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ABSTRACT

The process of creating multi-unit 3D geological 
models by successive unit interpolation may be tedious 
and time-consuming. Here, we propose to automate this 
procedure through presenting the problem as a classifica-
tion task and solving it simultaneously with the Support 
Vector Machine (SVM), a method known from the field of 
artificial intelligence. Experiments with various input data 
and kernel parameters demonstrated that the SVM has 
great potential in 3D reconstructions from sparse geologi-
cal information. An extended version of this paper has 
been accepted for publication in “Computers and Geosci-
ences” (Smirnoff et al., 2008).

INTRODUCTION

Often, geologists are faced with a variety of diverse 
information that requires generalization and analysis. 
3D modeling software packages such as Gocad of 
Earth Decision Sciences have proven an excellent means 
for data presentation and interpretation. The procedure 
normally requires reconstruction of individual geological 
units using surfaces interpolated from control points with 
subsequent fusion of these units into a single model. The 
popular interpolation techniques include Inverse Distance 
Weighting (IDW), Discrete Smooth Interpolation (DSI), 
and various flavors of kriging preceded by semi-vario-
gram analysis.

The above procedure can easily become a tedious 
and time-consuming task when a complex geomodel 
is considered. In addition, the traditional interpolation 
techniques assume reasonable areal coverage of the input 
data. Therefore, there is a strong need for an algorithm 
that would automate the process of model creation even in 
cases when only a few pieces of information on regional 
geology, (e.g., a few sparse cross-sections) are available. 
Finding such an algorithm and testing its performance on 
available data sets was the objective of this study.

Here, we propose the use of the Support Vector Ma-
chine (SVM), a tool routinely applied in the field of image 
analysis and pattern recognition. The SVM is becoming 
increasingly popular and has been successfully used to 
solve classification and regression problems in biol-
ogy (e.g., Noble et al., 2005), hydrology (e.g., Yu et al., 
2004), medicine (e.g., El-Naqa et al., 2002), and environ-
mental science (e.g., Gilardi et al., 1999). In this study, 
we demonstrate that the application of SVM in geology 
allows sparse data to be efficiently combined in order to 
reconstruct shape, area, and volume of multiple geologi-
cal units.

METHODOLOGY

The SVM Algorithm

The SVM algorithm is based on the Statistical Learn-
ing Theory developed by V. Vapnik (Vapnik, 1995). It 
uses a set of examples with known class information 
to build a hyperplane that separates samples of differ-
ent classes. In machine learning theory, this is known as 
supervised learning as opposed to unsupervised learn-
ing when no a priori class information is available. This 
initial dataset is known as a training set, and every sample 
within it is characterized by features upon which classifi-
cation is based. Figure 1A demonstrates this for the one-
dimensional (single-feature) case. The samples closest to 
the hyperplane are termed support vectors (filled marks in 
Figure 1).

In more complicated, non-linear cases, the task of 
discovering the separator is turned into a linear task by 
transferring input data into a higher-dimensional space 
known as the feature space. Figure 1B shows a non-sepa-
rable one-dimensional data set in the input space. The 
problem is easily solved through re-mapping data to a 
higher, two-dimensional space where a linear solution is 
found (Figure 1C). Functions satisfying certain conditions 
and known as kernels are normally employed for this 
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Figure 1. Building the separating hyperplane, in separable 
and non-separable one-dimensional case. Filled marks 
represent support vectors. (A) Linearly separable case and 
decision function in input space; (B) non-separable case in 
input space. (C) training data re-mapped into two-dimen-
sional feature space using φ(x) = (x, x2) and linear solution 
in this space; (D) solution re-plotted back in input space.

transfer (e.g., Abe, 2005). The solution becomes non-lin-
ear when shown in the original data space (Figure 1D).

Once the equation for the optimal classifier is found, 
new data with unknown class information (test samples) 
can be classified based on the value of this decision func-
tion. Unlike most interpolation methods based on the prin-
ciple that values at points closer in space are more similar, 
the SVM is a boundary classification method where the 
boundary is built based on the initial training set among 
which only a small number of samples (support vectors) 
are involved in the final decision making.

