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Appendix N 
 

Conditional, Time-Dependent Probabilities for Segmented Type-A 
Faults in the WGCEP UCERF 2 

 
 

Edward (Ned) Field & Vipin Gupta 
 
 

Introduction 
 

This appendix presents elastic-rebound-theory (ERT) motivated time-dependent 
probabilities, conditioned on the date of last earthquake, for the segmented type-A fault models 
of the 2007 Working Group on California Earthquake Probabilities (WGCEP).  These 
probabilities are included as one option in the WGCEP’s Uniform California Earthquake Rupture 
Forecast 2 (UCERF 2), with the other options being time-independent Poisson probabilities and 
an “Empirical” model based on observed seismicity rate changes.  A more general discussion of 
the pros and cons of all methods for computing time-dependent probabilities, as well as the 
justification of those chosen for UCERF 2, are given in the main body of this report (and the 
“Empirical” model is also discussed in Appendix M).  What this appendix addresses is the 
computation of conditional, time-dependent probabilities when both single- and multi-segment 
ruptures are included in the model. 

Computing conditional probabilities is relatively straightforward when a fault is assumed 
to obey strict segmentation in the sense that no multi-segment ruptures occur (e.g., WGCEP 
(1988, 1990) or see Field (2007) for a review of all previous WGCEPs; from here we assume 
basic familiarity with conditional probability calculations).  However, and as we’ll see below, the 
calculation is not straightforward when multi-segment ruptures are included, in essence because 
we are attempting to apply a point-process model to a non point process.  

The next section gives a review and evaluation of the single- and multi-segment rupture 
probability-calculation methods used in the most recent statewide forecast for California 
(WGCEP UCERF 1; Petersen et al., 2007).  We then present results for the methodology adopted 
here for UCERF 2.  We finish with a discussion of issues and possible alternative approaches 
that could be explored and perhaps applied in the future.  A fault-by-fault comparison of UCERF 
2 probabilities with those of previous studies is given in the main part of this report. 

 
 

Time-Dependent Models Used Previously in UCERF 1 
 
There were basically three difference approaches used for computing single- and multi-

segment rupture probabilities in WGCEP UCERF 1:   
 
a) The WGCEP (2003) approach for the San Francisco bay area faults 
 
b) Time-Dependent Model 1 (“T-D Model 1”, applied to the S. San Andreas Fault (SAF), 

and equivalent to their “T-D Model 3” in terms of the discussion here.  
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c) Time-Dependent Model 2 (“T-D Model 2”, applied to the S. SAF).   
 

(all other faults that had time-dependent probabilities in UCERF 1 had only single-segment 
ruptures).  Each of these methodologies began with a moment-balanced long-term rate model 
and then applied some rules to obtain time-dependent probabilities based on dates of previous 
events and, in some cases, other information.  By moment balanced we simply mean the model is 
consistent with fault slip rates.  A question that will be evaluated here is whether these 
probability calculation rules can be applied repeatedly and indefinitely (e.g., as earthquakes 
occur in the future) without violating the long-term model or assumptions that went into the 
methodology. 
 
 
WGCEP (2003) Methodology 
 
 The long-term rate model developed by the 2002 WGCEP resulted in a moment-balanced 
relative frequency of occurrence for each single and multi-segment rupture combination on each 
fault.  A simplified example of the possible ruptures and their frequencies of occurrence for the 
Hayward/Rodgers-Creek fault are shown in Figure 1 (see the caption for details, and note that 
none of the simplifications influence the conclusions that will be drawn here).  From the long-
term rate of each rupture they had four different ways of getting time-dependent probabilities: a 
Brownian Passage Time (BPT) model, a BPT-step model, an Empirical model, and a Time-
Predictable model.  Again, a more general discussion of each of these models is included in the 
main part of this report, whereas here we focus on their procedure for computing conditional 
probabilities of single and multi-segment ruptures.  The discussion here will be in the context of 
their BPT model, although the issues exemplified are applicable to the BPT-step and Time-
Predictable models as well. 

From the long-term rate of each rupture, conditional time-dependent probabilities for 
each rupture were computed as: 
 

P(rup) = P(seg)
R(rup)

R(seg)

Ý M o(seg)
Ý M o(seg)

segs_ in _ rup

∑segs_ in _ rup

∑     (1) 

 
where “rup” and “seg” stand for rupture and segment, respectively, P() represents time-
dependent probabilities, R() represents long-term event rates, Ý M o() represents moment rate, and 
the summations are over all segments that participate in the particular rupture.  P(seg) is 
computed from a Brownian Passage Time (BPT) model (e.g., Matthews et al., 2002) using the 
date of the last event on the segment and the average recurrence interval for the segment (one 
over the long-term rate of all ruptures involved in that segment).  If the rates are low, such that 
they are approximately equal to Poisson probabilities (e.g., Ppois() ≈ R()), then the above can be 

written as: 
 

P(rup) ≈ Ppois(rup)

P(seg)

Ppois(seg)
Ý M o(seg)

seg _ in _ rup

∑
Ý M o(seg)

seg _ in _ rup

∑
    (2) 
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Thus, the time-dependent probability of the earthquake is simply the time-independent 
probability multiplied by a weight-averaged probability gain (P(seg)/Ppois(seg)) for the segments 
involved in that rupture, where the weights are the segment moment rates.  Another way of 
describing the WGCEP (2003) approach is that they first compute the probability that each 
segment will rupture (assuming a BPT distribution) and then partition these probabilities among 
all ruptures that could be triggered by each segment.   

Monte Carlo simulations were conducted to explore the implications of this model when 
applied over repeated earthquake cycles. Specifically, earthquake probabilities were computed at 
1-year time intervals, ruptures were allowed to occur at random according to the probabilities for 
that year, dates of last events were updated on each relevant segment when an earthquake 
occurred, and probabilities were updated for the next year.  This process was repeated until 
20,000 events were sampled.  Results for the simplified Hayward-Rodgers Creek example in 
Figure 1 are shown in Figure 2.  The red lines show the assumed distribution of recurrence 
intervals on each segment (used in computing segment probabilities) and the gray bins represent 
the distribution of segment recurrence intervals actually “observed” from the simulation.  Note 
that the simulations exhibit more short recurrence intervals than assumed in the original 
probability distribution for each segment.  This arises from the fact that in the WGCEP (2003) 
methodology, the probability of a segment rupturing and taking its neighbor with it has nothing 
to do with when that neighbor last ruptured.  Therefore, a segment can rupture one day by itself, 
and then rupture again the next day if triggered by its neighbor. While this behavior may indeed 
be desirable (i.e., accurately reflecting the true nature of earthquakes), it does point to a logical 
inconsistency in the overall model; the final distribution of segment recurrence intervals is 
inconsistent with that presumed in computing segment probabilities in the first place (and with 
how paleoseismic data are interpreted).  This results from the application of a point-process 
model to what is ultimately not a point process.  

