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Abstract 

On March 12, 2003, data were gathered at Yuma Proving Grounds, in Arizona, using a 
Tensor Magnetic Gradiometer System (TMGS). This report shows how these data were 
processed and explains concepts required for successful TMGS data reduction. Important 
concepts discussed include extreme attitudinal sensitivity of vector measurements, low 
attitudinal sensitivity of gradient measurements, leakage of the common-mode field into 
gradient measurements, consequences of thermal drift, and effects of field curvature. 
Spatial-data collection procedures and a spin-calibration method are addressed. 
Discussions of data-reduction procedures include tracking of axial data by 
mathematically matching transfer functions among the axes, derivation and application of 
calibration coefficients, calculation of sensor-pair gradients, thermal-drift corrections, 
and gradient collocation. For presentation, the magnetic tensor at each data station is 
converted to a scalar quantity, the I2 tensor invariant, which is easily found by calculating 
the determinant of the tensor. At important processing junctures, the determinants for all 
stations in the mapped area are shown in shaded relief map-view. Final processed results 
are compared to a mathematical model to show the validity of the assumptions made 
during processing and the reasonableness of the ultimate answer obtained. 
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Introduction 

Many geophysical applications rely on magnetic field measurements to discern 
characteristics of geologic source materials and buried objects. Typically, scalar data are 
acquired but may be converted to vector data as required by certain modeling routines.  
Vector components are derivable if the scalar data were acquired over a large surface 
with sufficient resolution. However, in unexploded ordnance (UXO) applications, where 
sources are nearby, there is a practical limitation to this approach (D.V. Smith, oral 
commun., 2004). Therefore, we consider vector-based acquisition methods. 

Direct measurement of target-anomaly vector data is hampered by the huge Earth-field 
vector, which requires the attitude of the vector sensor to be recovered with practically 
unattainable levels of precision. For example, using the best available attitude-recovery 
systems along with a vector magnetometer, gives Earth-frame component accuracy to 
only about 5 nanoTeslas (nT). This problem is circumvented in tensor gradiometry, 
which incorporates the vector information without requiring such stringent knowledge of 
the sensor-array attitude. 

Gradients are more useful for discerning nearby sources and source materials than are 
scalar or vector fields alone. Because gradient strength decreases with distance more 
rapidly than field strength, nearby sources are preferentially detected and distant sources 
are rejected. The tensor gradient can be manipulated to obtain source information through 
a number of methods that cannot be applied with fields only. One such method, called 
dipole mapping (Wynn and others, 1975), uses a tensor to find the location, depth, and 
moment of a dipolar source. Other methods involve the use of tensor invariants, which 
we briefly discuss herein (Pedersen and Rasmussen, 1990). 

We performed a survey to demonstrate the effectiveness of a prototype tensor magnetic 
gradiometer system (TMGS) for detection of buried UXO.  In order to achieve a useful 
result, we designed a data-reduction procedure that resulted in a realistic magnetic 
gradient tensor and devised a simple way of viewing complicated tensor data, not only to 
assess the validity of the final resulting tensor but also to preview the data at interim 
stages of processing. 

The final processed map of the surveyed area clearly shows a sharp anomaly that peaks 
almost directly over the target UXO.  This map agrees well with a modeled map derived 
from dipolar sources near the known target locations.  From this agreement, it can be 
deduced that the reduction process is valid, demonstrating that the prototype TMGS is a 
viable geophysical instrument and that direct measurement of the magnetic gradient 
tensor is a reasonable data-acquisition mode. 

This report shows how the demonstration survey data were processed and explains 
concepts required for successful TMGS data reduction. Although the procedures 
presented herein are applicable only to the prototype TMGS and to this particular data 
set, they serve as a vehicle for gaining a general understanding of the development and 
application of fluxgate tensor-magnetic gradiometer systems.  They also form a solid 
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foundation for future choices of techniques and design modifications for this specific 
system. 

Description of the Survey 

On March 12, 2003, the U.S. Geological Survey (USGS) used the TMGS to perform a 
demonstration survey over a known UXO target at the Standardized UXO Test Site in the 
Yuma Proving Ground (YPG), Arizona . The target was a 60-mm mortar shell buried 
0.25 m deep. We collected the data as 10-second stationary observations at five samples 
per second over a 3-m-square grid, called the “high-density grid,” centered on the target 
and having 0.25-m grid cells. Smith and Bracken (2004) describe the survey in detail.  
Three categories of data were collected onsite: (a) primary measurements including 
tensor magnetics, gradiometer position, and gradiometer attitude; (b) spin-calibration 
measurements for the precise determination of a large group of calibration coefficients 
for the sensors and sensor array; and (c) thermal baseline measurements for correcting 
thermal drift in the sensors and sensor array. Some calibration data used in the reduction 
procedure were collected in the laboratory. The primary objectives of the survey were to 
show whether the TMGS could find the target UXO, to evaluate how well the target 
anomaly stands out against background noise, and to gain a feel for how accurately its 
location could be ascertained. 

Description of the TMGS 

Brief History:  The TMGS was designed and built in the early 1990s for detection of 
volcano magnetic effects. These are time-varying magnetic fields produced in volcanoes 
by a variety of mechanisms (Zlotnicki and Le Mouel, 1988). The original instrument 
design required placement within about 3 km of expected volcanic events because 
gradients are preferential to nearby sources. In 1994 and 1995, the TMGS monitored 
near Kilauea Volcano, Hawaii and, after data-reduction, attained precision on the order of 
0.25 nanoTesla per meter (nT/m) over periods of weeks to months (Bracken and others, 
1998). However, over short periods of data collection, as would be applicable to UXO 
detection, the precision is expected to improve because long-period drift factors, which 
are difficult to remove, are not involved. 

The original design specifications required that the magnetic sources (targets) be at least 
25 m away from the sensor array, so that the gradients would remain nearly constant 
throughout the volume of the sensor suspension apparatus. However, for UXO detection, 
imaging, and discrimination, the sources will be much closer, resulting in significant 
gradient variation, or curvature, over the dimensions of the instrument.  Therefore, in 
future redesigns, the sensor geometry and spacing will be appropriately modified to 
handle increased field curvatures. Additionally, the original design called for stationary 
measurements over long time periods. The UXO application requires a moving platform 
with measurements over short periods. Again, in future redesigns, the data-acquisition 
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circuitry and data-reduction techniques will be modified.  Notwithstanding, the original 
design was used here to collect the data for this report. 

The Physical Unit: The TMGS consists of two basic units: a tetrahedron that holds the 
magnetic sensors, called the tetrahedral em/mag sensor suspension apparatus (TESSA) 
shown in figure 1; and a cubical enclosure (called “Morris”) that houses the 
magnetometer circuitry and data-acquisition systems (not pictured). TESSA is designed 
to maximize thermal and mechanical rigidity for reasons that will become clear later.  
Four tri-axial magnetic sensors, spaced 0.97 m apart, are placed at the vertices of the 
tetrahedron and are oriented in various attitudes that facilitate calibrations. Morris 
provides a thermally controlled environment (35◦C) for the fluxgate magnetometer 
control circuitry. It also contains circuitry that measures the temperature of each sensor 
and samples the magnetometer output. The raw data are sent to a laptop computer for 
storage via an RS-232 link. 

 Figure 1.  TMGS sensor array (TESSA) with sensors numbered. 

Currently, all data reduction occurs in postprocessing. However, the reduction procedures 
of future designs will most likely be carried out in real time on the laptop computer. This 
would provide an immediate readout of user-interpretable tensor derivatives, as well as 
downloadable files ready for analysis and archiving. 

The Magnetic Field 

The UXOs that are detectable by the current TMGS design produce a static magnetic 
field. That is, the field does not vary as a function of time; or at least it varies so slowly 
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that Maxwell's magnetostatic equations are practically satisfied. The magnetic field is a 
vector field, meaning that it has both magnitude and direction. It is also a potential field, 
meaning that it can be described as the derivative of a potential function and thus, it 
obeys Laplace's equations. All of these qualities provide mathematical bases and 
constraints for analyzing magnetic sources, and hence, UXO targets. In other words, the 
magnetic anomaly produced by a particular UXO contains useful information about that 
UXO. 

Magnetic Sources: The source of the field is magnetization, within the target, of both 
induced and remanent (permanent) varieties. It should be noted that both forms of 
magnetization passively exist within the source material, and are not generated by active 
signals from the TMGS. The induced magnetization is caused by and proportional to the 
geomagnetic field. In earth materials, which have relatively low susceptibilities, the 
magnetization is also generally aligned with the field.  However in high susceptibility 
materials, such as UXO, the direction of induced magnetization is difficult to predict due 
to complicated boundary conditions. Remanent magnetization, on the other hand, is 
independent of the Earth's field and can have essentially any orientation and magnitude. 

The smallest irreducible source of magnetic field is a magnetic dipole at the atomic level, 
and magnetization is a volumetric distribution of dipoles. We assume that dipoles are 
aligned throughout the target, which produces a net dipole moment together with a 
number of higher order moments. The suite of moments will be indicative of the 
distribution of magnetization, which in turn is controlled by the composition, shape, and 
distribution of materials within the UXO target.   

Therefore, by appropriately measuring the magnetic field at any point or set of points 
outside the source, characteristics of the magnetization can be ascertained, including its 
location (relative to the sample points) and possibly aspects of its distribution (within the 
UXO). Further analysis of the magnetization may yield specific information about mass, 
dimensions, orientation, and the like. However, it must be stressed that magnetization can 
vary widely among individuals of a given type of UXO, creating a likelihood of non-
uniqueness and overlapping characteristics among differing types. Moreover, the 
magnetic field itself, no matter how precisely measured, does not uniquely determine the 
distribution of magnetization, much less the shape and size of the source material. 
Nevertheless, statistical analysis of magnetization distributions may provide a basis for 
determining probabilities for classification of UXO (Billings, 2004). 

Superposition: In practice, the field being measured is a combination of magnetic fields 
produced by a number of sources, both nearby and distant and both small and large. The 
observable field at any point in space and time is actually the vector sum of all the 
contributing fields at that point. This principle is called superposition, and it is simply a 
statement that magnetic fields combine linearly, and that their combining can be 
described mathematically as a linear operation. This principle has bearing on instrument 
design and data reduction. 
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An isolated measurement of magnetic field (at a particular location and a particular time) 
does not contain any information that identifies or separates its component fields.  
However, by taking multiple measurements, separated by space and (or) time, certain 
component fields can be separated and identified. This can be done if each field varies 
according to a unique and identifiable spatial and (or) temporal function. 

It can therefore be assumed that any magnetic field measurement will be a sum of several 
different fields, originating from differing sources and having differing characteristics.  
Some of these component fields will be of interest; the rest must be removed. The 
separation and removal of undesirable fields is done by specialized instrumentation, data 
acquisition and reduction, and interpretation methodologies that take advantage of unique 
and identifiable aspects of the superpositioned fields through multiple measurements 
taken over spans of length and time. (Some of these methods and the fields they handle 
are mentioned in the next few sections.) 

The TMGS is an example of this type of specialized instrumentation. Each sample is a set 
of simultaneous measurements that are spatially separated. Then, samples can be taken at 
a prescribed sample interval, during which time the instrument can be stationary or in 
motion. Thus, the TMGS is a tool for separating magnetic fields by looking at both 
spatial and temporal variations. 

The job of separating fields includes the requirement of being able to measure small 
fields that have been added to large fields. For example, the Earth's field is several orders 
of magnitude larger than the typical target anomaly; this predicates having 
instrumentation with a large dynamic range that can measure tiny variations riding on a 
huge signal. The magnetometers used in the TMGS have a dynamic range approaching 
140 decibels (dB), which, imagining magnetic fields to be analogous with sound, makes 
them about 1,000 times quieter than a home stereo CD player. More important, this range 
allows the TMGS to preserve the tiny signals from UXO targets while rejecting a huge 
common-mode signal from the Earth’s field, as will be discussed later. 

