode unit source symbol label type symbol modifier tfpnt .sym name certainty pttype SS desc lith symbol desc desc tf100k.str minage linecodemaxage symbol tfpnt .ref mindate type source maxdate horizontal scale vertical authors tf10<u>0k.ref:</u> fold year source plunge reference scale accuracy authors certainty year desc reference tf100k.ref: source scale authors year reference

Figure 5: Relationships between feature attribute tables and look-up tables.

Attribute descriptions for items in the structure look-up table, TF100K.STR [for use with the GEOLOGY.LIN lineset (Fitzgibbon and Wentworth, 1991)], are as follows:

TF100K.ST	`R	<u> </u>	
ITEM NAME	ITEM TYPE	ITEM WIDTH	ATTRIBUTE DESCRIPTION
linecode	integer	3	Numeric code (a value > 100 and < 600) used to identify type of structural feature. (This item also occurs in TF100K.AAT.)
symbol	integer	3	Line symbol number used by Arc/Info to plot line. (Symbol numbers refer to the GEOLOGY.LIN lineset (Fitzgibbon and Wentworth, 1991).)
type	character	10	Major type of structure, i.e., fault, fracture, fold, other.
horizontal	character	20	Type of horizontal fault movement, e.g., left-lateral, right-lateral. No entry implies 'unknown.'
vertical	character	20	Type of vertical fault movement, e.g., normal. No entry implies 'unknown.'
fold	character	15	Type of fold, e.g., anticline, syncline.
plunge	character	15	Type of plunge on fold, i.e., horizontal, plunging, plunging in, plunging out.
accuracy	character	15	Line type modifier indicating degree of accuracy, i.e., approximately located, concealed, gradational. No entry implies 'known.'
certainty	character	15	Degree of certainty of contact or boundary, i.e., inferred, uncertain. No entry implies 'certain.'
desc	character	100	Written description or explanation of structural feature.

Areal Features

Descriptions of the items identifying geologic units in the polygon attribute table, TF100K.PAT, are as follows:

TF100K.I	PAT		
ITEM NAME	ITEM TYPE	ITEM WIDTH	ATTRIBUTE DESCRIPTION
unit	integer	4	Numeric code used to identify the rock unit which is described in the TF100K.RU look-up table. (This item also occurs in TF100K.RU.)
source	integer	4	Numeric code used to identify the data source for the rock unit. Complete references for the sources are listed in the TF100K.REF file.
label	character	10	Rock unit label (abbreviation) used to label unit on map. (This item was joined from the tf100k.ru look-up table.)
desc	character	100	Formal or informal unit name. (This item was joined from the tf100k.ru look-up table.)

Attribute descriptions for items in the lithology (rock unit) look-up table, TF100K.RU (for use with the CALCOMP1.SHD shadeset), are as follows:

TF100K.R	·U		
ITEM NAME	ITEM TYPE	ITEM WIDTH	ATTRIBUTE DESCRIPTION
unit	integer	4	Numeric code used to identify rock unit. (This item also occurs in TF100K.PAT.)
label	character	10	Rock unit label (abbreviation) used to label unit on map.
symbol	integer	3	Shadeset symbol number used by Arc/Info to plot a filled/shaded polygon. (The symbol numbers used in this file refer to the CALCOMP1.SHD shadeset .)
name	character	7	The prefix portion of the rock unit label that does not include subscripts. (If subscripting is not used in the original unit label, then the 'name' entry is the same as the 'label' entry.)
SS	character	3	The suffix portion of the rock unit label that includes subscripts.
lith	character	20	Major type of lithostratigraphic unit, i.e., unconsolidated sediments, sedimentary rocks, metasedimentary rocks, intrusive rocks, extrusive rocks, metamorphic rocks, water, ice.
desc	character	100	Formal or informal unit name
minage	character	7	Minimum stratigraphic age of lithologic unit, i.e., CRET, TERT, PCY.
maxage	character	7	Maximum stratigraphic age of lithologic unit
mindate	integer	4	Minimum radiometric age (in millions of years) if determined.
maxdate	integer	4	Maximum radiometric age (in millions of years) if determined.

Point Features

Descriptions of the items identifying geologic map symbols are given in the point attribute table, TFPNT.PAT, which is defined as follows:

TFPNT.PAT			
ITEM NAME	ITEM TYPE	ITEM WIDTH	ATTRIBUTE DESCRIPTION
pttype	character	32	Type of point symbol, e.g., strike and dip of inclined bedding. (This item also occurs in the TFPNT.SYM file.)
symbol	integer	3	Marker symbol number used by Arc/Info to identify type of structural map symbol. Symbol numbers refer to the GEOSCAMP2.MRK markerset (Matti and others, 1997). (This item also occurs in the TFPNT.SYM file.)
strike	integer	3	Strike of bedding. Strike is an azimuthal angle (measured in degrees from 0 to 360 in a clockwise direction from North).
dip	integer	3	Dip of bedding. This value is an angle measured (in degrees from 0 to 90) down from the horizontal; thus a horizontal dip is 0 degrees and a vertical dip is 90 degrees.
calcang	integer	4	An interim value used to calculate sym\$angle. The structural map symbol in the GEOSCAMP2.MRK markerset (Matti and others, 1997) had to be rotated to achieve its proper map orientation. For the strike and dip symbols, calcang = strike - 270.
sym\$angle	integer	4	The angle used to mathematically rotate the map point symbol to its proper orientation on the map. This item was set equal to the pseudoitem '\$angle' (calc sym\$angle = \$angle).
source	integer	4	Numeric code used to identify the data source for the geologic map symbol. Complete references for the sources are listed in the TFPNT.REF file.

