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Minimum Pool and Bull Trout Prey Base Investigations 
at Beulah Reservoir—Final Report for 2008 

By Brien P. Rose and Matthew G. Mesa 

Abstract 
Beulah Reservoir in southeastern Oregon provides irrigation water to nearby farms and 

supports an adfluvial population of threatened bull trout (Salvelinus confluentus). Summer 
drawdowns in the reservoir could affect forage fish production and overwintering bull trout. To 
assess the impacts of drawdown, we sampled fish, invertebrates, and water-quality variables 
seasonally during 2006–08. In 2006, the summer drawdown was about 68 percent of full pool, which 
was less than a typical drawdown of 85 percent. We detected few changes in pelagic invertebrate 
densities, and catch rates, abundance, and sizes of fish when comparing values from spring to values 
from fall. We did note that densities of benthic insects in areas that were dewatered annually were 
lower than those from areas that were not dewatered annually. In 2007, the drawdown was 100 
percent (to run-of-river level) and resulted in decreases in abundance of invertebrates as much as 96 
percent, decreases in catch rates of fish as much as 80 percent, decreases in abundance of redside 
shiners (Richardsonius balteatus) and northern pikeminnow (Ptychocheilus oregonensis) as much as 
93 percent, and decreased numbers of small fish in catches. In the fall 2007, we estimated the total 
biomass of forage fish to be 76 kilograms, or about one-quarter of total biomass of forage fish in 
2006. Bioenergetics modeling suggested that ample forage for about 1,000 bull trout would exist 
after a moderate drawdown, but that forage remaining after a complete dewatering would not be 
sufficient for a population one-fifth the size. Our results indicate that drawdowns in Beulah 
Reservoir affect the aquatic community and perhaps the health and well-being of bull trout. The 
severity of effects depends on the extent of drawdown, population size of bull trout, and perhaps 
other factors.  
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Introduction 
Bull trout (Salvelinus confluentus) were listed by the U. S. Fish and Wildlife Service (FWS) 

as a threatened species under the Endangered Species Act in 1998. Populations of bull trout are 
decreasing throughout their range and the State of Oregon has listed the North Fork Malheur River 
(NFMR) population as one “of special concern.” As a result, managers have spent considerable time 
and effort identifying, restoring, and preserving critical habitat and various life history forms 
(Muhlfeld and others, 2003). Reasons for the decrease of bull trout in the Malheur River basin 
include habitat degradation and fragmentation, losses through unscreened diversions, historic 
chemical treatment projects (Ratliff and Howell, 1992), and entrainment through Agency Valley 
Dam on the NFMR.  

Beulah Reservoir, which was formed after Agency Valley Dam was completed in 1935, 
currently supports a lacustrine-adfluvial population of bull trout that over-winter in the reservoir 
from November through early May (Gonzalez, 1998; Schwabe and Tiley, 1999). Over-wintering 
behavior of bull trout is similar in Flathead Lake, Montana, and Lake Billy Chinook, Oregon (Fraley 
and Shepard, 1989; Beauchamp and Van Tassell, 2001). Because the reservoir provides irrigation 
water to nearby farms and ranches, bull trout can experience changes in water level, habitat, and 
forage availability due to seasonal reservoir drawdowns. Furthermore, reservoir volume occasionally 
decreases to run-of-river levels, which could severely affect forage fish populations. Decreased 
forage fish populations could negatively affect the bull trout population in the NFMR drainage by 
contributing to decreased growth and survival.  

Understanding the resilience of the aquatic community in Beulah Reservoir to drawdown and 
occasional dewatering is important for assessing the effects of reservoir operations on bull trout. 
Open systems like streams and rivers generally are considered resilient to disturbances such as 
severe drought (Bayley and Osborne, 1993) and flooding (Matthews, 1986). Such resilience 
probably is due to large numbers of individuals in nearby tributaries or reaches that can quickly re-
colonize disturbed areas (Mathews, 1986; Bayley and Osborne, 1993). In contrast, reservoir fish 
communities may be more confined and less resilient to environmental disturbance. Drastic or ill-
timed changes in the water level of reservoirs can lead to the dewatering of spawning habitat, eggs, 
and larval fishes (Lantz and others, 1967; Estes, 1972), reduced growth and survival of fishes 
(Graham and others, 1981), and changes in aquatic vegetation, water chemistry, primary production, 
and the benthic food web (Benson and Hudson, 1975; Nichols, 1975; Woods and Falter, 1982; 
Gaboury and Patalas, 1984; Furey and others, 2006). Information on the resilience of the aquatic 
community in Beulah Reservoir to water-level changes would be useful for the management of 
threatened bull trout.  
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The FWS and the Bureau of Reclamation recently completed a Biological Opinion that 
addresses terms and conditions to minimize the effects of operations at Beulah Reservoir on bull 
trout. These terms (along with others) establish the need for conservation pool requirements based 
on water year conditions that supply adequate habitat and forage for bull trout in the reservoir. To 
assist in this endeavor, we (1) documented species composition, abundance, and distribution of 
forage fish in Beulah Reservoir in early spring and late fall, before and after summer drawdown; (2) 
described seasonal variation in aquatic insect abundance and distribution; (3) conducted 
bioenergetics modeling exercises to evaluate the consumption and growth of bull trout under varying 
levels of prey availability; and (4) evaluated previous data for Beulah Reservoir that might provide 
additional information on current conditions. We used this information to evaluate the effects of 
typical seasonal drawdowns and complete dewatering of the reservoir on various metrics of the 
aquatic community.  

Study Site.—Agency Valley Dam was built by the Bureau of Reclamation on the NFMR 
during 1934–35 at river km (rkm) 29 and formed Beulah Reservoir (fig. 1). The impoundment 
provides irrigation water to local farms and some flood control and has no facilities for upstream or 
downstream passage of fish. The reservoir is 1,020 m above sea level at full pool and has an average 
width of 1.9 km and a length of about 4 km. The NFMR and Warm Springs Creek enter from the 
north and the NFMR exits from the south end of the reservoir. The north end of the reservoir is 
relatively shallow (<10 m deep) with a low gradient bottom. The south end of the reservoir has a 
steep decline from shore and reaches a maximum depth of about 23 m. Although summer 
temperatures exceed 20°C at all depths throughout the reservoir (Petersen and others, 2003), it cools 
rapidly in the fall and typically ices over in winter. Beulah Reservoir is eutrophic (Bureau of 
Reclamation, 2002) with high abundances and diverse size classes of redside shiners (Richardsonius 
balteatus), redband trout (Oncorhynchus mykiss gairdneri), suckers (Catostomus sp.), and northern 
pikeminnow (Ptychocheilus oregonensis) (Petersen and others, 2003). The reservoir is stocked with 
hatchery rainbow trout (RBT) each spring.  

