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Abstract James Ross Island (JRI) exposes a Miocene-Recent alkaline basaltic volcanic complex that developed in a 
back-arc, east of the northern Antarctic Peninsula. JRI has been the focus of several geological studies because it 
provides a window on Neogene magmatic processes and paleoenvironments. However, little is known about its internal 
structure. New airborne gravity data were collected as part of the first high-resolution aerogeophysical survey flown over 
the island and reveal a prominent negative Bouguer gravity anomaly over Mt Haddington. This is intriguing as basaltic 
volcanoes are typically associated with positive Bouguer anomalies, linked to underlying mafic intrusions. The negative 
Bouguer anomaly may be associated with a hitherto unrecognised low-density sub-surface body, such as a breccia-filled 
caldera, or a partially molten magma chamber. 
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Introduction 
Aeromagnetic data are often utilised to image 

volcanoes. Recent examples include aeromagnetics over 
Yellowstone (Finn and Morgan, 2002) and Mt Rainier 
(Finn et al., 2001). Extensive aeromagnetic investigations 
over the West Antarctic Ice Sheet have identified 
subglacial volcanic caldera complexes (Behrendt et al., 
1998) and a possible active subglacial volcano 
(Blankenship et al., 1993). Other examples include 
aeromagnetic and land-based gravity surveys over Mt 
Melbourne, along the Ross Sea coast (Ferraccioli et al., 
2000) and Deception Island (Muñoz-Martín et al., 2005).  

Considerable improvements in GPS accuracy have 
made airborne gravity an increasingly utilised tool for 
Antarctic geological research (Bell et al., 1999). 
However, to our knowledge airborne gravity has not been 
used so far to investigate Antarctic volcanoes 
(LeMasurier and Thomson, 1990). We show the potential 
of airborne gravity for volcano studies, by presenting a 
high-resolution airborne gravity survey flown over the 
James Ross Island (JRI) region, close to the eastern tip of 
the Antarctic Peninsula (Fig. 1).  

JRI is dominated by the long-lived (>6Ma to 80 ka) 
James Ross Island Volcanic Group (Smellie et al., 2006). 
JRI is currently undergoing intense study as the 
volcanogenic deposits contain a detailed record of 
Neogene paleoclimates and paleoenvironments (Smellie, 
1999; Smellie et al., 2006). The offshore sedimentary 
sequences are also under investigation by the SHALDRIL 
project (SHALDRIL, 2006). Although JRI stratigraphy 
can be investigated directly, where there is exposed rock, 
its interior is covered by a permanent ice cap. Hence the 
sub-surface structure of JRI is poorly understood. 
Regional studies comprise land-based gravity and 
aeromagnetic studies (Garrett 1990, LaBrecque and 
Ghidella, 1997).  

 
Figure 1. Tectonic setting of James Ross Island 
(Robertson Maurice et al., 2003). Oval regions mark 
alkali volcanic fields (Smellie, 1999). Shaded region 
marks the Larsen basin (Del Valle et al., 1992). White 
dots are locations of SHALDRIL drill sites. Dashed box 
marks location of Figure 2.  
 

Geological framework 
 

JRI developed on the western edge of the Larsen 
Basin (Del Valle et al., 1992; Elliot, 1998), a locus of 
Late Mesozoic to Cenozoic subsidence and deposition in 
a back-arc associated with subduction west of the 
Antarctic Peninsula. The Antarctic Peninsula was the site 
of coeval magmatic arc activity (Elliot, 1998; Hathway, 
2000). However, the Cenozoic alkaline volcanic outcrops 
at Argo Point, Seal Nunataks and JRI have a geochemical 
signature akin to ocean-island basalts (OIB) (Hole and 
Larter, 1993; Hole et al., 1991; Smellie, 1999).
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Figure 2. a) Free Air gravity anomalies and aerogravity (black) and aeromagnetic lines (white) b) Bouguer anomalies. 
Note the location of cross section A-A’. White lines: Cretaceous outcrop. Dotted line: short wavelength aeromagnetic 
anomalies on JRI. Grey region: prominent aeromagnetic highs. 