Attribute descriptions for items in the geologic map symbols look-up table, TFPNT.SYM, [for use with the GEOSCAMP2.MRK markerset (Matti and others, 1997)], are as follows:

TFPNT.SY	M		
ITEM NAME	ITEM TYPE	ITEM WIDTH	ATTRIBUTE DESCRIPTION
pttype	character	32	Type of point symbol, e.g., strike and dip of inclined bedding, strike and dip of inclined cleavage. (This item also occurs in the TFPNT.PAT file.)
symbol	integer	3	Marker symbol number used by Arc/Info to identify type of geologic map symbol. Symbol numbers refer to the GEOSCAMP2.MRK markerset (Matti and others, 1997).
desc	character	250	Written description or explanation of map symbol.

Source Attributes

Descriptive source or reference information for the TF100K and TFPNT Arc/Info coverage files is stored in the TF100K.REF and TFPNT.REF files respectively. Attribute descriptions for items in the TF100K.REF and TFPNT.REF data source files are as follows:

TF100K.RI	EF / TFPNT.	REF	
ITEM	ITEM	ITEM	ATTRIBUTE DESCRIPTION
NAME	TYPE	WIDTH	
source	integer	4	Numeric code used to identify the data source. (This item
			also occurs in the TF100K.AAT, TF100K.PAT, and
			TFPNT.PAT files.)
scale	integer	10	Scale of source map. (This value is the denominator of
			the proportional fraction that identifies the scale of the
			map that was digitized or scanned to produce the digital
			map.)
authors	character	100	Author(s) or compiler(s) of source map entered as last
			name, first name or initial, and middle initial.
year	integer	4	Source (map) publication date
reference	character	250	Remainder of reference in USGS reference format.

Obtaining Digital Data

The complete digital version of the geologic map is available in Arc/Info interchange (or 'EXPORT') format with associated data files. These data and map images are maintained in a Universal Transverse Mercator (UTM) map projection:

Projection: UTM Zone: 11

Y-offset (false northing): -5,000,000 meters

Units: meters

To obtain copies of the digital data, do one of the following:

- Download the digital files from the USGS public access World Wide Web site on the Internet: URL = http://wrgis.wr.usgs.gov/open-file/of99-438/ or
- 2. Anonymous FTP from **wrgis.wr.usgs.gov**, in the directory **pub/open-file/of99-438/**

The Internet sites contain the digital geologic map of part of the Thompson Falls 1:100,000 quadrangle, Idaho both in Arc/Info interchange-format files (tf100k.e00 and tf100k.e00) and as an HPGL2 plot file (tf100k.hp) of the map area, as well as the associated data files and Arc/Info macro program which is used to plot the map at a scale of 1:100,000.

To manipulate this data in a geographic information system (GIS), you must have a GIS that is capable of reading Arc/Info interchange-format files.

Obtaining Paper Maps

Paper copies of the digital geologic map are not available from the USGS. However, with access to the Internet and access to a large-format color plotter that can interpret HPGL2 (Hewlett-Packard Graphics Language), a 1:100,000-scale paper copy of the map can be made, as follows:

1. Download the plot file of the map, **tf100k.hp**, from the USGS public access World Wide Web site on the Internet using the

URL = http://wrgis.wr.usgs.gov/open-file/of99-438

- 2. Anonymous FTP the plot file, **tf100k.hp**, from: **wrgis.wr.usgs.gov**, in the directory: pub/open-file/of99-438/
- 3. This file can be plotted by any large-format color plotter that can interpret HPGL2. The finished plot is about 29 inches by 39 inches.

Paper copies of the map can also be created by obtaining the digital files as described above and then creating a plot file in a GIS, using the Arc/Info macro language (AML) program, tf100k.aml, included in the data package.