 

Methods 
Water-Quality Sampling 

We collected data on water quality (and sampled fish and aquatic insects) in Beulah 
Reservoir during spring (late March through early June) and fall (October through mid-November) 
of 2006 and 2007, and in only spring 2008. Water temperature, dissolved oxygen (DO), and water 
transparency were measured about every 2 weeks in three areas of the reservoir: (1) the deep, 
southern end; (2) the moderately deep, middle of the reservoir (when water depths were sufficient); 
and (3) the shallow northern end. Water temperature (ºC) and DO (mg/L) were measured every 
meter from the surface to the bottom with a Yellow Springs Instruments© Model 85 multimeter. 
Reservoir transparency was determined with a Secchi disk. Reservoir volume, river flows, and river 
temperature data were obtained from Bureau of Reclamation gaging stations 
(www.usbr.gov/pn/hydromet, accessed February 27, 2009).  
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Aquatic Insect Sampling 
We estimated the density and biomass of pelagic insects in the reservoir using a 0.5-m2

We also estimated the abundance and biomass of benthic insects in substrates that 
experienced different levels of dewatering. We used data from 1977 to 2005 on reservoir elevations 
after summer drawdown (

, 500-
µm mesh conical zooplankton net towed vertically from about 1-m above the bottom to the water 
surface. During spring and fall, we conducted three net tows from randomly selected sites within 
each of four geographic areas (that is, northwest, northeast, southwest, and southeast) of the 
reservoir and combined catches into four composite samples by area. The samples were preserved in 
the field with 70 percent ethanol. In the laboratory, organisms were identified to Order and number 
and total weight recorded (blotted dry and adjusted to approximate living weights; Howmiller, 
1972). Mean weights of individuals were calculated by dividing the total number of insects per 
sample by their combined weight. Samples were averaged to derive metrics for the reservoir in each 
season. 

www.usbr.gov/pn/hydromet, accessed February 27, 2009) to estimate 
areas of reservoir substrates that were frequently, occasionally, or usually not dewatered. Substrates 
that were frequently dewatered were higher than 1,010-m elevation and represented about 25 percent 
of reservoir depths; substrates that were occasionally dewatered ranged from 997- to 1,010-m 
elevation and represented about 62 percent of reservoir depths; and the typically inundated 
substrates were less than 997-m elevation and represented about 13 percent of reservoir depths. We 
collected two benthic samples from random locations within these strata using a Ponar©

Fish Sampling 

 dredge 
during the spring when the reservoir was nearly full. We repeated this process every 2 weeks and 
processed samples as described above.  

Fish were sampled about every other week with experimental gillnets and fyke nets. The 
gillnets were 36.5 m long by 3.0 m deep and contained six 6-m panels with stretch mesh sizes of 8.9, 
7.6, 6.3, 5.1, 3.8, and 2.5 cm. Gillnets generally were fished on the bottom during daylight hours for 
30 min or less. Fyke nets (91 cm height, 122 cm width, and 0.6-cm mesh size) were set with a 13-m 
center lead extending to shore and fished overnight. We used a stratified (that is, by general 
geographic region—northwest, northeast, southwest, and southeast) randomized design to establish 
sampling locations for each gear type with sample sites replaced at the start of each session. 
Captured fish were anesthetized (using either 50 mg/L Finquel® MS-222 for non-game fish and bull 
trout or one tablet of Alka-Seltzer Gold© in 2.5 L of water for game fish), identified to species 
(except for sculpins), measured for fork length (FL, in mm), weighed (only a subsample to the 
nearest 0.1 g), marked (by removing a fin or placing a Floy© tag in the dorsal musculature for fish 
>150 mm), and released. Later, we estimated the weights of individuals that were not weighed using 
the length-weight relation derived from fish that we did weigh.  

We estimated the population abundance for the most common fish (including young-of-year, 
subadult, and adult fish) in the spring and fall using the Schumacher-Eschmeyer estimator for 
multiple census mark-recapture studies (Schneider, 1998). We assumed compliance with all 
assumptions associated with this estimator (see Lagler, 1956, for a summary). During spring, we 
ended population estimates of RBT before the release of hatchery fish into the reservoir. Population 
estimates during fall, however, included all RBT that were <156 mm. We derived biomass estimates 
for each species by multiplying the mean weight of fish in each cohort by their estimated population 
size.  

http://www.usbr.gov/pn/hydromet�
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Insect and Fish Response to Reservoir Drawdown 
To examine the effects of reservoir drawdown on aquatic insects and fish in Beulah 

Reservoir, we compared several metrics between seasons (and years) from our sampling. For our 
pelagic insect data, we compared mean density of insects collected during each season and year. 
Because few planktonic chironomids were captured during fall, we restricted their analysis to spring 
data only. We derived the same metrics for benthic chironomids and compared values for those 
collected from areas that were frequently, occasionally, or generally not dewatered using data from 
2006 and 2007 combined and for each sample year using pooled data from the three categories of 
benthic strata. We also compared the mean mass of benthic chironomids from each reservoir strata. 
All statistical comparisons of invertebrate data were done with a Kruskal-Wallis test (α =0.05) 
followed by the Dunn-Šidák post-test procedure to maintain a tolerable experimentwise α level 
(Sokal and Rohlf, 2003).  

We compared the mean fyke net and gillnet catch rates (CPUE) of dace, northern 
pikeminnow, redside shiner, suckers, and white crappie by number and biomass between 
consecutive seasons (for example, spring versus fall 2006, fall 2006 versus spring 2007, and so on) 
with analysis of variance (ANOVA) followed by the Bonferroni post-test procedure (Sokal and 
Rohlf, 2003). All catch data were log10

Bioenergetics Modeling 

(x+1) transformed prior to analysis but are presented 
untransformed here. Standardized length frequency distributions (by N per 24 h) of fish captured in 
fyke and gillnets were plotted for the more common fish species (northern pikeminnow, suckers, and 
redside shiners) by season. We excluded RBT from statistical comparisons because we could not 
determine the influence that stocked fish had on our results. We also qualitatively compared the 
Fulton condition factor (Nielsen and Johnson, 1983) of bull trout for different periods and to fish 
from other areas. 

We used a bioenergetics model parameterized for lake trout (Salvenlinus namaycush; 
Stewart and others, 1983) to estimate the seasonal food consumption of bull trout in Beulah 
Reservoir. The lake trout model has been used in previous work with bull trout (Beauchamp and 
Van Tassell, 2001), and because these two species are closely related and occupy similar ecological 
niches, the parameters of the lake trout model are reasonable surrogates for those of bull trout.  