Fortunately, in spite of the prevalence of short-recurrence-intervals, the model is pretty 
well moment balanced overall (the simulations have a moment rate ~3% greater than the 
original).  Therefore, one might be willing to forgive the logical inconsistency of this model 
because it honors the intent of elastic rebound theory without dramatically skewing the long-term 
rate model.  However, the problem that the implied segment recurrence-interval distribution is 
inconsistent with that assumed worsens as more fault segments are included in the model, and 
especially as we relax segmentation all together by going to a great number of very small 
segments.  Therefore, the potential implications should be explored on a case-by-case basis (as 
will be done later in the context of the new S. San Andreas model that has 10 segments). 
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Figure 1.  Example of a long-term, moment balanced rupture model for the Hayward/Rodgers-
Creek fault, obtained from the WGCEP-2002 Fortran code.  The image, taken from the WGCEP-
2002 report, shows the segments on the left and the possible earthquakes on the right.  The tables 
below give information including the rate of each earthquake and the rate that each segment 
ruptures.  Note that this example represents a single iteration from their code, where modal 
values in the input file were given exclusive weight, aseismicity parameters were set to 1.0, no 
GR-tail seismicity was included, sigma of the characteristic magnitude-frequency distribution 
was set to zero, and the floating ruptures were given zero weight (specifically, the line on the 
input-file that specified the segmentation model that was given exclusive weight read: 
“0.11 0.56 0.26 0.07 0.00 0.00 0.00 0.00 0.00 0.00  model-A-modified”) 
  

   
Segment Info 

Name Length 
(km) 

Width 
(km) 

slip-rate 
(mm/yr) 

Rupture 
Rate (/yr) 

Date of 
Last Event 

HS 52.54 12 9 3.87e-3 1868 
HN 34.89 12 9 3.95e-3 1702 
RC 62.55 12 9 4.08e-3 1740 

  

Earthquake Info 
Name mag rate 
HS 7.00 1.28e-3 
HN 6.82 1.02e-3 
HS+HN 7.22 2.16e-3 
RC 7.07 3.32e-3 
HN+RC 7.27 0.32e-3 
HS+HN+RC 7.46 0.44e-3 
floating 6.9 0  
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Figure 2.  The BPT distribution of recurrence 
intervals used to compute segment rupture 
probabilities (red line), as well as the 
distribution of segment recurrence intervals 
obtained by simulating ruptures according the 
WGCEP-2002 methodology (gray bins).  The 
BPT probabilities assume a coefficient of 
variation of 0.5 and the segment rates given in 
Figure 1.  Note the relatively high rate of short 
recurrence intervals in the simulations. 

 

  
 
 
T-D Model 1: 
 
 The approach used to compute single- and multi-segment rupture probabilities in T-D 
Model 1 (and T-D Model 3) for the S. SAF in UCERF 1 can be stated as follows: 
 
 

Rtd (rup) = R(rup)

′ P (seg)
′ R td (seg)
′ R (seg)segs_ in _ rup

∑

′ P (seg)
segs_ in _ rup

∑
          (3) 

 
 
where Rtd() is the equivalent Poisson time-dependent rate (e.g., Rtd(rup) =-ln(1-P(rup)), and as 
before, R() is the long-term rate and P() is the time-dependent probability (see the UCERF 1.0 
documentation for the justification of this model).  The primes here represent a very important 
distinction; namely, the segment rates and probabilities are based on a moment-balance model 
that includes only single-segment ruptures.  Using the Hayward-Rodgers Creek fault in Figure 1 
to exemplify, the average recurrence interval on the S. Hayward segment is 1/ 0.00387 = 258 
years if both single and multi-segment ruptures are included.  However, the average (moment 
balanced) recurrence interval is 208 years if only single segment ruptures are included.  Again, 
the primes in the above equation indicate rates and probabilities that are based such single-
segment ruptures. 
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For low rates of occurrence, the Poisson probability is equal to the long-term rate, so we 
can rewrite the above equation as: 
 

P(rup) ≈ Ppois(rup)

′ P (seg)
′ P (seg)

′ P pois(seg)segs_ in _ rup

∑

′ P (seg)
segs_ in _ rup

∑
      (4) 

 
 
If we again consider ′ P (seg) / ′ P pois(seg) to represent the probability gain of a segment (but this 

time computed assuming single-segment ruptures), the time-dependent earthquake probability 
computed using the above equation are essentially the time-independent earthquake probability 
multiplied by a weigh-averaged probability gain taken over all segments involved.  Note that the 
weights here are based on the segment probabilities rather than segment moment rates as in the 
WGCEP (2003) approach above (again, see the UCERF 1.0 documentation for the justification). 
 To compare the implications of this model to those of the WGCEP (2003) approach, 
Monte Carlo simulations were again run as before, but using equation (3) to compute the 
earthquake probabilities.  The results are qualitatively similar to those observed in Figure 2, but 
with the curves and bins shifted to the left since the recurrence intervals assuming single-
segment ruptures are less.  However, the most important manifestation of this model is that the 
simulated moment rate is 25% greater than that of the long-term model.  In other words, there is 
a bias causing events to occur more often than they should.  This results from two factors.  
Basing segment recurrence intervals on single-segment ruptures leads to lower intervals than if 
they are base on the entire long-term model (which includes both single and multi-segment 
ruptures).  Lower recurrence intervals means the segment gains will exceed unity earlier in their 
cycle, leading to a higher probability of an event than would otherwise be the case.  To confirm 
this, Monte Carlo simulations were run using equation (3), but where segment probabilities (or 
rates) were based on the average recurrence intervals considering all ruptures (un-primed values, 
as in the WGCEP (2003) approach).  The result is qualitatively similar to that shown in Figure 2, 
but with a remaining positive moment-rate bias of 14%. 

The other source of bias results from using the segment probabilities as weights in 
computing the average probability gain.  This also skews the probabilities toward higher values, 
leading to an increased effective moment rate.  Changing the weights in equation (3) to segment 
areas, and using un-primed segment probabilities, leads to results that are indistinguishable from 
the WGCEP (2003) result in Figure 2 (including the positive moment-rate bias of ~3%).  It’s 
worth noting that these Monte Carlo simulations were based on the BPT distribution, whereas 
the S. SAF probabilities given in the UCERF 1.0 report were computed using a log-normal 
distribution; this difference does not influence the problem just discussed.   

Given the 25% moment-rate bias found in using equation (3) in the Hayward-Rodgers 
Creek simulations, the obvious question is what this implies for the T-D Model 1 (and T-D 
Model 3) UCERF 1.0 probabilities on the S. SAF (where it was actually applied).  Based on the 
above result, one might expect the probabilities to be too high.  However, this is generally not the 
case as outline next. 

Table 1 lists the 30-year conditional probabilities for S. SAF in UCERF 1.0 for T-D 
Model 1 (computed using equation (3) above using a log-normal distribution for each segment).  
Also listed are probabilities computed using equation (3), but where the segment probabilities are 
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not based on only single-segment ruptures (that is, the alternative, un-primed values were used).  
Opposite to what is suggested by the above simulations, all but one of the earthquake 
probabilities are lower using equation (3) than with the alternative, un-primed values.  The 
biggest difference is for a single-segment rupture of the Cholame segment (a 35% difference).   

To understand why this is the case, consider the data used to compute their segment 
probabilities listed in Table 2 here.  Specifically, consider the Coachella Valley segment.  The 
median recurrence interval for this segment considering only single-segment ruptures is 71 years, 
whereas that considering both single and multi-segment ruptures is 154 years (Tmed and Alt. Tmed 
in Table 2, respectively).  At first glance one would expect the gain to be higher in the former 
because the shorter recurrence interval means the gain exceeds unity at an earlier date.  However, 
this is not the case as can be seen in Table 2.  The reason is that it has been 316 years since the 
last event.  With Tmed =71 years, we are 316/71= 4.4 times the median recurrence interval into the 
current cycle (for which, incidentally, there is only a ~1% probability of making it past this 
point).  For Tmed Alt. = 154, we are 316/154 = 2.0 times the median recurrence interval into the 
current cycle.  Because the hazard rate function of the lognormal-distribution begins to decline 
just past the median interval, 30-year probabilities for the Coachella Valley are presently 
declining with time (the gains are going down), and they have gone down even more for the 71-
year median interval than for the 154-year interval (see Figure 3 for an illustration).  Because T-
D Model 3 of UCERF 1.0 also uses equation (3) with the exact same segment gains, it too has 
some significantly different probabilities.  Because the results are sensitive to the behavior of the 
hazard-rate function out on the tails, different probabilities would be obtained using a BPT 
model.  