References Cited

- Fitzgibbon, Todd T. and Wentworth, Carl M., 1991, ALACART user interface executable AML code and demonstration maps: U.S. Geological Survey Open-File Report 91-587A (as updated October 17, 1996 for version 3.1), URL = http://wrgis.wr.usgs.gov/docs/software/software.html
- Gibson, Russell, Jenks, W. F., and Campbell, Ian, 1941, Stratigraphy of the Belt series in Libby and Trout Creek quadrangles, northwestern Montana and northern Idaho: Geological Society of America Bulletin, v. 52, no. 3, p. 363-379, scale 1:180,000 (approx.).
- Griggs, A.B., 1961-1969 and 1973, unpublished geologic maps of the Bloom Peak 7.5-, Burke 15-, Cooper Gulch 15-, Gem Peak 7.5-, Noxon 7.5- and Taylor Peak 7.5-minute quadrangles, Idaho: U.S. Geological Survey Field Records Library, Denver, CO, scale 1:62,500.
- Harrison, J.E., Griggs, A.B. and Wells, J.D., 1986, Geologic and structure maps of the Wallace 1- by 2-degree quadrangle, Montana and Idaho: U.S. Geological Survey Miscellaneous Investigations Series Map I-1509A, 2 plates, scale 1:250,000.
- Hobbs, S.W., Griggs, A.B., Wallace, R.E. and Campbell, A.B., 1965, Geology of the Coeur d'Alene district, Shoshone County, Idaho: U.S. Geological Survey Professional Paper 478, 139 p., 10 plates, scale 1:24,000.
- Hosterman, J.W., 1956, Geology of the Murray area, Shoshone County, Idaho: U.S. Geological Survey Bulletin 1027-P, p. 725-748, scale 1:62,000.
- Marvin, R.F., Zartman, R.E., Obradovich, J.D. and Harrison, J.E., 1984, Geochronometric and lead isotope data on samples from the Wallace 1- by 2-degree quadrangle, Montana and Idaho: U.S. Geological Survey Miscellaneous Field Studies Map MF-1354-G, scale 1:250,000.
- Matti, J.C., Miller, F.K., Powell, R.E., Kennedy, S.A., Bunyapanasarn, T.P., Koukladas, C., Hauser, R.M., and Cossette, P.M., 1997, Geologic-point attributes for digital geologic-map data bases produced by the Southern California Areal Mapping Project (SCAMP): U.S. Geological Survey Open-File Report 97-859, 7 p.
- Ransome, F.L. and Calkins, F.C., 1908, The geology and ore deposits of the Coeur d'Alene district, Idaho: U.S. Geological Survey Professional Paper 62, 203 p., scale 1:62,500.
- Schalck, D.K., 1989, The geology and alteration of the Gem stocks, Shoshone County, Idaho: in V. E. Chamberlain, R. M. Breckenridge, and Bill Bonnichsen (editors), Guidebook to the geology of northern and western Idaho and surrounding area: Idaho Geological Survey Bulletin 28, p. 125-135.
- Shenon, P.J., 1938, Geology and ore deposits near Murray, Idaho: Idaho Bureau of Mines and Geology Pamphlet 47, 44 p.
- Umpleby, J.B. and Jones, E.L., Jr., 1923, Geology and ore deposits of Shoshone County, Idaho: U. S. Geological Survey Bulletin 732, 156 p., scale 1:250,000.
- U.S. Geological Survey, 1993, 1:100,000-scale digital line graph (DLG) data hydrography and transportation, Area 13 Northwestern states: U.S. Geological Survey, US GeoData (optional format), CD-ROM.

Appendix A - Transformation report for Thompson Falls GIS

Three Arc/Info files were remitted to the USGS from the contractor. Each of the three files had to be transformed to a UTM map projection (zone 11, y-shift = -5,000,000 meters). The errors for each latitude and longitude tic used in the transformation were the same for each of the three transformed files and are given below. The report identifies a root mean square (RMS) error of 7.350 meters.

Arc: transform tfgeo1 tfgeo2 affine Transforming coordinates for coverage tfgeo1

Scale (X,Y) = (2539.930,2539.720) Skew (degrees) = (0.003) Rotation (degrees) = (1.115) Translation = (573977.416,258440.517) RMS Error (input,output) = (0.003,7.350)

Affine X = Ax + By + C Y = Dx + Ey + F A = 2539.449 B = -49.289 C = 573977.416D = 49.422 E = 2539.242 F = 258440.517

tic id	input x output x	input y output y	x error	y error
451	0.548	0.992		
	575315.438	260995.594	4.232	-9.184
382	0.614	11.936		
	574957.188	288779.781	-9.395	-0.235
313	0.686	22.876		
	574597.438	316565.156	-5.935	-3.356
452	7.962	0.962		
	594144.062	261268.203	5.379	8.662
453	15.372	0.946		
	612972.562	261601.406	-5.338	0.666
383	8.000	11.902		
	593696.188	289052.156	9.488	5.726
314	8.032	22.844		
	593246.562	316837.312	1.213	5.522
384	15.372	11.886		
	612435.062	289385.094	-7.696	-3.477
315	15.378	22.830		
	611895.438	317169.938	8.105	1.421
454	22.790	0.954		
	631800.875	261995.219	3.318	-5.635
385	22.756	11.900		

Appendix A

	631173.750	289778.625	4.419	3.447
316	22.718	22.840		
	630544.125	317563.125	-1.855	-3.577
455	30.202	0.992		
	650628.938	262449.656	-3.689	2.694
386	30.132	11.934		
	649912.188	290232.688	-4.667	0.102
317	30.064	22.876		
	649192.562	318016.781	2.420	-2.777

Appendix B

Appendix B - List of digital files in the Thompson Falls GIS

- --Use the '00import.aml' to IMPORT all of the *.E00 files for use in Arc/Info.
- --Use the Arc/Info 'DRAW' command to plot the *.GRA file to your screen. (Make sure the display is set with the Arc/Info 'DISPLAY' command.)
- --Use the Arc/Info 'HPGL2' command to create HPGL2 files from the *.GRA file.
- --Use the UNIX 'lpr -P<plotter name> tf100k.hp' command to send the tf100k.hp file to a large-format color plotter that can interpret Hewlett-Packard Graphics Language.
- -- To re-create the *.GRA file, open the ArcPlot module, enter 'display 1040', enter a new filename for the graphics file, enter '&run tf100k' (and at the ARC prompt, enter 'display 9999 3' and 'draw <new filename> to draw the GRA file to your screen).

Primary Arc/Info interchange-format files (tf*.e00) for the digital geology:

- tf100k.e00
- tfpnt.e00

Plot files

Plot files in Arc/Info graphics (*.gra) and HPGL2 map plot (*.hp) formats for the geologic map plate:

tf100k.gra/.hp

Additional Arc/Info interchangeformat files (*.e00) necessary to recreate the geologic map plate:

- calcomp1.shd.e00 shadeset
- fnt038.e00 font 38
- fnt040.e00 font 40
- geoscamp2.mrk.e00 markerset
- tfallsu11¹.e00 exterior boundary of the Thompson Falls quadrangle

AML, graphics, key, lineset and text files necessary to re-create the geologic map plate:

- scale2a.aml plots scale bar on plate
- tf100k.aml program that creates a graphics file of the geologic map of the Thompson Falls quadrangle, Idaho.