The intent of our simulations was to determine if sufficient prey exists in Beulah Reservoir 
after summer drawdown to sustain a population of bull trout of a certain size from fall through 
spring. Consumption was estimated for two hypothetical populations: (1) the mean estimated 
spawning population of bull trout in the NFMR (N = 188; Schwabe and others, 2006); and (2) a 
population of 1,000 adult bull trout, which is an abundance recovery criterion for isolated 
populations of these fish (Malheur Watershed Council and Burns Piute Tribe, 2004). We ran 
simulations from November 1 to May 29 (210 days) using three hypothetical growth rates: (1) low—
0.01 g per day, which represented a maintenance growth rate of 1 percent; (2) medium—0.64 g per 
day, which was estimated from bull trout in the NFMR (Schwabe and Tiley, 1999; B Rose and M 
Mesa, USGS, unpub. data, 2008); and (3) high—2.3 g per day, which was estimated from bull trout 
in Lake Billy Chinook, Oregon (Beauchamp and Van Tassell, 2001). The initial biomass of fish on 
day 1 (about 231 g) was derived by subtracting the observed growth rate of bull trout in the NFMR 
from the mean mass of bull trout collected in the spring from Beulah Reservoir (Schwabe and Tiley, 
1999; this report). Final biomass of bull trout (on day 210) was dependent on the growth scenario 
used in the simulation. As such, simulations using the medium growth rate approximated the mean 
size of bull trout that overwinter in the reservoir. We obtained temperature data for the simulations 



6 

from the literature (Bureau of Reclamation, 2002; Petersen and Kofoot, 2002; Peterson and others, 
2003; Rose and Mesa, 2007) and from our fieldwork (table 1). We assumed that bull trout would 
feed in reservoir areas with temperatures near their maximum feeding temperature (see Mesa and 
others, 2007) and that they would not occupy the reservoir from late spring to fall because of high 
temperatures. 

To provide input on diet composition to the model, we analyzed stomach contents from 10 
bull trout (range of FL = 263–286 mm) captured in Beulah Reservoir during spring and fall 2007. 
These fish ate a variety of organisms (table 2) and we used the mean proportions by weight of 
invertebrates and fish from the stomach samples as input to the model. For some of our simulations, 
we assumed that bull trout ate only fish during the fall (simulation days 1-30) and had a diet 
comprised of 60 percent fish, 20 percent insects, and 20 percent zooplankton in the spring (days 
121–210). The model interpolated the diet of bull trout for simulation days 31–120. Mass of 
zooplankton eaten by bull trout was estimated using the length-weight relation for Daphnia (Pechen, 
1965) assuming a mean length of 2.5 mm (Wilhelm and others, 1999). The mass of preserved 
Dipterans was adjusted to approximate living mass (Howmiller, 1972). We also conducted 
simulations using a diet comprised of only fish and assumed an indigestible fraction of 3 and 15 
percent of total biomass for fish and invertebrates (Beauchamp and Van Tassell, 2001). The energy 
density of common prey fish in Beulah Reservoir (N = 9–10 for each species) was measured with 
bomb calorimetry during spring and fall 2006 and used as input to the model. Overall, energy 
density of prey fish ranged from 5.07 to 5.63 kJ/g (table 3). Energy densities for prey items used in 
our model simulations were 5.35 kJ/g (days 1–30) and 5.37 kJ/g (days 121–210) for fish, 3.35 kJ/g 
for chironomids, and 3.56 kJ/g for zooplankton (Luecke and Brandt, 1993; Beauchamp and others, 
1995).  

Our fieldwork provided estimates of the abundance and biomass of prey fish available for 
bull trout in Beulah Reservoir during falls 2006 and 2007. We ran separate simulations for each year 
assuming a prey fish abundance of about 122,000 and a biomass of 266 kg in fall 2006 and about 
23,000 and 76 kg in fall 2007. These numbers reflect the extent of reservoir drawdown in each year, 
with 2006 being moderately dewatered and 2007 being completely dewatered. Because bull trout 
can feed on fish as much as 50 percent of their length (Beauchamp and Van Tassell, 2001); all fish 
<156 mm (mean bull trout length × 0.5) were considered vulnerable to predation by bull trout. For 
our analysis, we plotted the decrease in prey biomass during the simulation period for each set of 
assumptions (that is, population size, growth rates, and diet composition) to determine if prey 
biomass could limit the production of bull trout.  



7 

Results 
Reservoir Volume and Streamflow 

The volume of Beulah Reservoir and flow from the NFMR varied greatly during the study 
(fig. 2). In spring 2006, Beulah Reservoir was filled to 99 percent of its 0.07 km3 (59,900 acre-ft) 
capacity and was drawn down from early summer through fall to 0.023 km3 (18,656 acre-ft). This 
represented a drawdown of about 68 percent, which was less than the mean drawdown of 85 percent 
from 1977 to 2005. Mean (± SD) daily streamflow in the NFMR upstream of Beulah Reservoir was 
7.0 ± 8.9 m3/s, which was about twice the 10-year (1998–2007) average of 3.6 ± 3.7 m3/s. In 2007, 
Beulah Reservoir filled to 84 percent of its capacity and was drawn down to run-of-river level on 
August 30. During this dewatering, most of the reservoir was shallow (<0.2 m) and maximum 
depths were about 1 m. Except for several suckers, large numbers of fish mortalities upstream of the 
dam were not evident. Downstream of the dam, however, a large fish kill did occur (fig. 3). Mean 
flow in the NFMR was 2.0 ± 1.4 m3/s, or about 55 percent of average. During spring 2008, Beulah 
Reservoir was filled to 89 percent of capacity, and, as of July 30, mean flow in the NFMR was 3.9 ± 
3.7 m3

Water Quality 

/s, or about 65 percent of the 10-year average. 

Mean daily water temperatures at the outflow of Beulah Reservoir ranged from near 0 in 
winter to greater than 20°C in summer depending on the year (fig. 4). There was substantial 
variation in temperatures during early spring 2008 and spring and summer temperatures in 2007 
were warmer than temperatures in 2006 and 2008. Reservoir temperature and DO profiles were 
similar for each sampling site. Temperatures near the bottom of the reservoir were less than 13° C 
for all sample sites and study periods (fig. 5). Dissolved-oxygen concentrations were less than 6.5 
mg/L throughout most of the reservoir only on October 14, 2006 (fig. 6). Stratification occurred 
during spring 2006 and again during early May 2008, but anoxic conditions near the bottom did not 
develop. Water clarity varied among study periods and years (fig. 7). In all years, Secchi depths 
generally were lower in the fall than in the spring. In the spring, Secchi depths were lowest in 2006 
(mean ± SD; 1.2 ± 0.3 m), highest in 2008 (2.5 ± 0.3 m), and intermediate in 2007 (2.0 ± 0.3 m). In 
the fall, Secchi depths were higher in 2006 (1.1 ± 0.2 m) than in 2007 (0.7 ± 0.4 m). 

Pelagic Invertebrates 
Pelagic invertebrates representing seven Orders were collected from 2006 to 2008. The most 

common were Hydracarina and Diptera (primarily chironomids). Others collected (in descending 
order of abundance) included Ephemeroptera, Odonata, Coleoptera, Trichoptera, and Oligochaeta. 
Mean Hydracarina densities ranged from 0 during fall 2007 to 1.55 ± 1.21 individuals/m3 during 
spring 2007 (fig. 8). Mean densities of Hydracarina in the spring 2007 were significantly higher than 
mean densities in falls 2006 and 2007 (P < 0.01). No other comparisons were statistically 
significant.  
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Chironomid densities were highest during spring 2006 (0.57 ± 0.67 individuals/m3), lowest 
during spring 2008 (none captured), and intermediate during spring 2007 (0.15 ± 0.18 
individuals/m3

Benthic Invertebrates 

; fig. 8). Only two chironomids were captured during falls 2006 and 2007. 
Differences, however, in the springtime densities of chironomids between the years were not 
significant.  

