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INTRODUCTION

An understanding of the distribution of surficial ma-
terials is key to many problems in geological engineering, 
mineral-resource inventory, and environmental remedia-
tion. However, for most states the zone between the sur-
face (usually represented by surface glacial geology and 
the cooperative soil survey) and bedrock is unmapped. In 
Ohio, regional-scale maps of soil, surface glacial geol-
ogy, and bedrock have been available for over 100 years, 
but concentrated mapping of the full sequence of surficial 
materials did not begin until 1998. The Ohio Division of 
Geological Survey (ODGS) is conducting three-dimen-
sional (3D) mapping and modeling of surficial materials 
at the 1:100,000 scale. Currently, over one-third of the 
state has been mapped (concentrating on glaciated areas) 
at the 1:100,000 scale using qualitative methods based 
on geologic interpretation and drafting on Mylar (for an 
example of a completed product, see Swinford et al., this 
volume). Surficial materials are represented by two-di-
mensional (2D) polygons, which are assigned alphanu-
meric sequences describing sediment type, thickness, 
and lateral distribution (“stack” maps, Kempton, 1981), 
providing information in the third dimension. Mapping is 
conducted from the surface to the bedrock interface us-
ing soil maps, legacy geologic maps, water wells, bridge 
borings, and detailed site studies (mainly from environ-
mental remediation). Envisioned applications for the GIS 
data and maps include surface/ground water simulations, 
mineral-resource inventory, and geologic engineering 
(seismic hazards, landslides, etc.).

As part of this mapping work, quantitative methods 
based on geostatistics are also being investigated. Lithol-
ogy (clay, silt, sand, gravel) is modeled using sequential 
indicator simulation (Journel, 1983; Deutsch and Journel, 
1998) to investigate methods for modeling stratigraphic 
and facies-scale variability at the 1:24,000-scale. Simula-
tion is based on the same principles as kriging, but Monte 
Carlo techniques are used to develop multiple models 
(realizations) or configurations from one data set rather 

than obtaining a single, optimized estimate of lithology. 
Geostatistic simulation provides a range of statistically 
possible configurations of the subsurface that are faithful 
to the well data and statistical structure. While useful in 
themselves as 3D models, geostatistical models can give 
guidance to stack mapping by exposing consistent config-
urations of lithology. The amount of horizontal continuity 
in the models can give some measure of the uncertainty or 
appropriateness of assigning a stack sequence to poten-
tially complex sediments of buried glacial valleys.

The goal of this paper is to illustrate the applica-
tion of both methodologies being pursued at the ODGS 
to map unconsolidated sediments. Results are compared 
to enhance the understanding of the strengths and weak-
nesses of both approaches, and to discern how informa-
tion from one technique can be used to improve the other. 
Geostatistical simulation has much to offer as a technique 
for 3D modeling. Output is in a 3D grid format (“voxel”) 
and ready for volumetric (inventory) calculations or 
input into numerical models such as flow simulations 
for groundwater. There are scientific advantages as well; 
model parameters and procedures are completely trace-
able, so the maps are more “scientific” in that they meet 
the requirement of repeatability. While subjectivity is 
reduced, such modeling still requires much interpreta-
tion and “trade craft.” A key advantage of simulation is 
the generation of multiple versions (“realizations”) of the 
model that obey the data and the spatial structure. This 
aspect of simulation provides myriad possibilities for the 
assessment of uncertainty, ranging in complexity from 
generating basic statistics to describe variations between 
simulation runs to full analysis of the effect of uncertainty 
on all model parameters. Uncertainty assessment is key 
to evaluating risks when using the models for real world 
decisions. However, simulation techniques are not a way 
to generate maps quickly (good geostatistical practice 
requires careful, time-consuming investigation), nor map 
large areas (computation demands are limiting). Recon-
naissance mapping over large areas is still the realm of 
traditional geologic mapping due to the limitations of 
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the data (interpretation is needed over interpolation) and 
computation limits of large 3D voxel grids. This study 
proposes that both traditional mapping and geostatistical 
simulation have important and complementary roles in 
surficial mapping and characterization.

Mapping work for the 2006 fiscal year National 
Cooperative Geologic Mapping Program-STATEMAP 
component project is located in the Ashtabula and 
Youngstown 1:100,000 scale quadrangles located in 
northeast Ohio. This project area is the focus of this 
contribution. The area is heavily glaciated with exten-
sive deposits of Wisconsinan- and Illinoian-age drift. 
Near Lake Erie, ice proximal (till, kames, outwash) and 
lake deposits (lacustrine, beach ridges) cover the Por-
tage escarpment (Brockman, 1998). Further inland, the 
depositional environment changes to till plains and buried 
valleys. A key feature of most of the buried valleys in this 
region (Bagley, 1953) is that they were ice-dammed (to 
the north), which resulted in a greater portion of fine sedi-
ments (lacustrine deposits) than is found in buried valleys 
that drain to the south (Ritzi et al., 2000). A buried valley 
in the southwest corner of the 1:24,000 Ashtabula South 
quadrangle is the subject of both qualitative stack map-
ping and geostatistical modeling (Figure 1).

METHODOLOGY

A key component of both mapping techniques is the 
collection of base maps and boring data. A GIS/ digital 
database approach (based on ESRI ArcGIS and Micro-
soft Access) to data compilation is adopted for efficient 
distribution and storage. Detailed discussion of specific 
software modules and file formats used in the GIS data 
management is beyond the scope of this paper. Software 
used for geostatistical modeling is given a more thorough 
treatment.

The 1:100,000-scale “stack” maps (for this study, the 
USGS Ashtabula and Youngstown quadrangles) are ini-
tially drawn on 1:24,000-scale Mylar maps using (under-
lying) several different paper base maps and a light table. 
Interpretations are based on maps of soil parent materi-
als, drift thickness, bedrock geology, and legacy geology 
maps. In addition, boring data from water wells (Ohio 
Division of Water, ODW), bridge borings (Ohio Depart-
ment of Transportation, ODOT), and environmental 
studies (Ohio Environmental Protection Agency, OEPA) 
provided key information for mapping below the surface. 
The general data sources and procedures for making stack 
maps are described in the following sections.

Soils Maps

Whereas a major innovation of these maps is the in-
clusion of information in the subsurface, surface informa-
tion remains critical and has a large impact on the appear-
ance of the final map. Surface mapping units (lithologies) 

are largely derived from county-scale soil surveys. Soil 
survey information (1:15,840 scale) is used to make maps 
of parent material. Teams of pedologists use field inves-
tigations, soil sampling, and air photo interpretation to 
divide the landscape into polygons of like soils. The suite 
of soil mapping units and the rules for delineation on the 
landscape are based on a mutually agreed upon conceptual 
model. Mapping units are organized on major transitions 
in soil type, often those of significance to the management 
of the land. At the county scale, these transitions between 
soil units are usually due to changes in geomorphology 
and, therefore, provide a potentially high-resolution data 
source for surface lithology.