- index tf.gra index map graphic displayed on map plate (showing location of the Thompson Falls quadrangle with respect to the Pacific Northwest).
- tf_line.key lineset symbol values and descriptive text for lines on the map plate
- tf_pol.key shadeset symbol values and descriptive text for geologic map units on the map plate
- tf_sym.key markerset symbol values and descriptive text for map symbols (markers) on the map plate
- geology.lin lineset
- geo.prj a text file used to identify real-world (geographic) coordinates for use in adding latitude and longitude notation around the margins of the map quadrangle
- u11.prj a text file to identify UTM, zone 11 map projection - for use in adding latitude and longitude notation around the margins of the map quadrangle
- tfcrd.txt text file listing map credits on the map plates
- tfdisc.txt disclaimer statement text file
- tfref.txt text file listing map references on the map plates

¹ an 'u11' suffix indicates UTM, zone 11 map projection with y-shift = 5,000,000 meters.

Appendix C - Arc/Info Macro Language program (tf100k.aml) used to plot the geologic map of the Thompson Falls quadrangle

/* This Arc/Info Macro Language (AML) program will plot the geologic map plate for the Thompson Falls, ID 1:100,000-scale quadrangle.

/* To run this AML:

/* 1. Type 'ap' at the 'Arc:' prompt to enter the ArcPlot module,

/* 2. Type 'display 1040' at the 'Arcplot:' prompt to create a GRA file,

/* 3. Enter a filename of your own choosing at the 'Enter ARC/INFO Graphics filename:' prompt for the GRA to be created,

/* 4. Type '&run tf100k' at the 'Arc:' prompt to start the program,

/* 5. Enter 'quit' to exit the ArcPlot module

/* 6. At the 'Arc:' prompt, type 'display 9999 3' to set the display window

/* 7. At the next 'Arc:' prompt, enter 'draw <quadname>' -- there is no need to use the GRA extension.

/* 8. Run the Arc/Info HPGL2 command to convert the GRA file to an HPGL2 file, i.e., hpgl2 tf100k tf100k.hp # 1.0 opaque # 0 # # # cal.dat

clear clearselect

pagesize 40.5 29.0 pageunits inches mapunits meters mapscale 100000 mapposition Il 0.0 2.5 mapangle -1.0

&set cover1 tf100k &set pntcover tfpnt &set quad tfallsu11 &set key1 tf_pol.key &set key2 tf_line.key &set key3 tf_sym.key &s credits tfcrd.txt &s refs tfref.txt &s disclaimer tfdisc.txt

/* -->where 'cover1' contains contacts and structures and rock units; 'pntcover' contains structural symbols; and 'quad' is the quadrangle boundary.

mape %quad% maplimits 0.0 2.4 32 27

/*draw outside box linesymbol 9 linecolor 1 box 0.5 0.5 39 28.5

textquality proportional textfont 94021 linedelete all lineset plotter lineset carto

/* cut marks markerset plotter markersymbol 1 markersize 0.1 marker 0 0 marker 0 29 marker 39.5 0 marker 39.5 29 markerset water

&label shadepolys
/* color polygons for geologic rock units
shadedelete all
shadeset calcomp1
polygonshade %cover1% unit %cover1%.ru

&label linework

/* plot contacts and boundaries
linedelete all
lineset geology.lin
res %cover1% arcs linecode gt 0 and linecode lt
40
arclines %cover1% linecode %cover1%.con
asel %cover1% arcs
linedelete all
lineset carto.lin

res %cover1% arcs linecode gt 40 and linecode lt 100

arclines %cover1% linecode %cover1%.con asel %cover1% arcs

&label structure

/* plot faults and fold axes, etc. with line

patterns linedelete all lineset geology.lin

res %cover1% arcs linecode gt 100 and linecode

lt 600

arclines %cover1% linecode %cover1%.str

asel %cover1% arcs

&label mapquad

/* plot quadrangle boundary

linedelete all lineset plotter linesymbol 5 arcs %quad%

/* plot state boundary

linedelete all lineset carto.lin

res %cover1% arcs linecode eq 71

arclines %cover1% linecode %cover1%.con

asel %cover1% arcs

&label geolabels textsize 0.10

res %cover1% poly area gt 300000 labeltext %cover1% unit %cover1%.ru cc

asel %cover1% poly

res %cover1% poly unit = 226

res %cover1% poly area gt 285000 and area le

300000

labeltext %cover1% unit %cover1%.ru cc

asel %cover1% poly

&label points

/* plot points for map symbols

markerdelete all markerset geology.mrk

pointmarkers %pntcover% symbol

/* plot annotation for all points

textset font.txt

/* annotext cover subclass # {level...level}

/*annotext %pntcover% dip # 1 2 annotext %pntcover% dip # 1

&label titles textfont 93715

textquality kern textsize 0.5

move 1.5 27.5

text 'U.S. DEPARTMENT OF THE INTERIOR'

move 1.5 26.9

text 'U.S. GEOLOGICAL SURVEY'