Benthic invertebrates representing three Orders were collected during our study, including 
Dipterans (primarily chironomids), Oligochaetes, and Trichopterans (in descending order of 
abundance). For all years combined, the mean densities of Dipterans (by number and biomass) were 
significantly (P < 0.01) lower in areas of the reservoir that were frequently dewatered (100 ± 190 
individuals/m3 and 0.7 ± 0.7 g/m3) when compared to areas that were occasionally dewatered (785 ± 
426 individuals/m3and 26.8 ± 11.1 g/m3) and usually not dewatered (1,311 ± 834 individuals/m3 and 
51.8 ± 36.1 g/m3

Fish Sampling Overview 

; fig. 9). Dipterans collected from areas that were frequently dewatered also were 
significantly (P < 0.01) smaller (0.01 ± 0.01 g) than dipterans collected from other areas (0.04 ± 0.01 
g). Overall, the mean densities of benthic dipterans in the spring were significantly lower in 2008 
than in 2006 and 2007 (fig. 10). Compared to 2006 and 2007, the densities of benthic chironomids in 
the spring decreased from 84 to 96 percent in 2008.  

We sampled with both gear types throughout the reservoir (figs. 11 and 12) and the effort 
was relatively similar between spring and fall of each year. In total, we captured 33,175 fish in 8,678 
h of sampling with small mesh fyke nets and gillnets (table 4). Fish captured in fyke nets comprised 
98 percent of our total catch. The most common fish species by number were redside shiners (54 
percent of total catch) and northern pikeminnow (32 percent of total catch). In contrast, RBT and 
largescale suckers (Catostomus macrocheilus) dominated the biomass of our catches, comprising 32 
and 28 percent of the total. Other taxa collected were bridgelip sucker (Catostomus columbianus), 
longnose dace (Rhinichthys cataractae), speckled dace (Rhinichthys osculus), white crappie 
(Pomoxis nigromaculatus), sculpins (Cottus sp.), chiselmouth (Acrocheilus alutaceus), mountain 
whitefish (Prosopium williamsoni), and bull trout.  

Fish Catch per Unit Effort 
Catch rates of fish in Beulah Reservoir varied greatly by season, year, and gear type. The 

overall CPUE of fyke nets for all species combined was highest during spring 2007 and spring 2006 
(6.0–6.5 fish/h or FPH), lowest in fall 2007 and spring 2008 (1.2–1.5 FPH), and intermediate during 
fall 2006 (5.0 FPH; table 4). When we used gillnets, overall CPUE was highest in fall 2006 (10.6 
FPH), lowest during springs 2006 and 2008 (about 1.8 FPH), and intermediate during spring (4.7 
FPH) and fall 2007 (4.5 FPH; table 4). 

Catch rates of fyke nets for dace ranged from 0.25 ± 0.56 FPH (mean ± SD) during spring 
2006 to 0.01 ± 0.02 FPH during fall 2007 (fig. 13). Catch rates of dace during spring 2006 were  
5–48 times higher than other study periods and significantly higher than catch rates in fall 2006  
(P < 0.001). Pairwise comparisons of CPUE for other sample periods were not significant. Dace  
≤50 mm comprised 76–83 percent of our fyke net catch before and about one-half of our catch after  
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the reservoir was dewatered (fig. 14). The proportion of dace 51–70 mm collected increased by 
about 81–200 percent after the reservoir was dewatered. Dace >70 mm were more common during 
spring 2008 (7 percent of catch) than during all other periods (≤4 percent of catch). Dace were not 
captured by gillnets. 

Catch rates of fyke nets for northern pikeminnow ranged from 2.90 ± 6.73 FPH during fall 
2006 to 0.20 ± 0.41 FPH during fall 2007 and did not differ between sample periods (fig. 15). Catch 
rates of small northern pikeminnow (<156 mm, the size that would be suitable prey for bull trout) 
ranged from 2.89 ± 6.72 FPH during fall 2006 to 0.19 ± 0.39 FPH during fall 2007 and again did not 
differ between samples. The CPUE of these fish were 4–15 times higher before the reservoir was 
dewatered than after the reservoir was dewatered. Northern pikeminnow ≤100 mm represented most 
of catches (87–95 percent) for all sample periods (fig. 16). During spring 2006, the modal length of 
small pikeminnow (range = 61–65 mm) was greater than modal length from other years (range = 
36–50 mm). Northern pikeminnow 101–200 mm comprised only 4–9 percent of the catches with 
fyke nets. The percentage of northern pikeminnow >200 mm in the catches was highest (about  
9 percent of annual catch) immediately following dewatering (that is, fall 2007). When the reservoir 
refilled in spring 2008, large fish comprised less than 1 percent of the total catch. The catch rates of 
gillnets for all sizes of northern pikeminnow ranged from 6.09 ± 9.20 FPH during fall 2006 to  
0.07 ± 0.36 FPH during fall 2007 (fig. 15). The catch rates of gillnets after reservoir dewatering (in 
summer 2007) were 63–99 percent lower than catch rates before dewatering. Total catch rates 
significantly increased from spring to fall 2006 (P<0.001) and decreased significantly from spring to 
fall 2007 (P<0.001). The CPUE of gillnets for smaller northern pikeminnow were highest during fall 
2006 (2.65 ± 4.39 FPH) and nil after the reservoir was dewatered. The CPUE of gillnets for small 
northern pikeminnow significantly increased from spring to fall 2006 (P <0.001) and significantly 
decreased from fall 2006 to spring 2007 and from spring to fall 2007 (P <0.01; fig. 15). Prior to 
reservoir dewatering, fish from 101 to 200 mm comprised 70–93 percent of the catch by gillnet and 
they were not collected after the reservoir was dewatered (fig. 16). Northern pikeminnow >200 mm 
comprised from 7 percent (fall 2006) to 100 percent (fall 2007) of the catch by gillnet. Northern 
pikeminnow ≤100 mm were not collected by gillnets. 