The primary source of digital soil data is the Natu-
ral Resource Conservation Service (NRCS) Soil Survey 
Geographic, commonly known as SSURGO (Soil Survey 
Staff, 2006). SSURGO GIS databases provide the map-
ping polygons as GIS files and extensive tabular data that 
describe soil horizonation, chemical/ physical properties, 
and descriptions of soil suitability for a wide range of 
land uses. The tables do not, however, explicitly define 
parent materials for each soil type. They are assigned to 
the polygons by creating a lookup table of interpreted 
(by this author) parent materials for each mapping unit. 
The tables are based on the detailed soil profiles and 
interpretive descriptions found in the written soil survey 
report. 1:24,000-scale maps of parent material are gener-
ated for each quadrangle (Figure 2). The stack model is 
much more accurate for layers near land surface than at 
depth because the level of detail in the soil survey is far 
greater than available well and boring data. However, the 
main intended use for soil mapping is land management. 
Therefore, there are often discrepancies between parent 
materials determined from soil polygons and the actual 
parent material (verification is conducted from boring data 
and by geomorphic interpretation). Parent material maps 
created in this fashion must be used with caution and 
interpreted with care.

Drift-Thickness Map

A second piece of mapping information is drift thick-
ness (DT) (Powers and Swinford, 2004). DT maps are cal-
culated from the surface digital elevation model (DEM) 
and the bedrock-topography map (Figure 3) (the bedrock 
topography map is usually updated and revised during the 
stack mapping process, past versions available as Mylar 
basemaps, contour shapefiles (vector), and grids (ODGS, 
2003)). A key issue for DT maps is “flying outcrops” 
where the elevation of the bedrock topography (BT) ex-
ceeds that of the DEM. Such areas are not unexpected, as 
there are significant inaccuracies in both datasets. The ac-
curacy of USGS DEMs is in the range of 5 to 10 feet Root 
Mean Squared Error (RMSE) (Venteris and Slater, 2005; 
Smith and Sandwell, 2003). The accuracy of BT within 
the Ashtabula and Trumbull quadrangles was estimated as 
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Figure 1. Map of drift thickness for part of the Ashtabula South 1:24,000-scale quadrangle, Ohio.

part of the current project. External validation was con-
ducted for BT based on new bridge borings that were not 
used to create the map. Bedrock elevations from bridge 
borings were compared with interpolated elevations based 
on a TOPOGRID model of BT contours. RMSE error was 
found to be 22 feet. Assuming zero covariance between 
the error in the DEM and BT, the total error DT is

E2 Dt   =   σ2DeM   +  σ2Bt (1)

where σ2DEM is the error (expressed as a variance) in the 
DEM and σ2BT is the error in the BT. Assuming an error of 
7 ft RMSE for the DEM, the total RMSE error in DT for 
this area is 23 feet. Hence, the error in DT is dominated 
by the error in the BT. Because of this uncertainty, drift 
thickness less than this value may in reality be areas of 
bedrock outcrop. For the current mapping project, areas 
of negative drift thickness are corrected to a DT value of 
zero feet. Areas of thin drift (less than 5 feet) are usu-
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Figure 2. Parent material map based on SSURGO.

ally also identified in the parent-material (soil survey) 
maps, providing another means to confirm the presence of 
outcrop. Surficial materials at such locations are marked 
with	parentheses	on	the	“stack”	maps	to	indicate	that	drift	
coverage	is	discontinuous	in	the	area.

Other Base Maps

Legacy	geologic	maps	are	also	used	in	mapping.	Dig-

ital versions of the bedrock geology map (Ohio Division 
of Geological Survey, 2003) are used to map the bedrock 
base of each stack unit (the entire area of interest in the 
present mapping is underlain by shales of Devonian age). 
Existing maps of surface glacial deposits are compared to 
the parent material maps (from the soil survey) to aid in 
the assignment of surface units, especially in interpreting 
depositional environment. Often, lithology information is 
obtained from the well data and the soils maps without a 
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Figure 3. Glacial-geologic map of the study area taken from White and Totten (1979).

geomorphic	interpretation.	However,	such	interpretations	
are	critical	to	the	use	of	this	data	for	its	intended	applica-
tions. For example, identification of sand and gravel (a 
lithology)	as	either	an	outwash	or	ice	contact	deposit	(a	
geomorphic	interpretation)	is	key	to	groundwater	model-
ing,	as	there	will	be	marked	differences	in	facies	hydraulic	
structure	and	conductivity	between	the	materials.

County-scale	glacial-geology	maps	(Figure	3)	were	
available	for	the	three	counties	of	the	2006	STATEMAP	

project area (White, 1971; White and Totten, 1979; Totten 
and White, 1987). These maps were scanned and rectified 
(not digitized in a vector format) and used in the GIS as 
an additional layer to aid in the mapping of surface units 
(assignment of lithology, etc).

Water-Well and Other Boring Data

Mapping in the subsurface is based on lithology and 
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other information available from borings drilled for water 
wells and engineering studies. The most spatially dense 
data set are water well records from Ohio Division of 
Water (ODOW). It is a legal requirement that the records 
(logs) from the drilling of water wells be filed with the 
state. The lithology (texture), thickness, and occasion-
ally color of layers encountered while drilling the well 
are contained in the records. The records are obtained as 
Excel spreadsheets (ODOW, 2005) and converted to a 
geodatabase for use in ArcGIS. An ArcGIS Visual Basic 
application was built to display the well location and 
lithology on paper base maps (Figure 4). The water well 
data provide critical information on lithologic sequences 
with depth, but the unit “clay” requires careful interpre-
tation. It is likely that the “clay” unit of the water-well 
records contains lithologies that range from clay to silt. 
The identification of silt units is strongly underrepresented 
compared to the proportion indicated in more detailed and 
reliable texture data (textures based on laboratory work) 
such as those from bridge borings (Table 1). The lithology 
“clay,” therefore, is reinterpreted in this modeling to mean 
clay and silt.

More accurate and detailed depth information is 
available from the Ohio Department of Transportation 
in the form of detailed records from geotechnical bor-
ings drilled to support bridge construction. These data 
are available as paper records from ODOT (Figure 5). A 
digital relational database (Figure 6) is in development 

Table 1.	Comparison	between	sediment	textures	in	
water-well	and	bridge-borings	in	Ashtabula	County.	The	
comparison	contains	many	sources	of	serious	bias,	as	the	
water-well	data	generally	extends	to	greater	depths	than	
the	ODOT	bridge	boring	data,	and	the	spatial	distribution	
of	bridge	borings	is	seriously	biased.	However,	it	is	clear	
the	silt	is	grossly	underrepresented	in	water	wells.	The	
column	“Bridge	Boring”	gives	the	textural	percentage	
used to define each lithlogic class in the bridge borings.

 Texture 
 Class 

Water 
Well 

Bridge 
Boring 

Cutoff for
Bridge Boring

	
	
	
	
	

Clay	
Silt	
Sand	
Gravel	
	

0.6	
0.004	
0.18	
0.21	
	

0.37	
0.26	
0.07	
0.07	
	

>40%
>40%
>40%
>30%	sand,
>10%	gravel

Figure 4. Close-up example of water-well postings.
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Figure 5. Scan of a portion of an ODOT bridge boring record.

Figure 6. Schematic showing fields, tables and database relationships for the bridge boring/ OEPA 
database,	built	by	the	Ohio	Division	of	Geological	Survey.
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by	ODGS	to	facilitate	computer-based	analysis	of	these	
data.	ODOT	records	provide	detailed	engineering	data	on	
texture,	mechanical	strength	(blow	counts,	plasticity	in-
dexes,	liquid	limit,	wetness),	and	lithology	(color,	texture,	
texture	class).	ODOT	bridge	borings	provide	excellent	site	
information,	but	have	limited	spatial	density	and	a	strong	
locational	bias.	The	borings	are	mainly	collected	where	
roads	intersect	major	streams	and	the	depth	is	usually	lim-
ited to approximately 50 ft, which is insufficient in typical 
buried	valleys	where	drift	thickness	can	exceed	300	feet.