The classical SVM task is a binary (two-class) clas-
sification. However, a number of methods have been 
developed to support multi-class classification through 
various combinations of binary methods such as “one-
against-all”, “one-against-one”, etc. (see Hsu and Lin, 
2002 for references). Therefore, the SVM approach is also 
applicable for models with more than two classes. More 
detailed descriptions of the SVM algorithm are available 
from a number of sources (e.g., Cristianini and Shawe-
Taylor, 2000; Abe, 2005).

SVM Application to 3D Modeling

To apply the SVM algorithm to our geological recon-
structions, we defined the 3D space-partitioning task as 
a pure spatial classification problem. Three coordinates 
uniquely describe every point in the 3D reconstruction 
space. However, only a limited number of those points 
possess descriptions or class information that can be iden-
tified through well drilling, surficial geology mapping, 
and seismic profiling. The class information describes the 
geological unit to which each particular point belongs. 
Therefore, the points with known class labels become 
samples in the SVM training set, and point coordinates in 
the three-dimensional space are used as sample features. 
Once a classification model based on this training set is 
built, the rest of the points in the reconstruction space can 
be classified based on their coordinates (features).

We employed one of the many SVM implementations 
freely available over the internet, namely LIBSVM devel-
oped at the National Taiwan University (see Chang and 
Lin, 2001 for detailed description). As recommended in 
Hsu et al. (2004), we used LIBSVM with the radial basis 
function (RBF) kernel, the most general form of kernel 
resulting in a prediction model controlled by only two hy-
perparameters, C and γ. A single solution is obtained for 
every pair of parameters, and it is sensitive to the choice 
of their values. However, selecting the appropriate values 
is a dark art normally done on a try-and-see basis.

For multi-class classification, LIBSVM uses “one-
against-one” approach, which was shown to be advanta-
geous to other methods for practical use (Hsu and Lin, 
2002). In addition, a set of in-house Java utilities has been 
developed for scaling, validation, and format conversion 
purposes.
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Data

A 3D geomodel created at the Geological Survey of 
Canada, Quebec, in the course of the Esker/Abitibi project 
(Bolduc et al., 2005) was used as the reference dataset 
in all of the experiments. This model is based on surface 
geology, well, and cross-section data. Six geological units 
were sequentially interpolated from the above control 
points using the Discrete Smooth Interpolation (DSI) 
technique (Mallet, 1989) in the Gocad GIS.

Experimental Work

The experimental work was designed to perform the 
following tasks: (1) investigate whether the SVM can be 
efficiently used in binary geological reconstructions, (2) 
test the SVM for multi-unit modeling, and (3) examine 
how the resulting model depends on the RBF kernel pa-
rameters used in the reconstruction.

General Approach

The general approach taken in all of the experiments 
was as follows:

Prediction

•	 In Gocad, create a reconstruction space as a set of 
volume elements (voxet) of the shape representa-
tive of study area geometry. The reconstruction 
space was defined by a voxet with the following 
number of volume elements (voxels) in each direc-
tion: X-110, Y-240, Z-24.

•	 Add available data to the reconstruction space. 
The unit type property for each of the six geologi-
cal units (SVM classes) was transferred from the 
stratigraphic grid (SGrid) structure representing the 
reference model.

•	 In Gocad, using a DEM, define all voxet nodes 
above the surface as air or no-data points.

•	 Define a training set for the experiment. For the re-
maining ground points, set the unit type property to 
zero; these are the points that will be later classified 
by trained SVM.

•	 Scale coordinate values for the training set between 
0 and 1 as recommended in Hsu et al. (2004).

•	 Using LIBSVM, build a prediction model based 
on the training set. A single reference set of kernel 
parameters (C = 104 and γ=102) previously deter-
mined from 2D experiments was used in all recon-
structions except the parameter sensitivity tests.

•	 Scale coordinate values for the points to be classi-
fied and classify them using the prediction model 
created in the previous step.

•	 Import the point set with predicted class information 
back into Gocad, for visualization and analysis.

Validation

•	 Based on the available reference data, define the 
validation set and extract it as a set of points with 
attached class property.