Scalar Field Measurements:  The most common magnetometers in use today measure 
only the magnitude of the field and are insensitive to its direction. This measurement is 
useful primarily because the target's field is much smaller than the Earth's field, making 
the direction of the sum of the two fields nearly the same as the Earth's field. 
Consequently, most geophysical applications treat the magnetic field as a scalar quantity 
with its resultant simplifications. However, except under ideal circumstances where the 
scalar field is accurately known over an effectively infinite surface, scalar measurements 
loose the vector direction information of the target's field. 

Nevertheless, the target's anomaly often can be distinguished spatially from other 
anomalies and fields because measurements are taken at many locations. Also, temporal 
fields, such as the diurnal variation, can be removed by collecting base magnetometer 
data at a nearby stationary location. In spite of these techniques, distant sources can add 
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noise and uncertainties to measurements of nearby targets, and multiple nearby targets 
can become indistinguishable from one another. 

Scalar Gradient Measurements: Because the magnetic field varies from place to place, 
it is appropriate to consider direct measurement of that variation. Operating two or more 
scalar magnetometers at a fixed distance apart produces a scalar gradient measurement, 
which is the spatial rate of change of the field magnitude in the direction of the baseline 
between the two measurement points. The gradient is preferentially sensitive to nearby 
sources because, while the magnitude of a dipolar field is proportional to the inverse cube 
of the distance to the source, the dipolar gradient goes by the inverse fourth power. 
Therefore, gradient measurements improve the spatial separation of anomalies, 
essentially eliminate interference from distant sources, and obviate the need for a base 
magnetometer. 

The scalar gradient has an associated direction, which depends on the orientation of the 
baseline between the two scalar magnetometers. By constructing a 3-axis scalar 
gradiometer (one with three independent gradient baselines), three of the five 
independent components of a gradient tensor can be found, assuming the direction of the 
total field is known by an independent means. This information is also helpful in 
separating anomalies and modeling nearby sources, but it does not form a complete 
characterization of the magnetic field. 

Vector Field Measurements: A vector magnetometer measures both the magnitude and 
direction of the magnetic field, as contrasted to the scalar magnetometer that is 
insensitive to direction. (Here, the direction is that of the magnetic field lines, not the 
baseline direction as in the scalar gradiometer.) Complete measurement of the vector 
field requires three simultaneous linearly independent measurements. This is the same as 
three different axis directions; hence the name, “tri-axial vector magnetometer.” If these 
axes are coincident and orthogonal (as in the rectilinear coordinate system with x, y, and 
z axes), then they represent the three components of the magnetic field vector, called bx, 
by, and bz. The field magnitude is then the square root of the sum of the squares of the 
three components, and the field direction is defined by the direction cosines. Of course, 
both the location and the precise attitude of the vector magnetometer must be known in 
order to define the field. The TMGS is based on vector field measurements. 

Magnetic Gradient Tensor Measurements: If vector field measurements are 
simultaneously made at two points in space, then three gradient quantities are obtained.  
They are the rates of change of each of the three magnetic field components ( bx, by, bz ) 
as functions of distance in the direction of the baseline between the two measurement 
points. For example, the gradient of the y component of the magnetic field in the x 
baseline direction is expressed as the partial derivative, ∂by/∂x = gyx. Of course there are 
three magnetic field directions; but there are also three possible baseline directions, 
resulting in nine gradients. These nine gradients are arranged into a 3-by-3 matrix, a 
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mathematical object called the magnetic gradient tensor. It is symbolically written in row 
and column format as: 


 

 
bx x by x bz x 
bx y by y bz y 

and interpretation. 

∂
∂ 

b b b ∂z z zzx y 

Maxwell's magnetostatic equations require that both the curl and the divergence of the 
magnetic field be equal to zero in a sourceless region (Kaufman, 1992). This means that 
the gradient tensor will be symmetric and its trace components will sum to zero. In other 
words, only five of the nine tensor components are independent. This has implications 
that simplify and improve TMGS sensor design, noise characterization, data reduction, 

At a point in space and time, the magnetic gradient tensor together with the three vector 

imperfections and deviations from the ideal that necessitate corrections and 
compensations in data reduction processes. Of course, the development of any system 

attention must be paid to providing predictable behavior, stability, and repeatability 
within the narrowest limits of precision, while deferring corrections and compensations 
for accuracy to subsequent data-reduction processes. The output of the physical device 
can then be moved toward the theoretical and the ideal by applying knowable though not 
ideal parameters of the physical system in mathematical reductions. Consequently, proper 
identification of system parameters is critical to obtaining valid results and is possibly the 
most important aspect of developing a data-reduction procedure for the TMGS. 

2d and higher order spatial derivatives. 

∂
∂
∂ 

∂
∂
∂ 

∂
∂
∂ 

field components, consists of a complete description of the magnetic field to the 1st 

At the practical level, magnetometers and magnetic systems are found to have 

∂∂ 

∂∂ 

∂∂ 

order. That is, the TMGS directly measures 0th- and 1st-order spatial derivatives, but not 

Important Concepts as Applied to the Prototype TMGS 

strives toward the theoretical and the ideal. But in the physical device, the greatest 

For example, the Narod Ring Core magnetometers used in the TMGS are among the 
finest tri-axial fluxgates in the world. They are designed after the MAGSAT vector 
magnetometers (Acuna and others, 1978), and USGS magnetic observatories use them 
for reporting of the official HDZ vector data (Narod, 1987). Their output is precise and 
repeatable, yet no axes are perfectly orthogonal. Consequently, if the data reduction does 
not “know” and apply the relative axis-angle parameters—if it blindly assumes that the 
axes are orthogonal—then the resulting tensor will be erroneous. There are a number of 
subtleties like this one that the data-reduction procedures must take into account, and we 
must understand why these subtleties exist. Hence, this section on important concepts is 
provided. 

/
 /
 /
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Extreme Attitude Sensitivity: Vector magnetometers in the Earth's field are extremely 
sensitive to attitude variations. For example, if an axis of a vector magnetometer is 
oriented approximately perpendicular to the Earth’s field and then its attitude is changed 
a slight amount, moving the axis, say, 20 micro-radians (µr) or 4 arc-seconds toward the 
Earth-field vector, then the axis will read an increase of 1 nT. Conversely, if the same 
axis will detect a 0.01-nT change in magnetic field, then it will also detect a 0.2-µr or 
0.04-arc-second change in attitude. Therefore, a vector magnetometer, such as is used in 
the TMGS, is like a high-precision tilt meter, returning attitude information relative to the 
direction of the magnetic field vector with precision down to 0.2 µr.   

If the intent is to measure magnetic-field components, the magnetometer's attitude must 
be known from an independent source with extremely high precision. Unfortunately, the 
best inertial guidance systems track attitude relative to a geographic reference frame only 
down to about 100 µr. If this level of precision was applied to vector measurements in the 
Earth's magnetic field, the attainable precision would be about 5 nT. 

Considering that the field from a 20-mm UXO may be on the order of 5 nT at a range of 
0.5 m, it can be concluded that the vector components of such a UXO cannot even be 
detected above the noise generated by attitude uncertainty, much less be modeled. This 
leads us to the idea of mechanically locking two (or more) sensors together. In this 
configuration, one sensor can be thought to act as a high-precision reference that tracks 
the attitude variations relative to the Earth’s field, while the other measures residual 
variations. However, we quickly see that, in a realizable system, no particular sensor will 
be removed far enough from the nearby sources to act as a pure Earth-field reference, nor 
do the residuals measure components of the magnetic field.  Instead, by mechanically 
locking sensors together and differencing them, we obtain spatial gradients; two or more 
vector magnetometers affixed to a rigid platform become a magnetic gradiometer. 

Common Mode and Angular Stability: When the gradient is calculated, differencing 
removes any signal that is common to both magnetic sensors. (Normalizing this 
difference with respect to spatial separation yields a gradient.) In this case, the Earth’s 
field is by far the largest common field and therefore correlates between both vector 
magnetometers, producing huge common-mode signals among their various components.  
The common-mode signals from either magnetometer are then several orders of 
magnitude greater than any of the gradient-producing signals. This dynamic range puts 
rigorous demands on the gradiometer to maintain a precision balance between the 
magnetometers while the platform undergoes angular motion, mechanical shock, and 
thermal variation during data collection. The precision balance may also be called 
tracking and has to do with the ability of readings from one magnetometer to track 
precisely with readings from the other. 

One aspect of tracking involves angular stability, which equates to minimization of 
mechanical and thermal deformation. It was shown above that the attitude of a vector 
magnetometer needed to be known to about 0.2 µr, relative to a geographic reference 
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frame. Now in the gradiometer configuration, the same figure applies, but it is relative to 
the other sensor instead of the geographic frame, assuming that a gradient is the desired 
quantity. While the geographic reference frame cannot be ascertained with sufficient 
precision, the attitudes of magnetometers in a gradiometer configuration can be 
maintained relative to one another to better than 0.2 µr. However, maintaining this level 
of stability challenges both the mechanical and thermal characteristics of materials and 
geometries used in the sensor suspension apparatus (SSA), or platform. 

The difficulty in achieving sufficient angular stability serves to illustrate the huge effect 
of the Earth’s field and is part of the pervasive issue of common-mode field rejection, 
which is of foremost importance and drives much of the gradiometer design and 
processing methodology.   

Gradient Measurements: The magnetic gradient tensor is derived by taking the 
difference between magnetic vector measurements and normalizing by the separation 
distance. (Devices that intrinsically measure gradients are not available.) Because of the 
Earth’s large field and the common-mode signals it produces in the gradiometer, it is of 
paramount importance that the magnetometer sensors be locked together by a suspension 
apparatus that minimizes relative temporal angular variations, whether due to thermal 
expansion or to mechanical strain. In the current design, the tetrahedral shape of TESSA 
balances these microscopic movements so that the net relative angular variations are 
minimized while providing the largest possible baseline for gradient sensitivity. The 
tetrahedron is a mechanically stable geometry because stresses are transmitted primarily 
along the edges (line segments separating the vertices), so that strains become mostly 
compressional or extensional, and not flexural. The symmetry helps minimize thermal 
angular changes because as the ambient temperature changes, all six edges will expand or 
contract by similar amounts. Meeting this angular-stability criterion together with the 
high quality of the magnetometers makes it possible to measure the magnetic gradient 
tensor. 

Simultaneous Measurement: The current configuration of the TMGS has 4 tri-axial 
magnetic sensors, each with 3 axes, which makes a total of 12 vector field axes. After 
differencing of these 12 axes, there are 6 gradient baselines, only 3 of which are linearly 
independent; and this leads finally to 9 measured gradients. The key point here is that the 
12 vector field axes are sampled simultaneously during data collection, while the 
gradients are derived from the vector field data through subsequent data-reduction 
procedures. 

Rejection of Motion-Related Common-Mode Signal: Simultaneous sampling becomes 
critical when data are being collected on the fly. The platform yaws, pitches, and rolls, 
which leads to angular rates of change and, hence, higher frequency content in the 
common-mode signals. (The common-mode signals have their common  modality among 
the 12 vector field signals by virtue of the fact that all 12 signals have most of their 
amplitude originating from the common magnetic field, which is the Earth’s field, and 
most of their variation due to angular rates of the platform in that field.) The higher 
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frequency content implies rapid variation of signal amplitude. Consequently, if the 
signals were sampled sequentially instead of simultaneously, then there would be 
opportunity for a time-varying common-mode signal to have a different value on each 
axis. This would irreversibly mix temporal variations in with the spatial variations, 
defeating the spatial gradient measurement. Conversely, if the signals are sampled 
simultaneously, temporal variations are rejected, being separated and removed from the 
spatial measurements. 

However, simultaneous sampling is only part of the picture. Before sampling occurs, the 
magnetic field must first be converted to a measurable electrical signal by the 
magnetometer. The conversion effectively imposes a series of linear processes, or filters, 
that can be characterized by a transfer function that most likely will not have a flat 
spectrum nor zero-phase at all frequencies. Therefore, truly simultaneous measurements 
at all applicable frequencies can only be achieved by balancing the transfer functions 
among all of the axes on all of the magnetometers. Any application from a moving 
platform mandates this balancing procedure, which is required to ensure that the 
magnetometers will track precisely. 

Nevertheless, transfer-function balancing was not an essential data-reduction step for the 
data collected in the high-density grid because the platform was brought to rest at each 
station before sampling commenced. Consequently, further description is not included in 
the processing description to follow. 

