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Heavy Oil and Natural Bitumen Resources in Geological 
Basins of the World

By Richard F. Meyer, Emil D. Attanasi, and Philip A. Freeman

Abstract
Heavy oil and natural bitumen are oils set apart by their 

high viscosity (resistance to flow) and high density (low API 
gravity). These attributes reflect the invariable presence of up 
to 50 weight percent asphaltenes, very high molecular weight 
hydrocarbon molecules incorporating many heteroatoms in 
their lattices. Almost all heavy oil and natural bitumen are 
alteration products of conventional oil. Total resources of 
heavy oil in known accumulations are 3,396 billion barrels of 
original oil in place, of which 30 billion barrels are included as 
prospective additional oil. The total natural bitumen resource 
in known accumulations amounts to 5,505 billion barrels 
of oil originally in place, which includes 993 billion barrels 
as prospective additional oil. This resource is distributed in 
192 basins containing heavy oil and 89 basins with natural 
bitumen. Of the nine basic Klemme basin types, some with 
subdivisions, the most prolific by far for known heavy oil and 
natural bitumen volumes are continental multicyclic basins, 
either basins on the craton margin or closed basins along con-
vergent plate margins. The former includes 47 percent of the 
natural bitumen, the latter 47 percent of the heavy oil and 46 
percent of the natural bitumen. Little if any heavy oil occurs in 
fore-arc basins, and natural bitumen does not occur in either 
fore-arc or delta basins.

Introduction
Until recent years conventional, light crude oil has been 

abundantly available and has easily met world demand for this 
form of energy. By year 2007, however, demand for crude oil 
worldwide has substantially increased, straining the supply of 
conventional oil. This has led to consideration of alternative 
or insufficiently utilized energy sources, among which heavy 
crude oil and natural bitumen are perhaps the most readily 
available to supplement short- and long-term needs. Heavy 
oil has long been exploited as a source of refinery feedstock, 
but has commanded lower prices because of its lower quality 
relative to conventional oil. Natural bitumen is a very viscous 
crude oil that may be immobile in the reservoir. It typically 
requires upgrading to refinery feedstock grade (quality). 

When natural bitumen is mobile in the reservoir, it is generally 
known as extra-heavy oil. As natural asphalt, bitumen has been 
exploited since antiquity as a source of road paving, caulk, and 
mortar and is still used for these purposes in some parts of the 
world. The direct use of mined asphalt for road paving is now 
almost entirely local, having been replaced by manufactured 
asphalt, which can be tailored to specific requirements. 

This study shows the geological distribution of known 
heavy oil and natural bitumen volumes by basin type. These 
data are presented to advance a clearer understanding of the 
relationship between the occurrence of heavy oil and natural 
bitumen and the type of geological environment in which 
these commodities are found. The resource data presented 
were compiled from a variety of sources. The data should not 
be considered a survey of timely resource information such as 
data published annually by government agencies and public 
reporting services. With the exception of Canada, no such 
data source on heavy oil and natural bitumen accumulations is 
available. The amounts of heavy oil yet unexploited in known 
deposits represent a portion of future supply. To these amounts 
may be added the heavy oil in presently poorly known and 
entirely unexploited deposits. Available information indicates 
cumulative production accounts for less than 3 percent of 
the discovered heavy oil originally in place and less than 0.4 
percent of the natural bitumen originally in place. 

Terms Defined for this Report

Conventional (light) Oil: Oil with API gravity greater 
than 25°.

Medium Oil: Oil with API gravity greater than 20°API 
but less than or equal to 25°API.

Heavy Oil: Oil with API gravity between 10°API and 
20°API inclusive and a viscosity greater than 100 cP.

Natural Bitumen: Oil whose API gravity is less than 
10° and whose viscosity is commonly greater than 
10,000 cP. It is not possible to define natural bitu-
men on the basis of viscosity alone because much of 
it, defined on the basis of gravity, is less viscous than 
10,000 cP. In addition, viscosity is highly temperature-

•

•

•

•
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dependent (fig. 1), so that it must be known whether 
it is measured in the reservoir or in the stock tank. In 
dealing with Russian resources the term natural bitu-
men is taken to include both maltha and asphalt but 
excludes asphaltite.

Total Original Oil in Place (TOOIP): Both discovered 
and prospective additional oil originally in place.

Original Oil in Place-Discovered (OOIP-Disc.): Dis-
covered original oil in place.

Reserves (R): Those amounts of oil commonly reported 
as reserves or probable reserves, generally with no 
further distinction, and quantities of petroleum that 
are anticipated to be technically but not necessarily 
commercially recoverable from known accumulations. 
Only in Canada are reserves reported separately as 
recoverable by primary or enhanced methods. Russian 
reserve classes A, B, and C1 are included here (See 
Grace, Caldwell, and Hether,1993, for an explanation 
of Russian definitions.)

Prospective Additional Oil in Place: The amount of 
resource in an unmeasured section or portion of a 
known deposit believed to be present as a result of 
inference from geological and often geophysical study. 

Original Reserves (OR): Reserves plus cumulative 
production. This category includes oil that is frequently 
reported as estimated ultimately recoverable, particu-
larly in the case of new discoveries.

Chemical and Physical Properties
Fundamental differences exist between natural bitumen, 

heavy oil, medium oil, and conventional (light) oil, accord-
ing to the volatilities of the constituent hydrocarbon fractions: 
paraffinic, naphthenic, and aromatic. When the light fractions 
are lost through natural processes after evolution from organic 
source materials, the oil becomes heavy, with a high propor-
tion of asphaltic molecules, and with substitution in the carbon 
network of heteroatoms such as nitrogen, sulfur, and oxygen. 
Therefore, heavy oil, regardless of source, always contains 
the heavy fractions, the asphaltics, which consist of resins, 
asphaltenes, and preasphaltenes (the carbene-carboids) (Yen, 
1984). No known heavy oil fails to incorporate asphaltenes. 
The large asphaltic molecules define the increase or decrease 
in the density and viscosity of the oil. Removal or reduction 
of asphaltene or preasphaltene drastically affects the rheologi-
cal properties of a given oil and its aromaticity (Yen, 1984). 
Asphaltenes are defined formally as the crude oil fraction that 
precipitates upon addition of an n-alkane, usually n-pentane 
or n-heptane, but remains soluble in toluene or benzene. In 
the crude oil classification scheme of Tissot and Welte (1978), 
the aromatic-asphaltics and aromatic-naphthenics character-

•

•

•

•

•

ize the heavy oil and natural bitumen deposits of Canada and 
Venezuela and are the most important of all crude oil classes 
with respect to quantity of resources. The aromatic-intermedi-
ate class characterizes the deposits of the Middle East (Yen, 
1984).

Some of the average chemical and physical properties of 
conventional, medium, and heavy crude oils and natural bitu-
men are given in table 1, in order to show their distinguishing 
characteristics. The data are derived from multiple sources, 
some old and others adhering to standards employed in differ-
ent countries. The conversion factors outlined in table 2 were 
used to convert published data to a uniform standard. Some of 
the properties in table 1 are important with respect to heavy oil 
and natural recovery from the ground and other properties in 
table 1 serve as the basis for decisions for upgrading and refin-
ery technologies. Moving across table 1 from conventional oil 
to natural bitumen,  increases may be seen in density (shown 
as reductions in API gravity), coke, asphalt, asphaltenes, 
asphaltenes + resins,  residuum yield (percent volume), pour 
point, dynamic viscosity, and the content of copper, iron, 
nickel, vanadium among the metals and in nitrogen and sulfur  
among the non-metals. Values diminish for reservoir depth, 
gasoline and gas-oil yields, and volatile organic compounds 
(VOC and BTEX –Benzene, Toluene, Ethylbenzene, and 
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Figure 1. Response of viscosity to change in temperature for 
some Alberta oils (cP, centipoise), (Raicar and Proctor, 1984).
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Xylenes). The significance of these differences is often 
reflected in the capital and operating expenses required for the 
recovery, transportation, product processing, and environmen-
tal mitigation of the four oil types. The principal sources of 
analytical data for table 1 are Environmental Technology Cen-
tre (2003), Hyden (1961), Oil & Gas Journal Guide to Export 
Crudes (2006), U.S. Department of Energy, National Energy 
Technology Laboratory (1995), and various analyses published 
in technical reports.

The resins and asphaltenes play an important role in 
the accumulation, recovery, processing, and utilization of 
petroleum. The resins and asphaltenes are the final form of 
naphtheno-aromatic molecules. The carbon skeleton appears 
to comprise three to five polyaromatic sheets, with some het-
erocyclic (N-S-O) compounds. These crystallites may com-
bine to form high molecular weight aggregates, with the high 
viscosity of heavy oils related to the size and abundance of 
the aggregates. Most asphaltenes are generated from kerogen 
evolution in response to depth and temperature increases in 
sedimentary basins. Different types of asphaltenes may be 
derived from the main kerogen types. Asphaltenes are not 
preferentially mobilized, as are light hydrocarbons during 
migration from source rocks to reservoir beds, where they are 
less abundant if the crude oil is not degraded (Tissot, 1981).

Some heavy oil and natural bitumen originates with 
chemical and physical attributes shown in table 1 as immature 
oil which has undergone little if any secondary migration. The 
greatest amount of heavy oil and natural bitumen results from 
the bacterial degradation under aerobic conditions of origi-
nally light crude oils at depths of about 5,000 feet or less and 
temperatures below 176°F. The consequence of biodegrada-
tion is the loss of most of the low molecular weight volatile 
paraffins and naphthenes, resulting in a crude oil that is very 
dense, highly viscous, black or dark brown, and asphaltic. 
An active water supply is required to carry the bacteria, 
inorganic nutrients, and oxygen to the oil reservoir, and to 
remove toxic by-products, such as hydrogen sulfide, with low 
molecular weight hydrocarbons providing the food (Barker, 
1979). The low molecular weight components also may be 
lost through water washing in the reservoir, thermal fraction-
ation, and evaporation when the reservoir is breached at the 
earth’s surface (Barker, 1979). The importance of this process 
to the exploitation of heavy oil and natural bitumen lies in 
the increase of NSO (nitrogen-sulfur-oxygen) compounds in 
bacterially-altered crude oil and the increase in asphaltenes 
(Kallio, 1984).

Bacterial degradation of crude oil may also take place 
under anaerobic conditions, thus obviating the need for a fresh 
water supply at shallow depths (Head, Jones, and Larter, 2003; 
Larter and others, 2006). This proposal envisions degrada-
tion even of light oils at great depths so long as the maximum 
limiting temperature for bacterial survival is not exceeded. 
This theory does not account in any obvious way for the high 
percentage in heavy oil and natural bitumen of polar asphal-
tics, that is, the resins and asphaltenes.

Oil mass loss entailed in the formation of heavy oil and 
natural bitumen deposits has been the subject of numerous 
research studies. Beskrovnyi and others (1975) concluded 
that three to four times more petroleum was required than the 
reserves of a natural bitumen for a given deposit. Based upon 
material balance calculations in the Dead Sea basin, Tannen-
baum, Starinsky, and Aizenshtat (1987) found indications that 
75% of the original oil constituents in the C15+ range had 
been removed as a result of alteration processes. By account-
ing for the lower carbon numbers as well, they estimated that 
the surface asphalts represented residues of only 10-20% of 
the original oils. Head, Jones, and Larter (2003) diagram mass 
loss increasing from essentially zero for conventional oil to 
something more than 50% for heavy oils, which of themselves 
are subject to no more than 20% loss. Accompanying the mass 
loss is a decrease in API gravity from 36° to 5-20°; decrease 
in gas/oil ratio from 0.17 kg gas/kg oil; decrease in gas liquids 
from 20% to 2%; increase in sulfur from 0.3wt% to 1.5+wt%; 
and decrease in C15+ saturates from 75% to 35%. This cal-
culation of mass loss shows: (1) the enormous amount of oil 
initially generated in heavy oil and natural bitumen basins, 
especially Western Canada Sedimentary and Eastern Venezu-
ela basins; and (2) the huge economic burden imposed by this 
mass loss on the production-transportation-processing train of 
the remaining heavy oil and natural bitumen.