The CPUE of fyke nets for redside shiners ranged from 4.40 ± 9.81 FPH during spring 2007 
to 0.74 ± 1.71 FPH during spring 2008 (fig. 17). Catch rates of redside shiners were 80–83 percent 
lower after the reservoir was dewatered when compared to rates before dewatering. Mean CPUE of 
redside shiners significantly decreased from spring to fall 2007 (P<0.01); all other pairwise 
comparisons did not differ. The modal lengths of redside shiners collected by fyke nets were higher 
for spring 2007 (56–60 mm) than modal lengths for other study periods (31–50 mm; fig. 18. Redside 
shiners ≤50 mm comprised from 28 percent (springs 2007 and 2008) to 88 percent (fall 2006) of the 
catch by fyke net. Redside shiners 51–70 mm were more common during spring 2007 (57 percent of 
total catch) than for other years (7–26 percent). Prior to dewatering of the reservoir, fish >70 mm 
comprised only 4–16 percent of the catch. After the reservoir was dewatered, fish >70 mm 
comprised 30–46 percent of the catch. When we used gillnets, mean CPUE of redside shiners ranged 
from 0.33 ± 1.17 FPH during spring 2007 to 0.02 ± 0.21 during spring 2008. Although CPUE 
decreased from 55 to 62 percent after the reservoir was dewatered (that is, from spring to fall 2007), 
no seasonal comparisons significantly differed. The sizes of redside shiners also were similar 
between sample periods (fig. 18).  
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Mean CPUE of fyke nets for suckers of all sizes ranged from 0.53 ± 1.22 FPH during spring 
2007 to 0.06 ± 0.12 FPH during spring 2008 (fig. 19). Catch rates were 76–88 percent lower after 
the reservoir was dewatered when compared to rates before dewatering. Mean CPUE of all suckers 
significantly decreased from spring to fall 2007 (P<0.001). The catch rates of fyke nets for smaller 
suckers (<156 mm) ranged from 0.36 ± 1.19 FPH during spring 2007 to 0.02 ± 0.06 FPH during fall 
2007. Mean CPUE for these smaller suckers significantly decreased from spring to fall 2006 
(P<0.05; a 58-percent decrease) and from spring to fall 2007 (P<0.001; a 95- percent decrease). 
Immediately after the reservoir was dewatered, suckers ≤100 mm collected by fyke nets comprised 
only 14 percent of the catch compared to 47–67 percent of the catch during other periods (fig. 20). 
Suckers from 101 to 200 mm comprised 9 and 14 percent of the catch for fall 2006 and spring 2007, 
and 21–29 percent of the catch for other sample periods. The percentages of suckers >200 mm in the 
catches were highest immediately following dewatering (65 percent), lowest for spring 2006  
(4 percent), and intermediate for other sample periods (24–36 percent). The CPUE of gillnets for all 
suckers ranged from 2.85 ± 3.41 FPH during fall 2007 to 0.20 ± 0.78 FPH during spring 2006  
(fig. 19). Mean CPUE of gillnets for all suckers significantly differed (P<0.001) for all seasonal 
comparisons. Mean CPUE of gillnets for small suckers were low (<0.05 FPH) and did not differ 
between sample periods (fig. 19). Suckers ≤100 mm were collected only during spring 2006  
(8 percent of their catch; fig. 20). Suckers 101–200 mm comprised 12–27 percent of the catch by 
gillnet before the reservoir was dewatered and only 0–3 percent of the catch after reservoir 
dewatering. Suckers >200 mm comprised most of the catch (73–100 percent) by gillnet and suckers 
were somewhat more common after the reservoir was dewatered (97–100 percent) compared to 
before reservoir dewatering (73–88 percent). 

Mean CPUE of fyke nets for white crappie were highest during fall 2006 (0.14 ± 0.23 FPH) 
and spring 2007 (0.12 ± 0.24 FPH) and white crappie were not collected after the reservoir was 
dewatered (fig. 21). Mean CPUE of fyke nets for white crappie significantly increased from spring 
to fall 2006 (P<0.001) and significantly decreased from spring to fall 2007 (P<0.001). Prior to 
dewatering, white crappies 50–150 mm comprised 75–100 percent of the catch (fig. 22). Crappies 
151–250 mm comprised 4 and 25 percent of the catch for spring 2007 and fall 2006, and they were 
not collected during spring 2006. Fish >250 mm were collected by fyke nets only during fall 2006  
(1 percent of the catch). When we used gillnets, mean CPUE of white crappie was highest during 
fall 2006 (1.49 ± 3.39 FPH), nil during fall 2007 and spring 2008, and intermediate during spring 
2007 (fig. 21). Mean CPUE of gillnets for white crappie significantly increased from spring to fall 
2006 (P<0.001) and significantly decreased from fall 2006 to spring 2007 (P<0.001) and from 
spring to fall 2007 (P<0.01). White crappies from 50 to 150 mm comprised 93–100 percent of the 
catch by gillnet (fig. 22). Crappies from 151 to 250 mm were collected by gillnets only during fall 
2006 (7 percent of catch) and fish >250 mm were not collected by this gear. 

Fish Population Estimates 
We estimated population abundance of different size cohorts of redside shiners, northern 

pikeminnow, and RBT in Beulah Reservoir during springs and falls 2006 and 2007 and spring 2008. 
Redside shiners and northern pikeminnow were the most abundant fish during all sample periods 
and their population estimates varied considerably between sample periods. All fish showed a 
substantial decrease in abundance following the reservoir dewatering in 2007.  

Population estimates for all sizes of redside shiners were highest during spring sample 
periods (except for 2008) and lowest during the fall (fig. 23). Abundance was highest in the spring 
2007 (198,313 ± 48,100) and lowest in the fall of the same year (14,777 ± 3,172). After a moderate 
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reservoir drawdown during summer 2006, the population estimate for all sizes of redside shiners 
decreased by 44 percent from spring to fall (fig. 23). The magnitude of decrease was similar for 
juvenile (<68 mm; 43 percent) and adult fish (51 percent). After the reservoir was dewatered in 
summer 2007, the abundance of redside shiners in the fall was 93 percent lower than the abundance 
in the spring. Again, the magnitude of the decrease was similar for juvenile and adult fish. The 
population estimate for redside shiners of all sizes was 70 percent higher in spring 2008 (about  
6 months after the reservoir was dewatered) than in fall 2007 (immediately after dewatering). 
Abundances of juvenile redside shiners were similar between fall 2007 and spring 2008 whereas the 
abundance of adult fish increased fourfold. Adult redside shiners represented about one-half of the 
total population during spring 2008, which was considerably higher than other periods where adults 
comprised 6–24 percent of the total.  

Population estimates of northern pikeminnow that would be suitable prey for bull trout (that 
is, fish <156 mm) were highest during spring 2006 (80,881 ± 32,884) and lowest during fall 2007 
(3,940 ± 2,497; fig. 23). Population sizes of all fish in spring 2006 were 2 to 20 times higher than 
other sample periods. After the moderate drawdown of Beulah Reservoir in summer 2006, the 
abundance of prey-sized northern pikeminnow in fall 2006 was 52 percent lower than the abundance 
from the previous spring and was about 15 percent lower in spring 2007 than fall 2006 (fig. 23). The 
population estimate for all sizes of northern pikeminnow after the reservoir was dewatered (fall 
2007) was 88 percent lower than the estimate from spring 2007 (fig. 23). In spring 2008, the 
abundance of all sizes of northern pikeminnow was 66 percent higher than the abundance from fall 
2007.  