move 38 27.5

text 'Open-File Report 99-438' lr

move 38 26.9 text 'Plate 1' lr textfont 93711 textsize 0.7

move 16.2 2.6

text 'Digital Geologic Map of part of the Thompson

Falls 1:100,000 quadrangle, Idaho' lc

textsize 0.5 move 16.2 2.0

text 'by Reed S. Lewis and Pamela D. Derkey' lc

move 16.2 1.2 text '1999' lc

&label explan

/* plot explanation - geologic units

shadedelete all shadeset calcomp1 textfont 93711 textsize 0.20 move 32.0 25.7 text 'Explanation' textsize 0.12

textquality proportional

textfont 94021

keyarea 32.0 17.5 40.4 25.45

keybox 0.6 0.35 keyseparation 0.2 0.2 keyshade %key1% nobox

&label linekey

/* plot explanation - line key

linedelete all lineset geology.lin keyarea 32.0 11.0 40.4 17.4 keybox 0.6 0.0

keyline %key2% nobox

&label markers

/* plot explanation - marker key

markerdelete all markerset geology.mrk /*keyarea 32.0 11.5 40.4 10.5 keymarker %key3% nobox

&label refs /* plot references textfont 93711 textsize 0.20 textcolor 1 move 32.0 11.6 text 'References' move 32.0 11.4 textsize 0.12 textquality proportional textfont 94021 textfile %refs%

&label disclaimer textfont 93713 textquality proportional textsize 0.12 move 35.22 2.2 textfile %disclaimer%

&label credits /*plot credits textfont 94021 textquality proportional textsize 0.12 move 25.5 3.8 textfile %credits%

&label proj
/*plot map projection notes
textfont 94021
textquality proportional
textsize 0.12
move 1.8 3.7
text 'map projection: UTM, zone 11'

/* plot scale bars linedelete all lineset plotter textfont 94021 textsize 0.12 &r scale2a 4.77 2.1 other 100000

&label index-map plot index_tf.gra box 32.0 4.00 35 6.00 textfont 93713 textquality proportional textsize 0.12 move 32.0 3.95 text 'Index map showing Thompson Falls quadrangle'

&label lat-long /* plot neat line labels (latitude and longitude) mape %quad% linecolor 1 mapprojection geo.prj u11.prj
neatline -116 47.5 -115 48.0 geo.prj
neatlinehatch 0.125 0.125 0.2 0 geo.prj
textset font.txt
textsymbol 1
textsize 8 pt
textstyle typeset
textoffset -0.35 0.15
neatlinelabels 0.125 top all geo.prj dms
'%1%!pat1857; %2%!pat1727; %3%!pat1728'
textoffset -0.75 0.0
neatlinelabels 0.125 left all geo.prj dms
'%1%!pat1857; %2%!pat1727; %3%!pat1728'

&label done quit display 9999 3 draw tf100k &return

Appendix D - Metadata (tf100k.met)

Identification_Information:

Citation:

Citation_Information:
Originator: Reed S. Lewis
Originator: Pamela D. Derkey
Publication Date: 1999

Title:

Digital geologic map of part of the Thompson Falls 1:100,000 quadrangle,

Idaho

Edition: version 1.0

Geospatial Data Presentation Form: map

Series_Information:

Series_Name: Open-File Report 99-438 Issue_Identification: tf100k.e00, tfpnt.e00

Publication_Information:

Publication_Place: Spokane WA Publisher: U.S. Geological Survey

 $On line_Linkage: \ URL = http://wrgis.wr.usgs.gov/open-file/of99-438$

Description:

Abstract:

The geology of the Thompson Falls 1:100,000 quadrangle, Idaho was compiled by Reed S. Lewis in 1997 onto a 1:100,000-scale topographic base map for input into an Arc/Info geographic information system (GIS). The digital geologic map database can be queried in many ways to produce a variety of derivative geologic maps.

Purpose:

This dataset was developed to provide geologic map GIS of the Idaho portion of the Thompson Falls 1:100,000 quadrangle for use in future spatial analysis by a variety of users.

This database is not meant to be used or displayed at any scale larger than 1:100,000 (e.g., 1:62,500 or 1:24,000).

Supplemental_Information:

This GIS consists of two major Arc/Info datasets: one line and polygon file (tf100k) containing geologic contacts and structures (lines) and geologic map rock units (polygons), and one point file (tfpnt) containing structural data.

Time Period of Content:

Time_Period_Information:

Single_Date/Time: Calendar_Date: 1999

Currentness_Reference: publication date

Status:

Progress: complete

Maintenance_and_Update_Frequency:
Plan to update with a new geologic map data model, perhaps in 2000.

Spatial_Domain:

Bounding_Coordinates:

West_Bounding_Coordinate: -116.0 East_Bounding_Coordinate: -115.0 North_Bounding_Coordinate: 48.00 South_Bounding_Coordinate: 47.50

Keywords:

Theme:

Theme Keyword Thesaurus: none

Theme_Keyword: geology
Theme_Keyword: geologic map

Place:

Place_Keyword_Thesaurus: none

Place Keyword: Idaho

Place_Keyword: Thompson Falls Place_Keyword: Shoshone County Place_Keyword: Pacific Northwest

Place Keyword: USA

Access_Constraints:

Use Constraints:

This digital database is not meant to be used or displayed at any scale larger than 1:100,000 (e.g., 1:62,500 or 1:24,00).

Any hardcopies utilizing these data sets shall clearly indicate their source. If the user has modified the data in any way they are obligated to describe the types of modifications they have performed on the hardcopy map. User specifically agrees not to misrepresent these data sets, nor to imply that changes they made were approved by the U.S. Geological Survey.