Origins of Heavy Oil and Natural 
Bitumen

It is possible to form heavy oil and natural bitumen 
by several processes. First, the oil may be expelled from its 
source rock as immature oil. There is general agreement that 
immature oils account for a small percentage of the heavy oil 
(Larter and others, 2006). Most heavy oil and natural bitumen 
is thought to be expelled from source rocks as light or medium 
oil and subsequently migrated to a trap. If the trap is later 
elevated into an oxidizing zone, several processes can convert 
the oil to heavy oil. These processes include water washing, 
bacterial degradation and evaporation. In this case, the biodeg-
radation is aerobic. A third proposal is that biodegradation can 
also occur at depth in subsurface reservoirs (Head, Jones, and 
Larter, 2003; Larter and others, 2003; Larter and others, 2006). 
This explanation permits biodegradation to occur in any reser-
voir that has a water leg and has not been heated to more than 
176° F. The controls on the biodegradation depend on local 
factors rather than basin-wide factors. Because the purpose 
of this report is to describe the geologic basin setting of the 
known heavy oil and natural bitumen deposits, it is beyond the 
scope of this report to argue the source or genesis of heavy oil 
and natural bitumen for each basin of the world.
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Data Sources
Data for heavy oil resource occurrences and quantities 

for individual oilfields and reservoirs have been compiled 
from many published reports and commercial data bases. The 
most important of these include Demaison (1977), IHS Energy 
Group (2004),  NRG Associates (1997), Parsons (1973), 
Roadifer (1987), Rühl (1982), and the U.S. Department of 
Energy, National Energy Technology Laboratory (1983, 2005)

Data for natural bitumen deposits in the United States are 
summarized in U.S Department of Energy, National Energy 
Technology Laboratory (1991), but information for Utah 
is taken from Oblad and others (1987) and Ritzma (1979). 
Although there is no single data source for deposits outside the 
United States, there is a rich literature, particularly for Russia 
and the countries of the Former Soviet Union. For Canada, 
reliance is placed on reports of the Alberta Energy and Utili-
ties Board (2004) and Saskatchewan Industry and Resources 
(2003).

Resource Estimates
We consider the total original oil in place (OOIP) to be 

the most useful parameter for describing the location and 
volume of heavy oil and natural bitumen resources. Resource 
quantities reported here are based upon a detailed review of 
the literature in conjunction with available databases, and are 
intended to suggest, rather than define the resource volumes 
that could someday be of commercial interest. If only a 
recoverable volume of heavy oil for the accumulation was 
published, the discovered OOIP was computed according to 
the protocol set forth in table 3.

Natural bitumen originally in place is often reported in 
the literature. Where only a recoverable estimate is published, 
the in-place volumes were calculated according to the proto-
cols given for heavy oil; this is especially the case for bitumen 
deposits above 4°API gravity, to which we arbitrarily refer as 
extra-heavy oil.

Poorly known deposits of heavy oil and natural bitu-
men are included in the category of prospective additional 
resources, as described in table 3. In no case are values for 
prospective additional resource volumes calculated as in the 
case of discovered resources but were taken directly from the 
published literature.

Table 4 summarizes the resources and essential physical 
parameters of the heavy oil and natural bitumen contained in 
each of the basin types. These characteristics affect heavy oil 
and natural bitumen occurrence and recovery. Recovery can be 
primary, as in the case of cold production without gravel pack-
ing, if the gas to oil ratio is high enough to provide necessary 
reservoir energy. Otherwise, recovery generally necessitates 
the application of enhanced recovery methods, such as thermal 
energy or the injection of solvents.

Recovery Methods
How the reservoir parameters apply to enhanced recovery 

is summarized from Taber, Martin, and Seright (1997a, 1997b) 
in table 5, which covers the most commonly used, or at least 
attempted enhanced oil recovery (EOR) methods. Of these 
methods, immiscible gas injection, polymer flooding, and in 
situ combustion (fireflood) have met with limited success for 
heavy oil and natural bitumen. Steam injection (cyclic steam, 
huff ‘n puff) has been most successful, frequently by use of 
cyclic steam, followed by steam flooding. Surface mining and 
cold in situ production are usually considered to be primary 
recovery methods. They can be suited to the extraction of 
heavy oil and natural bitumen under proper conditions.

Most of the process descriptions which follow are taken 
from Taber, Martin, and Seright (1997b). Many processes may 
result in the process agent, such as nitrogen or carbon dioxide, 
remaining immiscible with the reservoir hydrocarbon or else 
becoming miscible with it. The miscibility is dependent upon 
the minimum miscibility pressure (MMP) and determines the 
way in which the process agent achieves EOR. While this 
summary discussion shows the breadth of the EOR processes 
operators have tried and continue to try as experimental proj-
ects, thermal EOR methods account for most of the heavy oil 
that is commercially produced. Data on the frequency of the 
applications are taken, unless otherwise cited, from the Oil and 
Gas Journal Historical Review, 1980-2006 (2006), particularly 
the Oil and Gas Journal 2000 and 2006 EOR Surveys.

Nitrogen gas drive is low in cost and therefore may be 
used in large amounts. It is commonly used with light oils for 
miscible recovery. However, it may also be used for an immis-
cible gas flood. The Oil and Gas Journal 2000 Survey includes 
one immiscible nitrogen gas drive in a sandstone reservoir 
with 16˚API oil at 4,600 feet depth. It was reported to be 
producing 1,000 barrels per day (b/d) of enhanced production. 
The Journal’s 2006 Survey reports one each heavy oil nitrogen 
miscible and nitrogen immiscible projects. The miscible proj-
ect is 19˚API, located in the Bay of Campeche, with 19 wells, 
but with no report of production capacity. The immiscible 
project has oil of 16˚API at 4,600 feet in sandstone. For this 
project total production is reported to be 1,500 b/d of which 
1,000 b/d is enhanced by immiscible nitrogen injection.

Of the 77 CO2 projects in the Journal 2000 Survey, 70 
are for miscible CO2 and none entails heavy oil. This is true 
also in the Journal 2006 Survey, where all 86 CO2 projects are 
devoted to light oil, above 28˚API. In the Journal 2000 Survey, 
five of the seven immiscible CO2 projects are applied to heavy 
oil reservoirs, four in clastics and one in limestone. The latter, 
in the West Raman field in Turkey, involves oil of 13°API, lies 
at 4,265 feet, and produces 8,000 b/d. The reservoir contains 
nearly two billion barrels of original oil in place. Recoverable 
reserves remain low because of the recalcitrance of the reser-
voir. Steam flooding has been unsuccessful. By the date of the 
Journal 2006, there are eight immiscible CO2 projects, with 
five of them entailing heavy oil amounting to 7,174 b/d. The 
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two largest projects are light oil and heavy oil and are each in 
carbonate reservoirs.

Polymer/chemical flooding includes micellar/polymer, 
alkaline-surfactant-polymer (ASP), and alkaline fluids (Taber, 
Martin, and Seright, 1997a, 1997b). Recovery is complex, 
leading to the lowering of interfacial tension between oil and 
water, solubilization of oil in some micellar systems, emulsifi-
cation of oil and water, wettability alteration, and enhancement 
of mobility. Limitations and costs indicate for these floods the 
desirability of clean clastic formations. The Journal 2000 Sur-
vey shows five heavy oil polymer/chemical floods of 15°API 
in sandstone reservoirs at about 4,000 feet. They were produc-
ing about 366 b/d and the projects were deemed successful 
or promising. Projects such as these are below the desirable 
gravity limits and are more viscous than desired at 45 cP.

Polymer floods improve recovery over untreated water 
flood by increasing the viscosity of the water, decreasing thus 
the mobility of the water, and contacting a larger volume of 
the reservoir. The advantages of a polymer flood over a plain 
water flood are apparent. The Journal 2000 Survey lists 22 
polymer flood projects, of which five involve heavy oil. These 
five are within the range of the polymer screen, although the 
gravities are marginal, lying from 13.5°API to a bit above 
15°API. The five were producing 7,140 b/d, of which 2,120 
b/d were attributed to EOR. The Journal 2006 Survey shows 
20 polymer floods, with five exploring heavy oil reservoirs. 
Three of the five are producing 7,140 b/d total oil and 2,120 
b/d of enhanced production.

The Journal 2000 Survey shows four hot water floods, 
one of which is heavy oil with a gravity of 12°API, viscosity 
of 900 cP, and starting saturation of only 15 percent. Proj-
ect production was 300 b/d. Two of three hot water floods 
included in the Journal 2006 Survey are intended to enhance 
production of heavy oil. The two yield about 1,700 b/d of total 
oil and 1,700 b/d of enhanced hot water flood oil.

In situ combustion (fire flood) is theoretically simple, 
setting the reservoir oil on fire and sustaining the burn by 
the injection of air. Usually, the air is introduced through an 
injector well and the combustion front moves toward to the 
production wells. A variant is to include a water flood with the 
fire, the result being forward combustion with a water flood. 
Another variant is to begin a fire flood, then convert the initial 
well to a producer and inject air from adjacent wells. The 
problem with this reverse combustion is that it doesn’t appear 
to work.

In situ combustion leads to oil recovery by the introduc-
tion of heat from the burning front, which leads to reduction 
in viscosity. Further, the products of steam distillation and 
thermal cracking of the reservoir oil are carried forward to 
upgrade the remaining oil. An advantage of the process is that 
the coke formed by the heat itself burns to supply heat. Lastly, 
the injected air adds to the reservoir pressure. The burning of 
the coke sustains the process so that the process would not 
work with light oil deficient in asphaltic components. The 
process entails a number of problems, some severe, but the 
Journal 2000 Survey shows 14 combustion projects, of which 

five are light oil and the remaining nine are heavy, between 
13.5°API and 19°API. Viscosities and starting oil saturations 
are relatively high. It is notable that the heavy oil projects are 
in sandstones and the light oil in carbonates. The heavy oil    
in situ combustion projects were producing about 7,000 b/d. 
The Journal 2006 Survey includes nine heavy oil combustion 
projects among a total of twenty-one. The heavy oil projects 
yield about 7,000 b/d of combustion-enhanced oil, which 
ranges from 13.5˚API to 19˚API.

Steam injection for EOR recovery is done in two ways, 
either by cyclic steam injection (huff ‘n puff) or continuous 
steam flood. Projects are frequently begun as cyclic steam, 
whereby a high quality steam is injected and soaks the res-
ervoir for a period, and the oil, with lowered viscosity from 
the heat, is then produced through the injection well. Such 
soak cycles may be repeated up to six times, following which 
a steam flood is initiated. In general, steam projects are best 
suited to clastic reservoirs at depths no greater than about 
4,000 feet, and with reservoir thicknesses greater than 20 feet 
and oil saturations above 40% of pore volume. For reservoirs 
of greater depth the steam is lowered in quality through heat 
loss to the well bore to where the project becomes a hot water 
flood. Steam is seldom applied to carbonate reservoirs in large 
part due to heat loss in fractures.

The Journal 2000 Survey lists 172 steam drive projects. 
Of these, four in Canada give no gravity reading, thirteen are 
medium oil from 22°API to 25°API, and the rest are heavy 
oil. The largest of all is at Duri field in Indonesia and this oil 
is 22°API. For the project list as a whole, the average gravity 
is 14°API, with a maximum value of 30°API and a minimum 
of 4°API. The average viscosity is 37,500 cP, with maximum 
and minimum values of 5,000,000 cP and 6 cP. Oil saturations 
range from 35% to 90%, the average being 68%. Most impor-
tantly, production from the project areas was 1.4 million b/d 
and of this, 1.3 million b/d was from steam drive EOR.

All but three of the 120 steam projects found in the Jour-
nal 2006 Survey entail recovery of heavy oil. The oil averages 
12.9˚API, with a low value of 8˚API and a high of 28˚API 
(one of the three light oil reservoirs). The viscosity averages 
58,000 cP, with a high value of 5 million cP and a low of 2 
cP. The projects are yielding over 1.3 million b/d, virtually all 
being steam EOR.

Maps
The geographic distribution of basins reporting heavy 

oil and natural bitumen, as identified by their Klemme basin 
types, appears on Plate 1. A diagram of the Klemme basin 
classification illustrates the architectural form and the geologi-
cal basin structure by type. This plate also includes histograms 
of the total original oil in place resource volumes of both 
heavy oil and natural bitumen. Plates 2 and 3, respectively, 
depict the worldwide distribution of heavy oil and natural bitu-
men resources originally in place. Each map classifies basins 
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by the reported volumes of total original oil in place. A table 
ranks the basins by total original oil in place volumes besides 
indicating Klemme basin type and reporting discovered origi-
nal oil in place and prospective additional oil in place. Plates 2 
and 3 also include an inset map of the geographic distribution 
of original heavy oil or natural bitumen by 10 world regions 
(see table 6 for regional listing of countries reporting heavy oil 
or natural bitumen.)

Basin outlines of the sedimentary provinces are digitally 
reproduced from the AAPG base map compiled by St. John 
(1996). The basin outlines of St. John (1996) are unaltered. 
However, the reader should note that the basin outlines are 
considered to be generalizations useful for displaying the 
resource distributions but are less than reliable as a regional 
mapping tool. Also, some basin names have been changed 
to names more commonly used by geologists in the local 
country. These equivalent names and the original names from 
Bally (1984) and St. John (1996) are detailed in table 1-1 in 
Appendix 1. The basin outline for Eastern Venezuela as shown 
does not include the island of Trinidad where both heavy oil 
and natural bitumen resources occur. For this report, resources 
from Trinidad and Tobago are reported in the Eastern Venezu-
ela basin totals. In a few cases a single basin as outlined on the 
plates is composed of multiple basins to provide more mean-
ingful local information. This is particularly true in the United 
States, where the AAPG-CSD map was employed (Meyer, 
Wallace, and Wagner, 1991). In each case, the individual 
basins retain the same basin type as the basin shown on the 
map and all such basins are identified in Appendix 1.