Further	depth	information	is	available	from	OEPA	
in the form of detailed site studies. Engineering firms 
with projects such as sanitary landfills and industrial 
facilities file with OEPA their detailed studies of the 
subsurface.	These	reports	typically	contain	several	well	
borings	(typically	10	to	30	wells)	with	a	wide	range	of	
engineering	data.	The	types	of	information	are	usually	
similar	to	ODOT	records,	but	with	inconsistent	cover-
age	(one	well	may	contain	good	textural	information,	
but	lack	blow	counts,	etc.).	Digital	capture	of	all	wells	in	
these	sites	is	beyond	the	mapping	goals	(site	studies	vs.	
regional	mapping)	and	resources	(time/	labor	constraints)	
of	the	ODGS.	Typically,	the	best	well	of	the	group	(with	
represtative	geology	and	data	compatible	with	the	ODOT	
database)	is	chosen	from	each	site	and	entered	into	the	
same	database	as	the	bridge	borings.

Qualitative Mapping—Ashtabula South 
Quadrangle Case Study

The	idea	for	mapping	in	three	dimensions	using	stack	
sequences and 2D polygons is based on previous surficial 
mapping approaches (Kempton, 1981), with refinements 
unique	to	ODGS	(Brockman	et	al.,	2004).	The	emphasis	
in	ODGS	work	is	on	lithologic	characterization,	so	stack	
sequences	describe	both	layer	lithology	and	thickness	
(estimated	to	within	50%)	from	the	surface	to	bedrock.	
Little	attempt	is	made	in	this	mapping	work	to	assign	time	
units	to	the	layers,	except	where	distinctions	between	
the	Wisconsinan	and	prior	glaciations	are	well	known	or	
obvious.	Tills	are	not	mapped	by	traditional	stratigraphic	
units	(for	example,	the	Hiram	and	Waverly	tills	of	White	
and Totten, 1979) but are divided where there are signifi-
cant	changes	in	texture	or	chemistry	(carbonate	content).

Base	data	are	compiled	into	a	stack	model	using	
traditional	geologic	mapping	methods	(drafting)	followed	
by	G�S	digitization.	Experience	has	shown	that	accurate	
and efficient generalization and interpretation require the 
geologist	to	utilize	much	information	in	a	spatial	context.	
Large	scale	(1:24:000)	mapping	conducted	using	transpar-
ent	Mylar	and	paper	base	maps	can	display	much	more	
information	at	a	legible	scale	at	one	time	than	any	practi-
cal	(inexpensive)	computer	screen.	After	compilation,	

hand-drawn	maps	are	digitized	and	attributed	to	make	
G�S	coverages	using	standard	G�S	techniques.

The first step in mapping is to delineate the major 
lithologic	and	geomorphic	units	present	at	the	surface.	
Polygons	of	surface	features	are	drawn	initially	by	gen-
eralizing	(as	appropriate	for	a	1:100,000-scale	map)	the	
parent	material	polygons	from	the	interpreted	soil-survey	
map.	Elevation	contours	and	DEMs	are	often	used	as	an	
additional	guide	to	generalization	(breaks	in	slope,	or	
stream	and	erosion	patterns).	The	surface	model	is	further	
refined by adding geomorphic interpretations based on the 
mapper’s	own	knowledge,	aided	by	legacy	geologic	maps	
such	as	the	glacial-geology	series.	The	surface	model	
(Figure 7) is also checked and verified using information 
from	the	various	water-well	logs	and	other	boring	data.

The difficulty and need for geologic interpreta-
tion	increases	greatly	when	mapping	in	the	subsurface.	
Subsurface	transitions	are	delineated	on	the	maps	using	
a	contrasting	line	color,	which	is	expressed	as	a	different	
line style on the final map (solid lines for changes in sur-
face	materials	and	dashed	lines	for	subsurface	transitions	
(Brockman	et	al.,	2004;	Swinford	et	al.,	this	volume)).	
Subsurface	polygons	denote	large	changes	in	thickness	
and lithologic sequence. The first step in subsurface map-
ping	is	inspection	of	the	drift	thickness	map.	The	geolo-
gist	looks	for	major	geomorphic	features,	which	provide	
a	rough	idea	of	where	the	major	transitions	will	be	drawn.	
�n	general,	breaks	in	thickness	that	delineate	buried	val-
leys	and	end	moraines	are	the	most	common	and	critical	
to	communicating	the	geology	of	the	area.	Once	major	
thickness	transitions	are	denoted,	a	stratigraphic	model	
is	developed	to	assign	stack	sequences	to	each	mapping	
polygon.	This	model	is	based	on	inspection	and	analysis	
of	the	well	data	in	the	area.	�n	general,	detailed	informa-
tion	(mainly	texture,	but	penetration	and	plasticity	tests	
are	also	useful)	from	bridge	borings	and	environmental	
study	sites	are	used	to	develop	an	initial	conceptual	
model. The model is then verified and extended spatially 
using	the	more	general	water	well	data	(which	are	usu-
ally	posted	to	the	parent	material	and	drift	thickness	base	
maps) and an understanding of the expected configuration 
of	sediments	for	the	given	geomorphologic	environment.

An	illustrative	example	of	mapping	at	depth	is	pro-
vided	for	the	SW	corner	of	the	Ashtabula	South	Quad-
rangle.	This	area	is	unusually	complex,	as	it	contains	the	
Painesville	end	moraine	superimposed	on	the	buried	val-
ley	associated	with	the	Grand	River.	The	area	surrounding	
these	features	contains	end	moraines,	beach	ridges,	and	
lacustrine	sediments.	The	main	subsurface	feature,	a	ma-
jor	north-south	bedrock	valley,	was	dammed	(to	the	north)	
when	glacial	ice	occupied	the	Lake	Erie	basin.	The	feature	
is	approximately	four	miles	wide	and	contains	drift	with	
a	thickness	up	to	300	feet	(Figure	1).	When	mapping	this	
buried	valley,	we	have	to	make	two	major	decisions:
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Figure 7. Preliminary model of the subsurface geology at head of the Grand River. This is a por-
tion of the “stack” map for the 1:100,000 scale Ashtabula Quadrangle. The map is currently under 
review. Some key abbreviations: TG = Wisconsinan till unit high in silt content, TE = Wisconsinan 
till unit high in clay, SG = sand and gravel, LC = silt and clay (generally lacustrine), Sh = shale 
bedrock, S = Sand, CG = buried-valley deposit with undifferentiated lithology.
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	1.	What is the best way to draw polygons to com-
municate the important transitions in thickness and 
lithology?

	2.	How do we best generalize available well data into 
a stratigraphic model to assign stack sequences to 
these polygons?