Point_of_Contact:

Contact_Information:

Contact_Person_Primary:

Contact_Person: Pamela D. Derkey

Contact_Organization: U.S. Geological Survey

Contact_Position: geologist

Contact_Address:

Address_Type: mailing and physical address Address: 904 W. Riverside Ave., Rm. 202

City: Spokane

State_or_Province: WA Postal_Code: 99201 Country: USA

Contact_Voice_Telephone: 1-509-368-3114 Contact_Facsimile_Telephone: 1-509-368-3199 Contact_Electronic_Mail_Address: pderkey@usgs.gov

Data Set Credit:

Reed S. Lewis (contractor) compiled the geology onto stable-base material:

Optronics Specialty Co., Inc. scanned the geologic map and provided minimally attributed Arc/Info interchange-format files to the USGS;

Pamela D. Derkey (USGS) imported the files, transformed them to UTM zone 11 (with a y-shift) and attached and attributed an interim geologic map data model;

Thomas P. Frost (USGS) visually compared the hard copy plots with the source;

Jon R. Oblad (EWU) annotated the point data for output at a scale of 1:100,000.

Native_Data_Set_Environment: SunOS, 5.5.1, sun4u UNIX ARC/INFO version 7.1.1

Data Quality Information:

Attribute_Accuracy:

Attribute_Accuracy_Report:

Attribute accuracy was verified by manual comparison of the source with hard copy printouts and plots.

Logical_Consistency_Report:

Polygon and chain-node topology present.

Polygons intersecting the neatline are closed along the border. Segments making up the outer and inner boundaries of a polygon tie end-to-end to completely enclose the area. Line segments are a set of sequentially numbered coordinate pairs. No duplicate features exist nor duplicate points in a data string. Intersecting lines are separated into individual line segments at the point of intersection. Point data are represented by two sets of coordinate pairs, each with the same coordinate values. All nodes are represented by a single coordinate pair which indicates the beginning or end of a line segment. The neatline was generated by mathematically generating the four sides of the quadrangle, densifying the lines of latitude and projecting the file to UTM zone 11 (with a y-shift).

Completeness Report:

All geologic units were compiled from previously existing geologic maps ranging in scale from 1:24,000 to 1:250,000.

Positional Accuracy:

Horizontal_Positional_Accuracy:

Horizontal_Positional_Accuracy_Report:

The horizontal positional accuracy for the digital data is no better than \pm 7 meters based on the transformation RMS error. It was tested by visual comparison of the source with hard copy plots.

Lineage:

Source_Information:

Source Citation: Citation Information: Originator: Griggs, A.B. Publication_Date: not published Unpublished geologic maps of the Bloom Peak 7.5-, Burke 15-, Cooper Gulch 15-, Gem Peak 7.5-, Noxon 7.5- and Taylor Peak 7.5-minute quadrangles, Idaho Geospatial Data Presentation Form: map Publication_Information: Publication_Place: Denver CO Publisher: U.S. Geological Survey Field Records Library Source Scale Denominator: 24,000 Source Scale Denominator: 62,500 Type_of_Source_Media: paper maps Source_Time_Period_of_Content: Time Period Information: Single Date/Time: Calendar Date: 1961-1969 Source Currentness Reference: date of field mapping Source_Citation_Abbreviation: Griggs, unpublished field notes Source_Contribution: These field maps were used in the map compilation. Source Information: Source Citation: Citation Information: Originator: Harrison, J.E. Originator: Griggs, A.B. Originator: Wells, J.D. Publication Date: 1986 Title: Geologic and structure maps of the Wallace 1- by 2-degree quadrangle, Montana and Idaho Geospatial_Data_Presentation_Form: map Series Information: Series_Name: Miscellaneous Investigations Series Issue Identification: Map I-1509A Publication_Information: Publisher: U.S. Geological Survey Source Scale Denominator: 250,000 Type of Source Media: paper maps Source Time Period of Content: Time_Period_Information: Single_Date/Time: Calendar_Date: 1986 Source Currentness Reference: publication date Source_Citation_Abbreviation: Harrison and others, 1986 Source Contribution: This map was used in the map compilation. Source_Information: Source_Citation: Citation Information: Originator: Hobbs, S.W. Originator: Griggs, A.B. Originator: Wallace, R.E.

Originator: Campbell, A.B.

Publication Date: 1965

Title: Geology of the Coeur d'Alene district Geospatial_Data_Presentation_Form: map

Series Information:

Issue_Identification: Professional Paper 478

Publication_Information:

Publisher: U.S. Geological Survey Source_Scale_Denominator: 24,000 Type_of_Source_Media: paper maps Source_Time_Period_of_Content: Time_Period_Information:

Single_Date/Time:
Calendar Date: 1965

Source_Currentness_Reference: publication date Source_Citation_Abbreviation: Hobbs and others, 1965

Source_Contribution: These maps were used in the map compilation.

Source_Information:

Source Citation:

Citation Information:

Originator: Hosterman, J.W. Publication_Date: 1956

Title: Geology of the Murray area, Shoshone County, Idaho

Geospatial Data Presentation Form: map

Series Information:

Issue Identification: Bulletin 1027-P

Publication_Information:

Publisher: U.S. Geological Survey Source_Scale_Denominator: 62,500 Type_of_Source_Media: paper map Source_Time_Period_of_Content:

Time_Period_Information: Single_Date/Time:

Calendar_Date: 1956
Source_Currentness_Reference: publication date
Source_Citation_Abbreviation: Hosterman, 1956

Source Contribution: This map was used in the map compilation.