Basins having heavy oil or natural bitumen deposits are 
listed in table 2-1 in Appendix 2 along with the Klemme basin 
type, countries and U.S. states or Canadian provinces report-
ing deposits and other names cited in literature. The Klemme 
basin classification diagram in Plate 1 is reprinted in fig. 3-1 
in Appendix 3 for the reader’s convenience. The tables from 
Plates 2 and 3 are reprinted as table 4-1 and table 4-2 for the 
reader’s convenience.

Klemme Basin Classification
Many classifications of petroleum basins have been 

prepared. In one of the earliest, Kay (1951) outlined the basic 
architecture of geosynclines, with suggestions as to their ori-
gins. Kay’s work preceded the later theory of plate tectonics. 
Klemme (1977, 1980a, 1980b, 1983, 1984) gives a summary 
description of petroleum basins together with their classifica-
tion, based upon basin origin and inherent geological charac-
teristics. This classification is simple and readily applicable 
to the understanding of heavy oil and natural bitumen occur-
rence. The Klemme basin types assigned to the heavy oil and 
natural bitumen basins described in this report correspond to 
the assignments made in St. John, Bally, and Klemme (1984). 
In some cases of multiple type designations in St. John, Bally, 
and Klemme (1984) a unique type designation was resolved by 

reference to Bally (1984) or Bally and Snelson (1980). Only a 
few of the basins originally designated as multiple types in St. 
John, Bally and Klemme (1984) appear to contain heavy oil 
and natural bitumen.

Table 7 summarizes the criteria upon which Klemme 
based his classification. The general description of the 
resource endowment associated to the Klemme basin classifi-
cation is based upon oilfield (and gasfield) data of the world 
as of 1980 without regard to the density or other chemical 
attributes of the hydrocarbons they contain (Klemme, 1984). 
At the time of Klemme’s work, the average density U.S. refin-
ery crude oil was about 33.7°API (Swain, 1991). A decline in 
the average to about 30.6°API by 2003 perhaps signifies the 
increasing importance of heavy oil in the mix (Swain, 2005).

Generally, basins may be described as large or small and 
linear or circular in shape. They may also be described by 
the ratio of surface area to sedimentary volume. The base-
ment profile or basin cross-section, together with the physical 
description, permits the interpretation of the fundamental basin 
architecture. The basin can then be placed within the relevant 
plate tectonic framework and assigned to one of four basin 
types, of which two have sub-types. A diagram of the Klemme 
basin types appears on Plate 1, color-coded to the basins on 
the map.

In the following section we provide descriptions of the 
basin types from Klemme (1980b, 1983, 1984) followed by 
discussion of the heavy oil and natural bitumen occurrences 
within those same basin types, summary data for which are 
given in table 4. Because most heavy oil and natural bitumen 
deposits have resulted from the alteration of conventional 
and medium oil, the factors leading to the initial conventional 
and medium oil accumulations are relevant to the subsequent 
occurrence of heavy oil and natural bitumen. 

Type I. Interior Craton Basins

The sediment load in these basins is somewhat more 
clastic than carbonate. Reservoir recoveries are low and few 
of the basins contain giant fields. Traps are generally related 
to central arches, such as the Cincinnati arch, treated here as 
a separate province (Plates 1-3), or the arches of the Siberian 
platform (see below for further explanation). Traps also are 
found in smaller basins over the craton, such as the Michigan 
basin. The origin of these depressions is unclear although 
most of them began during the Precambrian (Klemme, 1980a, 
1980b).

The six Type I basins having heavy oil contain less than 
3 billion barrels of oil in place and of this 93% occurs in the 
Illinois basin alone. Four Type I basins that contain natural 
bitumen have 60 billion barrels of natural bitumen in place, 
with nearly 99% in the Tunguska basin in eastern Siberia and 
the rest in the Illinois basin. The Tunguska basin covers most 
of the Siberian platform, around the borders of which are 
found cratonic margin basins of Type IIA. For convenience all 
the resource is assigned to the Tunguska basin. The prospec-
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tive additional resource of 52 billion barrels is almost certainly 
an absolute minimum value for this potentially valuable but 
difficult to access area (Meyer and Freeman, 2006.)    

Type II. Continental Multicyclic Basins

Type IIA. Craton margin (composite)
These basins, formed on continental cratonic margins, 

are generally linear, asymmetrical in profile, usually beginning 
as extensional platforms or sags and ending as compressional 
foredeeps. Therefore they are multicyclic basins featuring 
a high ratio of sediment volume to surface area. Traps are 
mainly large arches or block uplifts and may be found in rocks 
of either the lower (platform) or upper (compression) tectonic 
cycle. About 14% of conventional oil discovered in the world 
by 1980 is from marginal cratonic basins (Klemme, 1980a, 
1980b).

Type IIA basins are of moderate importance with respect 
to heavy oil, with about 158 billion barrels of oil in place 
distributed among 28 basins. Three Type IIA basins, the West-
ern Canada Sedimentary, Putumayo, and Volga-Ural, have 
combined total heavy oil resource of 123 billion barrels of oil 
in place, or 78% of the total for Type IIA basins.

In comparison, natural bitumen in 24 Type IIA basins 
accounts for 2,623 billion barrels of natural bitumen in place, 
or nearly 48% of the world natural bitumen total. The Western 
Canada Sedimentary basin accounts for 2,334 billion barrels 
of natural bitumen in place, or about 89%. Of the Canadian 
total, 703 billion barrels of natural bitumen in place is pro-
spective additional oil, largely confined to the deeply buried 
bitumen in the carbonate that underlie the Peace River and 
part of the Athabasca oil sand deposit in an area known as the 
Carbonate Triangle. The significance of the Canadian deposits 
lies in their concentration in a few major deposits: Athabasca, 
from which the reservoir is exploited at or near the surface 
and shallow subsurface, and Cold Lake and Peace River, from 
which the bitumen is extracted from the subsurface. Two other 
basins contain much less but still significant amounts of natu-
ral bitumen, the Volga-Ural basin in Russia (263 billion barrels 
of natural bitumen in place) and the Uinta basin in the United 
States (12 billion barrels of natural bitumen in place). The 
Volga-Ural deposits are numerous, but individually are small 
and mostly of local interest. The Uinta deposits are much more 
concentrated aerially, but are found in difficult terrain remote 
from established transportation and refining facilities. 

Type IIB. Craton accreted margin (complex)
These basins are complex continental sags on the 

accreted margins of cratons. Architecturally, they are similar 
to Type IIA basins, but begin with rifting rather than sags. 
About three-quarters of Type IIA and IIB basins have proven 

productive, and they contain approximately one-fourth of the 
world’s total oil and gas (Klemme, 1980a, 1980b).

The 13 Type IIB basins contain a moderate amount of 
heavy oil (193 billion barrels of oil in place). The two most 
significant basins are in Russia, West Siberia and Timan-
Pechora. These, together with most of the other Type IIB 
heavy oil basins, are of far greater importance for their con-
ventional and medium oil resources.

Five Type IIB basins hold 29 billion barrels of natural 
bitumen in place. Only the Timan-Pechora basin contains 
significant natural bitumen deposits, about 22 billion barrels 
of natural bitumen in place. Unfortunately, this resource is 
distributed among a large number of generally small deposits.

Type IIC. Crustal collision zone (convergent plate 
margin)

These basins are found at the crustal collision zone along 
convergent plate margins, where they are downwarped into 
small ocean basins. Although they are compressional in final 
form, as elongate and asymmetrical foredeeps, they begin as 
sags or platforms early in the tectonic cycle. Type IIC down-
warp basins encompass only about 18 percent of world basin 
area, but contain nearly one-half of the world’s total oil and 
gas. These basins are subdivided into three subtypes, depend-
ing on their ultimate deformation or lack thereof: Type IICa, 
closed; Type IICb, trough; and Type IICc, open (Klemme, 
1980a, 1980b).

Although basins of this type begin as downwarps that 
opened into small ocean basins (Type IICc), they may become 
closed (Type IICa) as a result of the collision of continental 
plates. Upon closing, a large, linear, asymmetric basin with 
sources from two sides is formed, resembling a Type IIA 
basin. Further plate movement appears to destroy much of 
the closed basin, leaving a narrow, sinuous foredeep, that is, a 
Type IICb trough. Relatively high hydrocarbon endowments in 
the open and the closed types may be related to above-normal 
geothermal gradients, which accentuates hydrocarbon matu-
ration and long-distance ramp migration. Traps are mostly 
anticlinal, either draping over arches or compressional folds, 
and are commonly related to salt flowage.

Type IICa basins, with their architectural similarity to 
Type IIA basins, are the most important of the three Type 
IIC heavy oil basins. The 15 basins account for 1,610 billion 
barrels of the heavy oil in place, with the Arabian, Eastern 
Venezuela, and Zagros basins containing 95% of the total. 
Of particular interest is the Eastern Venezuela basin which 
includes large accumulations of conventional and medium oil, 
while at the same time possessing an immense resource of 
both heavy oil and natural bitumen.

Type IICa basins also are rich in natural bitumen, with a 
total of 2,507 billion barrels of natural bitumen in place among 
the six. About 83% of this occurs in Venezuela, mostly in the 
southern part of the Eastern Venezuelan basin known as the 
Orinoco Oil Belt. Here the reservoir rocks impinge upon the 
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Guyana craton in much the same fashion as the reservoir rocks 
of the Western Canada Sedimentary basin lap onto the Cana-
dian shield. The only other significant Type IICa accumulation 
of natural bitumen is found in the North Caspian basin (421 
billion barrels of natural bitumen in place).

Fourteen Type IICb basins contain modest amounts of 
heavy oil (32 billion barrels of oil in place) and even less of 
natural bitumen (5 billion barrels of natural bitumen in place 
in seven basins). Much of this resource is found  in the Cal-
tanisetta and Durres basins, on either side of the Adriatic Sea. 
Durres basin resources are aggregated with the South Adriatic 
and the province is labeled South Adriatic on the plates. Sig-
nificant amounts of the Caltanisetta resource occurs offshore.

The amount of heavy oil in the 12 Type IICc basins is 
substantial (460 billion barrels of oil in place). The Campeche, 
by far the largest, and Tampico basins in Mexico and the North 
Slope basin in the United States account for 89% of the heavy 
oil. The Campeche field, which is actually an assemblage of 
closely associated fields, is found about 65 miles offshore 
of the Yucatan Peninsula in the Gulf of Mexico. The North 
Slope basin, on the north coast of Alaska, occurs in an area 
of harsh climate and permafrost, which makes heavy oil and 
natural bitumen recovery by the application of thermal (steam) 
methods difficult both physically and environmentally. The 
U.S. fields in the East Texas, Gulf Coast, and Mississippi Salt 
Dome basins account for only 5% of the heavy oil in basins of 
this type.

Only a small amount of natural bitumen (24 billion bar-
rels) has been discovered in eight Type IICc basins. Two of 
these, the North Slope and South Texas Salt Dome basins, are 
significant for possible future development.

Type III. Continental Rifted Basins

Type IIIA. Craton and accreted zone (rift)
These are small, linear continental basins, irregular in 

profile, which formed by rifting and simultaneous sagging in 
the craton and along the accreted continental margin. About 
two-thirds of them are formed along the trend of older defor-
mation belts and one-third are developed upon Precambrian 
shields. Rifts are extensional and lead to block movements 
so that traps are typically combinations. Oil migration was 
often lateral, over short distances. Rift basins are few, about 
five percent of the world’s basins, but half of them are produc-
tive. Because of their high recovery factors, Type IIIA basins 
accounted for 10% of the world’s total recoverable oil and gas 
in 1980 (Klemme, 1980a, 1980b).

Globally, there are 28 Type IIIA heavy oil basins, con-
taining 222 billion barrels of oil in place   The Bohai Gulf 
basin in China accounts for 63% of the heavy oil, with an 
additional 11% derived from the Gulf of Suez and 10% from 
the Northern North Sea. Outside of these, most Type IIIA 
basins contain just a few deposits. The five basins in Type IIIA 

have almost 22 billion barrels of natural bitumen in place, but 
half of that is located in the Northern North Sea basin.

Type IIIB. Rifted convergent margin (oceanic 
consumption)

Type IIIBa basins are classified as back-arc basins on 
the convergent cratonic side of volcanic arcs. They are small, 
linear basins with irregular profiles (Klemme, 1980a, 1980b).

Not unlike Type IIIA basins, the volume of heavy oil 
found in the Type IIIBa basins is small. Seventeen heavy oil 
basins contain 49 billion barrels of oil in place and 83% of this 
amount is in Central Sumatra.