 
 
Table 1.  The S. SAF earthquake probabilities obtained using Model 1 of 
UCERF 1.0 (“Orig. Prob.”), as well as alternative probabilities (“Alt. Prob.”) 
obtained using segment recurrence intervals considering both singe and multi-
segment ruptures.  The ratio of the two is listed as “Alt./Orig.”.  Note that these 
probabilities include an 11% Poisson contribution (as stipulated for the final 
UCERF 1.0 probabilities), so the pure time-dependent differences are slightly 
greater. 
Earthquake Orig. Prob. Alt. Prob. Alt./Orig. 
Coachella only 0.00129 0.00168 1.30 
San Bernardino only 0.00140 0.00134 0.96 
Mojave only 0.00138 0.00171 1.23 
Carrizo only 0.00185 0.00186 1.00 
Cholame only 0.00237 0.00319 1.35 
Cholame to Coachella 0.00190 0.00217 1.14 
1857 Rupture 0.00412 0.00482 1.17 
San Bern. & Coachella 0.00406 0.00439 1.08 
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Table 2.  Data used to compute probabilities on the S. SAF segments.  Tmed, Prob, and Gain are 
the median recurrence interval, the 30-year probability (based on a log-normal distribution), and 
the Gain relative to a Poisson model, respectively, assuming single-segment ruptures only 
(corresponding to the primed values in Equation (3)).  The “Alt.” values are those obtained using 
segment recurrence intervals considering both single and multi-segment ruptures (un-primed 
values). 

Tlast Tlast 2006- Tlast σ Tmed Prob Gain 
Alt. 
Tmed 

Alt. 
Prob 

Alt. 
Gain 

Coachella 1690 316 0.63 71 0.325 1.14 154 0.215 1.52 
San Bern. 1812 194 0.53 112 0.358 1.92 176 0.238 1.84 
Mojave 1857 149 0.80 56 0.342 1.06 122 0.215 1.34 
Carrizo 1857 149 0.58 74 0.442 1.69 145 0.256 1.69 
Cholame 1857 149 0.66 37 0.512 1.11 118 0.271 1.54 
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Figure 3. The 30-year probability for a Coachella-Valley-segment rupture as 
a function of time since the last event (i.e., the 30-year hazard rate).  Blue 
curves are for a median recurrence interval of 71 years, and red lines are for a 
median of 154.  The solid lines are for a log-normal distribution, and the 
dotted lines are for a Poisson distribution.  The probability gain is therefore 
the ratio of the solid to dotted lines.  The vertical black line at 316 years 
marks the implied 30-year probabilities in 2006, the beginning of the UCERF 
1.0 forecast, given the date of last event was 1690.  Note that at this time the 
30-year time-dependent probabilities are decreasing, and are closer to the 
Poisson values for the 71-year median recurrence interval (which therefore 
has a lower probability gain). 
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T-D Model 2: 
 

In terms of repeated application of this methodology as earthquakes occur, there is a 
fundamental problem that negative (i.e., non-physical) rates can arise.  For example, if the 
Cholame segment ruptured alone today (which it can according to the long-term model),  the rate 
of such events would subsequently become negative (confirmed by setting the date of last 
rupture for this segment to 2005 in the Excel spreadsheet used for their calculations).  We 
therefore no longer consider this a viable model, and therefore do not discuss it further. 
 

 
Conditional Time-Dependent Probabilities for UCERF 2 

 
 As with UCERF 1 and the WGCEP (2003) model, UCERF 2 applies probabilities to a 
long-term rate model from each branch of the logic-tree.  By definition, Type-A faults in UCERF 
2 have sufficient information to compute conditional probabilities based on dates of previous 
events.  Of the previously published methods outlined above for computing conditional 
probabilities when both single- and multi-segment ruptures are included (which are needed 
because none of our Type-A faults invoke strict segmentation), that of WGCEP (2003) appears 
to be best-available science.  However, as exemplified above, this methodology has a logical 
inconsistency in that the segment recurrence intervals implied by the model are inconsistent with 
those assumed in the first place.  This issue appears to be relatively minor when faults are 
represented with only a few segments, as was the case in WGCEP (2003) where only up to four 
segments were used for any given fault. UCERF 2, on the other hand, utilizes more segments for 
three faults in southern California, with the maximum being 10 segments for the S. SAF.  The 
onus is therefore upon us to demonstrate that the WGCEP (2003) approach is adequate in this 
case.  Before presenting such simulations tests, additional discussion of logic tree branches is in 
order. 
 
 
Logic-Tree Branches 

 
 The long-term rate model includes both a segmented and un-segmented branch for Type-
A faults (Figure 4 in main report).  Of these two, only the segmented branch has the option for 
time-dependent conditional probabilities because of current difficulties in applying such a model 
where segmentation is relaxed.  Excluding the un-segmented option, there are a total of 12 
different long-term-rate models (final branches) for which conditional, time-dependent 
probabilities can be computed for each fault.  These branches are shown in Figure 4 (see the 
main report and/or Appendix G for further discussion of these branches and consequent models).  
From each of these, two alternative branches exist for computing conditional probabilities: one 
assuming a constant aperiodicity for all segments, where three alternative values are specified on 
subsequent branches, and one where the segment-specific aperiodicities listed in Table 4 are used 
(derived from paleosiesmic data as described in Appendix C, and listed in Table 9 therein) where  
the default value is 0.5 if no segment-specific value is available.  This latter branch is also 
depicted in Figure 4. The justification for these aperiodicity choices is given in the main part of 
this report.  Given the full logic tree, there are up to 48 different conditional time-dependent 
probability models for each Type-A fault. 
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Figure 4.  Logic-tree branches influencing the conditional, time-dependent probability 
calculations on Type-A faults.  There are 12 different long-term rate model branches leading into 
the segmented BPT-model, and up to four additional branches in getting from there to the final 
probabilities (although the segment-specific aperiodicity branch is given zero weight for reasons 
discussed in the text).   
 
 
Simulation Results for the S. SAF 
 
 Returning to the discrepancy between assumed and implied segment recurrence intervals 
in the WGCEP (2003) BPT Model, there are two questions of interest here: 1) how much worse 
is this discrepancy for the 10-segment S. SAF model (as opposed to the 3-segment example 
given above in Figure 2); and 2) are segment-specific aperiodicities really warranted given this 
distortion of the assumed probability distribution?  Simulation results for the S. SAF (computed 
just as describe for the Hayward-Rodgers Creek case above) are shown in Figure 5.  Only one 
branch of the long-term rate model was used in for this simulation (Deformation Model = DM 
2.1, Mag-Area Relationship= Ellsworth B; and moment-balanced model).  The constant 
aperiodicity of 0.5 versus segment-specific aperiodicity results are shown to the left and right 
side of the figure, respectively.  The discrepancy between the assumed and simulated segment 
recurrence interval is indeed worse than in the three-segment case of Figure 2.  Fortunately, the 
overall shape is generally preserved and there is no significant bias in the rate of each rupture or 
in the overall moment rate (all within about 3%).  However, the working group decided that it 
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would be inappropriate to apply segment-specific aperiodicities given the difference between the 
assumed and simulated distributions (thus the zero branch weight given in Figure 4); results for 
this case are nevertheless given below for interested readers. 
 