Population estimates for smaller RBT that would be suitable prey for bull trout were less 
precise because of low sample sizes and recapture rates (no estimate was derived for spring 2006). 
Estimates ranged from 6,321 ± 6,272 fish in spring 2008 to 1,920 ± 1,435 fish in spring 2007 (fig. 
23). The estimate from fall 2006 was twice that from spring 2007, but the 95-percent CI almost 
entirely overlapped. The population size of RBT more than doubled after the reservoir was 
dewatered and increased by 53 percent from fall 2007 to spring 2008 (fig. 23). 

Catch of Bull Trout 
We did not catch any bull trout in 2006, but caught 5 fish during spring 2007, 3 in fall 2007, 

and 14 in spring 2008. In spring 2007, we caught 3 bull trout in the northwest and 2 in the southern 
region of the reservoir, soon after the start of irrigation withdrawal. Of the 3 fish we captured in fall 
2007, 2 were recaptured once during our sampling and the third fish was originally tagged in spring 
2007. Of the 14 bull trout we captured during spring 2008, we recaptured 3 of these fish once. All 
bull trout in 2008 were captured in the northern half of the reservoir. Bull trout collected during 
spring 2007 were <300 mm, whereas bull trout collected from fall 2007 were >300 mm (fig. 24). 
Bull trout collected during spring 2008 ranged in length from 261 to 476 mm. Mean (± SD) 
condition factors for bull trout were highest in fall 2007 (1.13 ± 0.08), lowest in spring 2008  
(1.00 ± 0.09), and intermediate in spring 2007 (1.08 ± 0.10; fig. 25). All bull trout in 2007 had 
values of K greater than 1.00, but only 35 percent of fish collected in 2008 had K values exceeding 
1. All bull trout that were recaptured in 2007 showed an increase in mass between captures (range 
0.4–0.8 g/day), whereas fish that were recaptured during spring 2008 lost mass (range 1.2–2.0 
g/day). Bull trout fed on invertebrates and fish during springs 2007 and 2008, and fed only on fish 
during fall 2007. Bull trout captured during 2007 (10 percent) and 2008 (70 percent) had less than  
1 g of food in their stomachs.  
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Bioenergetics Modeling 
Our simulations indicated that the per capita consumption of fish and invertebrates by bull 

trout was highest in spring, lowest in winter, and correlated with reservoir temperature (fig. 26). The 
growth rates used in our simulations had obvious effects on the total consumption by populations of 
188 and 1,000 bull trout (table 5). For example, the predatory impact of a population of 188 bull 
trout with a diet comprised of only fish and a high growth rate (2.3 g/day) was over twice that of fish 
with a medium growth rate (0.64 g/day) and over five times greater than fish with a low growth rate 
(0.01 g/day; table 5).  

The total consumption by a hypothetical population of 188 bull trout during our simulation 
period exceeded the available prey biomass in the fall 2006 (which we estimated was about 266 kg) 
when they consumed only fish and grew at a high rate (fig. 27). When their diet was comprised of 
fish and invertebrates, bull trout consumed from 19 to 96 percent of the available prey fish and from 
14 to 120 percent of the prey fish when their diet was comprised of fish only. When we conducted 
simulations using a population of 1,000 bull trout, total consumption exceeded the available prey 
fish, depending on growth rate and regardless of diet composition (fig. 27). A population of 1,000 
bull trout with a medium growth rate (0.64 g/day) eliminated their prey fish base on days 145–180 
and those with a high growth rate (2.3 g/day) exhausted their prey on days 70–81. In contrast, bull 
trout with a low growth rate (0.01 g/day) exhausted their forage base when their diet was comprised 
of only fish (day 192).  

In fall 2007, we estimated the biomass of available prey fish in Beulah Reservoir to be just 
76 kg, or less than one-quarter of the value in 2006. The estimated total consumption by a 
population of 188 bull trout exceeded the available forage, depending on diet composition and 
growth rate (fig. 28). For a population of 188 bull trout, only those with a low growth rate (0.01 
g/day) did not exhaust their prey fish base regardless of their diet composition. The number of days 
for a population of 188 bull trout to eliminate their prey for other diet and growth scenarios ranged 
from 113 to 181 days. When we conducted simulations using a population of 1,000 bull trout, total 
consumption exceeded the available prey fish base in every scenario we modeled (fig. 28). The 
number of days it required for 1,000 bull trout to eliminate their prey fish base ranged from 17 to 86 
days, depending on diet composition and daily growth rate.  

Discussion 
The purpose of our research at Beulah Reservoir was twofold. First, we wanted to determine 

whether typical water-level management of Beulah Reservoir adversely affected the prey base (fish 
and invertebrates) for bull trout. Second, we wanted to determine whether changes to prey 
populations could adversely affect consumption and production by overwintering bull trout within 
the reservoir. Our results indicate that the effects of a summer drawdown on the aquatic community 
within Beulah Reservoir depended on the magnitude of the event. In 2006, where the drawdown was 
relatively mild compared to other years, we detected few changes in the fish community when 
comparing metrics from fish caught in the spring to fish caught in the fall. However, we did note that 
the densities of benthic insects in areas that were frequently dewatered were lower than those in 
areas that remain inundated, which could have implications for bull trout foraging. In 2007, Beulah 
Reservoir was drawn down to run-of-river levels and the amount of habitat available for fish and 
invertebrates after dewatering was <1 percent of habitat available at full pool and all deep-water 
habitat was eliminated. As such, the densities of pelagic and benthic invertebrates decreased, the 
abundance of some fish species decreased, the sizes of fish in the catches changed, and we estimated 
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the biomass of prey fish in Beulah Reservoir in fall 2007 to be just 76 kg, or less than one-quarter of 
the value in 2006. Our bioenergetics modeling exercises suggested that the moderate drawdown of 
2006 left enough prey fish in the fall to provide even a large (≤1,000) population of bull trout with, 
at the least, a maintenance ration of forage for overwintering. In contrast, the extreme drawdown of 
2007 severely reduced the prey fish biomass available in the fall and our simulations indicated that 
consumption by even a modest population of bull trout could exceed the available forage. 
Collectively, our results indicate that current water-level management of Beulah Reservoir does 
affect the aquatic community and may affect the health and well-being of overwintering bull trout. 
As we mentioned earlier, the severity of effects would be dependent on the extent of drawdown, 
population size of bull trout, their diet composition, and perhaps other unknown factors. Because we 
only evaluated the effects of two levels of drawdown—one moderate and one extreme—we can not 
predict the effects of drawdowns that occur between the levels we studied. At the least, our results 
provide information that could help establish minimum pool levels in Beulah Reservoir for the 
maintenance of forage fish and bull trout.  

