Open-File Report 2006–1058
U.S. GEOLOGICAL SURVEY
Open-File Report 2006–1058
The N aquifer is the major source of water in the 5,400‑square-mile area of Black Mesa in northeastern Arizona. Availability of water is an important issue in this area because of continued industrial and municipal use, a growing population, and precipitation of about 6 to 14 inches per year.
The monitoring program in the Black Mesa area has been operating since 1971 and is designed to determine the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. The monitoring program includes measurements of (1) ground-water pumping, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, (5) ground-water chemistry, and (6) periodic testing of ground-water withdrawal meters.
In 2004, total ground-water withdrawals were 7,210 acre‑feet, industrial withdrawals were 4,370 acre-feet, and municipal withdrawals were 2,840 acre-feet. From 2003 to 2004, total withdrawals decreased by less than 1 percent, industrial withdrawals decreased by 2 percent, and municipal withdrawals increased by 2 percent.
From 2004 to 2005, annually measured water levels declined in 6 of 13 wells in the unconfined areas of the aquifer, and the median change was -0.1 foot. Water levels declined in 8 of 12 wells in the confined area of the aquifer, and the median change was -1.2 feet. From the prestress period (prior to 1965) to 2005, the median water-level change for 33 wells was -9.0 feet. Median water-level changes were -0.6 foot for 16 wells in the unconfined areas and -32.0 feet for 17 wells in the confined area.
Discharges were measured once in 2004 and once in 2005 at four springs. Discharge increased by 8 percent at Pasture Canyon Spring, decreased by 5 percent at Moenkopi School Spring, increased by 71 percent at an unnamed spring near Dennehotso, and stayed the same at Burro Spring. For the period of record at each spring, discharges from the four springs have fluctuated; however, an increasing or decreasing trend is not apparent.
Continuous records of surface-water discharge have been collected from 1976 to 2004 at Moenkopi Wash, 1996 to 2004 at Laguna Creek, 1993 to 2004 at Dinnebito Wash, 1994 to 2004 at Polacca Wash, and August 2004 to December 2004 at Pasture Canyon Spring. Median flows for November, December, January, and February of each water year were used as an index of ground-water discharge to those streams. Since 1995, the median winter flows have decreased for Moenkopi Wash, Dinnebito Wash, and Polacca Wash. Since the first continuous record of surface-water discharge in 1997, there is no consistent trend in the median winter flow for Laguna Creek.
In 2005, water samples were collected from 11 wells and 4 springs and analyzed for selected chemical constituents. Dissolved-solids concentrations ranged from 122 to 639 milligrams per liter. Water samples from 9 of the wells and from all the springs had less than 500 milligrams per liter of dissolved solids. There are some long-term trends in the chemistry of water samples from 7 wells having more than 10 years of data and from 2 springs. Rough Rock PM5, Keams Canyon PM2, Second Mesa PM2, and Kayenta PM2 show an increasing trend in dissolved solids; Forest Lake NTUA1 and PWCC 2 show a decreasing trend in dissolved solids; and Kykostmovi PM2 shows a steady trend. Increasing trends in dissolved-solids and chloride concentrations were evident from the more than 11 years of data for 2 springs.
For more information about USGS activities in Arizona, visit the USGS Arizona Water Science Center home page.