 
Figure 5.  Segment recurrence intervals assumed (red) and simulated (gray bins) for the 
southern San Andreas Fault.  The right side shows results assuming a constant aperiodicity 
of 0.5 among segments and the right side show results for segment-specific values (as 
labeled) from Appendix C.  The simulations were conducted exactly as described for the 
Hayward-Rodgers Creek example described in the text.  The relationships between 
segment abbreviations and the names of the associated fault sections are as follows: 
PK=Parkfield; CH=Cholame, rev; CC=Carrizo, rev; BB=Big Bend; NM=Mojave N; 
SM=Mojave S; NSB=San Bernardino N; SSB=San Bernardino S; BG=San Gorgonio 
Pass-Garnet Hill; CO=Coachella, rev. 

 
 
 

                           Aperiodicity = 0.5 

 
 
 

                            Aperiodicity = 0.5 
                            (default) 

 
 
 

                          Aperiodicity = 0.5 

 
 
 

                          Aperiodicity = 0.5 
                            (default) 

 
 
 

                          Aperiodicity = 0.5 

 
 
 

                          Aperiodicity = 0.4 
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                          Aperiodicity = 0.5 

 
 
 

                          Aperiodicity = 0.5 
                            (default) 

 
 
 

                          Aperiodicity = 0.5 

 
 
 

                          Aperiodicity = 0.5 
                            (default) 

 
 
 

                          Aperiodicity = 0.5 

 
 
 

                          Aperiodicity = 0.5 
                            (default) 

 
 
 

                          Aperiodicity = 0.5 

 
 
 

                          Aperiodicity = 0.7 
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                          Aperiodicity = 0.5 

 
 
 

                          Aperiodicity = 0.9 

 
 
 

                          Aperiodicity = 0.5 

 
 
 

                          Aperiodicity = 0.5 

 
 
 

                          Aperiodicity = 0.5 

 
 
 

                          Aperiodicity = 0.6 
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Earthquake Rupture Probabilities for All Logic Tree Branches 
 

The date of previous event (from Appendix B), average mean recurrence interval, and 
segment-specific aperiodicity (from Appendix C where available) are listed in Table 4.  The 
segment and earthquake-rupture probabilities obtained using the WGCEP (2003) approach 
(Equation (1)) are listed for all 36 non-zero-weighted logic-tree branches (Figure 4), and for all 
faults, in the following Excel files (a different file for a forecast duration of 5 vs 30 years, where 
each has a start-year of 2007): 

 
RupProbs_BPT_5yr_ConstAperBranches.xls 

 
RupProbs_BPT_30yr_ConstAperBranches.xls 

 
(available from: http://gravity.usc.edu/WGCEP/resources/documents/UCERF2_FinalReport) 

 
 

The above files also contain gains (time-dependent probabilities divided by Poisson 
probabilities), aggregated earthquake probabilities for each fault, and minimum, maximum, and 
average values over all logic tree branches (see the “README” tab for a full explanation).  
Tables 5 and 6 here (at the end of this document) summarize the 5-year segment and rupture 
probabilities, respectively.  Those interested in results from the 12 logic-tree branches where the 
segment-specific aperiodicities are applied (given zero weight in our final model as discussed 
above) can find them at: 
 

RupProbs_BPT_5yr_SegDepAper.xls 
 

RupProbs_BPT_30yr_SegDepAper.xls 
 

(available from: http://gravity.usc.edu/WGCEP/resources/documents/UCERF2_FinalReport) 
 

 

Discussion 
 
  As discussed above, we believe the WGCEP (2003) methodology for computing 
conditional time-dependent probabilities for single- and multi-segment ruptures represents best 
available science in terms of published approaches.  However, issues exist with respect to a 
difference between assumed and implied segment recurrence-interval probability distributions, 
and this discrepancy gets worse as the number of segments increases.  For example, Figure 6 
shows simulation results for a more extreme case of an 80-km fault divided into 16 segments of 
5-km-length each (essentially un-segmented), where the magnitude-frequency distribution of the 
fault was specified as Gutenberg-Richter with a b-value of 1.0 (the a-value is not important for 
the point being made here).  As described above, events were simulated using the WGCEP 
(2003) methodology (Equation (1)) assuming an aperiodicity of 0.25 on each segment, and 
segment recurrence intervals were tallied.  Figure 6, which shows the behavior averaged over all 
segments, reveals a major discrepancy between the assumed and simulated segment recurrence-
intervals.  Furthermore, the rates of events and total moment rate from the simulation is about 
20% high (a significant discrepancy).  Unfortunately this problem cannot be fixed by adjusting 
the assumed segment recurrence-interval distributions (“stacking the deck” so to speak), as there  

http://gravity.usc.edu/WGCEP/resources/documents/UCERF2_FinalReport/AppendixN/RupProbs_BPT_5yr_ConstAperBranches.xls
http://gravity.usc.edu/WGCEP/resources/documents/UCERF2_FinalReport/AppendixN/RupProbs_BPT_30yr_ConstAperBranches.xls
http://gravity.usc.edu/WGCEP/resources/documents/UCERF2_FinalReport
http://gravity.usc.edu/WGCEP/resources/documents/UCERF2_FinalReport/AppendixN/RupProbs_BPT_5yr_SegDepAper.xls
http://gravity.usc.edu/WGCEP/resources/documents/UCERF2_FinalReport/AppendixN/RupProbs_BPT_30yr_SegDepAper.xls
http://gravity.usc.edu/WGCEP/resources/documents/UCERF2_FinalReport


 

will always be a difference between the before and after distribution (implying an inherent 
conceptual problem).  This problem ultimately results from the fact that we are attempting to 
apply a point-process model to a non-point process (we are not accounting for the correlation of 
earthquake probabilities caused by interactions). 
 

 
Normalized Seg. Recur. Int. 

 
Figure 6.  Probability distribution of segment recurrence intervals assumed (red) 
and from Monte-Carlo simulations (gray bins) for an 80 km fault with 5-km 
segments (essentially un-segmented) with a Gutenberg-Richter distribution of 
events and using the WGCEP (2003) methodology for computing time-dependent 
probabilities (see text for details). 