Just 4 billion barrels of natural bitumen in place are iden-
tified in the Type IIIA basin called Bone Gulf. Small amounts 
are also known to occur in the Cook Inlet and Tonga basins.

Type IIIBb basins are associated with rifted, convergent 
cratonic margins where wrench faulting and subduction have 
destroyed the island arc. They are small, linear, and irregular 
in profile.

The 14 Type IIIBb basins containing heavy oil account 
for only 134 billion barrels of oil in place. These basins are 
only moderately important on a global scale, but have been 
very important to the California oil industry. The seven such 
basins of California -  Central Coastal, Channel Islands, Los 
Angeles, Sacramento, San Joaquin, Santa Maria, and Ventura 
– equal 129 billion barrels of oil in place or 96%.

There are nine Type IIIBb basins that report natural bitu-
men deposits. They contain 4 billion barrels of natural bitumen 
in place, about half of which is in the Santa Maria basin.

Types IIIBa and IIIBb basins comprise about seven per-
cent of world basin area, but only one-quarter of the basins are 
productive for oil of all types. However, the productive ones, 
which represent only two percent of world basin area, yield 
about seven percent of total world’s oil and gas (Klemme, 
1983). Some of these productive basins, particularly those 
located in California, have high reservoir recovery factors.

Type IIIBc basins are small and elongate, irregular in pro-
file, and occupy a median zone either between an oceanic sub-
duction zone and the craton or in the collision zone between 
two cratonic plates. They result from median zone wrench 
faulting and consequent rifts. Such basins make up about three 
and one-half percent of world basin area and contribute two 
and one-half percent of total world oil and gas.

Type IIIBc basins are important to the occurrence of 
heavy oil (351 billion barrels of oil in place). Although there 
are nine basins of this type, 92% of the heavy oil is concen-
trated in the Maracaibo basin. The Maracaibo basin also yields 
95% of the 178 billion barrels of natural bitumen in place 
in the five basins containing this type of oil. This makes the 
Maracaibo basin unique: no other basin type is so completely 
dominated by a single basin.
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Type IIIC. Rifted passive margin (divergence)
These basins, often aptly called pull-apart basins, are 

extensional, elongate, and asymmetric. Located along major 
oceanic boundaries of spreading plates, they are divergent and 
occupy the intermediate zone between thick continental crust 
and thin oceanic crust. They appear to begin with a rifting 
stage, making possible the later sedimentary fill from the con-
tinent. Type IIIC basins, comprising 18 percent of the world’s 
basin area, are mostly offshore and are often in water as deep 
as 5,000 feet. For this reason their development has been slow 
but is accelerating as traditional, easily accessible basins reach 
full development and world demand for petroleum increases 
(Klemme, 1980a, 1980b).

Twenty-eight Type IIIC basins yield 158 billion barrels 
of heavy oil in place, but one, the offshore Campos basin, 
contains 66% of this heavy oil. These continental margin 
basins must at some point in their histories have been suf-
ficiently elevated to permit their generated conventional oil 
to be degraded. It is possible that the heavy oil could be very 
immature, having undergone only primary migration and later 
elevation. The geologic history of such basins does not encour-
age this view. However, the oil could well have been degraded 
bacterially at depth according to the recently proposed mecha-
nisms suggested by Head, Jones, and Larter (2003) and Larter 
and others (2006). In a pull-apart basin the sediments would 
have accumulated rapidly and at depth, the expressed oil then 
was subject to degradation. The problem with degradation at 
depth is the loss of mobility unless it can be demonstrated that 
the oil was never elevated and, in fact, the Campos basin oil is 
deep, occurring at an average depth of nearly 8,400 feet.

The bitumen resource in Type IIIC basins is small (47 
billion barrels of natural bitumen in place in seven basins), 
as are nearly all bitumen occurrences in comparison with the 
Western Canada Sedimentary and Eastern Venezuela basins. 
But the 38.3 billion barrels of natural bitumen in place in the 
Ghana basin of southwestern Nigeria is exploitable and the 
amount of the resource may be understated. Like many bitu-
men deposits it awaits more detailed evaluation.

Type IV. Delta (Tertiary to recent)

Deltas form along continental margins as extensional 
sags, are circular to elongate, and show an extremely high 
ratio of sediment fill to surface area. Architecturally, they 
are modified sags comprised of sediment depocenters and 
occur along both divergent and convergent cratonic margins. 
Although by 1980 delta basins provide two and one-half 
percent of world basin area and perhaps six percent of total oil 
and gas (Klemme, 1980a, 1980b), they account for more of the 
conventional resource endowment with the recent successful 
exploration in frontier deep water areas.

The three Type IV delta basins produce scant heavy oil 
(37 billion barrels of oil in place) and no natural bitumen. This 
is related to the extremely high ratio of sediment fill to surface 

area and that these basins exhibited rapid burial of the source 
organic matter. Burial is constant and uninterrupted, provid-
ing very limited opportunity for degradation of the generated 
petroleum.

Type V. Fore-Arc Basins

Fore-arc basins are located on the ocean side of volcanic 
arcs. They result from both extension and compression, are 
elongate and asymmetrical in profile, and architecturally are 
the result of subduction. Fore-arc basins are few in number 
and generally not very productive (Klemme, 1980a, 1980b).

Very small amounts of heavy oil are found in the Barba-
dos basin. Although a natural bitumen deposit is reported in 
the Shumagin basin, volume estimates are not available.

Essentially no heavy oil or natural bitumen is found in 
fore-arc basins because these basins do not generate large 
quantities of petroleum of any type and therefore provide rela-
tively little material to be degraded.

Regional Distribution of Heavy Oil and 
Natural Bitumen

The preceding discussion has been concerned with the 
distribution of heavy oil and natural bitumen in the world’s 
geological basins. This is of paramount interest in the explora-
tion for the two commodities and for their exploitation. The 
chemical and physical attributes of the fluids and the reser-
voirs which contain them do not respect political boundaries.

At the same time it is necessary to understand the geog-
raphy of the heavy oil and natural bitumen for both economic 
and political reasons. These factors will be dealt with in detail 
in a subsequent report. The bar graphs on Plates 2 and 3 give 
the regional distribution of total and discovered original oil 
in-place for heavy oil and natural bitumen, respectively. The 
distribution of the resources is given in table 8. The western 
hemisphere accounts for about 52 percent of the world‘s 
heavy oil and more than 85 percent of its natural bitumen. 
The Middle East and South America have the largest in-place 
volumes of heavy oil, followed by North America. North and 
South America have, by far, the largest in-place volumes of 
natural bitumen. Very large resource deposits are also known 
in eastern Siberia but insufficient data are available to make 
more than nominal size estimates.

Summary
From the preceding basin discussion, Klemme basin 

Type IICa is by far the most prolific in terms of heavy oil. For 
natural bitumen Klemme basin Type IIA and Type IICa are 
the most prolific. The basin types involved are architectur-
ally analogous, beginning with depositional platforms or sags 
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and ending up as foredeeps. They differ only in their modes 
of origin. What they have in common is truncation against 
cratonic masses updip from rich source areas. This situation 
permitted immense accumulations of conventional oil at shal-
low depths, with near ideal conditions for oil entrapment and 
biodegradation resulting in formation of heavy oil and bitumen 
accumulations. The prospective resources from the prospective 
additional resource deposits in these basins are larger than the 
discovered resources of many basin types.

The Klemme basin classification system includes ele-
ments of basin development and architecture that control 
basin type. The observed pattern of the heavy oil and natural 
bitumen occurrences across basin types is consistent with the 
formation of heavy oil and natural bitumen through the pro-
cess of degradation of conventional oil. Only relatively small 
quantities of heavy oil were found in the Interior Craton (Type 
I), Deltas (Type IV) and Fore-Arc basins (Type V).

Type IICa basins, including the Arabian, Eastern Ven-
ezuela, and Zagros, have the largest endowments of heavy oil 
and also contain the largest amounts of conventional oil. Large 
volumes of heavy oil are also found in both Type IICc basins, 
notably, the Campeche, Tampico, and North Slope basins, and 
in Type IIIBc basins, primarily Maracaibo basin. For natu-
ral bitumen, the Western Canada Sedimentary and Eastern 
Venezuela basins have similar development histories and 
basin architectural features. Some basin development patterns 
promote the formation of greater volumes of heavy oil and 
natural bitumen than others. This is seen most clearly in pres-
ent occurrences of heavy oil and natural bitumen in the Type 
IICa and Type IICc basins, with their rich source areas for oil 
generation and up-dip migration paths to entrapment against 
cratons. Conventional oil may easily migrate through the tilted 
platforms until the platforms are breached at or near surface 
permitting deveopment of asphaltic seals.
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Table 1. Some chemical and physical attributes of crude oils (averages).

[cP, centipoise; wt%, weight percent; mgKOH/g, milligrams of potassium hydroxide per gram of sample; sp gr, specific gravity; vol%, volume percent; ppm, 
parts per million; Concarbon, Conradson carbon; VOC, volatile organic compounds; BTEX, benzene, toluene, ethylbenzene, and xylenes]

Attribute Unit
Conventional oil

(131 basins,
8148 deposits)

Medium oil
(74 basins,

774 deposits)

Heavy oil
(127 basins,

11�� deposits)

Natural bitumen
(50 basins,

305 deposits)

API gravity degrees 38.1 22.4 16.3 5.4

Depth feet 5,139.60 3,280.20 3,250.00 1,223.80

Viscosity (77°F) cP 13.7 34 100,947.00 1,290,254.10

Viscosity (100°F) cP 10.1 64.6 641.7 198,061.40

Viscosity (130°F) cP 15.7 34.8 278.3 2,371.60

Conradson Carbon wt% 1.8 5.2 8 13.7

Coke wt% 2.9 8.2 13 23.7

Asphalt wt% 8.9 25.1 38.8 67

Carbon wt% 85.3 83.2 85.1 82.1

Hydrogen wt% 12.1 11.7 11.4 10.3

Nitrogen wt% 0.1 0.2 0.4 0.6

Oxygen wt% 1.2 1.6 2.5

Sulfur wt% 0.4 1.6 2.9 4.4

Reid vapor pressure psi 5.2 2.6 2.2

Flash point °F 17 20.1 70.5

Acid number mgKOH/g 0.4 1.2 2 3

Pour point °F 16.3 8.6 19.7 72.9

C1-C4 vol% 2.8 0.8 0.6

Gasoline + naphtha vol% 31.5 11.1 6.8 4.4

Gasoline + naphtha sp gr 0.76 0.769 0.773 0.798

Residuum vol% 22.1 39.8 52.8 62.2

Residuum sp gr 0.944 1.005 1.104 1.079

Asphaltenes wt% 2.5 6.5 12.7 26.1

Asphaltenes + resins wt% 10.9 28.5 35.6 49.2

Aluminum ppm 1.174 1.906 236.021 21,040.03

Copper ppm 0.439 0.569 3.965 44.884

Iron ppm 6.443 16.588 371.05 4,292.96

Mercury ppm 19.312 15 8.74 0.019

Nickel ppm 8.023 32.912 59.106 89.137

Lead ppm 0.933 1.548 1.159 4.758

Titanium ppm 0.289 0.465 8.025 493.129

Vanadium ppm 16.214 98.433 177.365 334.428

Residue Concarbon wt% 6.5 11.2 14 19

Residue Nitrogen wt% 0.174 0.304 0.968 0.75

Residue Nickel ppm 25.7 43.8 104.3

Residue Sulfur ppm 1.5 3.2 3.9

Residue Vanadium ppm 43.2 173.7 528.9 532

Residue viscosity (122°F) cP 1,435.80 4,564.30 23,139.80

Total BTEX volatiles ppm 10,011.40 5,014.40 2,708.00

Total VOC volatiles ppm 15,996.30 8,209.20 4,891.10
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Table 2. Conversion factors and equivalences applied to standardize data.