The volcanism has been linked with the cessation of 
subduction due to collision of the Phoenix spreading 
centre with the continental margin, leading to slab 
windows beneath the back-arc and associated mantle 
melting (Hole et al., 1991). However, this hypothesis 
cannot explain the volcanism associated with JRI as 
subduction continues along the South Shetland Trench 
(Hole et al., 1995; Larter and Barker, 1991; Robertson 
Maurice et al., 2003). Instead slab roll-back drew 
asthenospheric mantle beneath previously thinned crust, 
leading to decompression melting in the mantle and 
production of OIB-like basalts (Hole et al., 1995). An 
alternative view is that JRI volcanism relates to a mantle 
plume (Smellie, 1999). 

 

Survey layout and aerogravity processing 
 

An aerogeophysical survey was flown over the JRI 
region during the 1998/99 campaign using a British 
Antarctic Survey Twin Otter, with logistical support was 
at Marambio Base (Fig. 2a) by the Argentinian Antarctic 
Programme. Over 3000 line km of airborne gravity data 
were acquired and 10,000 line km of aeromagnetics. Line-
spacing was 2 km, with orthogonal tie lines 10 km apart. 
Large vertical accelerations were associated with 
changing altitudes during draped aeromagnetic flights. 
Hence not all flights yielded gravity data. Flight line 
altitudes were constrained by the local topography and 
were 1050, 1500, 1950, 2050 and 2500 m. 

Airborne gravity data were acquired using a LaCoste 
and Romberg model S-83 air-sea gravimeter modified by 
ZLS (LaCoste, 1967; Valliant, 1992). Dual frequency GPS 
data were recorded on the aircraft and at a fixed base 
station allowing for differential kinematic, GPS methods 
to be applied (Mader, 1992). Accurate positional 

information is essential for airborne gravity data 
reduction. Still readings monitored drift, and land-gravity 
ties to Rothera (Jones and Ferris, 1999) were made to 
determine absolute gravity values.  

Standard processing steps included the vertical 
acceleration, latitude, Eotvos, horizontal acceleration, and 
free-air corrections (Harlan, 1968; Jones and Johnson, 
1995; Jones et al., 2002; Woollard, 1979). The data were 
low-pass filtered for wavelengths <9 km to reduce the 
effect of noise on the geological signal (Childers et al., 
1999; Holt et al., 2006). All airborne gravity data were 
continued to a common altitude of 2050 m and levelled 
(Bell et al., 1999). Residual crossover errors after 
levelling have a standard deviation of 2.9 mGal, which is 
comparable to the accuracy of more recent high-
resolution aerogravity collected over East Antarctica 
(Ferraccioli et al., 2005). Comparison with previous land 
based gravity data (Garret, 1990), gives a RMS difference 
of ~4.5mGal.  

The complete 3D Bouguer correction was calculated 
to estimate the gravity effect of the topography and ice 
and was based on a digital elevation model (DEM) of JRI 
(BAS, 1995), in addition to BEDMAP (Lythe et al., 
2000). The correction was calculated for an elevation of 
2050 m, to least squares accuracy, using a Gauss–
Legendre quadrature (GLQ) integration method (von 
Frese et al., 1981; von Frese and Mateskon, 1985). An ice 
density of 915 kgm-3 and a water density of 1028 kgm-1 
were used. The rock density varied (Fig. 3), as the 
volcanic edifice consists of lower density rocks than the 
standard Bouguer correction value of 2670 kgm-3 (Smellie 
and Gudmundsson pers. comm., 2007). Finally the EGM 
96 satellite-derived gravity field for the region (Lemoine 
et al., 1998) was subtracted (Fig. 2b). 
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Gravity anomaly patterns 
 