Maps of drift thickness are used to provide an initial 
impression of the subsurface configuration. The DT map 
(Figure 1) shows the superposition of the north-trend-
ing Grand River buried valley and the SW-NE trending 
Painesville moraine. Some “fingers” of increasing drift 
thickness off the main valley are due to the Painesville 
moraine, whereas others are due to the presence of buried 
side valleys. The bedrock-topography map must be used 
in conjunction with the drift thickness map for proper in-
terpretation. These maps were used to develop basic ideas 
on mapping the subsurface, such as the locations and ex-
tents of major subsurface polygons, total depth needed for 
stack sequences, boundaries of major subsurface morpho-
logic units (in this case delineating a reasonable extent of 
lake sediments when the buried valley was flooded), and 
cartographic concerns such as minimizing small and sliver 
polygons caused by the interaction of surface features and 
subsurface polygons.

Borehole information is used to develop a general-
ized stratigraphic sequence or “stack” for each polygon. 
Each stack contains the lithology (and geomorphol-
ogy, where applicable) and thickness estimate (within 
±50%). The goal is to generalize information from many 
wells into vertical sequences and identify horizontal 
transitions and breaks in the sequences (overall depth 
or lithology) that warrant drawing additional polygon 
boundaries.

Stack sequences for the study area were mainly 
based on water-well lithology logs. Detailed (bridge) 
boring data were not available for this geomorphic fea-
ture within the quadrangle boundary. Only one detailed 
site with limited depth (~100 ft) existed to the southwest 
(in the Jeffersonville 1:24,000-scale quadrangle), so 
stratigraphic models were developed mainly from the 
water-well database. The first attempt at a stratigraphic 
model was based on interpretation of common patterns 
in lithology. An attempt to correlate first clays, first grav-
els, second clays, second gravels and so on was done. 
Some patterns emerged, but it was clear there was much 
variability between the data. Differences in vertical 
resolution and quality between loggers, complex spatial 
variations in geology, and blunders all made it difficult 
to create a generalized stack. The preliminary subsurface 
model and stratigraphic sequence (Figure 7) was subject 
to a more rigorous review, aided by results of geostatisti-
cal and statistical analysis.

Quantitative Mapping—Geostatistical 
Modeling (Sequential Indicator Simulation)

Geostatistical simulation techniques exist to model 
and simulate categorical variables such as lithology. Such 
methods are common in oil and gas exploration (Deutsch, 
2000) and have been used to characterize surficial depos-
its for ground-water modeling (Carle and Fogg, 1996; 
Ritzi et al., 2000). The various forms of geostatistical 
simulation are generally preferred over indicator kriging 
for modeling of surficial deposits because buried-valley 
and other surficial deposits have high spatial complex-
ity. In addition, the sample spacings of typical well data 
sets contain gaps or average spacings that greatly exceed 
the scale of autocorrelation. In this context, the rigorous 
techniques of uncertainty analysis and superior ability to 
extrapolate results beyond the well data (due to sequential 
approach used in simulation algorithms) of simulation 
techniques are valuable. While model results in sparsely 
sampled regions are not reliable for predicting the position 
of lithologies (say for drill planning), such extrapolation is 
useful for groundwater simulation, provided many realiza-
tions are used to understand the range of possible results 
in poorly constrained areas. There are also many theoreti-
cal reasons (missing variance and inherent smoothing of 
kriging, etc.) to choose simulation techniques over kriging 
(Deutsch, 2000).

The goals and output results of geostatisical simula-
tion are different than those of indicator kriging. Kriging 
provides the best estimate of values at unsampled loca-
tions. The goals of simulation are to use kriging in con-
junction with Monte Carlo techniques to produce many 
different realizations faithful to the data locations and 
reproduce global statistics (histogram) and local spatial 
structure (variogram). Each realization represents a sta-
tistically valid, potential configuration of the subsurface. 
However, interpolated values in each model are not opti-
mal estimates and can vary widely between realizations. 
The variation between realizations is the strength of the 
method, as it is the basis for evaluating the uncertainty of 
the model. The more tightly constrained the model (large 
amount of well control, predictable spatial structure with 
strong (repeated) patterns), the less variability between 
runs. Summary statistics that characterize the differences 
between realizations provide a rigorous and convenient 
way to assess model uncertainty.

A full development of sequential indicator simulation 
(SISIM) (Journel, 1983) is not presented here. However, 
the basics of the algorithm are described to provide the 
reader with insight as to how the technique works and the 
configuration of the data and spatial autocorrelation will 
affect results. First, a regular three-dimensional grid is 
specified for the volume of interest (for efficiency) and a 
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random interpolation order is chosen for the cells. This is 
important, as simulated values are treated as data points 
and used to calculate kriging weights for subsequent 
cells. SISIM is based on the calculation of a conditional 
distribution for each cell, which is randomly drawn from 
to assign a lithology. The conditional distribution is based 
on the kriging estimate (local information) and the global 
probability. For each lithological type (k) at location (u), 
the conditional probability is
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tor	code	(a	binary	variable	for	each	lithology,	i.e.,	sand	
(1)	or	not	sand	(0))	for	a	neighboring	data	point	(either	
a	“real”	data	point,	or	a	simulated	cell)	and	pk(u)	is	the	
global	probability	for	the	respective	lithology.	Hence,	
the	conditional	probability	is	a	function	of	the	values	
of neighboring cells (whose influence with distance is 
defined by the variogram and kriging) and a global prob-
ability.	Next,	p*k	results	for	each	lithology	are	combined	
to define the cumulative conditional distribution function 
(ccdf).	A	random	number	between	0	and	1	is	drawn,	and	
the	ccdf	is	used	to	assign	a	lithology	for	that	cell.

Some	key	aspects	of	the	algorithm	should	be	consid-
ered	when	evaluating	an	individual	realization:

 1. Global probabilities have decreasing influence with 
increasing	density	of	neighboring	data	(due	to	the	
presence of well control or cells that are filled in 
later	in	the	grid	order).	�n	data-rich	regions,	results	
are mainly influenced by the data values and the 
variogram (the distance of influence increases 
with	range;	the	nugget	effect	(if	used)	decreases	
the kriging weights and increases the influence of 
global	proportions).	�n	sparsely	sampled	areas,	ini-
tial	cells	are	controlled	by	the	global	probabilities.

	2.	Randomness	and	subsequent	differences	between	
realizations	arises	from	two	sources:	the	random	
path	for	assigning	cell	values	and	the	random	draw	
to	assign	a	lithology	from	the	conditional	distri-
bution	function.	Once	a	lithology	is	assigned	to	
an empty cell, it becomes a data point and influ-
ences	the	neighboring	results.	This	is	generally	a	
good	feature	of	sequential	simulation,	as	it	tends	
to	produce	geologic	bodies	even	in	areas	poorly	
constrained	by	wells	(for	example,	once	sand	is	
assigned	to	a	cell,	it	is	more	likely	that	neighboring	
cells	also	will	be	assigned	as	sand,	creating	a	sand	
layer).	The	end	result	is	that,	even	in	areas	of	little	
or	no	data,	global	statistics	and	spatial	structure	are	
preserved.

 is the simple-kriging weight, i is the indica-

The sequential indicator simulation algorithm in 
GSLIB (Deutsch and Journel, 1998) was used to model 
lithology (clay, silt, sand, or gravel) for the southwest por-
tion of the Ashtabula South Quadrangle described above.

Workflow

The work presented here was a preliminary explora-
tion, mainly intended to create 3D models for comparison 
with the stack maps. A far more rigorous modeling of 
the area (conducted in elevation space, using simula-
tions nested by stratigraphic units, and models of spatial 
structure based on well statistics (Ritzi et. al, 2000)) is 
presented in Venteris, 2007. The preliminary investiga-
tions presented here were conducted to test whether litho-
logic information from the water wells could be extended 
(interpolated) into continuous models using geostatistical 
simulation techniques. The amount of similarity between 
models created by the two techniques could provide in-
sight into the geology of the study area and the quality of 
information contained in water wells.

