Skip Links

USGS - science for a changing world

Open-File Report 2007-1116

Coal Quality and Major, Minor, and Trace Elements in the Powder River, Green River, and Williston Basins, Wyoming and North Dakota

By Gary D. Stricker, Romeo M. Flores, Michael H. Trippi, Margaret S. Ellis, Carol M. Olson, Jonah E. Sullivan, and Kenneth I. Takahashi

Introduction

Thumbnail of cover and link to download report PDF (11 MB)

The U.S. Geological Survey (USGS), in cooperation with the Wyoming Reservoir Management Group (RMG) of the Bureau of Land Management (BLM) and nineteen independent coalbed methane (CBM) gas operators in the Powder River and Green River Basins in Wyoming and the Williston Basin in North Dakota, collected 963 coal samples from 37 core holes (fig. 1; table 1) between 1999 and 2005. The drilling and coring program was in response to the rapid development of CBM, particularly in the Powder River Basin (PRB), and the needs of the RMG BLM for new and more reliable data for CBM resource estimates and reservoir characterization. The USGS and BLM entered into agreements with the gas operators to drill and core Fort Union coal beds, thus supplying core samples for the USGS to analyze and provide the RMG with rapid, real-time results of total gas desorbed, coal quality, and high pressure methane adsorption isotherm data (Stricker and others, 2006).

The USGS determined the ultimate composition of all coal core samples; for selected samples analyses also included proximate analysis, calorific value, equilibrium moisture, apparent specific gravity, and forms of sulfur. Analytical procedures followed those of the American Society of Testing Materials (ASTM; 1998). In addition, samples from three wells (129 samples) were analyzed for major, minor, and trace element contents. Ultimate and proximate compositions, calorific value, and forms of sulfur are fundamental parameters in evaluating the economic value of a coal. Determining trace element concentrations, along with total sulfur and ash yield, is also essential to assess the environmental effects of coal use, as is the suitability of the coal for cleaning, gasification, liquefaction, and other treatments. Determination of coal quality in the deeper part (depths greater than 1,000 to 1,200 ft) of the PRB (Rohrbacher and others, 2006; Luppens and others, 2006) is especially important, because these coals are targeted for future mining and development.

This report contains summary tables, histograms, and isopleth maps of coal analyses. Details of the compositional internal variability of the coal beds are based on the continuous vertical sampling of coal sequences, including beds in the deeper part of the PRB. Such sampling allows for close comparisons of the compositions of different parts of coal beds as well as within the same coal beds at different core hole locations within short distances of each other.

First posted August 2007

For additional information contact:

U.S. Geological Survey
Central Energy Resources Team
Box 25046, MS-939
Denver Federal Center
Denver, CO 80225-0046

http://energy.cr.usgs.gov/

Part or all of this report is presented in Portable Document Format (PDF); the latest version of Adobe Reader or similar software is required to view it. Download the latest version of Adobe Reader, free of charge.


Suggested citation:

Stricker, G.D., Flores, R.M., Trippi, M.H., Ellis, M.S., Olson, C.M., Sullivan, J.E., and Takahashi, K.I., 2007, Coal quality and major, minor, and trace elements in the Powder River, Green River, and Williston basins, Wyoming and North Dakota: U.S. Geological Survey Open-File Report 2007-1116, 31 p., appendixes.



Contents

Introduction

General Geology

Methods

Summary

References Cited

Appendix I

Appendix II

Appendix III

Appendix IV


Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: http://pubsdata.usgs.gov/pubs/of/2007/1116/index.html
Page Contact Information: GS Pubs Web Contact
Page Last Modified: Wednesday, 07-Dec-2016 20:17:43 EST