 
 
Possible Alternative Approaches 
 
 Given a general desire within the current working group to relax segmentation 
assumptions, except where demanded by data, considerable effort has been put into searching for 
alternative, internally consistent approaches for computing elastic-rebound-motivated 
probabilities under these conditions.  Only a brief, verbal description of this quest is given here 
since we have not yet found an alternative that we are ready to advocate the use of. The 
discussion here has benefited greatly from exploring synthetic catalogs generated from two 
physics-based earthquake simulators, “Virtual California” of Rundle et al. (2004) and the 
simulator of Ward (2000), both of which exhibit elastic-rebound behavior while not imposing 
any segmentation. 
 In the absence of additional information (such as date of last event) we generally revert to 
Poisson probabilities based on the average rate of each event (written Ppois(Rupi), where index i 
refers to the ith rupture).  Therefore, one approach is to devise a rational scheme for modifying 
these time-independent probabilities when other data are available. Bayes’ theorem provides one 
particularly intriguing possibility, which in our context can be written as: 
 

P(Rupi | D) =
Ppois(Rupi)P(D | Rupi)

Ppois(Rupi)P(D | Rupi)
i

∑
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This says that the relative probability of a particular rupture (Rupi), given other “data” D, is 
simply the Poisson probability of that rupture (the prior distribution) scaled by the probability 
that the additional data (D) is consistent with the occurrence of that rupture (and not that the data 
are actually caused by that rupture).  The P(D | Rupi) term is referred to as the likelihood 
function in Bayes’ theorem, and can be though of here as a probability gain for that rupture.  
Two obvious candidate likelihood functions for elastic-rebound-motivated probabilities are as 
follows: 
 

1) Average Slip Predictable Model – this would quantify whether enough time has passed 
since the last event(s) along the fault to accommodate the slip needed for that that rupture 
(Rupi).  The expected date of each rupture could be set as exactly when the associated 
amount of slip had accumulated, with aleatory uncertainty in the actual date being 
represented with a BPT distribution (or some other reasonable model).  Note that no 
assumptions of segmentation or characteristic earthquakes are required here, as the 
previous event(s) could have occurred anywhere along the fault.  The BPT model is used 
only to represent the probability distribution for the possible occurrence times of a given 
hypothesized event (assuming it will be the next to occur), and does not represent an 
actual recurrence of anything.  In fact, a given rupture need never recur to the extent there 
are an infinite number of starting and ending points along the fault.  The name assigned 
to this likelihood function comes from the fact that it’s a generalization (or more 
specifically an along-fault averaging) of the Slip-Predictable model introduced by 
Shimazaki and Nakata (1980). 

 
2) Average Time Predictable Model – this likelihood function is exactly like the Average 

Slip Predictable Model above, except the expected time of rupture at each point on the 
fault is when the amount of slip in the previous earthquake at that point has accrued.  
Again, the name has been assigned according to the fact that it represents a spatial 
averaging of the Slip Predictable model introduced by Shimazaki and Nakata (1980). 

 
One problem with the Bayesian approach outlined above is that it only gives the relative 

probability of various ruptures (and not absolute probabilities).  Therefore, it would only be 
useful in a situation where the total probability, when aggregated over all ruptures, remains 
constant (or at least any variability is quantifiable using information other than the data (D) used 
in Bayes’ theorem).  In other words, if any ruptures are deemed relatively likely, then there must 
be another set that are relatively unlikely (such that the total probability or rate has not changed).  
Therefore, this approach is not applicable to individual faults (in isolation) if one desires to 
interpret, for example, a full-fault rupture as implying the probabilities of all ruptures on that 
fault have declined.  Nevertheless, Monte Carlo simulations conducted by applying the above 
Bayes’ theorem approach to a system of faults with the average time-predictable likelihood 
function appear promising (no significant biases or conceptual inconsistencies).  Therefore, this 
approach might be useful if and when we can apply the methodology to a broad-enough range of 
faults (again, such that the total probability of an event remains relatively constant).  The average 
slip-predictable model does not work, however, because smaller events require less slip and are 
therefore preferentially chosen (due to their relatively high probability gains) earlier in the cycle. 

The Bayesian approach just outlined inspired us to search for other possible approaches that 
might give absolute probabilities in the situation where segmentation assumptions are relaxed 
(and not requiring the application to an entire fault system).  Let’s hypothesize that a given 
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rupture will be the one to occur next, so all we are left to do is define when it will occur.  We can 
define an expected Average Time-Predictable time interval as 

 
Δtexp

time− pred = texp
time− pred − tlast

time− pred  
 

where  is the average expected time at which the slip in the last event has recovered, and 

 is the average date of last event (more detailed equations are available upon request).  
The ratio of the actual time interval (an aleatory uncertaianty) to this expected time interval can 
be represented with a BPT distribution (or any other reasonable renewal model) with mean of 
1.0.  The probability of the event occurring in any given time interval, which we write 

texp
time− pred

predtlast
time−

PBPT
slip− pred (rup) , can be computed in the customary fashion.  The problem now is that this event 

might not be the next to occur, and we can’t simply aggregate the probabilities all possible 
ruptures in the usual way (assuming independence) because any spatial overlap of ruptures 
means the probabilities are correlated.  It turns out that the following equation works well: 
 

P(rup) = PPois(rup)
PBPT

slip− pred (rup)

PPois
slip− pred (rup)

 

 
where  the Poisson probability of a given rupture (based on the rate of each rupture in 
the long-term model) and  is the Poisson probability based on Δ .  In saying 
that this works well, we mean that Monte Carlo simulations exhibit the desired effect (elastic-
rebound type behavior in an un-segmented model) without biasing rates in the long-term model.  
An equivalent formulation for an Average Slip-Predictable model, where the expected time is 
when the slip for the forthcoming event has accumulated, does not work because smaller events 
have relatively higher gains early on, and are therefore preferentially chosen in the simulation 
(significantly biasing the rates and magnitude-frequency distribution of the long term model).   

PPois(rup)
PPois

slip− pred (rup) texp
time− pred

In spite of the promising results with respect to the above Average Time-Predictable 
model, the following two issues need to be considered more carefully before application is 
warranted: 1) the method requires having slip-in-previous-event data which are generally sparse 
and/or highly uncertain (so it’s not clear what the net benefit would be after propagating all 
relevant uncertainties); 2) the aperiodicity at a point on the fault is generally much higher than 
that used in computing PBPT

slip− pred (rup) , so considerable hand “tuning” would be required to match 
observed aperiodicities at locations like those compiled in Appendix C. 

Finally, note that none of the procedures discussed here represent physics-based 
approaches.  Rather, they are physically motivated statistical rules aimed at modifying long-term 
rates (or Poisson probabilities) so as to be closer to what we expect on the basis of elastic-
rebound theory.  This is consistent with the Bayesian notion that probability is a subjective 
statement of “the degree of belief that an event will occur” (D’Agostini, 2003, http://www-
zeus.roma1.infn.it/~agostini/rpp/).  That being said, perhaps the overall approach of modifying 
long-term rates (or Poisson probabilities) based on simple rules is misguided.  For example, just 
because the slip-predictable approaches discussed above lead to a biased result, compared to the 
long-term model, this does not mean there is nothing to the notion that an event occurring sooner 
will more likely be smaller.  Perhaps physics-based simulators, which make no distinction 
between a long-term-rate model and time dependent behavior, will be a more fruitful line of 
enquiry. 
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Conclusions 

 
 In spite of some conceptual issues, the WGCEP (2003) methodology for computing 

ntent 

-

en as 

References 

Field, E.H. (2007). A Summary of Previous Working Groups on California Earthquake 

Matthe rg (2002). A Brownian Model for Recurrent 

Peterse 2007). Time-independent and Time-

Rundle r statistics in 

Shimaz ). Time-predictable recurrence model for large earthquakes, 

Ward, rea Earthquake Simulations: A Step Toward a Standard 

Workin  large earthquakes 

Working Group on California Earthquake Probabilities (1990). Probabilities of large earthquakes 

Workin  

 

probabilities when both single- and multi-segment ruptures are included remains the best 
available science, and is therefore the approach adopted here.  In particular, it honors the i
of elastic-rebound motivated recurrence models in terms of lowering probabilities immediately 
after an event.  Segment-specific aperiodicities, however, are not warranted given the recurrence
interval distortion discussed above, as well as the mild influence on the results.  The final, 
weight-average probabilities for the time-dependent type-A fault segmented models are giv
the “BPT Wt Ave” values listed in Table 6.  A fault-by-fault comparison of earthquake rupture 
probabilities with those of previous studies is given in the main body of this report. 
 