•	 Test predicted class labels against the validation 
set to determine how many original points in each 
class and overall were adequately classified, a mea-
sure also known as the recall rate.

Binary Reconstruction

The training set was composed of the Esker/Abitibi 
model points located on 11 arbitrarily chosen parallel 
sections oriented along axis X. Points were grouped into 
two classes as shown in Table 1. The input data statistics 
are given in Column 4 of Table 1. As seen from the table, 
the training set was dominated by points representative of 
Class 2, which combined all model units except the Esker 
Unit. The validation set was composed of all the remain-
ing model points (not included in the training set). The 
number of points used for validation in each of the two 
classes is shown in Column 1a of Table 3.

Table 1.	Geological	units,	SVM	classes,	and	training	set	statistics	for	Esker/Abitibi	Binary	Model.	Total	number	of	
points to be classified is 371783.

 1. Geological Unit 2. SVM Class 3. All Points (#/%)b 4. Training Points (#/%)c

	 Esker	 1	 20300/5.22	 995/0.26
	 Non-Eskera	 2	 368935/94.78	 16457/4.23
	 All	Units	 -	 389235/100	 17452/4.48

aNon-Esker	unit	included	Rock,	Till,	Clay,	Littoral	and	Organic	units
bNumber	of	all	class	points	and	their	percentage	of	all	model	points
cNumber	of	training	points	per	class	and	their	percentage	of	all	model	points
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Multi-Class reconstruction

The	same	training	points,	arranged	into	six	classes	
corresponding	to	the	six	geological	units	found	in	the	
original	model,	were	used	to	test	the	SVM	capabilities	
in multi-class classification (Table 2). For training data 
statistics,	see	Column	4	of	Table	2.	This	time,	bedrock	
(Class	6)	entirely	dominated	the	training	set,	with	organ-
ics	(Class	1)	being	the	least	representative.	The	validation	
set	also	contained	information	about	all	six	geological	
units	as	shown	in	Column	2a	of	Table	3.

Hyperparameters Sensitivity tests and Multiple 
Parameter-Set reconstructions

To	analyze	the	sensitivity	of	prediction	results	to	the	
values	of	hyperparameters,	C	and	γ,	we	used	a	simple	grid	
search	procedure	as	proposed	in	Hsu	et	al.	(2004).	The	
grid search was run for the above training set configu-
rations,	and	the	range	of	parameters	scanned	by	every	

search was from 2-8 to 215 for C and from 2-15 to 212 for 
γ incrementing parameter values by a power of 2. As in 
previous experiments, the success rate was determined 
through direct comparison with the validation set extract-
ed from the reference model. We also examined the de-
pendency of success rate on parameter values for the class 
with the least number of training points (Class 1–Organ-
ics). Finally, binary models were built with combinations 
of parameters drawn from the margins of the reasonable 
working range. These included low C (2-2) – high γ (28), 
low C (2-2) – low γ (25), average C (27) – average γ (26), 
high C (214) – high γ (28) and high C (214) – low γ (25).

Results and Discussion

Binary Reconstruction

The original esker body, training sections, and the re-
sults of binary reconstruction with the reference parameter 
set are shown in Figure 2. Column 1b of Table 3 describes 

Table 2. Geological	units,	SVM	classes,	and	training	set	statistics	for	Esker/Abitibi	Multi-Class	Model.	Total	number	of	
points to be classified is 371783.

 1. Geological Unit 2. SVM Class 3. All Points (#/%)a 4. Training Points (#/%)b

	 Organics	 1	 1210/0.31	 48/0.01
	 Littoral	 2	 3819/0.97	 193/0.05
	 Clay	 3	 13295/3.42	 628/0.16
	 Esker	 4	 20300/5.22	 995/0.26
	 Till	 5	 15865/4.08	 747/0.19
	 Bedrock	 6	 334746/86.00	 14841/3.81
	 All	Units	 --	 389235/100389235/100389235/100	 17452/4.4817452/4.4817452/4.48

aNumber	of	class	points	and	their	percentage	of	all	model	points
bNumber	of	training	points	per	class	and	their	percentage	of	all	model	points

Table 3.	Validation	data	and	results	for	Esker/Abitibi	binary	and	multi-class	model.	Number	of	validation	points	in	origi-
nal model and percentage of points properly classified by SVM.