Rejection of Diurnal and Other Geomagnetic Variations: Most forms of common-mode 
signal, other than those generated by attitude variations, are slowly varying, such as 
diurnal variations; for these, precise tracking is not as critical. Although they are 
normally a menace to magnetic field measurements, they have no effect on the gradients 
because of common-mode rejection. This, however, does not mean that a gradiometer can 
be used successfully in severe geomagnetic storms because high magnetic activity can 
cause temporal ground currents and secondary fields that may appear as nearby sources.  
Furthermore, a tri-axial base magnetometer should always be used in conjunction with 
TMGS surveys to remove temporal variations from the vector-field portion of the data. 

Slowly Varying with Attitude: While the vector field components are extremely sensitive 
to attitude variations, the gradients (components of the gradient tensor) are only mildly 
sensitive. Therefore, if the objective is to locate a magnetic source having a field that is 
small compared to the Earth’s field, then the attitude recovery system for a vector 
magnetometer must be far more precise than that of a tensor gradiometer doing an 
equivalent job. 

As an illustrative example, start with a purely dipolar source oriented perpendicular to the 
Earth’s 50,000-nT field and having a field strength of 8 nT along its 0.5-m equatorial 
radius. Establish an observation point at one of the two intersections of its 0.5-m 
equatorial radius and the Earth-field line that runs through the dipole. Now at the 
observation point, the dipole’s field is 8 nT and runs perpendicular to both the Earth’s 
field and the dipole’s equator. 
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The total field strength is 50,000.00064 nT and the field direction is 160 µr (33 arc-
seconds) from the Earth-field direction. Therefore, if a vector magnetometer was 
associated with a state of the art attitude recovery system (with a precision of 100 µr) it 
would barely be able to sense the presence of the dipole from this observation point, 
showing its field strength to be somewhere in the range of 3 to 13 nT, or an error of 
62.5 percent of the full dipolar field expression. 

On the other hand, one of the gradients at the observation point ranges from –48 to  
+48 nT/m depending on its baseline direction. If the same 100-µr attitude precision is 
applied to a gradiometer, then the greatest expression of gradient error is in the range of – 
–0.0048 to +0.0048 nT/m, or an error of 0.01 percent of the full gradient expression. In 
this instance, the vector magnetometer is over 6,000 times more sensitive to attitude 
recovery error than the gradiometer. Therefore, with a nominal attitude recovery system, 
the TMGS is able to provide better data than a vector magnetometer using state-of-the-art 
attitude recovery. The gradiometer’s mild sensitivity to attitude is also a useful concept 
that has application to thermal corrections. 

Preferentially Sensitive to Nearby Sources: As previously described, gradients respond to 
nearby sources and tend to reject distant sources. Of course, this is why a tensor 
gradiometer is ideally suited for UXO work. Keeping this in mind, it becomes clear that 
in areas having magnetic materials near the surface, it is better to have an increased 
standoff (sensor height above the surface) to keep the surface magnetic signatures from 
swamping the UXO. 

Leakage of the Earth's Common Mode Field into Gradient Measurements: 
Assuming that, as alluded to above, (a) the magnetometers are quiet and stable, (b) the 
platform has minimized angular instabilities, and (c) the axis tracking errors can be 
removed, then the instrument is qualified to acquire gradient-tensor data.  At this point, 
data-reduction procedures become important.  This section describes the first of the 
subtleties, mentioned previously, that results from imperfections and deviations from the 
ideal and that requires application of system parameters in mathematical reductions. 

This subtlety is a leakage of the Earth's common-mode field into the gradients.  It is 
caused by slight differences among the magnetometers, such as small disparities in 
calibrations, sensor axis inorthogonalities, and sensor attitude misalignments. All of these 
things can be corrected in data reduction, given accurate knowledge of the governing 
system parameters. For example, the relative attitudes of the sensors must be known 
precisely in order to align them mathematically. 

The leakage phenomenon is best described by way of an example that reflects typical 
TMGS behavior. Suppose that two truly parallel axes are being differenced for a gradient 
calculation as shown in figure 2. There is no gradient present, and the field difference 
between the axes correctly indicates a zero gradient both before and after the gradiometer 
is rotated one degree toward the Earth’s field vector. Suppose now that the two axes are 
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one degree out of parallel as shown in figure 3. If gradient calculations are made, errantly 
assuming the axes to be parallel, then systematic errors, or false gradients, will appear.  
More insidiously, the false gradients will vary with sensor-platform attitude.  Figure 3 
shows a platform rotation artifact that could falsely be interpreted as a 10-nT/m anomaly. 

This false anomaly is more than ample to swamp a real anomaly from a small UXO 
target. Furthermore, the false gradient is correlated to TESSA's attitude and is entirely a 
manifestation of common-mode leakage. In fact, any gradient reduced with incorrect 
parameters will likely have 2 or 3 times bigger errors because of similar effects 
compounded from calibration disparities, axis inorthogonalities, and attitude 
misalignments. 

Figure 2. An example of a gradiometer with no common-mode leakage.  The 
sensor axes are parallel, and the sensor platform (the yellow box) is shown in two 
different attitudes relative to the earth’s main field vector.  There are no false 
gradients and no platform rotation artifacts. 
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Figure 3. An example of a gradiometer with common-mode leakage in a zero-
gradient space. The sensor axes are misaligned by one degree, and the sensor 
platform (the yellow box) is shown in two different attitudes relative to the 
Earth’s main field vector. There are false gradients of 622 nT/m and 612 nT/m; 
and a platform rotation artifact, or false anomaly, of 10 nT/m. 

Common-mode leakage is reduced to tolerable or insignificant levels by introducing 
coefficients derived from a special procedure, called spin calibration, which will be 
described later. If the calibration coefficients are not used, or incorrect calibration 
coefficients are used, the resultant tensor will be correlated to undulations in the ground 
surface and will bear no resemblance to any target anomaly or gradient. 

Thermal Drift: The magnetometer sensors used in the TMGS have a certain amount of 
temperature-dependent drift. Certain of the magnetometer calibration coefficients are 
actually functions of temperature, and should have been derived as such. However, time 
and facilities at YPG allowed only the constant portion of the coefficient functions to be 
measured. 

Another contributor to thermal drift is differential expansion of TESSA. If one side is 
exposed to solar heating, it will tend to expand more than the shaded side. This will tend 
to alter the measured gradients as the sensor attitudes change differentially in the Earth's 
field, as illustrated in figures 2 and 3. According to Bracken and others (1998), data taken 
in Hawaii showed that TESSA produces angular thermal drift of less than 0.05 nT/m per 
degree Celsius, when completely shaded. However, while collecting the high-density grid 
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data, differential heating may have been a bigger factor because of direct sunlight on the 
face defined by sensors numbered 1, 3, and 4 (fig. 1), which was facing south. The future 
design of the sensor suspension apparatus, which will be specific for UXO work, is 
expected to improve substantially upon the tetrahedron in minimizing angular thermal 
drift. 

The technique used for reducing thermal drift in the high-density grid data removed both 
coefficient and angular drifts. The combined effect of these two causes was a more-or­
less linear drift by amounts on the order of 10 nT/m during the 4.5 hours from start to 
finish of the data collection. 

Without a thermal drift correction, the gradient tensor becomes increasingly inaccurate as 
a function of time with resultant striping parallel to the line direction and, in the high-
density grid data, an obvious discontinuity between the data on either side of a 100­
minute intermission in data acquisition. There is, however, no evidence that the thermal 
drift leads to significant common-mode leakage in the high-density data. Estimates show 
that the thermal drift would have to be an order of magnitude larger to cause noticeable 
common-mode leakage. 

Removing Thermal Drift: The method for removing thermal drift from the high-density 
data takes advantage of the fact that, unlike field vector components, gradients are not 
very sensitive to small attitude variations. Therefore, a particular location was selected to 
serve as a thermal base station. Data were collected here at the beginning, middle, and 
end of the high-density survey. Because TESSA's attitude varied by only a few tenths of 
a degree in the reoccupations of the thermal base station, the gradients measured there 
should have remained nearly constant. Therefore, any change in those gradients was a 
measure of the thermal drift. As a result, the thermal drift was removed as two sets of 
nine linear functions defined between the nine gradients measured at the beginning, 
middle, and end occupations of the thermal base station location. 

Magnetic-Field Curvature: As mentioned previously, TESSA was designed on the 
assumption that the gradient is effectively constant everywhere within the volume of a 
1-m tetrahedron. But, this assumption cannot be applied to UXO work because of the 
target proximity. The gradient tensor only describes an infinitesimal point in space.  
Surrounding points conceivably can have differing magnetic fields and tensors subject 
only to the constraints that there be no discontinuities and that the equations governing 
magnetostatic fields are not violated. For purposes of discussion, this nonlinear 
potentiality is called field curvature. 

The local magnetic field, within a volume of space (that is, TESSA) is fully described by 
an nth-order 3-dimensional vector polynomial that satisfies the magnetostatic laws, and 
the gradient tensor can be found easily by applying the gradient operator (V) to each 
component of the vector polynomial. This is essentially taking the 1st derivative in a 
volume, resulting in a reduction of order by 1. 
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A Linear Field Polynomial: If the polynomial is order 1, the tensor will be order 0, which 
means that the field changes linearly as a function of location, and the tensor is 
everywhere the same; that is, each term of the tensor is a constant with respect to 
location. This system of equations can be solved completely with 8 vector field 
measurements (for example, three components at each of two sensors and two 
components at a 3d sensor). It is also the circumstance that TESSA was designed to 
handle because no field curvature is present. 

In this case the system is slightly overdetermined because the TMGS, with the tetrahedral 
configuration, provides 12 simultaneous vector field measurements and, thus, a direct 
measure of all 9 tensor components.  However, only eight field measurements are 
required because only five of the nine tensor components are independent. Therefore, 
because the system is overdetermined, the degree to which the nine-measured-component 
tensor departs from being symmetric and traceless becomes an indicator of the severity of 
the curvature. 

Curvature of the Field Polynomial: If the field polynomial is order 2, then the tensor will 
no longer be constant. Each component now becomes a linear function of location 
because field curvature exists. In this case, 15 simultaneous field measurements are 
required and the tetrahedral configuration is slightly underdetermined.  As the polynomial 
is increased to higher orders (n = 3, 4, …), the curvature deepens and it describes an 
increasingly more complicated magnetic field. It would be desirable to use vector field 
data in formulating a polynomial of sufficiently high order to describe the field of a 
nearby UXO target. Unfortunately, the TMGS does not provide enough simultaneous 
independent field-vector measurements. 

Curvature of the Field from UXO Targets: Rudimentary modeling was performed to 
obtain a feel of scale for the curvature of nearby UXO targets. For a nearby (0.5 m) 
dipolar target it appears that, to obtain a sufficiently accurate tensor at the centroid of 
TESSA, the polynomial must be at least order 7 to 9. An order 7 polynomial has 80 
degrees of freedom, meaning that 80 field-vector measurements are required for a 
solution; the TMGS has only 12. Therefore, the system is severely underdetermined and 
cannot begin to characterize, by simultaneous measurements of the 12 axes, the 
curvatures of nearby targets. 

As a way out, one is tempted to think that 7 closely spaced TMGS readings (7 readings 
times 12 components per reading = 84 measurements) could be utilized in the polynomial 
solution. This cannot work, however, because the attitude of TESSA changes from 
reading to reading. Thus, common-mode leakage would dominate the solution, and the 
result would be correlated to ground-surface undulations instead of to the actual magnetic 
field. 

There may yet be mathematical procedures for resolving the curvature issue by 
combining gradients (instead of field components) from several consecutive TMGS 
readings, but this level of modeling has not been performed. In the meantime, the high-
density data were collected on a grid, allowing another option for resolving the curvature 
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problem, which will be discussed next. Nevertheless, the best solution is a future redesign 
of the sensor suspension apparatus to have smaller dimensions and a geometry that 
handles curvature more effectively while retaining the same number of sensors.   