 

 

Probabilities, Bull. Seism. Soc. Am. In Press. 
ws, M.V., W.L. Ellsworth, and P.A. Reasenbe
Earthquakes, Bull. Seism. Soc. Am. 92, 2233–2250. 
n, M.D., T. Cao, K.W. Campbell, and A.D. Frankel (
dependent Seismic Hazard Assessment for the State of California: Uniform California 
Earthquake Rupture Forecast Model 1.0, Seism. Res. Lett. 78, 99-109. 
, J.B., P.B. Rundle, A. Donnellan, and G. Fox (2004). Gutenberg-Richte
topologically realistic system-level earthquake stress-evolution simulations, •Earth 
Planets Space 56, 761-771. 
aki, K., and Nakata, T. (1980
Geophys. Res. Lett. 7, 279-282. 

S.N. (2000).  San Francisco Bay A
Physical Earthquake Model, Bull. of the Seism. Soc. Am. 90, 370–386. 
g Group on California Earthquake Probabilities (1988). Probabilities of
occurring in California on the San Andreas fault, U.S. Geological Survey Open-File 
Report, p. 62. 

in the San Francisco Bay Region, California, U.S. Geological Survey Circular, p. 51. 
g Group on California Earthquake Probabilities (2003). Earthquake Probabilities in the
San Francisco Bay Region: 2002–2031, USGS Open-File Report 03-214. 

 

20 



 

Table 4.  Segment data, including best-estimates of date of last event (from Appendix B) 
and Aperiodicity (from Appendix C).  “Wt Ave Recurrence Interval” is the average 
recurrence interval considering the first 12 branches in Figure 4 (the ones that influence 
the long-term rate model) and their respective weights.  “Max Recurrence Interval” and 
“Min Recurrence Interval” correspond to the extreme values observed among all 12 
logic-tree branches.  The recurrence intervals are listed only for illustrative purposes, as 
the branch-specific values are used in actual probability calculations. 

Segment 
Name 

Last Event 
(Calendar yr) Aperiodicity 

Wt Ave 
Recurrence 

Interval 

Max 
Recurrence 

Interval 

Min 
Recurrence 

Interval 

      
Elsinore      
W 207 0.5 1090 604 1395 
GI 1910 0.7 369 272 582 
T 1732 0.7 692 500 960 
J 807 0.5 1499 1000 1991 
CM 1892  701 357 931 
      
Garlock      
GE 1000  903 780 967 
GC 1540 0.7 1013 733 1275 
GW 1695 0.5 936 714 1158 
      
San Jacinto     
SBV 1769  330 214 490 
SJV 1918  252 206 311 
A 1795  249 207 292 
C 1795  353 238 582 
CC 1892  420 371 467 
B 1968  281 130 433 
SM 1540 0.7 305 194 376 
      
N. San Andreas     
SAO 1906  218 200 229 
SAN 1906 0.6 261 246 295 
SAP 1906  246 220 294 
SAS 1906 0.3 193 157 213 
      
S. San Andreas     
PK 2004  24 16 30 
CH 1857  118 85 142 
CC 1857 0.4 173 156 205 
BB 1857  180 172 197 
NM 1857  190 155 252 
SM 1857  155 129 208 
NSB 1812 0.7 175 145 208 
SSB 1812 0.9 244 199 405 
BG 1680 0.5 398 224 1002 
CO 1680 0.6 156 61 214 
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Hayward-Rogers Creek    
RC 1758  210 163 291 
HN 1715 0.6 150 109 204 
HS 1868 0.6 158 112 219 
      
Calaveras     
CN 1775 0.4 381 188 484 
CC 1982  77 42 89 
CS 1899  50 19 71 
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Table 5. For a start-year of 2007 and a forecast duration of 5-years, this list the following for each segment: “BPT Wt Ave” - average 
conditional time-dependent probability considering all 36 non-zero-weighted logic-tree branches; “BPT Min” – the minimum time-
dependent probability among the same 36 logic-tree branches; “BPT Max” – the maximum time-dependent probability among the 
same 36 logic-tree branches; “Pois Wt Ave” – the average Poisson probability; “BPT Gain” – the ratio of “BPT Wt Ave” to “Pois Wt 
Ave”. 

Segment Name 
BPT 

Wt Ave 
BPT 
Min 

 

BPT 
Max 

 

Pois 
Wt Ave 

 

BPT 
Gain 

  
Elsinore   
W 1.31E-02 4.54E-03 4.81E-02 5.14E-03 2.55 
GI 5.36E-03 3.27E-11 1.67E-02 1.48E-02 0.36 
T 6.28E-03 3.10E-06 1.32E-02 7.81E-03 0.80 
J 6.80E-03 1.42E-03 1.87E-02 3.73E-03 1.83 
CM 1.51E-03 4.63E-16 1.12E-02 

 
8.28E-03 

 
0.18 

   
Garlock    
GE 1.20E-02 7.61E-03 2.39E-02 5.56E-03 2.15 
GC 5.36E-03 5.74E-05 9.87E-03 5.27E-03 1.02 
GW 2.98E-03 7.97E-07 7.94E-03 

 
5.63E-03 

 
0.53 

   
San Jacinto   
SBV 3.14E-02 2.08E-03 7.78E-02 1.74E-02 1.80 
SJV 1.15E-02 1.11E-05 2.71E-02 2.04E-02 0.56 
A 3.60E-02 2.47E-02 7.35E-02 2.01E-02 1.80 
C 2.38E-02 1.31E-04 5.15E-02 1.59E-02 1.50 
CC 3.31E-03 5.02E-07 1.06E-02 1.20E-02 0.28 
B 6.66E-03 6.58E-21 2.89E-02 2.46E-02 0.27 
SM 4.20E-02 2.11E-02 1.29E-01 

 
1.73E-02 

 
2.43 

   
N. San Andreas   
SAO 1.87E-02 2.38E-03 3.15E-02 2.27E-02 0.82 
SAN 1.15E-02 1.38E-04 2.27E-02 1.91E-02 0.60 
SAP 1.42E-02 1.48E-04 2.73E-02 2.04E-02 0.70 
SAS 2.73E-02 4.58E-03 4.47E-02 

 
2.60E-02 

 
1.05 

   
S. San Andreas   



 

PK 5.04E-02 2.25E-06 2.33E-01 1.99E-01 0.25 
CH 9.69E-02 5.21E-02 2.50E-01 4.33E-02 2.24 
CC 5.31E-02 3.48E-02 8.86E-02 2.89E-02 1.84 
BB 4.93E-02 3.65E-02 6.80E-02 2.75E-02 1.79 
NM 4.69E-02 1.43E-02 8.93E-02 2.69E-02 1.74 
SM 6.61E-02 3.47E-02 1.35E-01 3.27E-02 2.03 
NSB 6.11E-02 3.59E-02 1.33E-01 2.83E-02 2.16 
SSB 3.81E-02 2.39E-03 7.42E-02 2.12E-02 1.80 
BG 3.30E-02 1.73E-05 9.68E-02 1.58E-02 2.09 
CO 9.27E-02 3.37E-02 3.59E-01 3.85E-02 2.41 
      
Hayward-Rogers Creek    
RC 5.53E-02 2.54E-02 1.32E-01 2.46E-02 2.25 
HN 8.49E-02 3.54E-02 2.20E-01 3.43E-02 2.47 
HS 6.33E-02 2.17E-02 1.60E-01 3.30E-02 1.92 
      
Calaveras     
CN 2.28E-02 1.88E-03 9.67E-02 1.50E-02 1.51 
CC 5.10E-02 1.02E-04 1.57E-01 6.94E-02 0.73 
CS 2.57E-01 9.90E-02 7.58E-01 1.20E-01 2.15 
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Table 6. Same as Table 5, but for each rupture rather than each segment, and total aggregated probabilities for each fault are included 
here as well. 