  SVM Class 
1. Binary 2. Multi-Class

a. Validation Points (#/%)a b. Success (%) a. Validation Points (#/%)a b. Success (%)

	 1	 19305/5.19	 71.50	 1162/0.31	 18.76
	 2	 352478/94.81	 98.87	 3626/0.98	 37.20
	 3	 -	 -	 12667/3.41	 57.10
	 4	 -	 -	 19305/5.19	 67.65
	 5	 -	 -	 15118/4.07	 45.72
	 6	 -	 -	 319905/86.05	 95.45
	 All	 371783/100	 97.34	 371783/100	 89.87

aNumber	of	validation	points	per	class	and	their	percentage	of	all	model	points
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Figure 2. Binary esker reconstruction. (A) Original Esker 
Unit; (B) training set; (C) reconstructed Esker Unit.

the validation results. As seen from Table 3, the success 
rate of SVM prediction is exceedingly high. Especially 
remarkable results, 98.87%, are achieved in Class 2. In 
part, this can be attributed to the fact that points of this 
class entirely dominate the training set. When the SVM 
cannot classify a point in binary classification, it tends 
to attribute it to the predominant class. Considering that 

bedrock points constitute 94.81% of all points that need 
to be classified (352478 of 371783 as shown in Column 
1 of Table 3), it is no surprise that the overall success of 
prediction achieves 97.34%.

With the above explanation in mind, the classifica-
tion success in Class 1, which represents only about 6% 
of the training set, is still as high as 71.50%. This, in our 
opinion, proves that the SVM can be effectively used for 
binary (single-unit) reconstructions even with training sets 
substantially skewed toward one of the classes.

We further analyzed success rate in Class 1 on all 
model sections where the Esker Unit was present (234 
sections). The results are presented in Figure 3. The 
figure clearly demonstrates that the success of prediction 
decreases as the distance from a training section increases. 
As training section # 1 did not intersect the esker body, 
the success rate on the first 18 sections drops to 0%. 
Therefore, as could be expected, the overall reliability of 
prediction is directly proportional to the density of sec-
tions with training data.

Multi-Class Reconstruction

The results of this experiment are found in Figure 4 
and Column 2b of Table 3. The overall success score is 
89.87%, which is mainly controlled by the predominant 
bedrock class (Class 6). Two other classes, esker and 
marine clay, demonstrate success rates over 50%. These 
units are somewhat better represented in the SVM training 
set than the remaining classes. Figure 5 shows that the 
success of reconstruction for a particular class in this ex-
periment is almost directly proportional to the number of 
those class points in the training set, exceeding 75% when 
the number of training points exceeds 1% of the total.

We also compared area and volume of geological 
units in the original model and its reconstructed counter-
part. The results presented in Table 4 and Figure 6 show 
that, for both area and volume calculations, the recon-
structed and original values for any unit are the same 
order of magnitude. This suggests that along with single 
unit modeling, the SVM can efficiently be applied in 
multi-unit volumetric reconstructions.

Hyperparameter Sensitivity Tests and 
Multiple Parameter-Set Reconstructions

Figure 7 summarizes the results of grid search for 
the best pair of hyperparameters in binary and multi-class 
reconstructions. The best overall success rates, 97.79% 
and 92.03%, were achieved at [C=21, γ=26] and [C=2-1, 
γ=26], respectively. The analysis of success rates in the 
class with the least number of training points yielded 
77.38% and 22.46% at [C=22, γ=26] and [C=29, γ=25], 
correspondingly. As seen from the results, parameters are 
fairly stable, and a single range for C [2-3 - 215] and γ [24 - 
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Figure 3. Validation results for binary esker reconstruction from 11 parallel sections. Success in 
Class 1 (Esker) against section number. Vertical lines indicate training sections. Total length of 
horizontal axis is 24km and sections are spaced at 100m.