The Bouguer gravity anomaly map reveals three 
distinct regions (Fig. 2b). The western flank of the 
Antarctic Peninsula features Bouguer anomalies of 20 to 
40 mGal, in contrast to the eastern part (–5 to –20 mGal) 
This pattern is also observed over Palmer Land, 700 km 
further south, where it reflects a more mafic arc batholith 
over the western Antarctic Peninsula and a more felsic arc 
batholith in the east (Ferraccioli et al., 2006). The Eastern 
High is associated with a long-wavelength positive 
Bouguer anomaly of 10-20 mGal, likely associated with 
isostatic compensation of the continental margin (Watts 
and Stewart, 1998). A regional gradient of ~0.175 
mGal/km results from Airy compensation, which is less 
than the observed gradient of 0.35 to 0.5 mGal/km (Fig 
3). The proximity to the continental margin therefore 
explains part of the long wavelength positive anomaly, 
but the sharp inflection east of Seymour Island (Fig. 3), 
likely reflects a major strike-slip fault zone (Sloan et al., 
1995), bringing denser basement rocks closer to the 
surface.  

 

 
Figure 3.  Cross section A-A’ across JRI. a) Topography. 
b) Bouguer gravity anomalies with correction densities of 
2270 to 2670 kgm-3. Solid line: anomaly for the preferred 
correction density of 2467 kgm-3. Dotted line: anomaly 
due to Airy isostatic compensation at the Moho. c) 
Aeromagnetic anomalies along the same profile. 

A negative Bouguer gravity anomaly of over -40 
mGal is associated with Mt Haddington over JRI. 
Decreasing the standard Bouguer correction value from 
2670 kgm-3 to 2270 kgm-3 decreases the amplitude of the 

negative anomaly (Fig. 3b). Density measurements over 
JRI and a consideration of the lithological variations 
based upon the distribution of rock types, indicates that a 
density of 2467 kgm-3 should be used for the Bouguer 
correction (Smellie and Gudmundsson pers. comm., 
2007), leaving a residual Bouguer gravity anomaly of -35 
mGal. The negative anomaly cannot be accounted for by 
simple Airy isostatic compensation of the surface 
topography, as shown by the dotted line in Fig 3. 

The negative Bouguer anomaly peak correlates well 
with high- amplitude aeromagnetic anomalies. The short 
wavelength aeromagnetic anomalies on JRI delineate 
subglacial volcanic rocks at, or close to, the surface. 
Spectral analysis (Spector and Grant, 1970) suggests the 
source bodies are at ~-10 km (basement source?) and ~-
800 m (volcanic source).  Similar analysis of the Bouguer 
gravity data suggests source depths of ~ 12 and 5 km. 

The origin of the negative Bouguer anomaly is 
enigmatic, as mafic volcanoes are typically associated 
with positive Bouguer anomalies resulting from dense 
gabbroic material within now-solidified magma chambers 
(Walker, 1989; Williams and Finn, 1985). Where 
comparable negative Bouguer gravity anomalies have 
been observed beneath volcanoes such as Clear Lake 
California (Chapman, 1975; Stanley and Blakely, 1995), 
Yellowstone (Finn and Morgan, 2002; Lehman et al., 
1982) and Mt Melbourne (Ferraccioli et al., 2000) two 
hypotheses are typically proposed: a low-density breccia-
filled caldera, or a hot body such as a magma chamber 
beneath the volcano. However, in the case of JRI there is 
no geological evidence for a caldera, or for recent 
eruptions associated with a hot magma chamber.  

 

Conclusion 
Airborne gravity data reveal a prominent negative 

Bouguer gravity anomaly over Mt Haddington, which 
dominates JRI. The negative gravity anomaly correlates 
with high-amplitude aeromagnetic anomalies, suggesting 
a genetic link between volcanic processes and the inferred 
low-density body beneath JRI. Explanations for the body 
include (1) low-density infill of a caldera, or (2) a 
partially molten magma chamber beneath the island. If a 
hot magma chamber does indeed underlie JRI, it would 
indicate the volcano is merely dormant, rather than 
extinct. This could be consistent with the long, but 
sporadic, eruption history suggested by Smellie, et al. 
(2006). Seismic and electromagnetic arrays, such as those 
over Mt Melbourne (Armadillo et al., 2002) could test our 
provocative hypothesis.  
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