Standard unit in this report Units as reported in literaure Formula

API gravity

°API (degrees) specific gravity (sp gr), (g/cm³) = (141.5/(sp gr))-131.5

Area

acre square mile (mi²) = (1/640) mi²

square kilometer (km2) = 0.00405 km2

hectare (ha) = 0.405 ha

Asphalt in crude

weight percent (wt%) Conradson Carbon Residue (CCR) = 4.9× (CCR)

Barrels of oil

barrel (bbl), (petroleum, 1 barrel=42 gal) cubic meter (m³) = 0.159 m³

metric tonne (t) = 0.159× (sp gr) ×t

Coke in crude

weight percent (wt%) Conradson Carbon Residue (CCR) = 1.6× (CCR)

Gas-oil ratio

cubic feet gas/barrel oil  
(ft³ gas/bbl oil)

cubic meters gas/cubic meter oil  
(m³ gas/m³ oil)

= 0.18× (m³gas/m³oil)

Parts per million

parts per million (ppm) gram/metric tonne (g/t) = g/t

milligram/kilogram (mg/kg) = mg/kg

microgram/gram (μg/g) = μg/g

milligram/gram (mg/g) = 0.001 mg/g

weight percent (wt%) = 0.0001 wt%

Parts per billion

parts per billion (ppb) parts per million (ppm) = 0.001 ppm

Permeability

millidarcy (md) micrometer squared (μm2) = 1,000 μm2

Pressure

pound per square inch (psi) kilopascal (kPa) = 6.89 kPA

megapascal (Mpa) = 0.00689 MPa

bar = 0.0689 bar

kilograms/square centimeter (kg/cm2) = 0.0703 kg/cm2

Specific gravity (density)

specific gravity (sp gr),  
(g/cm³)

°API (degrees) = 141.5/(131.5+°API)

Temperature

degrees Fahrenheit (°F) degrees Celsius (°C) = (1.8×°C)+32

degrees Celsius (°C) degrees Fahrenheit (°F) = 0.556×(°F-32)

Viscosity (absolute or dynamic)

centipoise (cP) Pascal second (Pa·s) = 0.001 Pa·s

millipascal second (mPa·s) = mPa·s
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Table 2. Conversion factors and equivalences applied to standardize data.—Continued

Standard unit in this report Units as reported in literaure Formula

Viscosity (absolute or dynamic)—Continued

centipoise (cP)—cont. kinematic viscosity1:  
centistroke (cSt), (mm²/sec)

= cSt × (sp gr)

Saybolt Universal Seconds (SUS)  
at 100°F, for given density

= (SUS /4.632)× (sp gr)

Saybolt Universal Seconds (SUS)  
at 100°F, for given °API

= (SUS /4.632)×(141.5/(131.5+°API))

Weight percent

weight percent (wt%) parts per million (ppm) = 10,000 ppm
1 Kinematic viscosity is equal to the dynamic viscosity divided by the density of the fluid, so at 10°API the magnitudes of the two viscosities are equal.

Table 3. Total original in place resource calculation protocol when discovered oil in place is unavailable.

Define—

OOIP-disc.: Original Oil In Place, discovered 

RF: Recovery factor (%)

R: Reserves, known

OR: Reserves, original sometimes called, known recovery, ultimate production if so reported

AP: Production, annual

CP: Production, cumulative

PA: Prospective additional oil in place resource

TOOIP = Total original oil in place

Calculations are based given data, which always receives priority; CP, AP and PA are never calculated and must be from published sources. 
(Assume CP, AP, PA are given)—

R = 20×AP. This assumes a 20-year life or production plan for the viscous oil.

OR = R+CP

RF = 0.1 for clastic reservoirs or if  no lithology is reported

RF = 0.05 for carbonate reservoirs

OOIP-disc. = OR/RF 

TOOIP = OOIP-disc. + PA

•

•

•

•

•

•

•

•

•

•

•

•

•

•
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Table 4. Heavy oil and natural bitumen resources in billions of barrels of oil (BBO) and average characteristics of heavy oil and 
natural bitumen by basin type. Average values for gravity, viscosity, depth, thickness permeability are weighted by volume of oil in 
place discovered in each heavy oil or natural bitumen deposit by basin type; except for API gravity of heavy oil Type I, where because 
of relatively few deposits and several outlier values, a trimmed weighted mean value is shown.

[Volumes may not add to totals due to independent rounding; BBO, billions of barrels of oil; cP, centipoise]

Basin 
type

Total 
original oil 

in place 
(BBO)

Discovered 
oil in place 

(BBO)

API gravity 
(degrees)

Viscosity
(cP @ 100°F)

Depth
(feet)

Thickness 
(feet)

Porosity 
(percent)

Permeability
 (millidarcy)

Temperature 
(°F)

Heavy oil

I………. 3 2 15.9 724 1,455 11 15.3 88 122

IIA……. 158 157 16.3 321 4,696 36 22.8 819 102

IIB……. 181 181 17.7 303 3,335 96 27.2 341 82

IICa…... 1,610 1,582 15.5 344 3,286 150 24 242 144

IICb…... 32 32 15.4 318 3,976 161 16.9 2,384 126

IICc…... 460 460 17.8 455 6,472 379 19.6 1,080 159

IIIA…… 222 222 16.3 694 4,967 279 24.9 1,316 159

IIIBa….. 49 49 19.2 137 558 838 24.9 2,391 122

IIIBb….. 134 134 15.8 513 2,855 390 31.9 1,180 116

IIIBc….. 351 351 13.5 2,318 4,852 142 20.1 446 145

IIIC…… 158 158 17.2 962 7,227 273 25.1 868 159

IV…….. 37 37 17.9 - 7,263 1,195 27.9 1,996 155

V………      <1      <1 18 - 1,843 135 30 - 144

All types 3,396 3,366 16 641 4,213 205 23.7 621 134

Natural bitumen 

I………. 60 8 - 20 317 5.5 100

IIA……. 2,623 1,908 6.8 185,407 223 53 0.4 611 173

IIB……. 29 26 4.5 - 209 13.1 57 113

IICa…... 2,509 2,319 4.4 31,789 806 156 29.8 973 174

IICb…... 5 5 6.8 - 8,414 1,145 4.7 570 181

IICc…... 24 23 5 1,324 3,880 82 32.4 302 263

IIIA…… 22 22 8.7 - 4,667 882 30.3 1,373 85

IIIBa….. 4 4 - - - - - - -

IIIBb….. 3 3 6.7 500,659 3,097 586 28.6 2,211 89

IIIBc….. 178 178 9.5 1,322 8,751 52 34 751 139

IIIC…… 47 14 7.3 - 900 103 23.1 2,566 117

IV…….. 0 0

V………        0        0

All types 5,505 4,512 4.9 198,061 1,345 110 17.3 952 158
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Table 5. Enhanced oil recovery (EOR) methods for heavy oil showing primary reservoir threshold criteria. 

[modified from Taber, Martin, and Seright (1997a,b); cP, centipoises; PV, pore volume; ft, feet; md, millidarcy; °F, degrees Fahrenheit, wt%, weight percent]

Method
Gravity 
(°API)

Viscosity 
(cP)

Oil
composition

Oil 
saturation 

(%PV)
Lithology

Net
thickness 

(ft)

Average                  
permeability 

(md)

Depth
(ft)

Temperature 
(°F)

Immiscible gases

Immiscible 
gasesa

>12 <600 Not critical >35 Not critical Not critical Not critical >1,800 Not critical

Enhanced waterflood

Polymer >15 <150 Not critical >50 Sandstone 
preferred

Not critical >10b <9,000 >200-140

Thermal/mechanical

Combus-
tion

>10 <5,000 Asphaltic 
compo-
nents

>50 Highly 
porous 
sandstone

>10 >50c <11,500 >100

Steam >8 <200,000 Not critical >40 Highly 
porous 
sandstone

>20 >200d <4500 Not critical

Surface 
mining

>7 0 cold 
flow

Not critical >8 wt% 
sand

Mineable oil 
sand

>10e Not critical >3:1   over-
burden:
sand ratio

Not critical

a Includes immiscible carbon dioxide flood.

b >3 md for some carbonate reservoirs if the intent is to sweep only the fracture systems.

c Transmissibility > 20md-ft/cP.

d Transmissibility > 50md-ft/cP.

e See depth.
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Table 7. Attributes of Klemme basin types. 

[Sources for attributes 1-15 are Klemme (1980a, 1980b, 1984) and attributes 16 and 17 are from this report]

Type I Type IIA Type IIB Type IICa

Craton interior
Continental multicycle 
basins, craton margin

Continental multicycle 
basins: craton/acreted 

zone rift-faulted

Continental interior      
multicycle basins: 

close collision zone at            
paleoplate margin

1. Crustal zone Continental craton Continental craton Contnental craton and ac-
creted zone

Ocean crust early stages then 
continental crust of craton 
and accreted zone

2. Tectonic setting Continenal crust within 
interior of craton, near or 
upon Precambrian sheld 
areas

Continental crust on exterior 
margin of craton, basins 
become multicylic ion 
Paleozoic or Mesozoic 
when a second cycle of 
sediments derived from 
uplife encroaches

Continental crust, or on 
margin of craton

Convergent margin along 
collision zone of paleo-
plates 

3. Regional stress Extensional 1st cycle: extension,          
2nd cycle: compression

(1st) extension with rifting, 
(2nd) extensional sag

(1st) regional extension and 
platform deposits, then 
rifting, formation of linear 
sag, (2nd) compression 
with creation of foredeep

4. Basin size, shape Large, circular to elongate Moderate to large, circular to 
elongate

Large, circular Large, elongate

5. Basin profile Symmetrical Asymmetrical Irregular to asymmetrical Asymmetrical

6. Sediment ratio1 Low High High High

7. Architectural sequence Sag 1st cycle: platform or sag, 
2nd cycle: foredeep

(1st) rift, (2nd) large circular 
sag

(1st) platform or sag,      
(2nd) foredeep 

8. Special features Unconformities, regional 
arches, evaporite caps

Large traps, basins and 
arches,  evaporite caps 

Large traps, basins and 
arches, evaporite caps

Large traps and basins, 
evaporite caps, regional 
arches, regional source 
seal, fractured reservoirs

9. Basin lithology2 Clastic 60%, carbonate 40% Clastic 75%, carbonate 25% Clastic 75%, carbonate 25% Clastic 35%, carbonate 65%

10. Depth of production3 Shallow Shallow 55%, moderate 25%, 
deep 5%5

Shallow 55%, moderate 25%, 
deep 5%5

Shallow 45%, moderate 30%, 
deep 25%

11. Geothermal gradient Low Low High High

12. Temperature Cool Cool Cool High

13. Age Paleozoic Paleozoic, Mesozoic Paleozoic, Mesozoic Upper Paleozoic, Mesozoic, 
Tertiary

14. Oil and gas recovery4 Low, few giant fields Average Generally average High

15. Traps Associated with central 
arches and stratigraphic 
traps along basin margins

Basement uplifts, mostly 
arches or blocks

Basement uplifts, mostly 
combination of structural 
stratigraphic 

Basement uplifts, arches and 
fault blocks

16. Propensity for heavy 
oil

Low Low Low High

17. Propensity for natural 
bitumen

Low High Low High

1Sediment ratio: ratio of sediment volume to basin surface area.

2Basin lithology: percentages apply to reservoir rocks, not to the basin fill. 

3Depth of production: shallow, 0-6000 ft.; medium, 6000-9000 ft.; deep, >9000 ft.

4Oil and gas recovery (barrels of oil equivalent per cubic mile of sediment): low, <60,000; average, >=60,000 but <300,000; high, >=300,000.

5Does not add to 100% in source, Klemme (1980a,b).
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Table 7. Attributes of Klemme basin types.—Continued

Type IICb Type IICc Type IIIA Type IIIBa

Continental interior mul-
ticycle basins: foredeep 
portion of collision zone 

at paleoplate margin

Continental interior      
multicycle basins: 

open collision zone at            
paleoplate margin

Continental rifted basins: 
craton/accreted zone, 
rift-faulted, with small 

linear sag

Continental rifted basins: 
back arc rift-faulted 
convergent margin

1. Crustal zone Ocean crust early stages then 
continental crust of craton 
and accreted zone

Ocean crust early stages then 
continental crust of craton 
and accreted zone

Continental craton and ac-
creted zone

Contintental accreted zone 
with oceanic crust in early 
stages

2. Tectonic setting Convergent margin along col-
lision zone of paleoplates, 
but retain only proximal 
or foredeep portion of 
original sediment suite

Convergent margin along 
collision zone of paleo-
plates 

Continental, on margin of 
craton. About two-thirds 
of Type IIIA basins form 
along trend of older 
deformation; remainder on 
Precambrian shields

Back arc basins along ac-
creted zone of continent, 
with continental crust 
involved in later stages of 
development and ocean 
crust in the initial stages 

3. Regional stress (1st) regional extension and 
platform deposits, then 
rifting, formation of linear 
sag, (2nd) compression 
with creation of foredeep

(1st) regional extension and 
platform deposits, then 
rifting, formation of linear 
sag, (2nd) compression 
with creation of foredeep

(1st) extension with local 
wrench faulting during 
rifting, (2nd) sag

(1st) extension with local 
wrench faulting compres-
sion, (2nd) extension and 
compression

4. Basin size, shape Large, elongate Large, elongate Small to moderate, fault 
controlled, elongate

Small, elongate

5. Basin profile Asymmetrical Asymmetrical Irregular Irregular

6. Sediment ratio1 High High High High but variable

7. Architectural sequence (1st) platform or sag,      
(2nd) foredeep 

(1st) platform or sag,      
(2nd) foredeep 

(1st) extension with local 
wrench faulting druing 
rifting, (2nd) sag

Rift faulting leading to linear 
sag, may be followd by 
wrench faulting

8. Special features Large traps and basins, 
evaporite caps, regional 
arches, regional source 
seal, fractured reservoirs