Figure 4. Multi-class esker reconstruction from 11 parallel 
sections. (A) Original model; (B) training set; (C) reconstructed 
model.
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Figure 5. Validation results for multi-class esker reconstruction from 11 parallel sections. Success 
per class vs. number of training points per class.

Figure 6. Surface area and volume comparison for original (reference 
model) and reconstructed geological units. (A) Surface area; (B) volume.
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Table 4.	Results	of	SVM	reconstruction	from	11	parallel	sections	for	Esker/Abitibi.	Unit	area	and	volume	comparison	
(original	model	vs.	reconstructed).	See	Table	2	for	training	set	statistics.

  Geological Unit 
1. Area (m2) 2. Volume (m2. Volume (m3)

a. Original b. Reconstructed a. Original b. Reconstructed

Organics	 2.55E+07	 2.99E+07	 8.06E+07	 1.05E+08	
Littoral	 7.56E+07	 7.34E+07	 2.54E+08	 3.30E+08
Clay	 1.99E+08	 1.97E+08	 8.86E+08	 1.01E+09
Esker	 1.48E+08	 1.33E+08	 1.35E+09	 1.16E+09
Till	 2.15E+08	 1.99E+08	 1.06E+09	 1.07E+09
Bedrock	 2.70E+08	 3.06E+08	 2.23E+10	 2.23E+10

Figure 7. Summary of best results from parameter sensitivity tests for binary and multi-class 
reconstructions and proposed range for RBF kernel parameters (C [2-3, 215] and γ [24, 29]).

29]	can	be	recommended.	Within	this	range,	higher	overall	
scores	and	higher	scores	for	over-represented	classes	are	
achieved	at	somewhat	lower	C	values.	On	the	other	hand,	
proper classification of points in the least represented 
classes	requires	higher	C	values.	Visual	examination	of	
binary	models	built	with	combinations	of	parameters	
drawn	from	different	corners	of	the	above	range	also	
show	that	a	more	generalized	picture	can	be	achieved	
at	lower	C’s	(Figure	8a,	8b)	while	higher	values	of	this	
parameter	promote	more	detailed	interpretation	(Figure	
8d,	8e).	Average	C	values	result	in	well-balanced	models	
(Figure 8c). The influence of the second parameter (γ)	is	
not	as	obvious.	

CONCLUSIONS

Our experiments clearly showed that the SVM with 
RBF kernel can be efficiently used for both single- and 
multi-unit 3D reconstructions. The procedure is per-
formed in a single step, which eliminates the need for 
unit-by-unit interpolation. Even from a limited training 
set (e.g., several cross-sections sparsely distributed across 
the study area) reasonable reconstruction results can be 
achieved.

It is important, however, that all classes to be recon-
structed are reasonably represented in the training set. 
In the multi-class case, the reconstruction success was 
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shown	to	be	directly	proportional	to	the	number	of	unit	
samples	in	the	training	data.	The	reliability	of	predic-
tion	is	greater	in	the	vicinity	of	the	training	data,	and	
therefore,	the	density	of	training	sections	and	spatial	
continuity	of	lithological	units	may	directly	affect	the	
reconstruction	results.

The	kernel	parameters	should	be	chosen	from	the	
range	2-3-	215	for	C	and	24-	29	for	γ.	When	more	model	
details	are	required	or	classes	with	a	small	number	of	
training	points	are	involved,	higher	C	values	should	be	
considered.	Lower	C	values	result	in	more	generalized	
models	with	fewer	details.	This	favors	classes	that	domi-
nate	the	training	set.

Finally,	our	results	indicate	that	when	appropri-
ate	parameters	are	chosen,	not	only	the	general	shape	
of	a	geological	body,	but	also	such	characteristics	as	its	
surface	area	and	volume	can	be	reconstructed	with	results	
close	to	those	obtained	from	the	application	of	classical	
G�S	methods.

Figure 8. Binary reconstructions with parameters drawn from different corners of the range 
presented in Figure 7. (A) low C (2-2) – high γ (28); (B) low C (2-2) – low γ (25); (C) average C 
(27) – average γ (26); (D) high C (214) – high γ (28); (E) high C (214) – low γ (25).
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