Minimizing the Effects of Curvature by Collocation of Gradients: With the tetrahedral 
configuration, the effective location of the measured gradient tensor is somewhere within 
the volume, nominally at the centroid, not in a direct line between any two sensors. 
However, the most accurate gradient measurements are those that lie on the baseline, and 
are assumed to be centered, between two sensors. The difficulty is that any single pair of 
sensors only provides three gradients when five are needed for the complete tensor.  This 
means that the additional two gradients must be provided by another pair of sensors 
whose center is not in the same location as that of the first pair. 

If field curvature is significant, the gradient from the second sensor pair simply belongs 
to a different tensor. The solution to the problem hinges on the fact that, unlike field 
vectors, the gradients are not very sensitive to small attitude variations. This means that, 
for constructing a complete tensor, individual gradients that are not yet part of a tensor 
can be shared among stations (fig. 4). Combining gradients from three different stations 
in this manner will reduce curvature effects as long as the attitude of TESSA does not 
change much from station to station—exactly the situation with the high-density grid, 
which was a nearly flat, horizontal surface. 
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Figure 4. Gradients from three pairs of sensors (red s3-s1, green s4-s1, blue s2­
s1) measured at three different stations (red, green, and blue tetrahedrons) are 
collocated at the point shown by a fuzzy black square to produce all nine 
components of a tensor. 

Data Collection 

Two different kinds of data were collected. The first kind was spatial data within the 
high-density grid. The second was angular data, derived from the spin calibration and 
used for deriving calibration coefficients applicable to all data collected at YPG during 
March 2003. 

Spatial Data Collection in the High-Density Grid: The high-density grid is a 3-by-3-m 
horizontal area aligned on magnetic north and approximately centered on a known  
60-mm UXO target, at 0.25-m depth. Also, eight additional known targets lie at regular 
intervals around the perimeter of the grid, four off the corners and four off the sides.  
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According to information supplied by YPG, consisting of independent testing of random 
soil samples and a separate magnetics survey conducted with a scalar gradiometer, there 
also appears to be significant magnetism randomly distributed within the soils, including 
clutter (fragments of exploded ordnance) within and outside the east half of the south 
side. The square grid cells are 0.25 m on a side, resulting in 13 rows and 13 columns of 
data-acquisition locations (169 stations), some of which were occupied more than once. 

Stations were occupied beginning in the southwest corner, and proceeding north at 
0.25-m intervals.  After completing the northern-most station on a given line, TESSA was 
returned to the south end of the next line, 0.25 m farther east. Station locations were 
established by using a tape measure and spray-painting marks on the ground for 
alignment with calibrated marks on the cart. The resulting accuracy of the station 
locations should be plus/minus a few centimeters in both northing and easting. At each 
station, data were sampled at 0.2-second intervals for a minimum of 10 seconds (50 
samples per station). 

The data were collected in two stages, resulting in the two data files, n0312c and n0312d. 
The first stage went from line 1, point 1 (L1P1) through line 8, point 10 (L8P10).  After a 
100-minute hiatus, the second stage went from L8P10 through line 13, point 13 
(L13P13), which is the final station in the northeast corner. 

Spin Calibration: Data were collected for the express purpose of deriving precise 
coefficients used in reduction of TMGS data. The procedure is called spin calibration, in 
which TESSA is slowly rotated (within the Earth's large common-mode field) on a non­
magnetic turntable.  A complete circle plus 10 degrees of overlap was completed in just 
under an hour for each of four designated tetrahedron attitudes. The location for this 
procedure, different from that of the high-density grid, was chosen to minimize magnetic 
gradients. Temporal variations in the geomagnetic field were recorded by nearby scalar 
and vector base magnetometers.  Spatial variations of the local magnetic field were 
obtained by performing a densely spaced survey using a scalar gradiometer. 

The Coordinate Systems: The coordinate system for TESSA is Cartesian right-hand 
orthogonal with directions referenced to the positions of the magnetometer sensors.  
Refer to figure 1 and to one of the tetrahedrons shown in figure 4 to see how sensors s1, 
s2, s3, and s4 are arranged. The s1 sensor is at the top of the tetrahedron; s2, s3, and s4 
form a horizontal triangle at the bottom of the tetrahedron. The x, y plane is parallel to 
the s2-s3-s4 triangle and runs through the centroid, which is vertically below s1 by 
exactly ¾ the tetrahedral height. The z-axis points down from the centroid toward the s2­
s3-s4 triangle. (In figure 4, the z-axis points into the page from s1.) The y-axis is parallel 
to the line defined by s3-s4, with the positive sense toward s3. (In figure 4, the y-axis 
points to the right.) The x-axis is arranged in a right-hand system. (In figure 4, the x-axis 
points toward the top of the page.) 
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The origin of the high-density grid (geographic) coordinate system is at the grid point in 
the southwest corner at ground level. The positive z-axis points vertically down, the 
positive y-axis points magnetic east, and the positive x-axis points magnetic north.   

TESSA was oriented on the high-density grid with its x-axis pointing magnetic north, y-
axis east, and z-axis down—approximately co-oriented with the high-density grid 
coordinate system. 

Processing Procedures 

In this section, the data-processing procedures are explained, with particular objectives to 
elucidate each processing step according to the important concepts given previously and 
to illustrate how each processing step affects the gradient tensor. A flow diagram is 
given in figure 5. 

Data Presentation: Considering that the gradient tensor itself is a complicated 
mathematical object that is not easily illustrated, other means of indicating data qualities 
must be sought. To this end, it should be noted that the data from the TMGS are 
comprehensive in the sense that they can be transformed into any of the four categories of 
magnetic field: scalar field, scalar gradient, vector field, or gradient tensor—the gradient 
tensor being the design objective and the most powerful of the categories.   

The scalar field and scalar gradient can be easily illustrated in color-shaded relief.  But 
having no particular sensitivity to field direction, neither of these can be a comprehensive 
indicator of the tensor qualities. The vector field includes the field directional information 
but, lacking a state-of-the-art attitude recovery system, it will be dominated by attitude-
dependent noise. Also, having three components, it becomes difficult to illustrate. The 
remaining options are either (a) to prepare a large number of statistical devices that, while 
being quantitatively descriptive, rival the tensor's complexity, or (b) to find a 
qualitatively robust means of illustrating the tensor. 

Determinant of the Tensor: Examination of the tensor reveals an assortment of qualities 
that may be utilized. In particular, each magnetic gradient tensor has an orthogonal 
natural coordinate system into which it can be rotated, called the principle axis frame.  
Performing the rotation diagonalizes the matrix; that is, all six of the gradient components 
that are not in the trace become zero.  Also, the threeremaining components 
(gxx,gyy,gzz) are a comprehensible set of gradients. (Only two of them are 
independent because gzz=-gxx-gyy, which is required by Laplace’s equation, 
V2Ф=0). 

If these three gradients are multiplied together, the result can be imagined to represent the 
volume of a box in gradient space—the bigger the box, the more gradient strength it 
contains. Furthermore, this object is a scalar quantity that can be easily illustrated in 
color-shaded relief as well as representing an intrinsic quality of the magnetic gradient 
tensor. Finally, this quantity is a tensor invariant (called the I2 invariant) that can be 
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Link

calculated easily from any reference frame by taking the determinant of the matrix— 
diagonalizing the matrix is not required (Pedersen and Rasmussen, 1990). 

Figure 6 

Figure 7 

Figure 8 

Figure 10 

Figure 11 

Figure 5. Flow diagram of data reduction showing the major processing stages 
for reduction to a tensor of the TMGS high-density data. 
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It can therefore be deduced that the magnitude of the determinant is in some way 
proportional to the proximity of a magnetic source. It actually goes by the 12th power of 
the inverse distance to the source. This results from the determinant being a product of 
three gradients, each of which follows an inverse 4th power law. The magnitude also has 
other characteristics dependent on the magnetic moments and the observation point. 
Evidently because of the influence of such an intense power law, the determinant has the 
greatest expression at the nearest approach to a source. In most cases, this means that a 
mapped determinant anomaly will reach a sharp (positive or negative) peak almost 
directly over its target. (Because of moment direction, the exact location of the peak may 
be offset slightly, or in some cases, the peak may be replaced with an abrupt positive-to­
negative transition.) This is in contrast to a scalar-field anomaly that reaches an 
unfocused peak at a location somewhat offset from the target zenith. 

Linear Volume-Model Engine: The linear volume-model engine is a utility computer 
algorithm that displays TMGS data, at various stages of processing, in a common  
format—namely the determinant of a gradient tensor. It allows data in a particular 
premature stage of processing to be examined in a mapped determinant form by 
converting them directly, without the intervening reductions. For example, figure 7 uses 
the engine to show what the mapped determinant would look like if the thermal-drift 
correction and collocation stages of data reduction were not performed.   

The output is the determinant of the gradient tensor for each of the 169 stations in the 
high-density grid. The input, however, is allowed to be any of (a) raw TMGS data 
(analog voltages and bin numbers), (b) the 12 field-component values from the 4 TMGS 
sensors, or (c) the nine gradients obtained by subtracting the sensor readings (s2-s1, s3­
s1, s4-s1). Therefore, the linear volume-model engine guarantees a standard nonbiasing 
procedure for TMGS data examination. 

The linear volume model engine performs a two-stage process, the first of which converts 
the input data to 12-vector field components, and the second obtains a tensor (and its 
determinant) by applying a linear least-squares regression to the field components.  
Coefficients used in the first stage are nominal (for example, the magnetic sensor axes are 
assumed to be perfectly orthogonal).  The regression in the second stage forces the trace 
to vanish by heavily weighting the trace summation equation, as suggested by Dr. 
Yaoguo Li, (Y. Li, oral commun., 2004).  The regression, however, does not perform any 
other normalization.  For example, weighting the least-squares system according to 
average field-component magnitudes introduces fictitious anisotropies; so, the engine 
does not perform this normalization.  

Assumptions Applied to the Spatial Data: To simplify the processing of the high-
density grid data, a number of assumptions were made about things that would not 
adversely affect the resulting tensor. These assumptions are the subheadings, as follows: 

Positions match the ideal 0.25-m grid:  The position recovery for both TESSA and the 
high-density grid is simply to use the planned values from positioning TESSA and setting 
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up the grid (for example, 1.25, 1.50, 1.75, … see "Spatial Data Collection in the High-
Density Grid"). This means that there can be both systematic and random errors in the 
positions of TESSA amounting to plus/minus several centimeterss in x, y, and z. 

Gradients vary too slowly as a function of attitude to warrant attitude corrections: The 
heading, pitch, and roll of TESSA changed by a few degrees each, from station to station.  
If the TMGS is not leaking common-mode field, this amount of change in attitude has 
only minimal effect on the gradients. Therefore, all gradients are assumed to have been 
measured in a common reference frame. However, it is important to mention that this is 
not a generally applicable assumption. In anything but the flattest terrain, attitude 
recovery must be performed for the gradients to within a couple of degrees in heading, 
pitch, and roll. 

Sensor positions are coincident with the virtual tetrahedron vertices: As a foundation for 
tetrahedral calculations, an idealized tetrahedron with 97-cm edges is used and is called 
the virtual tetrahedron. Although they are fairly close, the true positions of the sensors do 
not exactly coincide with the vertices of the virtual tetrahedron. However, the errors are 
small, probably less than plus/minus 1 cm in each axis. This assumption would introduce 
less than a 1-percent error into gradient magnitude accuracies. 

Sensor axes are coincident: By design, the three axes in each of the four magnetic 
sensors used in TESSA are not coincident; the x-, y-, and z-axes occupy different 
physical locations on each sensor base. This design presumes that readings are being 
taken in low-gradient regions (recall the original purpose of TESSA), contrary to the 
UXO detection circumstance. Similarly, it violates one of the prerequisites mentioned 
earlier for obtaining the three components of the magnetic field vector; namely, that the 
axes must be coincident.   

However, the designing of a data-reduction procedure to correct this inadequacy was not 
performed. Indeed, such a procedure would have improved the results but was not critical 
in meeting the objectives of this study. Therefore, assuming the axes on each sensor to be 
coincident has introduced up to a plus-or-minus 4-percent error into the gradients.  This 
has the potential to reduce the determinant accuracy by as much as plus-or-minus 12 
percent, a fairly large amount. However, a future design of the sensor suspension 
apparatus can minimize or obviate the need for a sensor-axis coincidence correction by 
taking advantage of the fact that the three axes on each sensor are collinear. 