Large traps and basins, 
evaporite caps, regional 
arches, regional source 
seal, fractured reservoirs, 
unconformities

Large traps, evaporite caps, 
unconformities, regional 
source seal

Large traps, and unconfor-
mities

9. Basin lithology2 Clastic 50%, carbonate 50% Clastic 35%, carbonate 65% Clastic 60%, carbonate 40% Clastic 90%, carbonate 10%

10. Depth of production3 Shallow 45%, moderate 30%, 
deep 25%

Shallow 45%, moderate 30%, 
deep 25%

Moderate 55%, shallow 30%, 
deep 15%

Shallow 70%, moderate 20%, 
deep 10%

11. Geothermal gradient High High High High

12. Temperature High High Normal to high Normal to high

13. Age Upper Paleozoic, Mesozoic, 
Tertiary

Upper Paleozoic, Mesozoic, 
Tertiary

Upper Paleozoic, Mesozoic, 
Paleogene, Neogene

Upper Mesozoic, Paleogene 
and Neogene

14. Oil and gas recovery4 Generally low High Generally high Variable 

15. Traps Basement uplifts, arches and 
fault blocks

Basement uplifts, arches and 
fault blocks

Basement uplifts, combina-
tion structural/stratigra-
phic; result in fault block 
movement

Basement uplifts, fault 
blocks and combination

16. Propensity for heavy 
oil

Low Moderate Moderate Low

17. Propensity for natural 
bitumen

Low Low Low Low
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Table 7. Attributes of Klemme basin types.—Continued

Type IIIBb Type IIIBc Type IIIC Type IV Type V

Continental rifted 
basins: transverse 

rift-faulted                   
convergent margin

Continental rifted     
basins: median                

rift-faulted            
convengent margin

Continental rifted 
basins: rift-faulted 
divergent margin, 
may be subdivided 
into (a) parallel, or 

(b) transverse basins

Deltas Fore-arc basins

1. Crustal zone Contintental accreted 
zone with oceanic 
crust in early stages

Contintental accreted 
zone with oceanic 
crust in early stages

Ocean crust in early 
stage, then continen-
tal crust of craton 
and accreted zone 

Ocean crust in early 
stage, then continen-
tal crust of craton 
and accreted zone 

Continetal accreted 
crust and oceanic 
crust 

2. Tectonic setting Back arc basins along 
accreted zone of 
continent, with conti-
nental crust involved 
in later stages of 
development and 
ocean crust in the 
initial stages 

Back arc basins along 
accreted zone of 
continent, with conti-
nental crust involved 
in later stages of 
development and 
ocean crust in the 
initial stages 

Rift faulting along a 
divergent,  passive or 
pull-apart continental 
margin

Almost any location: 
divergent and conver-
gent margins along 
open or confined 
coastal areas

 Fore-arc basins located 
on oceanward side 
of the volcanic arc 
in subduction or 
consumption zone

3. Regional stress (1st) extension and 
wrench compression, 
(2nd) extension and 
compression

(1st) extension and 
wrench compression, 
(2nd) extension and 
compression

Extension leading to rift 
or wrench faulting 

Extension as sag devel-
ops but uncertain as 
to the initial cause  
of sag, roots being 
deeply buried

Compression and exten-
sion

4. Basin size, shape Small, elongate Small, elongate Small to moderate, 
elongate

Moderate, circular to 
elongate

Small, elongate 

5. Basin profile Irregular Irregular Asymmetrical Depocenter Asymmetrical

6. Sediment ratio1 High but variable High but variable High Extremely high High

7. Architectural 
sequence

Rift faulting leading to 
linear sag, may be 
followd by wrench 
faulting

Rift faulting leading to 
linear sag, may be 
followd by wrench 
faulting

Linear sage with irregu-
lar profile

Roots of deltas deeply 
buried; extension 
leads to half-sag 
with sedimentary fill 
thickening seaward.

Small linear troughs

8. Special features Large traps, and uncon-
formities

Large traps, unconfor-
mities, and regional 
arches

Possible unconformities 
and regional source 
seals 

None Large traps, and uncon-
formities

9. Basin lithology2 Clastic 90%,             
carbonate 10%

Clastic 90%,             
carbonate 10%

Clastic 70%,             
carbonate 30%

Clastic 100% Clastic 90%,             
carbonate 10%

10. Depth of produc-
tion3

Shallow 70%, moderate 
20%, deep 10%

Shallow 70%, moderate 
20%, deep 10%

Deep 60%, moderate 
30%, shallow 10%

Deep 65%, moderate 
30%, shallow 5%

Shallow 70%, deep 
20%, moderate 10%

11. Geothermal 
gradient

High Normal to high Low Low High

12. Temperature Normal to high Normal to high Cool Normal to low High to normal

13. Age Upper Mesozoic, Paleo-
gene and Neogene

Upper Mesozoic, Paleo-
gene and Neogene

Upper Mesozoic, Paleo-
gene and Neogene

Paleogene, Neogene, 
and Quaternary

Upper Mesozoic, 
Tertiary 

14. Oil and gas 
recovery4

Variable Variable Low High High but variable 

15. Traps Basement uplifts, fault 
blocks and combina-
tion

Basement uplifts, fault 
blocks and combina-
tion

Fault blocks and com-
bination 

Primarily tensional 
growth (roll-over) 
anticlines and flow-
age: basement not 
involved

Fault blocks and com-
bination

16. Propensity for 
heavy oil

Low Moderate Low Low Nil

17. Propensity for 
natural bitumen

Low Low Low Nil Nil
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Table 8. Regional distribution of heavy oil and natural bitumen (billion barrels).

[Volumes may not add to totals due to independent rounding]

Region1 Discovered orginal oil in place Prospective additional Total original oil in place

Heavy oil

North America………………… 650 2 651

South America………………… 1099 28 1127

Europe…………………………. 75 0 75

Africa………………………….. 83 0 83

Transcaucasia………………….. 52 0 52

Middle East……………………. 971 0 971

Russia………………………….. 182 0 182

South Asia……………………... 18 0 18

East Asia………………………. 168 0 168

Southeast Asia and Oceania……     68   0     68

      Total……………………….. 3366 29 3396

Natural bitumen

North America………………… 1671 720 2391

South America………………… 2070 190 2260

Europe…………………………. 17 0 17

Africa………………………….. 13 33 46

Transcaucasia………………….. 430 0 430

Middle East……………………. 0 0 0

Russia………………………….. 296 51 347

South Asia……………………... 0 0 0

East Asia………………………. 10 0 10

Southeast Asia and Oceania……       4     0       4

      Total……………………….. 4512 993 5505
1 See table 6 for a list of countries reporting deposits of heavy oil and/or natural bitumen grouped by regions.
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Appendix 1. Map Basin Name Conventions

Table 1-1. List of geologic provinces where province names used in this report differ from names 
used in St. John, Bally and Klemme (1984).

Geological province name 
in this report

Geological province name in  
St. John, Bally, and Klemme (1�84)

Amu Darya Tadzhik

Arkla Louisiana Salt Dome

Baikal Lake Baikal

Barinas-Apure Llanos de Casanare

Carnarvon Dampier

Central Montana Uplift Crazy Mountains

Central Sumatra Sumatra, Central

East Java Java, East

East Texas East Texas Salt Dome

Eastern Venezuela Maturin

Forest City Salina-Forest City

Gulf of Alaska Alaska, Gulf of

Gulf of Suez Suez, Gulf of

Guyana Guiana

Junggar Zhungeer

Kutei Mahakam

Mae Fang Fang

Minusinsk Minisinsk

North Caspian Caspian, North

North Caucasus-Mangyshlak Caucasus, North

North Egypt Western Desert

North Sakhalin Sakhalin, North

North Sumatra Sumatra, North

North Ustyurt Ust Urt

Northern North Sea North Sea, Northern

Northwest Argentina Argentina, Northwest

Northwest German German, Northwest

Northwest Shelf Dampier

Ordos Shanganning

Progreso Guayaquil

Sacramento Sacramento/San Joaquin

Salinas Salinas (Mexico)

San Joaquin Sacramento/San Joaquin

South Adriatic Adriatic, South

South Palawan Palawan, South

South Sumatra Sumatra, South

Timan-Pechora Pechora

Turpan Tulufan
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Table 1-1. List of geologic provinces where province names used in this report differ from names 
used in St. John, Bally and Klemme (1984).—Continued

Geological province name 
in this report

Geological province name in  
St. John, Bally, and Klemme (1�84)

Upper Magdalena Magdalena, Upper

West Java Java, West, Sunda

West of Shetlands Shetlands, West

Western Canada Sedimentary Alberta

Yukon-Kandik Yukon/Kandik

The following basins listed in bold type are from the 
digital mapping file of St. John (1996) and require further 
explanation:

Anadarko: includes provinces more commonly known 
as the Anadarko, Central Kansas Uplift, Chautauqua 
Platform, Las Animas Arch, Nemaha Anticline-Chero-
kee Basin, Ozark Uplift, Sedgwick, and South Okla-
homa Folded Belt (provinces in italics report neither 
heavy oil nor natural bitumen.)

Sacramento/San Joaquin: separated into two distinct 
provinces, Sacramento and San Joaquin.

North Sea, Southern: : includes both the Anglo-Dutch 
and Southern North Sea basins.

South Adriatic: includes both the Durres and South 
Adriatic basins.

Other comments:
Three separate outlines for Marathon, Ouachita, and East-

ern Overthrust are shown as a common province Marathon/
Ouachita/Eastern Overthrust in the original St John (1996) but 
only Ouachita Basin had reported volumes of natural bitumen 
resources.

Deposits reported for Eastern Venezuela basin include 
deposits on the island of Trinidad, which are a likely extension 
of the rock formations from the surface expression of the basin 
outline. 

The plates attach the name of Barinas Apure to the 
polygonal province labeled Llanos de Casanare in St. John 
(1996). Barinas Apure is the province name commonly used in 
Venezuela and Llanos de Casanare is the province name com-
monly used in Colombia for the same geologic province.

•

•

•

•



Appendix 2. Basins with Heavy Oil and Natural Bitumen  27

Appendix 2. Basins, Basin Type and Location of Basins having Heavy Oil and 
Natural Bitumen Deposits

Table 2-1. List of geological basin names, the Klemme basin type, countries, U.S. states or Canadian provinces reporting deposits of 
heavy oil and/or natural bitumen, and other names cited in literature.

Geological province
Klemme 

basin type
Country State/Province Other names 

Aegian IIIBc Greece North Aegean Trough (North Aegean Sea Basin)

Akita IIIBa Japan Akita Basin, Japan Accreted Arc/Accreted Terrane

Amu-Darya IICa Tajikistan, Uzbekistan Tadzhik, Surkhan-Vaksh, Badkhyz High (Murgab Basin), 
Afghan-Tajik

Amur IIIBc Georgia

Ana Maria IIIBb Cuba Zaza Basin, Greater Antilles Deformed Belt

Anabar-Lena IIA Russia

Anadarko IIA United States Kans.

Anadyr IIIBb Russia

Angara-Lena IIA Russia

Anglo-Dutch IIB Netherlands Central Graben, North Sea, Southern

Appalachian IIA United States Ky., N.Y.

Aquitaine IIIA France Ales, Aquitaine, Lac Basin, Parentis, Massif Central, Pyrenean 
Foothills-Ebro Basin

Arabian IICa Bahrain, Iran, Iraq, Jordan, 
Kuwait, Neutral Zone, 
Oman, Qatar, Saudi     
Arabia, Syria

Arabian Basin, Rub Al Khali, Aneh Graben, Aljafr Sub-basin, 
Oman Platform, Mesopotamian Foredeep, Palmyra Zone, 
Oman Sub-Basin, Euphrates/Mardin, Ghaba Salt Basin, 
Greater Ghawar Uplift, Haleb, Qatar Arch, South Oman Salt 
Basin, Widyan Basin

Arkla IICc United States Ark., La. Louisiana Salt Dome

Arkoma IIA United States Ark., Okla.

Assam IICb India

Atlas IICb Algeria Moroccan-Algerian-Tunisian Atlas, Hodna-Constantine

Bahia Sul IIIC Brazil J Equitinhonha

Baikal IIIA Russia Lake Baikal

Balearic IIIA Spain Western Mediterranean, Gulf of Valencia, Barcelona Trough 
(Catalano-Balearic Basin), Iberic Cordillera

Baltic I Sweden

Baluchistan IICb Pakistan Sulaiman-Kirthar

Barbados V Barbados Lesser Antilles, Northeast Caribbean Deformed Belt

Barinas-Apure IIA Venezuela, Colombia Barinas-Apure Basin, Llanos de Casanare

Barito IIIBa Indonesia Barito Basin

Bawean IIIBa Indonesia

Beibu Gulf IIIBa China Beibuwan (Gulf of Tonkin) Basin

Bengal IICa Bangladesh, India Bengal (Surma Sub-basin), Tripura-Cachar, Barisal High  
(Bengal Basin), Ganges-Brahmaputra Delta

Beni IIA Bolivia Foothill Belt

Big Horn IIA United States Mont., Wyo.