Water-level management in Beulah Reservoir is similar to other reservoirs in the Western 
United States in that a summer drawdown typically begins in April and May and continues into 
September and early October. However, water-level fluctuations in Beulah Reservoir seem to be 
more severe than most other reservoirs (see www.usbr.gov/pn/hydromet, accessed February 27, 
2009). Although this management strategy may facilitate providing irrigation water, it contrasts with 
a water management strategy for the benefit of fish, in which reservoirs would be full during spring 
and summer for growth and spawning of fish and reduced during winter (Hulsey, 1957). The wet 
winter of 2005–06 allowed Beulah Reservoir to fill earlier and stay full longer when compared to 
other years. This resulted in an early start to withdrawal (March) and water releases over the 
spillway, which may increase entrainment of fish through Agency Valley Dam (Schwabe and Tiley, 
1999). The drier winter and spring 2007 led to a reduced reservoir volume and drafting that caused 
the reservoir to reach run-of-river levels on August 30. During this extreme drawdown, mortalities 
of fish upstream of the dam were not common (except for several suckers) but downstream of the 
dam, a large fish kill occurred. Because of the large number of fish involved in the die-off, we 
surmise that most of these fish were entrained and that some of the changes we saw in our fish 
population metrics after drawdown were due to entrainment. Capturing and moving some of these 
fish back to the reservoir, or installing a fish barrier at Agency Valley Dam, may offset some of 
these losses.  

Water-quality variables differed between the spring and fall. The magnitude of drawdown in 
Beulah Reservoir had minor effects on water quality when comparing metrics in the spring to those 
in the fall. As such, changes in water quality after drawdown probably had little effect on fish health 
or well being. For example, we rarely recorded temperatures >15ºC or DO concentrations  
<6.5 mg/L, which are threshold values considered suitable for bull trout (Rieman and McIntyre, 
1993; Bureau of Reclamation, 2002). Most of the time, water temperatures in the reservoir and in the 
NFMR were less than the tolerance limits of other species, except on occasion for mountain 
whitefish and perhaps sculpin (Black, 1953; Scott and Crossman, 1973; Symons and others, 1976; 
Kaya, 1978; Castleberry and Cech, 1986; Eaton and others, 1995; Hillman and others, 1999; Selong 
and others, 2001). Despite the high productivity of Beulah Reservoir (Bureau of Reclamation, 2002), 
anaerobic conditions were not evident in the hypolimnion.  

We observed considerable changes in water clarity between seasons and years at Beulah 
Reservoir. The decreases in mean Secchi depths from spring to fall were likely related to increases 
in primary production (Bureau of Reclamation, 2002) and to low reservoir volumes mixing with 

http://www.usbr.gov/pn/hydromet�
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incoming and re-suspended sediments (Fox and others, 1977; Popp and Hoagland, 1995). The 
relatively low water clarity during spring 2006 may have resulted from increased sediment inputs 
from tributary streams (Popp and Hoagland, 1995) and from water being released over the spillway, 
which facilitates nutrient exchange from deeper, nutrient-rich waters and increases primary 
production (Murphy, 1962). The effects of changes in water turbidity on the behavior and foraging 
success of bull trout are unknown.  

The drawdowns we studied in Beulah Reservoir resulted in lower densities of pelagic 
invertebrates, lower densities of chironomids in sediments that were frequently dewatered, and a 
smaller size of individuals in areas of frequent dewatering. All these changes could affect bull trout 
in the reservoir because invertebrates can be an important forage item for these fish at certain times 
of the year. For example, Wilhelm and others (1999) noted that the diet of bull trout (>250 mm) in 
high alpine lakes of the Canadian Rocky Mountains (where other fishes were not present) contained 
more than 90 percent chironomids following ice out. Beauchamp and Van Tassel (2001) reported 
that 69–88 percent of the diet of bull trout (200–400 mm) consisted of invertebrates from January to 
May in Lake Billy Chinook, Oregon. Our results showed that bull trout could consume substantial 
quantities of invertebrates, indicating that more detailed study of the effects of reservoir 
management on invertebrate populations is warranted. A detailed description of the aquatic 
invertebrates in Beulah Reservoir and the effects of drawdown on them were beyond the scope of 
our work.  

Although the most common pelagic invertebrates we captured were Hydracarina and 
chironomids, our highest mean catch during any sample period was only 1.5 Hydracarina per m3. 
We only caught relatively high numbers of Hydracarina in spring 2007—at all other times our catch 
was essentially nil. Our catches were on the low side of the range reported by other studies, which 
spanned from an “occasional event” to more than 100 individuals per m3 (Gliwicz and Biesiadka, 
1975; Riessen, 1982; Cassano and others, 2002). Because water mites are considered unpalatable for 
fish (Kerfoot, 1982), we do not know the influence that changes in their populations would have on 
overwintering bull trout in Beulah Reservoir. Our results, however, suggest that Hydracarina 
densities were severely reduced after the complete dewatering of 2007. For pelagic chironomids, we 
only captured them in relatively high numbers in springs 2006 and 2007—catches were essentially 
nil during other periods. Even so, our highest mean catch was only 0.5 individuals per m3 

We observed fewer and smaller chironomids in sediments of the reservoir that were 
frequently dewatered compared to areas that typically were inundated, which is similar to the results 
of Furey and others (2006). This may be because only some taxa of chironomids can tolerate short-
term drying of the substrate (Fillion, 1967; Pinder, 1986). Because of the limited scope of our 
invertebrate sampling, we did not attempt to quantify annual losses of chironomids due to reservoir 
drawdown. Benson and Hudson (1975) found that reducing fall drawdown by 4–5 m yielded a three-
fold increase in benthic macroinvertebrate production during May. For newly impounded reservoirs, 
colonization of the benthos by chironomids begins the summer following impoundment when their 
growth, reproduction, and dispersal are highest (Paterson and Fernando, 1969; Voshell and 
Simmons, 1984). Similarly, our results suggest that recolonization of the benthos by chironomids 

and our 
catch rates decreased gradually from 2006 to 2007, suggesting that summer water-level 
manipulations, and perhaps other factors, were affecting chironomid populations. Our results also 
indicate that chironomid densities were severely reduced after the complete dewatering of 2007. In 
the fall, chironomids may have been subjected to increased predation due to high densities of 
predators and altered swimming behavior of the insects (Yamagishi and Fukuhara, 1971; Mousavi 
and others, 2002; Takagi and others, 2005).  
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occurs the summer after Beulah Reservoir is dewatered and that the amount of biomass available for 
bull trout is low during late fall and winter following a dewatering event. More study is needed to 
understand the relation between chironomid density in the benthos, their densities in open water, and 
the influence of summer drawdowns.  