Assumptions Applied to the Spin-Calibration Data: To simplify the processing of the 
spin-calibration data, a number of assumptions were made about things that should have 
minimal effect on the resulting tensor or could be reduced by other means. These 
assumptions are the italicized subheadings, as follows: 

The background field was stable and its tensor everywhere zero: For derivation of all the 
spin calibration coefficients, it was assumed that the geomagnetic field did not vary as a 
function of time.  Also, it was assumed that the magnetic gradient tensor was zero 
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everywhere within the volume of space required for the spin calibration. Though neither 
of these assumptions is strictly valid, measurements of both the temporal and spatial 
scalar field during the calibration showed that the variations would not significantly 
affect the coefficient values. Therefore, the spin-calibration data were reduced using the 
assumption that the scalar field was a temporal and spatial constant of 48,000 nT. 
However, the necessary temporal and spatial data were collected, so if it later becomes 
apparent that improved accuracy of the coefficients is necessary, these data can be 
applied. 

Sensor 1 is perfectly aligned with the virtual tetrahedron: Sensor 1 (s1) was used as a 
reference for converging the attitudes of the other sensors (s2, s3, s4) so that all four 
sensors can be mathematically rotated into a common coordinate system. However, no 
attempt was made to ascertain the attitude of s1 relative to the virtual tetrahedron. 
Therefore, it is quite likely that s1 is misaligned with the tetrahedron by a degree or so in 
heading, pitch, or roll. As a consequence in the final tensor, the field directions and the 
gradient baseline directions are slightly misaligned, which has only a very small effect on 
the tensor values. 

The sensor temperatures did not vary: Many of the coefficients derived from the spin-
calibration data are functions of temperature. However, the deeply involved data- 
acquisition procedures that were required to define these functions were not performed. 
Consequently, the coefficients were derived as if the temperatures were constant 
(although the temperatures were measured), and reliance was placed upon the thermal-
drift correction to supplement the missing data. 

Raw-Data Conversion: The first processing stage is to convert from the data file 
recorded in the field to an in-house format for manipulation in postprocessing. 

Basic Data Forms: The raw data are recorded as an analog voltage that converts to 
magnetic field at the approximate rate of 100 nT/V. To maintain core linearity and signal 
precision, the magnetic flux through the core is minimized by applying an opposing 
magnetic field (a bucking field), which is incremented every few hundred nanoTeslas of 
field change. The amplitude of the bucking field is recorded as an integer value ranging 
from –256 to +255 and is called the bin, or bin number. The analog voltages and bin 
numbers from all 12 axes of the 4 magnetometers are recorded simultaneously every  
0.2 second with 16-bit precision to maintain tracking and 0.02-nT precision levels. In the 
high-density data, 1-Hz analog anti-alias (low-pass) filters were used before sampling.  
Auxiliary data streams also were recorded at the same rate for sensor temperatures, 
Morris temperature (temperature inside Morris), air temperature, and tilt (pitch and roll).   

Recording Method: All channels were recorded continuously for each data file with 
documentation fiducials (doc points) marking the beginning and end of each station 
collection period. The recording program, called KMGR7, is coded in C++ and produces 
several ASCII subfiles with hexadecimal values. Two subfiles will fit on a 1.38-Mb 
diskette. 
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Conversion Program: The subfiles are interpreted, concatenated, and converted to an in­
house file format for further processing. In this file, analog voltages and bins are 
unmodified and are preserved as exactly the values that were recorded. Doc points and 
associated data-acquisition operator comments are separated into separate files for 
independent viewing and input to subsequent programs. 

Deconvolving Bin Steps from Analog, and Matching Axes for Precision Tracking: 
The TMGS can be understood as a linear system that responds as a function of frequency.  
Yet, the calibrations that are performed are effectively done at D.C. (wave number 0).  
This means that not all the calibrations hold for the low-frequency signals that would be 
expected during data acquisition from a moving platform. Consequently, it is necessary to 
establish a transfer function for each axis of each magnetometer that effectively ties the 
amplitudes and phases in the Nyquist interval back to the measured D.C. levels. This 
ensures that the 12 axes will track together up to a prescribed precision, and that step 
functions (injected into the analog voltage whenever a bin changes) can be handled 
without introducing significant discontinuities in the axis signals (see below, “Bin 
Conversions”). 

The transfer functions have been measured over the current Nyquist interval (0 to 2.5 Hz) 
and found to be quite stable. However, they have not been applied to the high-density 
data because the data were effectively collected at wave number 0. 

Removal of Intervening Data Records and Noisy Samples: Using the doc points, all 
records that were not acquired during the 10-second station-sampling period are removed. 
Any records contaminated with obvious spiking or other noise processes are also deleted.  
The x and y positions in the high-density grid coordinate system are added to the file at 
this time. Figure 6 illustrates the determinant that would result if the data were left in its 
raw form, without any further processing. 

Bin Conversions: For each of the 12 axes, the bin numbers are converted to equivalent 
voltages at a nominal rate of 5 V/bin for s1 and s2, and 3.3 V/bin for s3 and s4. (The 
differing conversion rates reflect two slightly different manufacturers’ model lines.) The 
equivalent voltages are then combined with the corresponding analog voltages to produce 
12 axis signals that can range from –800 to +800 V. (This voltage range, combined with 
the nominal 100 nT/V signal-to-field conversion, implies a –80,000-nT to +80,000-nT 
field range.) In general, the exact voltage associated with each bin number must be 
ascertained in the laboratory and is a complicated function of bin number, sensor 
temperature, and Morris temperature. However, rather than a direct measure of the bin 
number-to-voltage conversion, a more precise quantity is measured, called the bin-step 
size. It is simply the amount of voltage change associated with a step from a given bin to 
one of its neighboring bins. 
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Although a comprehensive discussion of the dependencies between the bin conversion 
functions and the axis polynomial (described in the next section) is well beyond the scope 
of this writing, it suffices to say that accurate knowledge of each bin-step size reduces 
common-mode leakage, minimizes bin-step discontinuities, and improves tracking when 
taking measurements from a moving platform. An inaccurate knowledge of the bin-step 
size will introduce noise that manifests as a sawtooth of pseudo-random amplitude and 
wavelength riding on a changing field (typically, the Earth's common-mode field).   

While the laboratory bin-size calibrations have not yet been completed, it is expected that 
the bin-step sizes can be known to about 0.05 nT. Until then, preliminary bin voltage 
conversions have been used, with apparent bin-step size errors on the order of 1 nT. It 
should be noted that, in the high-density data, bins were fairly constant with occasional 
changes of plus/minus 1 bin step.  Table 1 lists bin-step sizes used in reducing the high-
density grid data. 

Figure 6. Raw TMGS high-density data processed by the linear volume-model to 
a determinant of the magnetic gradient tensor.  The map is correlated primarily to 
ground surface undulations due to common-mode leakage of the Earth's primary 
field, resulting from application of nominal calibration coefficient values. The 
color scale is nonlinear. 
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 Table 1. Average bin sizes <volts/bin>. 

Axis Sensor 1 Sensor 2 Sensor 3 Sensor 4 
x 5.046971 5.050641 3.302770 3.308334 
y 5.048011 5.054041 3.311700 3.307056 
z 5.044710 5.056564 3.304325 3.312998 

Application of Spin-Calibration Results for Converting Voltages to Fields: The spin 
calibration procedure essentially nulls the Earth's common-mode field as a function of 
attitude by slowly spinning TESSA and then applying a nonlinear regression to the 
resulting data. The coefficients derived through the spin calibration are applied to the 
high-density grid axis signals (resulting from bin conversions) to calibrate and align the 
sensors. 

The proper application of the spin-calibration coefficients is critical to a successful data 
reduction. Because some of the associated derivations are also tedious, a Fortran 
subroutine called s_ab2h.f is provided in Appendix A to clarify how the spin calibration 
data are used. This subroutine applies the bin-size, axis polynomial, orthogonality, and 
sensor attitude coefficients to basic TMGS analog and bin data.  A mathematical 
derivation of the spin-calibration procedure is provided in Bracken and others (2005). 

Axis Polynomial: The axis polynomial is a third-order fit of the axis signal to its 
corresponding magnetic field component. For each axis, it effectively calibrates the zero-
offset, and the gain, which are respectively the 0th- and 1st- order terms of the 
polynomial. The axis polynomial and the orthogonality correction are solved 
simultaneously for all three axes on a given sensor by requiring that the scalar field be 
correct for all attitudes. Tables 2, 3, 4, and 5 list the coefficients of the axis polynomial.  
The zero-offset is the magnetic field present when the axis signal is 0. The gain is the rate 
of change in magnetic field with respect to the axis signal voltage. The quadratic and 
cubic terms are only a small contribution, indicating that the magnetometer response is 
extremely linear. (In each table, the least significant digit displayed is consistent with a 
0.01-nT precision level.) 

Table 2. Axis polynomial – constant term (zero-offset) <nanoTesla>. 

Axis Sensor 1 Sensor 2 Sensor 3 Sensor 4 
x –51.57 –34.78 5.84 20.28 
y –50.33 12.95 7.4 35.23 
z –56.54 –18.86 –25.86 5.18 
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 Table 3. Axis polynomial – linear term (gain) <nanoTesla/volt>. 

Axis Sensor 1 Sensor 2 Sensor 3 Sensor 4 
X 99.95753 99.04721 99.36614 99.80745 
Y 101.12474 100.75199 100.41647 100.63311 
Z 99.06592 99.43129 99.76678 99.13475 

Table 4. Axis polynomial – quadratic term <nanoTesla/volt2>. 

Axis Sensor 1 Sensor 2 Sensor 3 Sensor 4 
X –0.00001834 –0.00000565 0.00001941 0.00000958 
Y –0.00002865 0.00000174 –0.00001841 –0.00003666 
Z 0.00018719 0.00007021 0.00004180 –0.00009373 

Table 5. Axis polynomial – cubic term <nanoTesla/volt3>. 

Axis Sensor 1 Sensor 2 Sensor 3 Sensor 4 
X 0.00000000514 –0.00000007088 0.00000000596 –0.00000013659 
Y 0.00000002123 0.00000000462 –0.00000000101 –0.00000016287 
Z 0.00000041569 0.00000007837 –0.00000007556 –0.00000029001 

Orthogonality Correction: The three axes of a given magnetometer are not quite 
perpendicular. Therefore, the orthogonality correction mathematically realigns them into 
a nearly perfectly orthogonal rectilinear coordinate system. Table 6 gives the actual 
angles between the three axes on each of the four sensors. 

Table 6. Orthogonality correction angles <degrees> (x is fixed in space; y 
"moves" only in the x-y plane). 

Axis Sensor 1 Sensor 2 Sensor 3 Sensor 4 
y-x 89.89108 90.11640 89.82039 90.24590 
z-y 90.75768 90.01508 91.26369 89.72196 
z-x 89.72650 89.56956 90.21198 89.10476 
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Attitude Correction: The attitude correction is performed as a separate regression from 
the axis polynomial and orthogonality, but uses the same spin-calibration data sets. It 
aligns sensors s2, s3, and s4 with sensor s1 (see previous section "Assumptions Applied 
to the Spin-Calibration Data"). In other words, it mathematically rotates all four sensors 
into a common reference frame, the coordinate system for TESSA. Table 7 shows the 
ideal, and table 8 shows the measured attitude correction angles derived from the spin- 
calibration data. 

Table 7. Ideal attitude angles <degrees>. (Positive is CW rotation about axis as 
viewed from sensor origin). 

Axis Sensor 1 Sensor 2 Sensor 3 Sensor 4 
z''' 0.00000 0.00000 120.00000 –120.00000 
y'' 0.00000 –109.47122 –109.47122 –109.47122 
z' 0.00000 180.00000 60.00000 –60.00000 

Table 8. Actual measured attitude angles <degrees>. (Positive is CW rotation 
about axis as viewed from sensor origin). 