The first step in modeling was to define the spatial 
domain of the model. The area for study was chosen for 
geological interest and the presence of sufficient wa-
ter-well data to support simulation. The lack of detailed 
ODOT borings was a significant disadvantage to this 
study area. The models were created in depth-space rather 
than using real world elevations. Such an approach was 
advantageous for preserving lateral continuity for layers 
that follow topography such as till sheets and for com-
parison with the stack model, which were also modeled 
as depth and thickness. A three dimensional grid with cell 
dimensions [x=200 ft, y=200 ft, z=2 ft] (data continuity is 
much higher in the z direction) was defined for modeling. 
This domain contained both unconsolidated sediments 
and bedrock, the boundary between the two defined by the 
DT grid. A FORTRAN program was written to convert 
the 2D ASCII format DT grid into a 3D GSLIB format 
voxel, which was then used to clip the model results. Geo-
statistical simulation was only conducted for the portion 
of the data containing unconsolidated sediments. Bedrock 
and unconsolidated sediments were not modeled together 
because the probability of either lithology group is not 
spatially constant over the domain (stationarity).

Well data were converted to a data format appropriate 
for geostatistical modeling. Water well data from ODOW 
were converted to a simple set of indicator codes. The 
conversion required some interpretation and generaliza-
tion. For example, a water well record described as C/R 
or “Clay and Rock” was coded as clay, assuming that the 
driller was describing a till with rock fragments. There 
were many lithologies that require interpretation in the 
water-well database, but their overall proportion in the 
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dataset	was	small.	Most	descriptions	were	of	common	
and easily classified lithologies. Unconsolidated lithology 
classes from the water wells were reclassified into four 
indicator	variables	[clay=1,	silt=2,	sand=3,	gravel=4].	
�n	addition,	the	wells	were	discretized	in	the	vertical	
direction.	Lithologies	for	wells	in	the	ODOW	database	
were	given	a	range	of	depth	(upper	and	lower	values).	
The	water	wells	were	discretized	at	one-foot	increments	
to provide sufficient continuity of lithology values for the 
intended	vertical	resolution	of	the	voxel	model.

S�S�M	required	the	assignment	of	global	probabilities	
for	each	lithology.	For	this	data	set,	clay	was	the	dominant	
lithology	(Table	2).	Silt	is	grossly	under	represented	in	
the	water-well	dataset	as	discussed	above,	and	so	cells	
modeled	as	clay	include	both	clay	and	silt.	The	data	were	
checked	for	clustering	bias	using	the	DECLUS	routine	
in	GSL�B.	Bias	due	to	clustering	is	less	than	5%	for	this	
dataset and is not considered a significant source of error.

The next step was to define the spatial structure 
(variogram)	for	use	in	assigning	kriging	weights.	First,	
experimental	variograms	were	calculated	from	the	data.	
Experimental	variograms	were	used	to	create	model	var-
iograms	for	input	into	the	simulation	(kriging)	procedure.	
Model	variograms	can	be	created	by	visual	estimation,	
trial and error modeling, and automatic fitting routines. 
Key	information	to	obtain	from	the	experimental	var-
iograms	was	the	overall	shape	(expressed	as	a	function,	
usually	spherical),	the	range	of	autocorrelation	(where	
the	variogram	intercepts	the	sill),	and	the	magnitude	of	
the	nugget	effect	(non-zero	intercept,	caused	by	small-
scale	variability	below	the	distance	of	the	lag	spacing	and	
measurement	error).

Experimental	variograms	were	calculated	(using	
GAMV	routine	in	GSL�B)	for	each	lithology	(except	silt,	
for which there are insufficient data points) in the verti-
cal	and	horizontal	directions.	A	range	of	experimental	
variograms	were	calculated	to	explore	many	possible	
scales	of	spatial	structure	(by	adjusting	lag	spacings	and	
the	number	of	lags)	and	to	check	for	anisotropy.	There	
was	some	indication	of	anisotropy	(semi-variance	values	
exceeding	sill),	but	the	noise	in	the	data	set	precluded	an	
accurate	estimate	of	directionality.	�ndicator	variograms	
in	the	vertical	direction	(Figure	8)	were	generally	smooth,	

Table 2.	Proportions	of	each	lithologic	unit	for	the	simu-
lated	area.

 Texture Class Water Well

	 Clay	 0.816
	 Silt	 0.002
	 Sand	 0.137
	 Gravel	 0.045

Figure 8. Indicator variograms in the vertical direction. 
Dark blue is clay, light blue is silt, yellow is sand, and red 
is gravel.

had a small nugget effect, and were fit with a basic spheri-
cal model (Table 3). Experimental variograms were much 
less stable in the horizontal direction. Smooth variograms 
were possible using large lag spacings (Figure 9) but a 
more revealing picture was obtained by using small lag 
spacings (Figure 10). The smooth experimental vario-
grams suggested a very large nugget effect and a range 
of around 3,000 feet. The gravel lithology never fully 
approached the sill, which suggested an anisotropic struc-
ture. Experimental variograms using a smaller lag spacing 
showed a more complex picture. For small lag spacings 
the nugget was much reduced, but the semi-variance os-
cillated widely, making range selection ambiguous. This 
“hole effect” could have been due to the natural spatial 
structure of the glacial sediments or a result of incomplete 
and noisy sample data. Determining the range (point of 
intercept with the sill) was essential for kriging and simu-
lation. The variograms showed an initial structure (local 
maxima) at about 1,500 feet. All variograms intercepted 
the sill several times over the range of 1,500 to 5,000 feet.

Several variograms were used in the simulations, 
as the experimental variography did not provide clear 
guidance for the horizontal variogram model (a different, 
more rigorous approach to characterizing spatial struc-
ture for SISIM modeling is presented in Venteris, 2007). 
Three example variogram models were used to demon-
strate a reasonable range of results. No attempt was made 
to choose the best model from the range of possibilities. 
Rather, multiple scenarios were run to illustrate the effect 
of variogram parameters on results. Model variograms 
for simulation were loosely based on the experimental 
horizontal variograms (vertical models are held constant 
(Table 3)). For the first experiment, the horizontal range 
for all lithologies was set to 2,000 feet (a compromise 
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Table 3.	Model	variogram	parameters	used	in	the	three	indicator	simulation	runs.	The	
nugget	effect	is	zero	for	the	short	range	and	long	range	models.	The	nugget	is	0.5	for	the	
short-range	with	nugget	model.

 Indicator Horiz. Range (Anisotropic) Vertical Range Contribution

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Nugget
1	
2	
3	
4	

Short	Range
1	
2	
3	
4	

Long	Range
1	
2	
3	
4	

2000	
2000	
2000	
2000	

2000	
2000	
2000	
2000	

5000	
5000	
5000	
5000	

50	
15	
40	
80	

50	
15	
40	
80	

50	
15	
40	
80	

0.5
0.5
0.5
0.5

1
1
1
1

1
1
1
1

Figure 9. Indicator variograms in the horizontal direction 
(isotropic) using a lag separation of 1500 feet and a lag 
tolerance of 800 feet. Colors and lithologies are the same 
as in Figure 8.