Source_Information:

Source_Citation:

Citation_Information: Originator: Gibson, Russell Originator: Jenks, W.F. Originator: Campbell, Ian

Publication_Date: 1941

Title:

Stratigraphy of the Belt series in Libby and Trout

Creek quadrangles, northwestern Montana and northern

Idaho

Geospatial_Data_Presentation_Form: maps?

Series Information:

Series_Name: Geological Society of America Bulletin

Issue_Identification: vol. 52, no. 3, p. 363-379

Publication Information:

Publisher: Geological Society of America

Source_Scale_Denominator: 180,000

Type of Source Media: paper maps? Source Time Period of Content: Time Period Information: Single_Date/Time: Calendar Date: 1941 Source Currentness Reference: publication date Source Citation Abbreviation: Gibson and others, 1941 Source Contribution: This source was used as a secondary source in compiling the geologic map. Source_Information: Source Citation: Citation Information: Originator: Ransome, F.L. Originator: Calkins, F.C. Publication Date: 1908 Title: The geology and ore deposits of the Coeur d'Alene district, Idaho Geospatial_Data_Presentation_Form: maps Series_Information: Issue_Identification: Professional Paper 62 Publication Information: Publisher: U.S. Geological Survey Source Scale Denominator: 62,500 Type_of_Source_Media: paper map Source_Time_Period_of_Content: Time Period Information: Single Date/Time: Calendar Date: 1908 Source_Currentness_Reference: publication date Source_Citation_Abbreviation: Ransome and Calkins, 1908 Source_Contribution: This map was used in the map compilation. Source Information: Source_Citation: Citation Information: Originator: Schalck, D.K. Publication Date: 1989 Title: The geology and alteration of the Gem stocks, Shoshone County, Idaho: in V.E. Chamberlain, R.M. Breckenridge, and Bill Bonnichsen (editors), Guidebook to the geology of northern and western Idaho and surrounding area Geospatial_Data_Presentation_Form: map Series Information: Issue Identification: Bulletin 28 **Publication Information:** Publisher: Idaho Geological Survey Publication Place: Moscow, Idaho Source Scale Denominator: unknown Type of Source Media: paper map Source Time Period of Content: Time_Period_Information: Single_Date/Time:

Calendar Date: 1989

Source_Currentness_Reference: publication date Source_Citation_Abbreviation: Schalck, 1989

Source_Contribution:

This source was used as a secondary source in compiling

the geologic map.
Source_Information:
Source_Citation:
Citation Information:

Originator: U.S. Geological Survey

Publication_Date: 1993

Title:

1:100,000-scale digital line graph (DLG) data - hydrography and transportation, Area 13 --

Northwestern states

Geospatial_Data_Presentation_Form: digital line graph (DLG) data

Series_Information:

Series_Name: US GeoData (optional format)

Publication Information:

Publisher: U.S. Geological Survey Source_Scale_Denominator: 100,000 Type_of_Source_Media: CD-ROM Source_Time_Period_of_Content: Time_Period_Information:

Single_Date/Time: Calendar_Date: 1993

Source_Currentness_Reference: publication date Source Citation Abbreviation: USGS, 1993

Source Contribution:

This source provided the eastern boundary of the map area (Idaho-Montana) boundary in a digital format.

Source Information:

Source_Citation:

Citation_Information: Originator: Shenon, P.J.

Publication_Date: 1938

Title: Geology and ore deposits near Murray, Idaho

Geospatial_Data_Presentation_Form: map?

Series_Information:

Issue_Identification: Pamphlet 47

Publication Information:

Publication Place: Moscow, Idaho

Publisher: Idaho Bureau of Mines and Geology

Source_Scale_Denominator: unknown Type_of_Source_Media: paper map? Source_Time_Period_of_Content:

Time_Period_Information: Single_Date/Time: Calendar Date: 1938

Source_Currentness_Reference: publication date Source Citation Abbreviation: Shenon, 1938

Source Contribution:

This source was used as a secondary source in compiling the geologic map.

Source Information: Source Citation: Citation Information: Originator: Umpleby, J.B. Originator: Jones, E.L., Jr. Publication Date: 1923 Title: Geology and ore deposits of Shoshone County, Idaho Geospatial Data Presentation Form: map Series Information: Issue Identification: Bulletin 732 Publication Information: Publisher: U.S. Geological Survey Source Scale Denominator: 250,000 Type of Source Media: paper map Source_Time_Period_of_Content: Time Period Information: Single Date/Time: Calendar Date: 1923 Source Currentness Reference: publication date Source Citation Abbreviation: Umpleby and Jones, 1923 Source Contribution: This secondary source provided additional information in compiling the geologic map. Process_Step: Process Description: Geologic map information from source maps were reduced to a scale of 1:100,000 using a copy machine, then manually compiled onto a stable-base copy of the USGS 1:100,000-scale topographic quadrangle map and manually labeled. Process Description: Stable-base map was scanned and converted from a raster to a vector format (in scanner units). Process_Description: Digital files were transformed to UTM zone 11 (meters), with a RMS error (input,output) = (0.003, 7.350), and attributed using an interim geologic map data model. The data were checked for position by comparing plots of the digital data to the source. Process Date: 1998 Spatial_Data_Organization_Information: Direct Spatial Reference Method: Vector Point_and_Vector_Object_Information: SDTS_Terms_Description: SDTS Point and Vector Object Type: Point Point_and_Vector_Object_Count: 230 SDTS Point and Vector Object Type: String Point_and_Vector_Object_Count: 744 SDTS_Point_and_Vector_Object_Type: GT-polygon composed of chains Point and Vector Object Count: 231 Spatial Reference Information:

29

Horizontal_Coordinate_System_Definition:

Planar:

Grid Coordinate System:

Grid Coordinate System Name: Universal Transverse Mercator

Universal_Transverse_Mercator:

UTM_Zone_Number: 11 Transverse Mercator:

Scale_Factor_at_Central_Meridian: implied Longitude_of_Central_Meridian: implied Latitude_of_Projection_Origin: implied

False Easting: 0.000

False_Northing: -5,000,000 meters

Planar_Coordinate_Information:

Planar Coordinate Encoding Method: coordinate pair

Coordinate_Representation:

Abscissa_Resolution: not determined Ordinate_Resolution: not determined Planar_Distance_Units: METERS

Geodetic Model:

Horizontal_Datum_Name: North American Datum of 1927

Ellipsoid_Name: Clarke 1866 Semi-major_Axis: 6378206.4

Denominator_of_Flattening_Ratio: 294.98

Entity and Attribute Information:

Overview_Description:

Entity and Attribute Overview:

The 'Digital geologic map of part of the Thompson Falls 1:100,000 quadrangle, Idaho' Open-File Report 99-438 contains a detailed description of each attribute code and a reference to the associated map symbols on the map source materials.

The GIS includes a geologic linework arc attribute table, tf100k.aat, that relates to the tf100k.con (contact look-up table), tf100k.str (structure look-up table), and tf100k.ref (source reference look-up table) files; a rock unit polygon attribute table, tf100k.pat, that relates to the tf100k.ru (rock unit look-up table) and tf100k.ref (source reference look-up table) files; and a geologic map symbol point attribute table, tfpnt.pat, that relates to the tfpnt.sym (structural point data look-up tables) and tfpnt.ref (source reference look-up table) files.

Entity_and_Attribute_Detail_Citation: see PDF of text on website.

Distribution Information:

Distributor:

Contact Information:

Contact Organization Primary:

Contact_Organization: U.S. Geological Survey Information Services

Contact_Address:

Address_Type: mailing and physical address Address: Open-File Reports, Box 25286

City: Denver

State_or_Province: CO Postal_Code: 80225 Country: USA

Contact_Voice_Telephone: 1-303-202-4200

Contact_Facsimile_Telephone: 1-303-202-4695

Contact_Information:

Contact_Person_Primary:

Contact_Person: Pamela D. Derkey

Contact_Organization: U.S. Geological Survey Contact Position: Database Administrator

Contact Address:

Address_Type: mailing and physical address Address: 904 West Riverside, Rm. 202

City: Spokane

State_or_Province: WA
Postal_Code: 99201
Country: USA

Contact_Voice_Telephone: 1-509-368-3114 Contact_Facsimile_Telephone: 1-509-368-3199 Contact_Electronic_Mail_Address: pderkey@usgs.gov

Contact Information:

Contact Organization Primary:

Contact_Organization:

U.S. Geological Survey - Earth Science Information

Office

Contact_Address:

Address_Type: mailing and physical address Address: 904 West Riverside, Rm. 135

City: Spokane

State_or_Province: WA Postal_Code: 99201 Country: USA

Contact_Voice_Telephone: 1-509-368-3130 Contact_Facsimile_Telephone: 1-509-368-3194

Contact_Electronic_Mail_Address: esnfic@mailmcan1.wr.usgs.gov

Hours_of_Service: 8:00 a.m. - 4:30 p.m., Pacific time zone

Distribution Liability:

The U.S. Geological Survey (USGS) provides these geographic data "as is." The USGS makes no guarantee or warranty concerning the accuracy of information contained in the geographic data. The USGS further makes no warranties, either expressed or implied as to any other matter whatsoever, including, without limitation, the condition of the product, or its fitness for any particular purpose. The burden for determining fitness for use lies entirely with the user. Although these data have been processed successfully on computers at the USGS, no warranty, expressed or implied, is made by the USGS regarding the use of these data on any other system, nor does the fact of distribution constitute or imply any such warranty.

In no event shall the USGS have any liability whatsoever for payment of any consequential, incidental, indirect, special, or tort damages of any kind, including, but not limited to, any loss of profits arising out of use of or reliance on the geographic data or arising out of the delivery, installation, operation, or support by USGS.

This digital geologic map GIS of the Thompson Falls 1:100,000 quadrangle, Idaho, is not meant to be used or displayed at any scale larger than 1:100,000 (e.g., 1:62,500 or 1:24,000).

Metadata_Reference_Information:

Metadata_Date: 19990929 Metadata_Review_Date:

Metadata_Future_Review_Date:

Metadata_Contact:
Contact Information:

Contact_Organization_Primary:

Contact_Organization: U.S. Geological Survey

Contact_Person: Pamela D. Derkey

Contact_Position: geologist

Contact Address:

Address_Type: mailing and physical address Address: 904 West Riverside Avenue, Rm. 202

City: Spokane

State_or_Province: WA Postal_Code: 99201 Country: USA

Contact_Voice_Telephone: 1-509-368-3114 Contact_Facsimile_Telephone: 1-509-368-3199 Contact_Electronic_Mail_Address: pderkey@usgs.gov

Metadata_Standard_Name:

FGDC Content Standards for Digital Geospatial

Metadata

Metadata_Standard_Version: FGDC-STD-001-1998

Metadata_Access_Constraints: none Metadata_Use_Constraints: none