USGS - science for a changing world

Open-File Report 2008–1005

Geomorphic Map of Worcester County, Maryland, Interpreted from a LIDAR-Based, Digital Elevation Model

By Wayne L. Newell and Inga Clark

Plate 1, Geomorphic Map of Worcester County, Maryland, and link to report

PDF Open-File Report 2008-1005 (896 KB, 34 pages)

PDF Plate l - Geomorphic Map of Worcester County, Maryland (59,751 KB 1 page)

PDF Plate ll - Geomorphic Map of Snow Hill (41,655 KB
1 page)

 

Abstract

A recently compiled mosaic of a LIDAR-based digital elevation model (DEM) is presented with geomorphic analysis of new macro-topographic details. The geologic framework of the surficial and near surface late Cenozoic deposits of the central uplands, Pocomoke River valley, and the Atlantic Coast includes Cenozoic to recent sediments from fluvial, estuarine, and littoral depositional environments. Extensive Pleistocene (cold climate) sandy dune fields are deposited over much of the terraced landscape. The macro details from the LIDAR image reveal 2 meter-scale resolution of details of the shapes of individual dunes, and fields of translocated sand sheets. Most terrace surfaces are overprinted with circular to elliptical rimmed basins that represent complex histories of ephemeral ponds that were formed, drained, and overprinted by younger basins. The terrains of composite ephemeral ponds and the dune fields are inter-shingled at their margins indicating contemporaneous erosion, deposition, and re-arrangement and possible internal deformation of the surficial deposits. The aggregate of these landform details and their deposits are interpreted as the products of arid, cold climate processes that were common to the mid-Atlantic region during the Last Glacial Maximum.

In the Pocomoke valley and its larger tributaries, erosional remnants of sandy flood plains with anastomosing channels indicate the dynamics of former hydrology and sediment load of the watershed that prevailed at the end of the Pleistocene. As the climate warmed and precipitation increased during the transition from late Pleistocene to Holocene, dune fields were stabilized by vegetation, and the stream discharge increased. The increased discharge and greater local relief of streams graded to lower sea levels stimulated down cutting and created the deeply incised valleys out onto the continental shelf. These incised valleys have been filling with fluvial to intertidal deposits that record the rising sea level and warmer, more humid climate in the mid-Atlantic region throughout the Holocene. Thus, the geomorphic details provided by the new LIDAR DEM actually record the response of the landscape to abrupt climate change.

Holocene trends and land-use patterns from Colonial to modern times can also be interpreted from the local macro- scale details of the landscape. Beyond the obvious utility of these data for land-use planning and assessments of resources and hazards, the new map presents new details on the impact of climate changes on a mid-latitude, outer Coastal plain landscape.

For more information concerning the report, please contact the author.

 

Contents

Figures

Tables


This document is available online only in Portable Document Format (PDF); the latest version of Adobe Acrobat Reader or similar software is required to view it. Download the latest version of Acrobat Reader, free of charge or go to access.adobe.com for free tools that allow visually impaired users to read PDF files.

Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: http://pubs.usgs.gov/of/2008/1005/index.html
Page Contact Information: Web team
Page Last Modified: Sunday, 13-Jan-2013 12:19:13 EST