Skip Links

USGS - science for a changing world

Open-File Report 99-570

A seismic-reflection investigation of gas hydrates and sea-floor features of the upper continental slope of the Garden Banks and Green Canyon regions, northern Gulf of Mexico: Report for cruise G1-99-GM (99002)

By Alan Cooper, David Twichell, and Patrick Hart

Thumbnail of and link to report PDF (1.7 MB)Introduction

During April 1999, the U.S. Geological Survey (USGS) conducted a 13-day cruise in the Garden Banks and Green Canyon regions of the Gulf of Mexico. The R/V Gyre, owned by Texas A&M University, was chartered for the cruise. The general objectives were (1) to acquire very high resolution seismic-reflection data and side-scan sonar images of the upper and middle continental slope (200-1200-m water depths), (2) to study the acoustic character and features of the sea floor for evidence of sea-floor hazards, and (3) to look for evidence of subsurface gas hydrates and their effects.

The Gulf of Mexico is well known for hydrocarbon resources, with emphasis now on frontier deep-water areas. For water depths greater than about 250 m, the pressure-termperature conditions are correct for the development of shallow-subsurface gas hydrate formation (Anderson et al., 1992). Gas hydrates are ice-like mixtures of gas and water (Kvenvolden, 1993). They are known to be present from extensive previous sampling in sea-floor cores and from mound-like features observed on the sea floor in many parts of the northern Gulf, including the Green Canyon and Garden Banks areas (e.g., Roberts, 1995). Seismic-reflection data are extensive in the Gulf of Mexico, but few very-high-resolution data like those needed for gas-hydrate studies exist in the public domain. The occurrence and mechanisms of gas hydrate formation and dissociation are important to understand, because of their perceived economic potential for methane gas, their potential controls on local and regional sea-floor stability, and their possible effects on earth climates due to massive release of methane greenhouse gas into the atmosphere.

Three high-resolution seismic-reflection systems and one side-scan sonar system were used on the cruise to map the surface reflectance and features of the sea floor and the acoustic geometries and character of the shallow sub-surface. The cruise was designed to acquire regional and detailed local information. The regional survey covered an area about 3400 km2 in the Green Canyon and Garden Banks regions. Data recorded included 15 cu. in. water gun multichannel seismic-reflection and Huntec boomer information. Detailed surveys were planned in two parts of the study area, but due to a winch failure only one detailed survey was done in the Green Canyon area. The detailed survey included collection of 15 cu. in. water gun multichannel seismic-reflection, chirp seismic-reflection, and side-scan data.

First posted February 2, 2000

For additional information, contact:
Contact Information, Pacific Coastal and Marine Science Center
U.S. Geological Survey
Pacific Science Center
400 Natural Bridges Drive
Santa Cruz, CA 95060
http://walrus.wr.usgs.gov/

Part or all of this report is presented in Portable Document Format (PDF). For best results viewing and printing PDF documents, it is recommended that you download the documents to your computer and open them with Adobe Reader. PDF documents opened from your browser may not display or print as intended. Download the latest version of Adobe Reader, free of charge.


Suggested citation:

Cooper, Alan, Twichell, D. C., Hart, P. E., 1999, A seismic-reflection investigation of gas hydrates and sea-floor features of the upper continental slope of the Garden Banks and Green Canyon regions, northern Gulf of Mexico: Report for cruise G1-99-GM (99002): U. S. Geological Survey Open-File Report 99-570, 19 pp., http://pubs.usgs.gov/of/1999/0570/.


Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: http://pubs.usgs.gov/of/1999/0570/
Page Contact Information: GS Pubs Web Contact
Page Last Modified: Thursday, March 27, 2014, 04:16:36 PM