Black Mesa IIB United States Ariz. Dry Mesa, Dineh Bi Keyah

Black Warrior IIA United States Ala., Miss.

Bohai Gulf IIIA China Bohai Wan (Huabei-Bohai) Basin, Huabei, Pohal, Luxi Jiaoliao 
Uplift
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Table 2-1. List of geological basin names, the Klemme basin type, countries, U.S. states or Canadian provinces reporting deposits of 
heavy oil and/or natural bitumen, and other names cited in literature.—Continued

Geological province
Klemme 

basin type
Country State/Province Other names 

Bombay IIIC India

Bonaparte Gulf IIIC Australia Berkeley Platform (Bonaparte Basin)

Bone Gulf IIIBa Indonesia Bone

Bresse IIIA France Jura Foldbelt

Browse IIIC Australia

Brunei-Sabah IICc Brunei, Malaysia Baram Delta

Cabinda IIIC Angola, Congo (Brazzaville), 
Democratic Republic of 
Congo (Kinshasa)

Lower Congo Basin, West-Central Coastal

Caltanisetta IICb Italy, Malta Caltanissetta Basin, Ibleian Platform, Sicilian Depression

Cambay IIIA India Cambay North, Bikaner-Nagam, Bombay (in part)

Campeche IICc Mexico Tabasco-Campeche, Yucatan Boderland and Platform, Tobasco, 
Campeche-Sigsbee Salt, Villahermosa Uplift

Campos IIIC Brazil Cabo Frio High (Campos Basin)

Cantabrian IIIA Spain Offshore Cantabrian Foldbelt (Cantabrian Zone), Spanish 
Trough-Cantabrian Zone

Carnarvon IIIC Australia Dampier, Northwest Shelf, Carnarvon Offshore, Barrow-
Dampier Sub-Basin

Carpathian IICb Austria, Czech Republic, 
Poland, Ukraine

Carpathian Flysch, Carpathian Foredeep, Bohemia,             
Carpathian-Balkanian

Celtic IIIA Ireland Celtic Sea Graben System, Ireland-Scotland Platform

Central Coastal IIIBb United States Calif. Coastal, Santa Cruz, Salinas Valley, Northern Coast Range

Central Kansas Uplift IIA United States Kans. Anadarko

Central Montana Uplift IIA United States Mont. Crazy Mountains

Central Sumatra IIIBa Indonesia Central Sumatra Basin

Ceram IICa Indonesia North Seram Basin, Banda Arc

Channel Islands IIIBb United States Southern California Borderlands

Chao Phraya IIIA Thailand Phitsanulok Basin, Thailand Mesozoic Basin Belt

Chautauqua Platform IIA United States Okla. Anadarko

Cincinnati Arch I United States Ky., Ohio

Cook Inlet IIIBa United States Alaska Susitna Lowlands

Cuanza IIIC Angola Kwanza Basin, West-Central Coastal

Cuyo IIB Argentina Alvear Sub-basin (Cuyo Basin), Cuyo-Atuel

Dead Sea IICa Israel, Jordan Syrian -African Arc, Levantine, Jafr-Tabuk, Sinai

Denver I United States Colo., Nebr. Denver-Julesberg

Diyarbakir IICa Syria, Turkey Bozova-Mardin High (Southeast Turkey Fold Belt), Euphrates/
Mardin, Zagros Fold Belt

Dnieper-Donets IIIA Ukraine Dnepr-Donets Graben

Doba IIIA Chad

Durres IICb Albania Ionian Basin (zone), South Adriatic, Pre-Adriatic

East China IIIBa China, Taiwan Diaoyu Island Depression (East China Sea Basin)

East Java IIIBa Indonesia Bawean Arch (East Java Basin)

East Texas IICc United States Tex. East Texas Salt Dome, Ouachita Fold Belt

Eastern Venezuela IICa Venezuela, Trinidad and 
Tobago

Maturin, Eastern Venezuela Basin, Orinoco Oil Belt, Guarico 
Sub-basin, Trinidad-Tabago
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Table 2-1. List of geological basin names, the Klemme basin type, countries, U.S. states or Canadian provinces reporting deposits of 
heavy oil and/or natural bitumen, and other names cited in literature.—Continued

Geological province
Klemme 

basin type
Country State/Province Other names 

Espirito-Santo IIIC Brazil Abrolhos Bank Sub-Basin (Espirito Santo Basin)

Fergana IIIBc Kyrgyzstan, Tajikistan, 
Uzbekistan

Florida-Bahama IIIC Cuba, United States Fla. Almendares-San Juan Zone, Bahia Honda Zone, Llasvvillas 
Zone, Florida Platform, Greater Antilles Deformed Belt

Forest City I United States Kans., Nebr. Salina-Forest City, Salina, Chadron Arch

Fort Worth IIA United States Tex. Bend Arch, Fort Worth Syncline, Llano Uplift, Ouachita 
Overthrust

Gabon IIIC Gabon Gabon Coastal Basin (Ogooue Delta), West-Central Coastal

Gaziantep IICa Syria, Turkey

Ghana IIIC Ghana, Nigeria Benin-Dahomey, Dahomey Coastal

Gippsland IIIA Australia Gippsland Basin

Green River IIA United States Colo., Wyo.

Guangxi-Guizou IIB China Bose (Baise) Basin, South China Fold Belt

Gulf Coast IICc United States La., Tex. Mid-Gulf Coast, Ouachita Folded Belt, Burgos

Gulf of Alaska V United States Alaska

Gulf of Suez IIIA Egypt Gulf of Suez Basin, Red Sea Basin

Guyana IIIC Suriname Guiana, Bakhuis Horst, Guyana-Suriname

Illinois I United States Ill., Ky.

Indus IICb India Punjab (Bikaner-Nagaur Sub-basin), West Rajasthan

Ionian IICb Greece Epirus, Peloponesus

Irkutsk IIA Russia

Jeanne d’Arc IIIC Canada N.L. Labrador-Newfoundland Shelf

Jianghan IIIA China Tung-T’Ing Hu

Junggar IIIA China Zhungeer, Anjihai-Qigu-Yaomashan Anticlinal Zone (Junggar)

Kansk IIA Russia

Krishna IIIC India Krishna-Godavari Basin

Kura IIIBc Azerbaijan, Georgia Kura Basin

Kutei IIIBa Indonesia Mahakam

Kuznets IIB Russia

Laptev IIB Russia

Los Angeles IIIBb United States Calif.

MacKenzie IV Canada N.W.T. Beaufort Sea, MacKenzie Delta

Mae Fang IIIA Thailand Fang, Mae Fang Basin, Tenasserim-Shan

Maracaibo IIIBc Venezuela, Colombia Maracaibo Basin, Catatumbo

Mauritius-Seychelles IIIC Seychelles

Mekong IIIC Vietnam Mekong Delta Basin

Michigan I United States Mich.

Middle Magdalena IIIBc Colombia Middle Magdalena Basin

Minusinsk IIB Russia Minisinsk

Mississippi Salt Dome IICc United States Ala., Miss.

Moesian IICb Bulgaria, Moldova, Romania Moesian Platform-Lom Basin, Alexandria Rosiori Depression 
(Moesian Platform), Carpathian-Balkanian, West Black Sea
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Table 2-1. List of geological basin names, the Klemme basin type, countries, U.S. states or Canadian provinces reporting deposits of 
heavy oil and/or natural bitumen, and other names cited in literature.—Continued

Geological province
Klemme 

basin type
Country State/Province Other names 

Molasse IICb Austria, Germany, Italy, 
Switzerland

Molasse Basin

Morondava IIIC Madagascar

Mukalla IIIC Yemen Sayhut Basin, Masila-Jeza

Natuna IIIA Indonesia

Nemaha Anticline-
Cherokee Basin

IIA United States Kans., Mo. Anadarko

Neuquen IIB Argentina Agrio Fold Belt (Neuquen Basin)

Niger Delta IV Cameroon, Equatorial 
Guinea, Nigeria

Abakaliki Uplift (Niger Delta)

Niigata IIIBa Japan Niigata Basin, Yamagata Basin, Japan Volcanic Arc/Accreted 
Terrane

Nile Delta IV Egypt Nile Delta Basin

North Caspian IICa Kazakhstan, Russia Akatol’ Uplift, Alim Basin, Beke-Bashkuduk Swell Pri-     
Caspian, Kobyskol’ Uplift, South Emba, Tyub-Karagan

North Caucasus-
Mangyshlak

IICa Russia Indolo-Kuban-Azov-Terek-Kuma Sub-basins, North Buzachi 
Arch, Middle Caspian, North Caucasus

North Egypt IICa Egypt Western Desert, Abu Gharadiq

North Sakhalin IIIBb Russia Sakhalin North

North Slope IICc United States Alaska Arctic Coastal Plains, Interior Lowlands, Northern Foothills, 
Southern Foothills, Colville

North Sumatra IIIBa Indonesia North Sumatra Basin

North Ustyurt IIB Kazakhstan Ust-Urt

Northern North Sea IIIA Norway, United Kingdom Viking Graben, North Sea Graben

Northwest Argentina IIA Argentina Carandaitycretaceous Basin

Northwest German IIB Germany Jura Trough, West Holstein

Olenek I Russia

Ordos IIA China Shanganning, Qinling Dabieshan Fold Belt

Oriente IIA Peru Acre, Maranon, Upper Amazon

Otway IIIC Australia

Ouachita Overthrust IIA United States Ark.

Palo Duro IIA United States N. Mex. Tucumcari

Pannonian IIIBc Bosnia and Herzegovina, 
Croatia, Hungary, Roma-
nia, Serbia

Backa Sub-basin (Pannonian Basin)

Paradox IIB United States Utah

Paris IIB France Anglo-Paris Basin

Pearl River IIIC China Dongsha Uplift (Pearl River Basin), Pearl River Mouth, South 
China Continental Slope

Pelagian IICa Tunisia, Libya 

Permian IIA United States N. Mex., Tex. Ouachita Fold Belt, Bend Arch, Delaware, Midland

Peten-Chiapas IICc Guatemala Chapayal (South Peten) Basin, North Peten (Paso Caballos), 
Sierra De Chiapas-Peten, Yucatan Platform

Piceance IIA United States Colo.

Po IICb Italy Crema Sub-Basin (Po Basin)

Polish IIIA Poland Danish-Polish Marginal Trough, German-Polish
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Table 2-1. List of geological basin names, the Klemme basin type, countries, U.S. states or Canadian provinces reporting deposits of 
heavy oil and/or natural bitumen, and other names cited in literature.—Continued

Geological province
Klemme 

basin type
Country State/Province Other names 

Potiguar IIIC Brazil Boa Vista Graben (Potiguar Basin), North-Northeastern Region

Potwar IICb Pakistan Bannu Trough (Potwar Basin), Kohat-Potwar

Powder River IIA United States Mont., Wyo.

Pripyat IIIA Belarus Pripyat Graben

Progreso IIIBb Ecuador Guayaquil, Gulf Of Gayaquil, Jambeli Sub-basin of Progresso 
Basin, Santa Elena

Putumayo IIA Colombia, Ecuador Napo, Cuenca Oriente Ecuatoriana

Rhine IIIA France, Germany Upper Rhine Graben

Sacramento IIIBb United States Calif. Sacramento-San Joaquin

Salawati IICa Indonesia Salawati Basin, Bintuni-Salawati

Salinas IICc Mexico Isthmus Of Tehuantepec, Salinas Sub-basin, Isthmus Saline, 
Saline Comalcalco

San Joaquin IIIBb United States Calif. Sacramento-San Joaquin

San Jorge IIIA Argentina Rio Mayo, San Jorge Basin

San Juan IIB United States Ariz., Colo.,      
N. Mex.

Santa Maria IIIBb United States Calif.

Santos IIIC Brazil

Sarawak IICc Malaysia Central Luconia Platform

Sedgwick IIA United States Kans. Anadarko

Senegal IIIC Senegal Bove-Senegal Basins

Sergipe-Alagoas IIIC Brazil Sergipe-Alagoas Basin

Shumagin V United States Alaska

Sirte IIIA Libya Agedabia Trough (Sirte Basin)

Songliao IIIA China

South Adriatic IICb Italy Adriatic, Marche-Abruzzi Basin (Pede-Apenninic Trough), 
Plio-Pleist Foredeep, Scaglia

South African IIIC South Africa Agulhas Arch (South African Coastal Basin)

South Burma IIIBb Burma Central Burma Basin, Irrawaddy

South Caspian IIIBc Azerbaidjan South Caspian OGP (Apsheron-Kobystan Region), Emba, 
Guriy Region

South Oklahoma Folded 
Belt

IIA United States Okla., Tex. Anadarko

South Palawan IIIBa Philippines China Sea Platform, Palawan Shelf

South Sumatra IIIBa Indonesia Central Palembang Depression (South Sumatra Basin)

South Texas Salt Dome IICc United States Tex.