Figure 10.	�ndicator	variograms	in	the	horizontal	direc-
tion	(isotropic)	using	a	lag	separation	of	300	feet	and	a	lag	
tolerance	of	150	feet.	Colors	and	lithologies	are	the	same	
as	in	Figure	8.

between	the	ranges	of	clay	and	sand	(intercept	at	1,500	
feet)	and	gravel	(around	2,500	feet))	with	a	large	nugget	
contribution	(0.5,	or	50%	of	the	variance	due	to	mea-
surement	error	and	spatial	variation	below	the	scale	of	
the	lag	distance).	For	the	second	model,	the	range	was	
held	to	2,000	feet,	but	the	nugget	effect	was	set	to	zero	
(assuming	nugget	due	to	inadequate	sampling	rather	than	
geologic variability). For the final model, it was assumed 
that	both	early	oscillations	and	large	nugget	effects	were	

spurious. The variograms were modeled with a range of 
5,000 feet and a nugget effect of zero. This model rep-
resented the maximum amount of spatial continuity that 
could reasonably be interpreted from the experimental 
variogram results.

Lithologies were simulated using the SISIM algo-
rithm as implemented in GSLIB. 16 individual realiza-
tions were produced for each variogram model. As a rule 
of thumb, the number of realizations should be around 
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100. Running this model in GSLIB resulted in a stack 
overflow and program discontinuation after 16 runs. 
The solution was to run multiple batches and then write 
software to recombine them for final products. Modified 
software to process 100 runs was not complete at the writ-
ing of this contribution. The goals of this study are mainly 
exploratory and illustrative, so the limitation to 16 realiza-
tions had little meaningful impact.

To find the most common value and assess the vari-
ability of the realizations for each cell, the realizations 
were post-processed. Firstly, the portion of the model at or 
below bedrock was removed (clipped). FORTRAN pro-
grams were written to post-process the SISIM runs. The 
mode value was used as the most common value between 
runs. The algorithm did not break ties between lithologies 
(a very rare occurrence), and cells with an ambiguous 
mode were written to “no value.” Cells that did not con-
tain a well data point could take any value from realiza-
tion to realization. The variety of lithologies written to 
each cell was of interest. Variation between runs for each 
voxel cell was evaluated using Shannon’s (1948) entropy
where pi was the proportion of each lithology within the 
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set of realizations. Values close to zero indicated consis-
tent values between runs, and values near 1 represented 
high variation between runs.

RESULTS

Qualitative Mapping

A wide range of surface features of mappable size 
exist in the study area. The preliminary stack map is 
presented in Figure 7. The major surface geomorphic 
feature is the Painesville end moraine, which trends from 
the southeast to the northwest. On the lake ward side (to 
the northwest), sand and gravel beach ridges are superim-
posed. Most alluvial deposits are too small to be mapped 
at 1:100,000 scale. Behind the end moraine is a small 
southeast/ northwest trending lacustrine deposit. In the far 
southwest corner is a large sand and gravel deposit, which 
was previously interpreted as outwash (White and Totten, 
1979). The far southeast corner is occupied by till in the 
form of small end moraines and ground moraine. There 
is also a major alluvial valley deposit in this part of the 
study area. For the stack maps, tills are not differentiated 
into end and ground moraines, as on a traditional glacial-
geology map. Instead, tills are divided on the basis of 
broad textural class where the unit “TG” represents a silt-
rich unit found lake ward and “TE” indicates a clay-rich 
till found inland.

The major subsurface feature in the study area was 
the north-south trending buried valley, and it was the ma-

jor challenge to mapping in the study area. A generalized 
stratigraphic model was developed from a wide variety 
of information, little of which could provide definitive 
guidance or insight. The first task toward modeling the 
stratigraphy was to use previous studies (White and 
Totten, 1979), wells, and base maps to develop a gen-
eral reconnaissance model of the subsurface. This initial 
survey gave a basic sense of the sediments that might be 
encountered in the subsurface and, in particular, indicated 
that lacustrine sediments were an important component of 
this buried valley.

The surface was dominated by tills of Wisconsinan 
age that ranged in thickness from nearly 0 to 100 feet in 
the study area (Figure 11). A rough estimate of the thick-
ness of this unit was estimated from the wells using the 
first gravel or sand as the boundary between the Wiscon-
sinan tills and underlying sediments. However, the marker 
was very thin, absent, or ambiguous in many of the wells. 
The map was useful for estimating thickness within ±50% 
for defining stack sequences, but was interpreted with 
caution.

The next issue was determining a generalized stra-
tigraphy below the major till unit. The task was highly 
interpretive. Water well records only provided basic 
lithology (clay, silt, sand, etc.) and gave no information on 
the geomorphic environment. Hence, a lithology of “clay” 
could have referred to till or lacustrine deposits (perhaps 
ice contact as well). The buried valley likely contained 
till, lacustrine, sand, and gravel deposits. However, the 
only direct evidence for the existence of lacustrine depos-
its was from an ODOT bridge boring south of the study 
area (Figure 12). This well showed a 25-foot thick layer 
that contained 0% aggregates at a depth of 40 feet, which 
is likely a lacustrine deposit. Even with this high resolu-
tion and quality evidence, a low aggregate till could not 
be completely ruled out for this layer, however.

Further information to aid interpretation was pro-
vided by a plot of the proportion of sand and gravel with 
depth for all the wells of the study area (Figure 13). Sand 
and gravel did not commonly occur in the upper 50 feet 
of the surficial deposits (where Wisconsinan till predomi-
nated). Below 50 feet, the likelihood of encountering 
sand and gravel deposits increased up to a maximum of 
40% at a depth of 105 feet. Then the proportion of sand 
and gravel dropped off again, to around 0.25 from 120 
to 145 feet. Finally, the proportion increased again, but 
was interpreted with caution, as a limited number of wells 
penetrated to this depth. (The trends in the proportion of 
sand and gravel had implications for geostatistical simula-
tion and are discussed later). This plot was used to guide 
the placement of sand and gravel layers within the stack 
sequences.

This variety of information was interpreted, com-
bined and simplified to create the “stack” for each of 
the polygons. A base stack was developed for the center 
(thickest part) of the end moraine and buried valley, which 
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Figure 11. Estimated thickness of Wisconsinan till from kriging of water-well data.

was	correlated	outwards,	eliminating	lower	units	as	the	
bedrock	elevation	increased.	The	data	could	have	been	in-
terpreted	and	generalized	in	many	ways,	so	several	stack	
models	were	possible	(Table	4).	A	range	of	models	was	
given	with	varying	degrees	of	complexity	and	interpreta-
tion.	The	layer	of	Wisconsinan	tills	(TG)	was	the	most	
certain	of	the	units	and	was	used	in	all	models.	Model	
1	was	the	most	detailed	and	heavily	interpreted	version.	

The sand and gravel unit noted at the base of the tills was 
included in the second layer as (SG). Lacustrine deposits 
identified in the detailed bridge boring occurred below 
this unit. This was followed by a sequence of sand and 
gravel units estimated to be between 15 and 45 feet thick 
(SG3). This unit was based on information from Figure 13 
(sections where the proportion of sand and gravel exceeds 
30%). This was followed by another lacustrine unit, inter-
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Figure 12. Texture analysis from an ODOT bridge boring 
close to the study area.