Axis Sensor 1 Sensor 2 Sensor 3 Sensor 4 
z''' 0 assumed –0.43250 121.59830 –119.26004 
y'' 0 assumed –109.35126 –110.02656 –109.88480 
z' 0 assumed 180.12615 60.42545  –59.63062 

Temperature Corrections: The coefficients in the axis polynomial are functions of sensor 
temperature rather than simple constants. Similarly, the angles used in the attitude 
correction are functions of outside temperature, actually the temperature of TESSA. 
However, these coefficients were measured as constants rather than functions of 
temperature. As a result, the gradients from the high-density grid had to be corrected for 
thermal drift as is described in the section “Thermal-Drift Correction.” 

Differencing Magnetic Fields to Obtain Initial Gradients: From this point, subsequent 
reductions must be performed on gradients. Therefore, three gradient baseline directions 
are found for each 0.2-second sample. (There are six baselines, but only three form a 
basis for a coordinate system because the remaining three are linearly dependent upon the 
first three.) Because of reductions already performed (simultaneous sampling, transfer-
function matching, proper bin conversions, and spin calibration), these gradients are 
sealed against a variety of common-mode leakage problems, including the Earth's 
common-mode field.   
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The gradients are then found by subtracting the three field components of sensor s1 from 
each of the three remaining sensors, s2, s3, and s4, and then dividing by the sensor 
separation distance of 0.97 m. The gradient baseline directions in the TESSA coordinate 
system are listed as follows in table 9. 

Table 9. Azimuths and dip in degrees of the three sensor-pair gradient baselines. The 
coordinate system is geographic with TESSA level and pointing magnetic north (azimuth 
0 deg). For clarity, the specific gradients associated with each of the three sensor pairs are 
shown as well. 

Sensor pair Azimuth Dip Gradients 

S2-s1 0º 54.7º ∂bx/∂21, ∂by/∂21, ∂bz/∂21 

S3-s1 120º 54.7º ∂bx/∂31, ∂by/∂31, ∂bz/∂31 

S4-s1 240º 54.7º ∂bx/∂41, ∂by/∂41, ∂bz/∂41 

Obviously, these gradient baselines have not been rotated into an orthogonal coordinate 
system, as have been the field components.  Because subsequent processing steps need 
only work on individual gradients, however, this rotation need not be done. Also, where 
the field components were extremely sensitive to the attitude of TESSA, these gradients 
change very slowly with attitude and are therefore much more easily handled. 

Ten-Second Averaging of Gradients to Obtain Station Gradient Data: For each 
station in the high-density grid, each of the nine gradients calculated in the previous step 
was averaged over a 10-second period (50 samples at 0.2 second per sample).  Assuming 
that the noise is Gaussian, averaging 50 samples increases the precision and confidence 
of the station by a factor of 7 over that of any single sample, using the √n rule. In theory, 
this averaging step can only be performed on the gradients, not on the field components, 
because the combining of field components in any manner before spatial differentiation 
breaks the seal and allows common-mode leakage to reenter the system.  In practice, with 
the high-density data, had the averaging been done before the gradients were calculated 
(which it was not), the error would have been almost insignificant.  Figure 7 illustrates 
the determinate that would result if the data were processed only up through 10-second 
averaging. 
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Figure 7. Calibrated TMGS high-density data processed by the linear volume-
model to a determinant of the magnetic gradient tensor. Application of the 
calibration coefficients (from the spin calibration) to the field components, and 
subsequently finding the gradients by differencing the field components in each 
sample, removed the common-mode leakage, leaving thermal drift as the 
dominant of the remaining nongradient effects. Therefore, this map is correlated 
primarily to thermal drift while the ground-surface undulation effects of the 
previous figure have been removed. It is instructive to observe that the major 
feature on this map coincides with the 100-minute hiatus between data sets, 
during which time the temperatures of the sensors continued to climb. 

Thermal-Drift Correction: Thermal drift was removed from the gradients, as described 
previously. The thermal base station, in the southwest corner of the high-density grid, 
was used as the reference location and was occupied three times during data collection:  
at the beginning, in the middle, and at the end.  Each of the nine gradients described 
previously (∂bx/∂21, ∂by/∂21, ∂bz/∂21, ∂bx/∂31, and so forth) was treated independently 
of the others in setting up a thermal baseline for each of the two data files (n0312c and 
n0312d). 
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The baselines required that each gradient at the thermal base station remain constant over 
the duration of the data collection, and the resulting correction was applied as a linear 
function of sensor temperature to the intervening stations.  The thermal drift rates ranged 
from 0 to 2.6 nT/m per degree Celsius (sensor temperature) depending on which gradient 
was being considered. The sensor head temperatures increased at about 2.3 degrees 
Celsius per hour over the 4.5-hour duration of the combined data sets. 

Unknown Constant: Because there was an unknown amount of thermal drift between the 
high-density and the spin-calibration data collections, the true value of each gradient at 
the thermal base station had to be considered an unknown constant value. The constant 
was estimated for each of the nine gradients by subtracting the gradient's average (over 
the entire high-density grid) from its thermal base station value after removal of the 
thermal drift. In other words, each of the nine gradients was adjusted by removing its 
average value. 

In Lieu of Temperature-Dependent Spin-Calibration Coefficients: Had the coefficients 
derived from the spin-calibration data contained the appropriate thermal dependencies, 
this entire thermal drift correction would have been obviated. Although it is anticipated 
that future TMGS data reductions will use thermally dependent coefficients, good field 
practice predicates that provisions for thermal corrections always be made.  That is, a 
base location should be reoccupied every few hours of data collection. Figure 8 illustrates 
the determinant that would result if the data were processed up through the thermal drift 
correction. 

Gradient Collocation: Because of field curvature, each of the nine sensor-pair gradients 
(∂bx/∂21, ∂by/∂21, ∂bz/∂21, ∂bx/∂31, and so forth) is potentially in a different location 
than any of the others. Due to the mean value theorem (a basic theorem of calculus), a 
gradient calculated by differencing does exist on the line segment between the two 
bounding sensors, but its exact location is not known (fig. 9). (The collocation procedure 
described here cannot mitigate this effect of curvature between sensor pairs, but it can 
move the sensor pairs into the same volume of space.) If the gradient-producing system is 
random, however, the most probable gradient location is halfway between the sensors.  
This is the assumption that must be made unless future modeling shows that the probable 
gradient location is skewed due to sources always being below TESSA. Therefore, the 
most probable gradient locations (halfway between sensors) are given as follows, in  
table 10. 
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Table 10. Expected x, y, and z coordinates in meters of the locations that are 
halfway between sensors. The origin is at the centroid in the TESSA coordinate 
system. The specific gradients associated with each of the three sensor pairs are 
included. 

Sensor pair X (m) Y (m) Z (m) Gradients 

s2-s1 0.280 0.000 -0.198 ∂bx/∂21, ∂by/∂21, ∂bz/∂21 

s3-s1 -0.140 0.243 -0.198 ∂bx/∂31, ∂by/∂31, ∂bz/∂31 

s4-s1 -0.140 -0.243 -0.198 ∂bx/∂41, ∂by/∂41, ∂bz/∂41 

Figure 8. Thermal-drift corrected TMGS high-density data processed by the 
linear volume-model to a determinant of the magnetic gradient tensor. With the 
dominating effect of thermal drift removed, the true anomalies have become 
visible. Yet, they are distorted and unfocused due to the remaining nongradient 
effects of field curvature. 
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Figure 9. Illustrates the implications of mean value theorem, that  (a) if a gradient 
is calculated by taking the difference of field components from two sensors, then 
the gradient exists and it lies somewhere between the two sensors; and (b) the 
location of the calculated gradient is not constrained to be at any particular place 
between the two sensors. 

Apparently, the set of three gradients calculated from any pair of sensors is nearly 0.5 m 
from the gradients of either of the other two sensor pairs. Considering that the entire 
anomaly is scarcely more than 1 m in diameter, it is not difficult to see that these gradient 
pairs must be mathematically collocated before they can be combined into a coherent 
tensor. 

To implement the methodology described previously (“Minimizing the Effects of 
Curvature by Collocation of Gradients,” and figure 4), each of the nine gradients was 
treated individually as a scalar function of x-y position. Initially, the positions used were 
the centroid's x and y, which are the same as the station locations. Each of the 13 north-
south data-collection lines was smoothly (1-d) interpolated to a 1-cm interval, preserving 
gradient values, and all derivatives. Then at a given station location, each gradient was 
replaced with an appropriately offset value from the same line or from an adjacent line. 
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For example, to accumulate the collocated gradients at station L7P7 (line 7 point 7, in the 
exact center of the high-density grid), the s2-s1 gradients were replaced with values from 
the same line interpolated at 28 cm south.  This location is near L7P6, which is 25 cm to 
the south. In fact, the actual location of the s2-s1 gradients from station L7P6 is about 3 
cm north of station L7P7. 

The s3-s1 gradients were replaced with values from line 6 interpolated at 14 cm north.  
This location is just over halfway between L6P7 and L6P8. The actual location of the s3­
s1 gradients from station L6P8 is about 11 cm north and 0.75 cm west of L7P7. 

The s4-s1 gradients were replaced with values from line 8 interpolated at 14 cm north.  
This location is just over halfway between L8P7 and L8P8. The actual location of the s4­
s1 gradients from station L8P8 is about 11 cm north and 0.75 cm east of L7P7. 

Therefore, if it can be assumed that the gradient values are located halfway between 
sensors, the collocation algorithm actually implemented is fairly precise in the north-
south direction, but it smears the gradients over a 1.5-cm-wide east-west zone.  
Nevertheless, this is an acceptably small error. 

Finally, extrapolation was performed around the edges of the high-density grid to supply 
missing information for bordering rows and columns. This may have reduced the tensor 
accuracies on lines 1 and 13, and on points 1, 2, and 13 of all lines, covering nearly 
40 percent of the high-density grid area around the edges. This means that any statistical 
chart of the collocated high-density grid data will be skewed unless these rows and 
columns are first eliminated from the statistical analysis. 

Converting Sensor-Pair Gradients to a Tensor: At this point in the processing of the 
high-density grid data, the gradients (s2-s1, s3-s1, s4-s1) are ready for conversion to a 
tensor. Because all nine gradients have been measured and only five are required, the 
tensor is slightly overdetermined. At least two ways exist for computing the tensor. 

By Rotation: Although this method is not described in detail here, the most obvious way 
of computing the tensor is to rotate the gradients first into an orthogonal coordinate 
system and then rotate that into the coordinate system of TESSA, in order to coincide 
with the coordinate system of the field components. Both of these rotations can be done 
simultaneously by standard matrix multiplication between the matrix of column vectors 
(∂bi/∂21 ∂bi/∂31 ∂bi/∂41) and an appropriately derived rotation matrix.  It should 
be noted that rotating a finalized tensor requires a similarity transform to rotate both the 
field components and the gradient baseline directions; but here, only the baseline 
directions need to be rotated. 

The rotation approach yields a nine-component tensor that is asymmetric and has a non­
vanishing trace to the extent that there was residual curvature or other noise in the 
measurement and reduction processes. It has the potential to be a good diagnostic tool 
except that the rotation tends to mix up noise from the various sensor-pair gradients.  
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Nevertheless, the determinant of the tensor derived in this manner is still fairly 
representative of the system capabilities.  

By Linear Least Squares Regression: Another method of converting the (s2-s1, s3-s1, s4­
s1) gradients into a tensor is by backing out relative field components at the sensors and 
then applying to them a linear least-squares regression, as is done by the Linear Volume-
Model Engine (previously described). Therefore, the Linear Volume-Model Engine is 
used here to calculate the final tensor and determinant from the collocated (s2-s1, s3-s1, 
s4-s1) gradients. This is illustrated in figure 10 with corroborative modeling shown in 
figure 11. 