South Yellow Sea IIIA China Central Uplift (South Huanghai Basin), Subei Yellow Sea

Southern North Sea IIB United Kingdom Central Graben (North Sea Graben system), Dutsh Bank Basin 
(East Shetland Platform), Witch Ground Graben

Sudan IIIA Sudan Kosti Sub-Basin (Melut Basin), Muglad Basin, Sudd Basin

Sunda IIIBa Indonesia

Surat IIB Australia

Sverdrup IICc Canada N.W.T. Mellville

Taiwan IIIBa Taiwan Taihsi Basin
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Table 2-1. List of geological basin names, the Klemme basin type, countries, U.S. states or Canadian provinces reporting deposits of 
heavy oil and/or natural bitumen, and other names cited in literature.—Continued

Geological province
Klemme 

basin type
Country State/Province Other names 

Talara IIIBb Peru Talara Basin

Tampico IICc Mexico Tampico-Tuxpan Embayment, Chicontepec, Tampico-Misantla

Tarakan IIIBa Indonesia Bera Sub-basin (Tarakan Basin), Pamusian-Tarakan

Taranto IICb Italy Abruzzi Zone (Apennine Range). Marche-Abruzzi Basin 
(Pede-Apenninic Trough), Latium, Calabrian

Tarfaya IIIC Morocco Aaiun-Tarfaya

Tarim IIIA China

Thrace IIIBc Turkey Thrace-Gallipoli Basin, Zagros Fold Belt

Timan-Pechora IIB Russia Belaya Depression (Ural Foredeep), Brykalan Depression, 
Pechora-Kozhva Mega-Arch, Varendey-Adz’va

Timimoun IIB Algeria Sbaa

Tonga IIIBa Tonga

Tunguska I Russia Baykit Antecline

Turpan IIIA China Tulufan

Tyrrhenian IIIA Italy

Uinta IIA United States Utah

Upper Magdalena IIIBc Colombia Upper Magdalena Basin

Ventura IIIBb United States Calif. Santa Barbara Channel

Veracruz IIIC Mexico

Verkhoyansk IIA Russia

Vienna IIIBc Austria, Slovakia Bohemia

Vilyuy IIA Russia

Volga-Ural IIA Russia Aksubayevo-Nurlaty Structural Zone, Bashkir Arch, Belaya 
Depression, Melekess Basin, Tatar Arch, Vishnevo-Polyana 
Terrace

Washakie IIA United States Wyo.

West Java IIIBa Indonesia Arjuna Sub-Basin (West Java Basin), Northwest Java

West of Shetlands IIIC United Kingdom Faeroe, West of Shetland

West Siberia IIB Russia West Siberia

Western Canada      
Sedimentary

IIA Canada, United States Alta., Mont., 
Sask.

Alberta, Western Canada Sedimentary, Sweetgrass Arch

Western Overthrust IIA United States Ariz., Mont., 
Nev., Utah

Central Western Overthrust, Great Basin Province, Southwest 
Wyoming, South Western Overthrust

Williston I Canada, United States N. Dak., Sask. Sioux Uplift

Wind River IIA United States Wyo.

Yari IIA Colombia Yari Basin

Yenisey-Khatanga IIA Russia

Yukon-Kandik IIIBb United States Alaska Yukon-Koyukuk

Zagros IICa Iran, Iraq Zagros Fold Beltzagros or Iranian Fold Belt, Sinjar Trough, 
Bozova-Mardin High, Euphrates/Mardin
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Appendix 3. Klemme Basin Classificaton Figure from Plate 1

Figure 2-1. Diagram of Klemme basin types 
from plate 1. Modified from St. John, Bally, 
and Klemme (1984).                                               
 AAPG©1984, Diagram reprinted by permission 
of the AAPG whose permission is required for 
further use.
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Appendix 4. Tables from the Plates

Table 4-1. 50 heavy oil basins ranked by volumes of total original heavy oil in place (TOHOIP), showing natural bitumen volumes 
where reported.  Table repeated from plate 2. 

[billions of barrels, BBO, 109 barrels]

Rank
Geological       

province

Klemme 
basin 
type

Total original 
heavy oil in 

place

Original heavy 
oil in  place-       
discovered

Prospective 
additional 

heavy oil in 
place

Total original 
natural bitu-
men in place

Original   
natural bitu-

men in place-        
discovered

Prospective 
additional 

natural bitu-
men in place

1 Arabian IICa 842 842

2 Eastern 
Venezuela

IICa 593 566 27.7 2,090 1,900 190

3 Maracaibo IIIBc 322 322 169 169

4 Campeche IICc 293 293 0.060 0.060

5 Bohai Gulf IIIA 141 141 7.63 7.63

6 Zagros IICa 115 115

7 Campos IIIC 105 105

8 West Siberia IIB 88.4 88.4

9 Tampico IICc 65.3 65.3

10 Western Canada 
Sedimentary

IIA 54.9 54.9 2,330 1,630 703

11 Timan-Pechora IIB 54.9 54.9 22.0 22.0

12 San Joaquin IIIBb 53.9 53.9 < 0.01 < 0.01

13 Putumayo IIA 42.4 42.4 0.919 0.919

14 Central Sumatra IIIBa 40.6 40.6

15 North Slope IICc 37.0 37.0 19.0 19.0

16 Niger Delta IV 36.1 36.1

17 Los Angeles IIIBb 33.4 33.4 < 0.01 < 0.01 < 0.01

18 North Caspian IICa 31.9 31.9 421 421

19 Volga-Ural IIA 26.1 26.1 263 263

20 Ventura IIIBb 25.2 25.2 0.505 0.505

21 Gulf of Suez IIIA 24.7 24.7 0.500 0.500

22 Northern North 
Sea

IIIA 22.8 22.8 10.9 10.9

23 Gulf Coast IICc 19.7 19.7

24 Salinas IICc 16.6 16.6

25 Middle 
Magdalena

IIIBc 16.4 16.4

26 Pearl River IIIC 15.7 15.7

27 North Ustyurt IIB 15.0 15.0

28 Brunei-Sabah IICc 14.7 14.7

29 Diyarbakir IICa 13.5 13.5
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Table 4-1. 50 heavy oil basins ranked by volumes of total original heavy oil in place (TOHOIP), showing natural bitumen volumes 
where reported.  Table repeated from plate 2.—Continued

[billions of barrels, BBO, 109 barrels]

Rank
Geological       

province

Klemme 
basin 
type

Total original 
heavy oil in 

place

Original heavy 
oil in  place-       
discovered

Prospective 
additional 

heavy oil in 
place

Total original 
natural bitu-
men in place

Original   
natural bitu-

men in place-        
discovered

Prospective 
additional 

natural bitu-
men in place

30 Northwest 
German

IIB 9.48 9.48

31 Barinas-Apure IIA 9.19 9.19 0.38 0.38

32 North Caucasus-
Mangyshlak

IICa 8.60 8.60 0.060 0.060

33 Cambay IIIA 8.28 8.28

34 Santa Maria IIIBb 8.06 8.06 2.03 2.02 < 0.01

35 Central Coastal IIIBb 8.01 8.01 0.095 0.025 0.070

36 Big Horn IIA 7.78 7.78

37 Arkla IICc 7.67 7.67

38 Moesian IICb 7.39 7.39

39 Assam IICb 6.16 6.16

40 Oriente IIA 5.92 5.92 0.250 0.250

41 Molasse IICb 5.79 5.79 0.010 0.010

42 Doba IIIA 5.35 5.35

43 Morondava IIIC 4.75 4.75 2.21 2.21

44 Florida-Bahama IIIC 4.75 4.75 0.48 0.48

45 Southern North 
Sea

IIB 4.71 4.71

46 Durres IICb 4.70 4.70 0.37 0.37

47 Caltanisetta IICb 4.65 4.65 4.03 4.03

48 Neuquen IIB 4.56 4.56

49 North Sakhalin IIIBb 4.46 4.46 < 0.01 < 0.01

50 Cabinda IIIC 4.43 4.43 0.363 0.363
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Table 4-2. 33 natural bitumen basins ranked by volumes of total original natural bitumen in place 
(TONBIP).  Table repeated from plate 3. 

[billions of barrels, BBO, 109 barrels]

Rank Geological province
Klemme 

basin 
type

Total original 
natural bitumen 

in place

Original 
natural bitumen 

in place-           
discovered

Prospective 
additional 

natural 
bitumen in 

place

1 Western Canada Sedimentary IIA 2,330 1,630 703

2 Eastern Venezuela IICa 2,090 1,900 190

3 North Caspian IICa 421 421

4 Volga-Ural IIA 263 263

5 Maracaibo IIIBc 169 169

6 Tunguska I 59.5 8.19 51.3

7 Ghana IIIC 38.3 5.74 32.6

8 Timan-Pechora IIB 22.0 22.0

9 North Slope IICc 19..0 19.0

10 Uinta IIA 11.7 7.08 4.58

11 Northern North Sea IIIA 10.9 10.9

12 South Caspian IIIBc 8.84 8.84

13 Bohai Gulf IIIA 7.63 7.63

14 Paradox IIB 6.62 4.26 2.36

15 Black Warrior IIA 6.36 1.76

16 South Texas Salt Dome IICc 4.88 3.87 1.01

17 Cuanza IIIC 4.65 4.65

18 Bone Gulf IIIBa 4.46 4.46

19 Caltanisetta IICb 4.03 4.03

20 Nemaha Anticline-Cherokee 
Basin

IIA 2.95 0.70 2.25

21 Morondava IIIC 2.21 2.21

22 Yenisey-Khatanga IIA 2.21 2.21

23 Santa Maria IIIBb 2.03 2.02 <0.01

24 Junggar IIIA 1.59 1.59

25 Tarim IIIA 1.25 1.25

26 West of Shetlands IIIC 1.00 1.00

27 Putumayo IIA 0.919 0.919

28 Illinois I 0.890 0.300 0.590

29 South Oklahoma Folded Belt IIA 0.885 0.058 0.827

30 South Adriatic IICb 0.510 0.510

31 Ventura IIIBb 0.505 0.505

32 Gulf of Suez IIIA 0.500 0.500

33 Florida-Bahama IIIC 0.477 0.477


	Abstract
	Introduction
	Terms Defined for this Report
	Chemical and Physical Properties
	Origins of Heavy Oil and Natural Bitumen
	Data Sources
	Resource Estimates
	Recovery Methods
	Maps
	Klemme Basin Classification
	Type I. Interior Craton Basins
	Type II. Continental Multicyclic Basins
	Type IIA. Craton margin (composite)
	Type IIB. Craton accreted margin (complex)
	Type IIC. Crustal collision zone (convergent plate margin)

	Type III. Continental Rifted Basins
	Type IIIA. Craton and accreted zone (rift)
	Type IIIB. Rifted convergent margin (oceanic consumption)
	Type IIIC. Rifted passive margin (divergence)

	Type IV. Delta (Tertiary to recent)
	Type V. Fore-arc basins

	Regional Distribution of Heavy Oil and Natural Bitumen
	Summary
	Acknowledgments
	References Cited
	Tables 1-8
	Appendix 1. Map Basin Name Conventions
	Appendix 2. Basins, Basin Type and Location of Basins having Heavy Oil and Natural Bitumen Deposits
	Appendix 3. Klemme Basin Classification Figure from Plate 1
	Appendix 4. Tables from the Plates
	Figure 1. Response of viscosity to change in temperature for some Alberta oils
	Figure 2-1. Diagram of Klemme basin types from Plate 1.
	Table 1. Some chemical and physical attributes of crude oils (averages).
	Table 2. Conversion factors and equivalences applied to standardize data.
	Table 3. Total original in place resource calculation protocol when discovered oil in place is unavailable.
	Table 4. Heavy oil and natural bitumen resources in billions of barrels of oil (BBO) and weighted average characteristics by basin type.
	Table 5. Enhanced oil recovery (EOR) methods for heavy oil showing primary reservoir threshold criteria. 
	Table 6. Listing of countries reporting deposits of heavy oil and/or natural bitumen grouped by region.
	Table 7. Attributes of Klemme basin types. 
	Table 8 Regional distribution of heavy oil and natural bitumen (billion barrels).
	Table 1-1 List of geologic provinces where province names used in this report differ
	Table 2-1. List of geological basin names, the Klemme basin type, countries, U.S. states or Canadian provinces reporting deposits of heavy oil and/or natural bitumen, and other names cited in literture.
	Table 4-1. 50 heavy oil basins ranked by volumes of total original heavy oil in place (TOHOIP), showing natural bitumen volumes where reported.
	Table 4-2. 33 natural bitumen basins ranked by volumes of total original natural bitumen in place (TONBIP).