Figure 13. Proportion of sand, gravel and sand, and 
gravel with depth for all the wells in the study area.

Table 4.	Potential	stack	models	for	the	part	of	the	study	
area	with	the	thickest	drift	(an	end	moraine	superimposed	
on	a	buried	valley).	The	complex	models	(e.g.,	#1)	might	
provide	more	information,	while	the	simpler	ones	(e.g.,	
#4)	may	provide	a	more	reasonable	picture	of	what	is	
known	about	the	geology	in	the	area.	The	numbers	repre-
sent	thickness	divided	by	10,	and	are	considered	accurate	
to	within	50%.	Parentheses	indicate	that	the	presence	of	
a	layer	is	discontinuous	between	wells.	Abbreviations	are	
as	follows,	TG-	Wisconsinan	till	with	high	silt	content,	
SG-	sand	and	gravel	deposits,	LC-	silt	and	clay	(generally	
lacustrine)	deposits,	CG-	undifferentiated	buried	valley	
deposits with insufficient well control or extreme com-
plexity	that	prevents	differentiation	of	lithology.

 Model 1 Model 2 Model 3 Model 4

Layer	1	
Layer	2	
Layer	3	
Layer	4	
Layer	5	
Layer	6	
Layer	7	

TG9	
(SG)	
LC2	
SG3	
LC2	
(SG)
CG7

TG9	
(LC2)	
SG3	
LC2
CG9

TG9	
SG4	
CG11

TG9
CG16

preted	from	the	drop	in	the	proportion	of	sand	and	gravel.	
A	buried	till	could	was	a	possible	alternate	interpretation	
for	layer	5.	The	water	wells	indicated	a	dominance	of	clay	
for	this	depth,	but	there	is	no	information	on	aggregate	
content,	etc.,	to	show	how	this	clay	was	deposited.	Layer	
6	in	this	model	represented	deep	sand	and	gravels,	which	
were mainly identified from detailed EPA site studies and 
descriptions	in	previous	publications	(White	and	Totten,	
1979).	This	was	a	unit	of	pre-Wisconsinan	till	or	sand	and	
gravel	that	was	oxidized	and	probably	occurs	near	the	
bedrock	interface.	The	rest	of	the	sequence	(on	average,	
70	feet	of	material)	was	essentially	unknown	because	
there	were	few	borings	that	penetrated	to	this	depth	that	
contained	material	descriptions.	This	unit	was	designated	
as	CG,	which	denoted	buried-valley	lithologies	that	range	
from clay to gravel. Model 2 was simplified by eliminat-
ing two units. The first sand and gravel (layer 2) of Model 
1	was	eliminated	because	it	was	often	nonexistent	or	too	
thin	to	map.	Also,	the	bottom-most	sand	and	gravel	of	

Model 1 was eliminated because evidence for its existence 
is questionable. Model 3 further simplified the model by 
removing the upper LC unit because it was confirmed 
at only one location. Likewise, the lower LC unit was 
eliminated, as it was purely an interpreted unit. There was 
little evidence to differentiate this interval between till or 
lacustrine deposits, so inclusion of this interval with the 
CG unit was justified. Model 4 represented the most con-
servative model. Here, everything below the Wisconsinan 
till unit was considered unknown. The justification for this 
approach was that the depth of occurrence and lithology 
of the buried-valley deposits below the till was essentially 
unknown and unmappable.

The choice of final stack model for the map was 
arbitrary. Decisions must be based on the judgment of 
the geologist, using a compromise between the limited 
available information (what can be justified on the data or 
evidence) and the need to communicate what likely would 
be encountered below the surface (based on geologic 
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knowledge	and	interpretation).	Model	4	was	considered	
too	simplistic.	From	Figure	13,	it	was	clear	that	there	was	
a	nearly	even	chance	of	encountering	a	sand	and	gravel	
layer	at	depths	ranging	from	70	to	110	feet.	The	increased	
likelihood	of	sand	and	gravel	layers	over	this	depth	range	
was	not	communicated	in	Model	4.	Model	3	was	also	
probably	too	simplistic.	Here,	the	presence	of	sand	and	
gravel	was	communicated,	but	no	lacustrine	deposits	
were	designated.	Model	2	contains	all	the	major	compo-
nents that we expected to find in this buried valley. Two 
lacustrine	deposits	were	designated,	which	bracketed	the	
most	probable	stratigraphic	position	and	thickness	of	sand	
and	gravel.	The	stack	model	communicated	the	main	idea	
of	the	deposit:	tills	underlain	by	buried-valley	deposits	
that have more fine-grained materials than was typical 
for	Ohio	(due	to	the	ice	damming	to	the	north).	However,	
model	1	was	too	detailed	and	seems	over-interpreted	
compared	to	the	quality	of	the	data.	The	bottom	SG	unit	
was only identified in a few wells and did not provide the 
user	with	particularly	useful	new	information.	The	SG	
unit	of	Layer	2	was	much	more	common	in	the	well	data,	
but	thickness	and	depths	are	inconsistent.

In summary, it was difficult to correlate lithologies 
between wells with confidence. This was consistent with 
the	results	of	variogram	modeling,	which	indicated	that	
spatial	patterns	were	noisy	at	best	(large	nugget	effect).	

Finding meaningful and reliable patterns between data 
points was a serious issue for both qualitative and quanti-
tative mapping approaches.

Geostatistical Simulation

Example realizations, mode, and entropy are pre-
sented for each of the three variogram models to compare 
results. The results demonstrate the range of possible con-
figurations (individual realizations) and the amount of spa-
tial continuity using long and short autocorrelation ranges 
and the nugget effect. The results are presented as fence 
diagrams for an overview, and cross sections are provided 
for close inspection. An overview of the model domain, 
well data, and bedrock surface is found in Figure 14.

Individual realizations are presented in Figure 15, 
with two example realizations (of the 16 calculated) 
provided for each variogram model. Each obeys the data 
values, spatial structure, and histogram of the original 
data. Each realization is one possible configuration of the 
subsurface from a range of possibilities. There are clear 
differences between results. The 2000-foot range, large 
nugget effect model (Figure 15-A) produces realizations 
with a high amount of randomness. For example, simu-
lated sand and gravel bodies contain many cells of clay, 
and regions of clay are “speckled” with sand and gravel 

Figure 14. Overview three-dimensional model showing wells, their lithology, and the bedrock surface (in 
units of depth, not elevation).
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Figure 15. Example realizations for models. A, short-range variogram and high nugget effect; B, short 
range variogram with no nugget effect; C, long-range variogram with zero nugget effect. The spatial orien-
tation is the same as for Figure 14 (north to the upper left corner).
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cells. Such a model would have low flow continuity when 
modeling groundwater flow. Retaining the range (2000 
ft)	but	removing	the	nugget	effect	produces	a	lithologic	
model	with	more	continuous	bodies	(Figure	15-B).	There	
is	much	more	spatial	continuity,	and	“speckling”	is	mini-
mized.	Extending	the	range	to	5000	feet	(Figure	15-C)	
produces	elongate	horizons	of	sand	and	gravel.	Such	re-
sults	are	visually	pleasing,	as	they	produce	a	layered	look	
to	the	geology,	which	is	compatible	with	stratigraphic	
concepts.	However,	this	model	is	the	least	faithful	of	the	
three	to	the	results	of	experimental	variography.	�t	rep-
resents	the	maximum	extent	of	spatial	continuity	of	sand	
and	gravel	bodies	that	could	be	reasonably	interpreted	
from	the	data.