Rupture Name 

BPT Wt 
Ave with 

α constant 

BPT Min 
with α 

constant 

BPT Max 
with α 

constant 
Pois 

Wt Ave 
BPT 
Gain 

      
Elsinore      
W 1.18E-02 4.54E-03 3.98E-02 4.66E-03 2.53 
GI 3.77E-03 2.25E-11 1.16E-02 1.05E-02 0.36 
T 1.81E-03 3.69E-07 4.03E-03 2.10E-03 0.86 
J 1.79E-04 0.00E+00 7.20E-04 7.91E-05 2.27 
CM 1.11E-03 0.00E+00 8.45E-03 5.34E-03 0.21 
W+GI 2.85E-04 0.00E+00 1.85E-03 2.09E-04 1.36 
GI+T 1.92E-03 2.27E-07 5.16E-03 2.52E-03 0.76 
T+J 5.26E-04 0.00E+00 1.63E-03 3.15E-04 1.67 
J+CM 1.06E-03 0.00E+00 4.24E-03 5.82E-04 1.81 
W+GI+T 1.30E-04 0.00E+00 6.34E-04 1.44E-04 0.90 
GI+T+J 4.47E-04 0.00E+00 1.36E-03 3.15E-04 1.42 
T+J+CM 1.47E-03 5.57E-04 3.03E-03 1.30E-03 1.13 
W+GI+T+J 9.74E-05 0.00E+00 3.19E-04 6.24E-05 1.56 
GI+T+J+CM 9.65E-04 4.75E-04 1.68E-03 1.02E-03 0.95 
W+GI+T+J+CM 8.72E-05 0.00E+00 2.84E-04 6.26E-05 1.39 
Total Probability 2.54E-02 1.50E-02 5.39E-02 2.89E-02 0.88 
      
Garlock      
GE 6.32E-03 2.65E-03 1.26E-02 2.92E-03 2.16 
GC 3.88E-04 5.74E-06 6.70E-04 4.16E-04 0.93 
GW 5.65E-04 2.18E-07 1.48E-03 1.19E-03 0.47 
GE+GC 4.60E-04 1.88E-04 6.72E-04 4.14E-04 1.11 
GC+GW 1.78E-03 1.25E-05 3.90E-03 2.22E-03 0.80 
GE+GC+GW 2.05E-03 4.26E-04 3.86E-03 2.23E-03 0.92 
Total Probability 1.15E-02 8.12E-03 1.59E-02 9.37E-03 1.23 
      
San Jacinto     
SBV 1.46E-02 4.51E-04 3.83E-02 7.54E-03 1.93 
SJV 4.95E-03 1.55E-06 1.38E-02 7.66E-03 0.65 
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A 3.80E-04 0.00E+00 1.34E-03 2.20E-04 1.72 
C 1.83E-04 0.00E+00 6.20E-04 2.23E-04 0.82 
CC 9.81E-04 1.05E-07 3.54E-03 3.36E-03 0.29 
B 4.17E-03 0.00E+00 1.81E-02 1.30E-02 0.32 
SM 2.35E-02 7.95E-03 1.00E-01 9.57E-03 2.46 
SBV+SJV 4.52E-03 1.09E-04 9.28E-03 4.48E-03 1.01 
SJV+A 1.40E-03 0.00E+00 4.59E-03 1.11E-03 1.26 
A+C 1.87E-02 3.50E-03 3.85E-02 1.09E-02 1.72 
A+CC 3.36E-04 0.00E+00 1.21E-03 2.23E-04 1.51 
CC+B 9.05E-04 6.59E-08 3.48E-03 3.36E-03 0.27 
B+SM 4.99E-03 1.54E-03 1.13E-02 3.81E-03 1.31 
SBV+SJV+A 1.38E-03 0.00E+00 4.94E-03 1.12E-03 1.24 
SJV+A+C 1.27E-03 0.00E+00 3.93E-03 1.12E-03 1.13 
SJV+A+CC 2.58E-04 0.00E+00 8.40E-04 2.23E-04 1.16 
A+CC+B 3.14E-04 0.00E+00 1.14E-03 2.25E-04 1.40 
CC+B+SM 2.80E-03 1.33E-03 5.06E-03 3.33E-03 0.84 
SBV+SJV+A+C 5.46E-03 1.51E-03 1.11E-02 3.73E-03 1.46 
SBV+SJV+A+CC 2.58E-04 0.00E+00 9.32E-04 2.24E-04 1.15 
SJV+A+CC+B 2.42E-04 0.00E+00 7.99E-04 2.21E-04 1.10 
A+CC+B+SM 3.30E-04 0.00E+00 1.20E-03 2.24E-04 1.48 
SBV+SJV+A+CC+B 2.43E-04 0.00E+00 8.92E-04 2.22E-04 1.09 
SJV+A+CC+B+SM 2.62E-04 0.00E+00 8.74E-04 2.25E-04 1.17 
SBV+SJV+A+CC+B+SM 2.56E-04 0.00E+00 9.24E-04 2.21E-04 1.16 
Total Probability 8.90E-02 4.28E-02 1.86E-01 7.38E-02 1.21 
      
N. San Andreas     
SAO 3.25E-03 3.38E-04 7.33E-03 3.94E-03 0.83 
SAN 6.04E-05 8.10E-07 1.17E-04 1.02E-04 0.59 
SAP 1.15E-03 2.80E-06 3.22E-03 1.50E-03 0.77 
SAS 8.24E-03 7.40E-04 1.69E-02 7.49E-03 1.10 
SAO+SAN 6.59E-03 4.83E-04 1.59E-02 9.81E-03 0.67 
SAN+SAP 2.78E-06 0.00E+00 1.06E-05 5.24E-06 0.53 
SAP+SAS 8.28E-03 8.89E-04 2.21E-02 9.80E-03 0.84 
SAO+SAN+SAP 2.46E-04 1.25E-05 4.71E-04 3.55E-04 0.69 
SAN+SAP+SAS 8.21E-05 1.14E-05 1.46E-04 1.20E-04 0.68 
SAO+SAN+SAP+SAS 6.47E-03 2.63E-04 1.68E-02 8.74E-03 0.74 
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Total Probability 3.38E-02 4.54E-03 6.05E-02 4.12E-02 0.82 
      