Figure 10. Collocated TMGS high-density data processed by the linear volume-
model to a determinant of the magnetic gradient tensor. Collocation of the 
gradients measured by TESSA has largely mitigated the distortions caused by 
field curvature. This result approaches the map produced by modeling fields from 
the targets. 
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Figure 11. Model of the high-density grid targets, processed to a determinant of 
the magnetic gradient tensor. The magnetic fields of the center target, a 60 mm 
UXO at 0.25-m depth, and the eight edge-targets were modeled by assuming the 
depth and approximate location specifications provided with the Calibration Grid.   
Horizontal positions were adjusted slightly to account for positioning inaccuracies 
of both the target and TESSA. Magnetic dipole moment directions were assumed 
to be in alignment with the Earth's field (preliminary modeling shows this 
assumption to be somewhat in error, but use of the modeled directions would 
become circular reasoning in this application); but moment magnitudes were 
adjusted to match anomaly peaks. This figure is preliminary, intended only for 
qualitative comparisons with figures 6, 7, 8, and 10. A more precise model is 
described in the next section and shown in figure 13, which is for comparison 
with figure 12. 

A Model of the Expected Tensor Determinant 

To illustrate the capabilities of the TMGS, a model was produced of the expected fields 
from the nine UXOs that were buried in and around the high-density grid. Because this 
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model was not rigorously derived, using it for in-depth quantitative analyses is not 
recommended. However, it does demonstrate conclusively that the TMGS, in its current 
form, produces a realistic tensor with a better than expected detection capability. 

A forward modeling routine was used that calculates the magnetic field, the magnetic 
gradient tensor, and the determinant of the tensor generated by any given spatial 
arrangement of point-dipole sources. The location and dipole moment of each source 
must be specified. An object of any shape can be modeled by specifying a sufficient 
quantity of point sources within its boundaries. Here, only one source was used for each 
of the nine UXO, assuming the targets to be sufficiently represented by a single point 
dipole. No attempt was made to model anomalies caused by clutter and geologic sources. 

Parameters of the forward model are: 
� The height of the measurement surface in negative meters above the ground 

surface; 
� the x, y location of the observation point; 
� the magnitude, declination, and inclination of the Earth’s magnetic field;  
� the depth in positive meters below the ground surface of the dipole being 

modeled;  
� the dipole’s x, y location; and 
� the dipole’s moment magnitude, declination, and inclination. 

The height of the measurement surface was fixed at –0.88 m, corresponding to the height 
of the most probable gradient measurement locations (see the z coordinate in table 10).  
The depth of each dipole was fixed at the known depth of its corresponding UXO target 
obtained from the “ground truth” information supplied for the YPG calibration grid (table 
11). 
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Table 11. Values used for the dipole modeling of the UXO targets. The UXO ID 
corresponds to the numbers listed on the target locations in figures 12 and 13.  
The X-Location and Y-Location model parameters were adjusted within a 0.25-m 
boundary of expected positional error. The Dipole Moment magnitude was 
adjusted to match modeled anomaly amplitudes to measured amplitudes. 

UXO ID 

X 
Location 
(meters) 

Y 
Location 
(meters) UXO Type 

UXO Depth 
(meters) 

Dipole 
moment 
(Ampere-

Meter×Meter) 
1 –0.30 –0.30 M75 0.15 0.0500 

2 1.60 –0.40 
60 mm w/ 

clutter 0.25 0.1380 
3 3.40 –0.40 81 mm 0.50 0.1380 
4 3.40 1.77 81 mm 0.50 0.1380 
5 3.30 3.20 8# shot 0.91 0.0780 
6 1.50 3.30 8# shot 0.20 0.0780 
7 –0.80 3.50 8# shot 0.20 0.0780 
8 –0.70 1.50 M75 0.15 0.1380 
9 1.31 1.71 60 mm 0.25 0.0866 

It was estimated that the recovered x and y locations of both TESSA and the buried UXO 
had small systematic and random errors accumulatively totaling 0.25 m. Therefore, the x 
and y positions of the dipoles were adjusted within this bound to match the positions of 
the anomalies. It is encouraging that positional matches were established without 
exceeding the error bound. 

Because the UXO targets were degaussed before being buried, we assumed that no 
remanent magnetism existed, only induced magnetism; therefore, the dipole moment 
direction was held constant, in alignment with the Earth's field at declination 0 and 
inclination 58.7 degrees. Although this assumption could be in error by 20 to 30 degrees 
in both declination and inclination, it suits the qualitative nature of this application, 
especially considering that the position of the determinant anomaly is not affected much 
by the moment direction.   

There were no independent data available to evaluate the moment magnitudes of the 
buried dipoles. Consequently, we chose to adjust the moment magnitude of the central 
dipole so that the peak value of the modeled determinant (fig. 11) matched the peak value 
of the measured determinant (fig. 10). The moment magnitudes of the flanking dipoles 
were similarly adjusted to match the flanks of their corresponding anomalies (their peaks 
were beyond the high-density grid boundaries). It is again encouraging that the resulting 
moment magnitudes were of reasonable values for all of the targets. 
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Map views of the collocated TMGS data (physical) and modeled results for the high-
density grid can be seen in figures 12 and 13. The similarities between the physical and 
modeled results are striking, particularly of the central 60-mm UXO (ID 9).  In addition, 
the dipole moments are reasonable.  Values around the perimeter of the physical data, 
while reasonable, could be subject to significant edge effects.  Therefore, the fact that any 
of them have similarities to the model gives further confidence in the TMGS.  The origin 
of a huge negative anomaly in the southeast corner of the physical grid is not altogether 
clear. However, it is likely due to a real source, possibly clutter, because edge effects 
around other parts of the grid do not lead to such intense anomalies. 

Figure 12. Determinant plot of physical data using the same color scale as the 
modeled data seen in figure 13. The UXO IDs correspond to the data presented in 
table 11. 
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Figure 13. Determinant plot of modeled data using the same color scale as the 
physical data seen in figure 11. The UXO IDs correspond to the data presented in 
table 11. 

Modeled values are plotted against physical values in figure 14, and table 12 shows 
statistics for the residual of the modeled and physical data. Essentially, these statistics 
represent the deviation of the model values from the ideal value represented by the 
fuchsia line drawn in the figure 14 cross plot. These statistics are skewed both by edge 
effects (as described in "Gradient Collocation") and by the fact that no attempt was made 
to model the clutter in the southeast corner. 
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Figure 14. Cross plot of modeled versus physical magnetic tensor determinant 
data. The statistics for the deviation of the model from the ideal data line drawn 
in fuchsia can be seen in table 12. This plot is skewed by edge effects and clutter 
in the southeast corner. 

Table 12. Statistics for the model and physical  
data residual. These statistics are skewed by edge 
effects and clutter in the southeast corner. 

Modeling residual 
statistics 
Geometric mean 95.15 
Standard error 6.75 
Standard deviation 572.39 
Mean –154.93 
Median –64.87 
Mode 15.5 
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Conclusions 

The similarity of the physical (measured) and modeled results indicates that the reduction 
process is producing real tensor data. This preliminary analysis is convincing for two 
compelling reasons. First, the determinant uses all nine tensor components, making its 
value representative of the whole tensor. Second, the physical and modeled invariant 
maps are quite similar, which means that the system consistently produced realistic 
values under a large variety of target-field conditions. 

Several stages of the data reduction are critical. If any stage is missing or its coefficients 
are inaccurate, the resultant tensor map will be incomprehensible. This is in contrast to a 
typical scalar magnetics survey in which the basic anomalies are usually visible from the 
raw data and simply improve as reductions are performed. The TMGS processing stages 
are analogous to a keyed lock—if any tumbler is out of place, the lock will not open. This 
observation is well illustrated in figure 7, which shows how the final processed map 
would have appeared if all but the last two reduction stages were performed. The map is 
completely devoid of any hint that the reduction is moving toward a reasonable result. 

Future work on our system includes changing the geometry and reducing the size of the 
sensor array to handle field curvature and modifying the data-acquisition systems to 
facilitate data collection on the fly. We expect further research on the reduction process 
to validate proposed tracking algorithms and to allow an abbreviated spin calibration. We 
are also studying tensors and tensor invariants for detecting, locating, and modeling 
sources. 
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Appendix A – Fortran routine called s_ab2h.f that applies the bin-size, 
axis polynomial, orthogonality, and attitude coefficients to basic TMGS 

analog and bin data. 

C 
C________________________________________________________________ 
C 
C SUBROUTINE S _ A B 2 H 
C________________________________________________________________ 
C 
C SUBROUTINE S_AB2H RETURNS THE MAGNETIC FIELD COMPONENTS AND A 
C GRADIENT TENSOR IN A FIXED REFERENCE FRAME USING DATA AND 
C COEFFICIENTS FROM THE USGS TMGS PROTOTYPE SYSTEM. 
C 
C THIS SUBROUTINE IS DESIGNED PRIMARILY TO SHOW HOW THE 
C COEFFICIENTS DERIVED FROM THE YUMA, 13MAR03 SPIN CALIBRATION
C ARE TO BE APPLIED TO THE RAW TMGS DATA. THE PRELIMINARY 
C COEFFICIENTS MAY BE FOUND IN AN ASCII TEXT FILE CALLED: 
C 
C "tmgs_coefs_n0430_yuma_prelim.txt".
C 
C 
C INPUT ARGUMENTS (SIGNALS)
C VANA - REAL*8. ARRAY OF DIMENSIONS (3,4) CONTAINING THE
C ANALOG FIELD MEASUREMENTS <VOLTS> FROM THE 3 AXES OF 
C THE 4 MAGNETOMETERS. ROWS 1,2,3 CORRESPOND TO THE
C X,Y,Z AXES AND COLUMNS 1,2,3,4 CORRESPOND TO THE
C MAGNETOMETER NUMBERS. IT IS EXPECTED THAT THESE 
C NUMBERS WILL HAVE BEEN CORRECTED FOR SPIKES AND 
C NOISE, AND THAT ANALOG FILTER RESPONSES WILL HAVE
C BEEN DECONVOLVED (PARTICULARLY IMPORTANT IMMEDIATELY
C AFTER A BIN STEP.) PRIOR TO CALLING THIS SUBROUTINE.
C TYPICALLY, THESE SIGNALS WILL RANGE FROM +-5 BUT MAY
C RAIL AT +-6.55 VOLTS. THESE SIGNALS TRANSLATE TO 
C MAGNETIC FIELD NOMINALLY AT ABOUT 100 nT/VOLT (SEE
C ARGUMENT CANA BELOW).
C VBIN - REAL*8. ARRAY OF DIMENSIONS (3,4) CONTAINING THE
C BIN NUMBERS <BIN#> FROM THE 3 AXES OF THE 4 
C MAGNETOMETERS. ROWS 1,2,3 CORRESPOND TO X,Y,Z AXES
C AND COLUMNS 1,2,3,4 CORRESPOND TO THE MAGNETOMETER
C NUMBERS. IT IS POSSIBLE TO HAVE CORRECTED THESE 
C NUMBERS FOR BIN-CURRENT VARIANCES AND THEREFORE THEY 
C ARE NOT NECESSARILY INTEGERS. TYPICALLY, BIN
C NUMBERS WILL RANGE FROM +-150 BUT MAY RAIL AT +-255. 
C BIN NUMBERS INDICATE THE AMOUNT OF OFFSET IN THE 
C ANALOG FIELD MEASUREMENT VOLTAGE AND TRANSLATE TO 
C VOLTS NOMINALLY AT ABOUT 5.0 VOLTS/BIN# FOR MAGS 1
C AND 2 AND 3.3 VOLTS/BIN FOR MAGS 3 AND 4. (SEE
C ARGUMENT CBIN BELOW).
C 
C INPUT ARGUMENTS (COEFFICIENTS)
C CBIN - REAL*8. ARRAY OF DIMENSIONS (3,4) CONTAINING THE
C AVERAGE BIN SIZES (S) (VOLTS/BIN#). ROWS 1,2,3
C CORRESPOND TO X,Y,Z AXES AND COLUMNS 1,2,3,4
C CORRESPOND TO THE MAGNETOMETER NUMBERS. TYPICALLY, 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

CANA 

FOR MAGS 1 AND 2, CBIN IS ABOUT 5.0 AND
FOR MAGS 3 AND 4 IT'S ABOUT 3.3 VOLTS/BIN#.