�nter-run	variability	between	the	short-range/high	
nugget	and	long-range	models	was	investigated	more	
closely	by	looking	at	an	individual	slice	through	the	
models.	A	cross-section	(Figures	16,	17,	18	and	19)	was	
chosen	that	has	wells	proximal	to	guide	interpolation,	but	
not	within	the	displayed	cells.	This	location	was	chosen	
in	order	to	investigate	the	variation	in	simulation	results	
where there was some well guidance, but also signifi-
cant	gaps.	There,	little	commonality	was	found	between	
single	realizations	of	the	short-range	model	and	those	of	
the	long-range	model	(Figures	16-A	and	18-A).	As	noted	
above,	the	short-range	model	had	more	interspersion	
between	lithologies,	and	less	contiguous	sand	and	gravel	
bodies (increased influence of marginal probabilities over 
kriging	weights).	For	the	short	range	and	nugget	model,	
the data had limited influence on the results. For example, 
silt	lithologies	were	found	throughout	the	model,	even	
though	they	were	not	present	in	any	nearby	wells.

The	mode	of	the	16	runs	(Figures	16-B	and	18-B)	
also	showed	the	increased	randomness	of	the	short-range	
model.	The	mode	for	the	short-range	model	showed	only	
one	stable	sand	body,	the	result	of	nearby	wells	constrain-
ing	the	results.	The	lithology	“clay”	was	the	mode	for	
most	of	the	area.	For	the	short-range	model,	the	global	
proportions heavily influenced the results. The mode for 
the	long-range	model	showed	more	sand	and	gravel	in	
laterally	extensive	bodies.	These	sand	and	gravel	bodies	
existed	from	simulation	to	simulation	because	surround-
ing	wells	contributed	to	the	ccdf,	so	that	each	random-
draw	was	constrained	by	data	(the	left	terms	of	equation	2	
had more influence than the global proportions).

The	entropy	results	(Figures	17	and	19)	further	
illustrated	the	differences	between	the	models.	For	the	
short-range	model,	entropy	results	were	mainly	“granular”	
with	little	pattern,	save	for	an	area	of	low	entropy	in	the	
upper right, where there was influence from a well. There 
were	clear	patterns	in	entropy	results	for	the	long-range	
model.	The	upper	60	feet	or	so	generally	had	low	en-
tropy.	The	wells	in	the	area	were	consistently	clay,	except	
toward	the	center,	where	there	was	less	well	control	(al-
lowing	for	more	variation	between	realizations).	The	area	
of	high	entropy	in	the	deep,	central	portion	was	produced	

Figure 16. East and west-oriented cross section. Cross 
section is about 14,500 feet across and contains depths 
ranging from 0 (top) to 300 feet. Cross section results for 
long-range variogram with zero nugget effect. A, single 
realization; B, mode.

Figure 17. Cross section showing entropy results for 
long-range variogram. Orientation and dimensions are the 
same as Figure 16.
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Figure 18. Cross section results for short-range variogram 
with nugget effect. A. single realization, B. mode. Orien-
tation and dimensions are the same as Figure 16.

Figure 19. Cross section showing entropy results for 
short-range variogram with nugget effect. Orientation and 
dimensions are the same as Figure 16.

by alternation of sand and gravel between runs. True 
distinction between sand and gravel was questionable; an 
alternate modeling approach using hydrofacies (Ritzi et 
al., 2000) where the domain is divided into high and low 
conductivity units, which are modeled within stratigraphic 
units, is a better approach (Venteris, 2007).

CONCLUSIONS

The results raise important questions about the 
mapping of lithologies in buried valleys, particularly the 
feasibility of mapping and spatial modeling at 1:24,000 
and more detailed scales. Most issues can be corrected 
with adequate well control coupled with geophysical stud-
ies, but this is not practical for the scales of interest due to 
the resources involved. Are the data good enough and is 
the geology predicable enough at this scale of interest to 
support county and regional-scale mapping of buried-val-
ley deposits?

Of primary concern is the low horizontal continuity 
(lateral consistency) of lithologies between water wells 
for the current data set. This creates difficulties for both 
stack mapping and geostatistical simulation. Assigning a 
stack to a polygon implies that there is a predictable stra-
tigraphy at that location. At simple locales (such as till 
over bedrock), the meaning of the stack is clear, and it is 
likely a reasonable prediction of the geology at that loca-
tion. Tills can be correlated over large distances (Ehlers, 
1996, chapter 9). Much of the surficial mapping work in 
Ohio is based on the correlation of tills. For this study 
(Figure 11), the scale of autocorrelation for predicting 
thickness of Wisconsinan till was on the order of 35,000 
feet. The picture is less clear for mapping the litholo-
gies of buried valleys. As seen in the water wells and 
simulation results, the depth of occurrence and thickness 
of sand and gravel bodies is highly variable. Some of 
this variability is due to the fact that lithologic layers 
encountered include both those that extend for long 
distances (stratigraphic units) and short distances (facies 
units). There are depth horizons where the occurrence 
of gravel is more probable, but these cannot be reliably 
traced from well to well. Such cases require careful con-
sideration of what the stack sequence is predicting and 
communicating about the geology. In well-constrained 
situations, the stack can give accurate stratigraphic 
information, i.e., it represents a typical configuration 
of sediments for that polygon. When the driller puts in 
a new hole, he could expect a configuration and thick-
ness of sediments similar to the stack sequence on the 
map. For more variable systems, an alternative, more 
probabilistic interpretation of the stack is warranted. 
In this case, the stack is an “average” sequence, which 
identifies the types of expected lithologies and their 
most likely vertical positions. For any location, however, 
portions of the stack may be absent and extra layers 
may be present. Wide ranges in thickness are possible 
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as well. Comparison of the chosen stack model with the 
variability demonstrated in the geostatistical simulation 
results shows the difficulty in applying a stack sequence 
to complex buried-valley sediments.

Another important issue is the reason behind the poor 
horizontal correlation between wells. Several possible 
interpretations exist, the end members being:

	1.	The geology of this buried valley is predictable at 
this scale (well spacing), but the water well data 
are noisy and provide inconsistent information on 
stratigraphic and facies units. These complications 
mask the prediction of stratigraphy.

	2.	The water-well data are accurate, but geological 
variability occurs at scales well below the sample 
spacing (perhaps on 100m scales). The sample 
density is insufficient.

There is reason to believe that both case 1 and 2 
are true. The water-well dataset is known to be noisy. 
Drilling crews with a wide range of geological training 
and experience produce these records as a legal require-
ment with the State of Ohio. Some water wells provide a 
very good approximation of local geology, while others 
contain serious errors in interpretation. Some of these 
errors were detected and fixed through the processing 
of the water wells into indicator variables, but certainly 
misidentifications and other blunders remain in the 
dataset. Past studies have suggested that case 2 may also 
be a contributing factor. Ritzi et al (2000) found that 
the range of autocorrelation for buried valley sediments 
is less than 1,000 feet. Therefore, very dense sampling 
is required (such as is conducted for site remediation 
studies) to make accurate three-dimensional models 
from experimental variography. An alternative is to use 
sources of more detailed information (geophysical pro-
files, outcrops) to develop models of spatial structure for 
geostatistical simulation.
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