S. San Andreas     
PK 4.16E-02 1.66E-06 1.92E-01 1.66E-01 0.25 
CH 5.59E-04 3.64E-04 1.16E-03 2.58E-04 2.17 
CC 1.91E-03 3.91E-04 4.19E-03 1.02E-03 1.87 
BB 3.69E-03 2.23E-03 6.72E-03 2.11E-03 1.75 
NM 1.42E-03 4.78E-04 2.81E-03 8.24E-04 1.72 
SM 5.38E-03 2.68E-03 9.61E-03 2.76E-03 1.95 
NSB 8.26E-03 4.70E-03 2.57E-02 3.87E-03 2.14 
SSB 4.32E-04 4.82E-05 7.48E-04 2.52E-04 1.72 
BG 3.41E-03 7.53E-07 1.07E-02 1.56E-03 2.19 
CO 7.21E-02 1.81E-02 3.16E-01 3.00E-02 2.40 
PK+CH 3.73E-02 1.09E-02 1.36E-01 1.80E-02 2.07 
CH+CC 2.60E-03 1.52E-03 4.42E-03 1.32E-03 1.97 
CC+BB 2.14E-05 0.00E+00 5.88E-05 1.26E-05 1.69 
BB+NM 4.00E-06 0.00E+00 1.03E-05 2.52E-06 1.59 
NM+SM 3.68E-03 3.34E-05 1.16E-02 1.76E-03 2.09 
SM+NSB 7.73E-03 4.48E-03 1.40E-02 3.96E-03 1.96 
NSB+SSB 9.13E-03 4.37E-03 1.97E-02 4.70E-03 1.94 
SSB+BG 4.93E-03 2.94E-06 1.63E-02 2.25E-03 2.19 
BG+CO 6.49E-03 1.03E-03 1.61E-02 2.92E-03 2.22 
PK+CH+CC 5.30E-03 2.88E-03 9.92E-03 2.80E-03 1.89 
CH+CC+BB 4.67E-06 0.00E+00 1.42E-05 2.48E-06 1.88 
CC+BB+NM 4.10E-06 0.00E+00 1.09E-05 2.52E-06 1.63 
BB+NM+SM 2.18E-03 1.30E-03 3.72E-03 1.18E-03 1.84 
NM+SM+NSB 8.48E-04 4.92E-04 1.67E-03 4.37E-04 1.94 
SM+NSB+SSB 5.20E-03 3.02E-03 8.03E-03 2.73E-03 1.91 
NSB+SSB+BG 2.58E-03 3.05E-05 7.19E-03 1.23E-03 2.09 
SSB+BG+CO 2.99E-03 3.59E-04 7.87E-03 1.39E-03 2.15 
PK+CH+CC+BB 5.60E-03 2.87E-03 1.16E-02 3.04E-03 1.84 
CH+CC+BB+NM 4.48E-06 0.00E+00 1.30E-05 2.49E-06 1.80 
CC+BB+NM+SM 2.41E-03 3.57E-05 5.83E-03 1.24E-03 1.94 
BB+NM+SM+NSB 4.29E-06 0.00E+00 1.18E-05 2.50E-06 1.72 
NM+SM+NSB+SSB 1.52E-03 6.17E-04 3.28E-03 7.78E-04 1.95 
SM+NSB+SSB+BG 2.56E-03 7.56E-04 5.33E-03 1.29E-03 1.99 
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NSB+SSB+BG+CO 3.16E-03 3.15E-05 7.64E-03 1.47E-03 2.14 
PK+CH+CC+BB+NM 1.05E-02 5.06E-03 2.22E-02 5.84E-03 1.80 
CH+CC+BB+NM+SM 3.96E-03 1.12E-03 7.44E-03 2.06E-03 1.92 
CC+BB+NM+SM+NSB 8.21E-04 4.11E-04 1.47E-03 4.37E-04 1.88 
BB+NM+SM+NSB+SSB 4.76E-04 3.53E-04 7.57E-04 2.57E-04 1.85 
NM+SM+NSB+SSB+BG 7.21E-04 1.32E-04 1.70E-03 3.63E-04 1.98 
SM+NSB+SSB+BG+CO 3.78E-03 1.18E-03 7.37E-03 1.86E-03 2.03 
PK+CH+CC+BB+NM+SM 1.30E-02 3.55E-05 2.93E-02 6.75E-03 1.92 
CH+CC+BB+NM+SM+NSB 4.49E-06 0.00E+00 1.31E-05 2.48E-06 1.81 
CC+BB+NM+SM+NSB+SSB 8.56E-04 4.41E-04 1.49E-03 4.59E-04 1.86 
BB+NM+SM+NSB+SSB+BG 4.21E-06 0.00E+00 1.15E-05 2.52E-06 1.67 
NM+SM+NSB+SSB+BG+CO 7.58E-04 1.06E-04 1.78E-03 3.72E-04 2.04 
PK+CH+CC+BB+NM+SM+NSB 4.68E-03 2.53E-03 8.89E-03 2.50E-03 1.87 
CH+CC+BB+NM+SM+NSB+SSB 4.82E-04 3.55E-04 7.48E-04 2.55E-04 1.89 
CC+BB+NM+SM+NSB+SSB+BG 4.11E-04 1.80E-04 7.68E-04 2.19E-04 1.88 
BB+NM+SM+NSB+SSB+BG+CO 4.62E-04 2.81E-04 8.23E-04 2.40E-04 1.92 
PK+CH+CC+BB+NM+SM+NSB+SSB 9.77E-04 7.02E-04 1.48E-03 5.25E-04 1.86 
CH+CC+BB+NM+SM+NSB+SSB+BG 4.43E-06 0.00E+00 1.27E-05 2.50E-06 1.77 
CC+BB+NM+SM+NSB+SSB+BG+CO 9.22E-05 6.37E-05 1.58E-04 4.86E-05 1.90 
PK+CH+CC+BB+NM+SM+NSB+SSB+BG 4.39E-04 2.52E-04 7.54E-04 2.34E-04 1.88 
CH+CC+BB+NM+SM+NSB+SSB+BG+CO 4.56E-06 0.00E+00 1.40E-05 2.50E-06 1.82 
PK+CH+CC+BB+NM+SM+NSB+SSB+BG+CO 8.41E-04 2.29E-04 1.57E-03 4.37E-04 1.93 
Total Probability 2.53E-01 1.68E-01 5.01E-01 2.59E-01 0.98 
      
Hayward-Rogers Creek     
RC 4.62E-02 1.99E-02 1.12E-01 2.05E-02 2.25 
HN 4.23E-02 1.97E-02 1.02E-01 1.73E-02 2.45 
HS 3.48E-02 1.36E-02 8.20E-02 1.85E-02 1.88 
RC+HN 5.83E-03 3.43E-03 1.26E-02 2.59E-03 2.25 
HN+HS 2.83E-02 1.01E-02 8.08E-02 1.32E-02 2.14 
RC+HN+HS 3.38E-03 2.00E-03 7.58E-03 1.58E-03 2.14 
Total Probability 1.49E-01 7.32E-02 3.41E-01 7.15E-02 2.09 
      
Calaveras     
CN 1.03E-02 9.29E-04 4.19E-02 7.05E-03 1.47 
CC 3.16E-02 6.89E-05 9.58E-02 4.46E-02 0.71 
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 2.
 6.
 1.

CN+CC+CS 9

CS 05E-01 7.44E-02 6.23E-01 9.71E-02 2.11 
CN+CC 74E-04 6.44E-05 1.92E-03 6.86E-04 0.98 
CC+CS 84E-02 7.87E-03 4.40E-02 1.83E-02 1.01 

.53E-03 2.36E-03 3.55E-02 7.38E-03 1.29 
Total Probability 2.53E-01 1.20E-01 6.91E-01 1.64E-01 1.54 
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