- REAL*8. ARRAY OF DIMENSIONS (4,3,4) CONTAINING THE
POLYNOMIAL COEFFICIENTS (A,B,C,D) THAT TRANSLATE
ANALOG VOLTAGE TO MAGNETIC FIELD <nT/VOLT^3,
nT/VOLT^2, nT/VOLT, nT>. ROWS 1,2,3,4 CORRESPOND TO
THE 3RD ORDER, 2ND ORDER, LINEAR, AND CONSTANT TERMS
RESPECTIVELY OF THE POLYNOMIAL. COLUMNS 1,2,3
CORRESPOND TO X,Y,Z AXES AND LEVELS 1,2,3,4
CORRESPOND TO THE MAGNETOMETER NUMBERS. TYPICALLY,
THE 3RD ORDER TERM IS EXTREMELY SMALL, THE 2ND
ORDER TERM IS VERY SMALL, THE LINEAR TERM IS NEAR
100, AND THE CONSTANT TERM IS SMALL. THESE 
COEFFICIENTS ARE AUGMENTED BY THE SCALE DIVISOR THAT 

C 
C 
C 
C 

SCALE 

WAS APPLIED IN THEIR DERIVATION (SEE ARGUMENT
SCALE).

- REAL*8. SCALAR NUMBER (SCALE) THAT WAS USED DURING
DERIVATION OF THE 3RD-ORDER-POLYNOMIAL COEFFICIENTS 

C DESCRIBED IN ARGUMENT CANA. THIS SUBROUTINE WILL 
C CORRECTLY APPLY SCALE TO THE COEFFICIENTS. BUT IF 
C IT IS DESIRED TO APPLY IT BEFORE THE SUBROUTINE 
C 
C 
C 
C 
C 
C 
C 
C 
C 

CORT 

CALL, SIMPLY DIVIDE THE 3RD-ORDER TERM BY SCALE^2,
DIVIDE THE SECOND ORDER TERM BY SCALE, AND MULTIPLY
THE CONSTANT TERM BY SCALE; THEN SET SCALE, ITSELF,
EQUAL TO 1.

- REAL*8. ARRAY OF DIMENSIONS (3,4) CONTAINING THE
ORTHOGONALITY CORRECTION ANGLES (DEGREES). ROWS 
1,2,3 CORRESPOND TO ANGLES (ALP), (BET), (GAM), AND
COLUMNS 1,2,3,4 CORRESPOND TO THE MAGNETOMETER
NUMBERS. ALPHA IS THE ANGLE BETWEEN THE X AND Y 

C AXIS. BETA IS THE ANGLE BETWEEN THE Y AND Z AXIS. 
C 
C 
C 

AND, GAMMA IS THE ANGLE BETWEEN THE X AND Z AXIS.
TYPICALLY, EACH OF THESE ANGLES VARIES FROM 88 TO 92
DEGREES. 

C 
C 
C 
C 
C 

CATT - REAL*8. ARRAY OF DIMENSIONS (3,4) CONTAINING THE
ATTITUDES (DEGREES) OF THE MAGS RELATIVE TO MAG1.
ROWS 1,2,3 CORRESPOND TO ANGLES (DEL), (EPS), (ZET),
AND COLUMNS 1,2,3,4 CORRESPOND TO THE MAGNETOMETER
NUMBERS. IN TRANSFORMING FROM EACH MAGNETOMETER'S 

C 
C 

PHYSICAL ATTITUDE TO THE MAG1 ATTITUDE, THERE ARE 3
ROTATIONS. THE POSITIVE SENSE IS ALWAYS CLOCKWISE 

C ABOUT THE ROTATION AXIS AS VIEWED FROM THE ORIGIN. 
C DELTA IS THE FIRST ROTATION ANGLE AND PROCEEDS ABOUT 
C THE Z''' AXIS. EPSILON IS THE SECOND ROTATION ANGLE 
C AND PROCEEDS ABOUT THE Y'' AXIS. ZETA IS THE THIRD 
C ROTATION ANGLE AND PROCEEDS ABOUT THE Z' AXIS. 
C 
C 
C 

THEREFORE, THE UNPRIMED SYSTEM IS THE MAG1 ATTITUDE.
TYPICALLY, EACH OF THESE ANGLES VARIES BY +-2
DEGREES ABOUT THE IDEAL. THE IDEAL ANGLES ARE AS 

C FOLLOWS: 
C 
C ROTATION MAG1 MAG2 MAG3 MAG4 
C DEL 0 0 +120 -120 
C EPS 0 -109.471 -109.471 -109.471 
C ZET 0 180 +60 -60 
C 
C 
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C OUTPUT ARGUMENTS: 

C 
C 
C 
C 

HFLD - REAL*8. ARRAY OF DIMENSIONS (3,4) CONTAINING THE
MAGNETIC FIELD COMPONENTS (nT). ROWS 1,2,3
CORRESPOND TO X,Y,Z AXES AND COLUMNS 1,2,3,4
CORRESPOND TO THE MAGNETOMETER NUMBERS. THE FIELDS 

C 
C 

ARE CALIBRATED, THE AXES ARE ORTHOGONAL, AND THE
MAGNETOMETERS ARE IN THE MAG1 COMMON REFERENCE 

C FRAME. THE ARRAY IS LAYED OUT PICTORIALLY AS 
C FOLLOWS: 
C 
C X1 X2 X3 X4 
C Y1 Y2 Y3 Y4 
C Z1 Z2 Z3 Z4 
C 
C 
C 
C 

GTSR - REAL*8. ARRAY OF DIMENSIONS (3,3) CONTAINING THE
MAGNETIC GRADIENT TENSOR (nT/m) DERIVED FROM HFLD,
ASSUMING A TETRAHEDRAL CONFIGURATION OF THE 4 

C MAGNETOMETERS WITH 0.97 METERS DISTANCE BETWEEN 
C 
C 

CENTERS. WITH 4 SENSORS, A DIRECT DERIVATION OF
EACH OF THE 9 COMPONENTS OF THE TENSOR IS AVAILABLE. 

C 
C 
C 
C 
C 
C 
C 

HOWEVER, IF A) THE FIELD IS STATIC, B) ALL OF THE
GRADIENTS ARE CONSTANT WITHIN THE VOLUME OF TESSA,
AND C) THERE IS NO MEASUREMENT NOISE, THEN THE
TENSOR WILL BE TRACELESS AND SYMMETRIC, HAVING ONLY
5 INDEPENDENT COMPONENTS. THEREFORE, TO THE DEGREE
THAT IT IS NOT TRACELESS AND SYMMETRIC, ONE OR MORE
OF THESE CONDITIONS HAS NOT BEEN REACHED. THE ARRAY 

C IS LAYED OUT PICTORIALLY AS FOLLOWS: 
C 
C 
C 
C 
C 

Gxx Gxy Gxz
Gyx Gyy Gyz
Gzx Gzy Gzz 

C WHERE: 
C 
C 
C 

Gij = dHi/dj = gtsr(i,j) 

C 
C SUBROUTINE S_AB2H WRITTEN BY ROB BRACKEN, USGS.
C FORTRAN 77, HP FORTRAN/9000, HP-UX RELEASE 11.0
C VERSION 1.0, 20030430 ( ORIGINAL CODE ).
C 
C 

subroutine s_ab2h(vana,vbin, cbin,cana,scale,cort,catt
& ,hfld,gtsr )

C 
C 
C DECLARATIONS 
C 
C INPUT ARGUMENTS (SIGNALS)

real*8 vana(3,4),vbin(3,4)
C 
C INPUT ARGUMENTS (COEFFICIENTS)

real*8 cbin(3,4),cana(4,3,4),scale,cort(3,4),catt(3,4)
C 
C OUTPUT ARGUMENTS (FIELDS AND TENSOR)

real*8 hfld(3,4),gtsr(3,3) 
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C 
C 
C INTERNAL VARIABLES 
C 
C AXIS VOLTAGE RECONSTRUCTION 

C 
real*8 va(3,4) 

C FIELD CORRECTION 

C 
real*8 hf(3,4) 

C ORTHOGONALITY CORRECTION 
real*8 hfl(3,4)
real*8 alp,bet,gam
real*8 calp,salp, cbet, cgam
real*8 coseta 

C 
C ATTITUDE ROTATION TO MAG1 REFERENCE FRAME 

C 

real*8 del,eps,zet
real*8 cdel,sdel, ceps,seps, czet,szet 

C GRADIENT TENSOR CALCULATIONS 

C 

real*8 edge, face, cent
real*8 edge2,face3,cent4 

C 
C RECONSTRUCT AXIS VOLTAGE FROM ANALOG VOLTAGE AND BIN NUMBER 
C 

do k=1,4
do j=1,3
va(j,k)=

& vana(j,k)
& +vbin(j,k) * cbin(j,k)

enddo 
enddo 

C 
C 
C CONVERT AXIS VOLTAGE TO CORRECTED MAGNETIC FIELD (nT)
C 

do k=1,4
do j=1,3
hf(j,k)=

& 1 * cana(4,j,k) * scale
& +va(j,k) * cana(3,j,k) * 1 
& +va(j,k)**2 * cana(2,j,k) / scale
& +va(j,k)**3 * cana(1,j,k) / scale**2

enddo 
enddo 

C 
C 
C APPLY ORTHOGONALITY CORRECTION 
C 

do k=1,4
C 
C X TO Y ANGLE 

alp=cort(1,k)
calp=dcosd(alp)
salp=dsind(alp) 
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C 
C 	 Y TO Z ANGLE 

bet=cort(2,k)
cbet=dcosd(bet)

C 
C 	 X TO Z ANGLE 

gam=cort(3,k)
cgam=dcosd(gam)

C 
C COSINE OF THE ANGLE BETWEEN Z AND Z-PRIME 

coseta=dsqrt(1.d0-cbet**2-cgam**2)
C 
C X-AXIS CANNOT "MOVE" 

hfl(1,k)=
& hf(1,k)

C 
C Y-AXIS CAN "MOVE" ONLY IN THE X-Y PLANE 

hfl(2,k)=
& ( -hf(1,k)*( calp )
& +hf(2,k) ) / salp

C 
C Z-AXIS CAN "MOVE" ANYWHERE 

hfl(3,k)=
& ( hf(1,k)*(cbet*calp/salp-cgam)
& -hf(2,k)*(cbet /salp )
& +hf(3,k) ) / coseta

C 
enddo 

C 
C 
C APPLY ATTITUDE XFRM (ROTATION) TO COMMON (MAG1) REFERENCE FRAME
C 

do k=1,4
C 
C ROTATION 1 IS ABOUT Z''' 

del=catt(1,k)

cdel=dcosd(del)

sdel=dsind(del)


C 
C 	 ROTATION 2 IS ABOUT Y'' 

eps=catt(2,k)
ceps=dcosd(eps)
seps=dsind(eps)

C 
C 	 ROTATION 3 IS ABOUT Z' 

zet=catt(3,k)
czet=dcosd(zet)
szet=dsind(zet)

C 
C FIND THE ROTATED COMPONENTS 

hfld(1,k)=

& hfl(1,k)*( czet*ceps*cdel-szet*sdel )

& +hfl(2,k)*( czet*ceps*sdel+szet*cdel )

& +hfl(3,k)*(-czet*seps )


hfld(2,k)=

& hfl(1,k)*(-szet*ceps*cdel-czet*sdel )

& +hfl(2,k)*(-szet*ceps*sdel+czet*cdel ) 
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C 

 & +hfl(3,k)*( szet*seps )
hfld(3,k)=

& 
& 
& 
enddo 

hfl(1,k)*(
+hfl(2,k)*(
+hfl(3,k)*( 

seps*cdel
seps*sdel
ceps 

)
)
) 

C 
C 
C FIND GRAD TENSOR WHERE: gtsr(i,j) = Gij = dHi/dj 

C Note: With 4 sensors, a direct measurement of all 9
C components of the tensor is available. However, if
C a) the field is static, b) all of the gradients are
C constant within the volume of TESSA, and c) there is
C no measurement noise, then the tensor will be
C traceless and symmetric, having only 5 independent
C components. Therefore, to the degree that it is not
C traceless and symmetric, one or more of these
C conditions has not been reached. 
c 

call s_h2g(hfld, gtsr)
C 
C 
C EXIT PROCEDURE 
C 
990 return 

end 
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