Despite the reduction of nearshore habitat available for fish in the fall, our catches of fish in 
fyke nets were similar between spring and fall 2006, indicating that fish densities did not change 
appreciably during a year of moderate drawdown. In 2007, however, which included a complete 
dewatering of the reservoir, catch rates of most species significantly decreased from spring to fall. 
Our results suggest that moderate reductions in water volume (1) do not elicit widespread emigration 
of fish from the reservoir, (2) concentrates fish in offshore areas, and (3) leads to stable or even 
increased catch rates of many species of fish. For example, the catch rates by gillnet of northern 
pikeminnow, suckers, and white crappie all increased in fall 2006. In contrast, complete dewatering 
events may lead to large-scale emigrations of fish upstream and downstream. Although we did not 
sample the river upstream of the reservoir, the fish kill that occurred downstream of Agency Valley 
Dam late in summer 2007 indicates that many fish left the reservoir. Although sampling was more 
difficult in the run-of-river conditions left after dewatering, the low densities of fish probably were 
real and not an artifact of sampling because poor catch rates persisted into spring 2008. This 
indicates that fish density remained low and that limited recovery of the fish community occurred 
over the winter. Because we only evaluated two levels of drawdown in Beulah Reservoir and the 
response of different species to these manipulations varies, it is difficult to ascribe clear cause-effect 
relations between drawdown, water volume, and fish abundance. Our results indicate that higher 
reservoir levels and increased shoreline cover from spring through fall improves the overwinter 
survival of many fishes or that immigration of fish into the reservoir from tributaries increases when 
river flows were higher. Miranda and others (1984) and Willis (1986) suggested that higher reservoir 
levels and increased shoreline cover improve survival for subyearling largemouth bass (Micropterus 
salmoides).  

Besides affecting the overall catch rates of some species, water-level management in Beulah 
Reservoir had obvious effects on the sizes of fish in the reservoir. Specifically, the dewatering event 
of 2007 severely reduced the numbers of all sizes of dace, northern pikeminnow <200 mm, redside 
shiners from 20 to 65 mm, and suckers of all sizes. The severe drawdown completely eliminated 
white crappie. Our results indicate that the effects of a single dewatering in Beulah Reservoir occur 
quickly and can be dramatic. The drastic changes in water levels probably lowered the reproductive 
success of fishes by dewatering eggs and larvae, reducing the amount of spawning substrate, and 
exposing juveniles to increased predation (Lantz and others, 1967; Heman and others, 1969; Estes, 
1972; Willis, 1986). Some fish, however, seemed a bit more resilient to the dewatering event of 
2007. For example, our catch rates of juvenile dace increased in spring 2008, indicating that these 
fish may have persisted in tributaries while the reservoir was dewatered and they moved into the 
reservoir after it started to refill. Indeed, Gonzalez and others (1998) documented downstream 
migrations of dace in the NFMR upstream of Beulah Reservoir during fall. The presence of larger-
sized native fishes, like suckers, also suggests that these fish show some resilience to reservoir 
dewatering.  
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Although our results clearly indicate that a single dewatering event can negatively affect fish 
populations in Beulah Reservoir, some evidence suggests that the effects may be short lived. For 
example, our catch rates of fish in 2006 and spring 2007 and the sizes of fish represented in those 
catches were indicative of robust populations with diverse age structures. In particular, most 
individuals collected were smaller and consisted of a high proportion of subyearling fish. Our work 
in 2006 was conducted about 1.5–2.5 years after consecutive dewatering events in Beulah Reservoir 
from 2002 to 2004. Petersen and Kofoot (2002) and Petersen and others (2003) sampled Beulah 
Reservoir during summers 2001 and 2002—prior to the 3 consecutive years of dewatering—and also 
reported that diverse age structures of fish were present. Thus, if severe drawdown events were 
having lasting effects on prey fish populations in Beulah Reservoir, we would have expected some 
evidence of this when we started sampling in 2006. However, the reasons why our catches in 2006 
were high and contained many small fish could be due to higher reproductive success from adults 
that persisted in the reservoir, increased recruitment in a relatively predator-free post-dewatering 
environment, and emigration of fishes from areas upstream of the reservoir. In 2006, there also was 
increased shoreline cover and spawning areas available for fish at the higher pool levels, which is 
important for fish production (Stroud, 1948; Johnson, 1963; Scott and Crossman, 1973; Nelson and 
Walburg, 1977; Martin and others, 1981). Paller (1997) documented similar increases in smaller 
individuals and decreases in larger individuals of various warm water species after a 4-year 
drawdown of Par Pond, South Carolina. In the end, documenting the long-term effects of a single 
drawdown or multiple, consecutive drawdowns on fish populations was beyond the scope of our 
study. We found that about 8 months after a complete dewatering event, many aspects of the fish 
populations in Beulah Reservoir change substantially, including relative abundance, absolute 
abundance, and size structure. We also noted that high catch rates of fish with diverse size structures 
are possible in Beulah Reservoir about 1.5 years after three consecutive dewatering events. 
However, we have little context to interpret this information. Based on a review of gillnet catch data 
from 1955 to 1970, Petersen and others (2003) also concluded that reservoir dewatering does not 
cause long-term changes to the fish community in Beulah Reservoir. Sampling of the fish 
populations in Beulah Reservoir in the absence of moderate or severe drawdowns would provide 
information on the natural seasonal variability of selected metrics and a baseline for understanding 
the effects of drawdown.  

Our estimates of population size for most species were limited by our ability to recapture 
fish. Therefore, we only estimated abundance for the species that were most common and 
consistently recaptured, including redside shiners, northern pikeminnow, and RBT. The moderate 
drawdown of 2006 may have affected populations of redside shiners and northern pikeminnow, both 
of which had higher abundance in the spring than in the fall. However, there are many possible 
explanations for this change in population size, including an influx of subyearling fishes from 
tributaries during late fall and early winter, changes in vulnerability of fish to the gear, losses due to 
predation, outmigration of larger fishes, and direct losses due to the drawdown. Although abundance 
estimates were lower during the fall, fish biomass may continue to increase from the fall through 
spring if over-winter growth occurs. In contrast, the dewatering of the reservoir in 2007 reduced the 
populations of northern pikeminnow and redside shiners by more than 90 percent. Population 
estimates for RBT, however, were higher after dewatering than before dewatering. Gonzalez and 
others (1998) documented downstream migrations of wild RBT in the NFMR during fall through 
spring and perhaps some RBT migrated into Beulah Reservoir during fall, avoided entrainment, and 
dealt with the stressful conditions associated with the dewatering. As such, the effects of dewatering 
on RBT populations may not be evident until several years later, when reductions in adult population 
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size may result in limited recruitment. The situation with RBT in Beulah Reservoir is even more 
confusing considering the planting of hatchery fish that occurs most springs (table 6). Because RBT 
could potentially compete with bull trout for resources in Beulah Reservoir, the ecology and biology 
of RBT warrant further study.  

The dewatering of Beulah Reservoir and the resultant changes in prey populations may have 
had some effects on bull trout. Of all the bull trout we captured in Beulah Reservoir, only fish from 
spring 2008 had condition factors lower than 1.0. The mean condition factor of bull trout in Beulah 
Reservoir during spring 2008 also was 17 percent lower than that of similar sized fish from Lake 
Billy Chinook, Oregon (Beauchamp and Van Tassell, 2001). Given the decreases in abundance of 
fish following the dewatering event of 2007, it seems plausible that prey availability for bull trout in 
the winter 2007 and spring 2008 was sparse, perhaps resulting in lower fish conditions. Furthermore, 
the extent of reservoir drawdown is correlated with the estimated spawning population size of bull 
trout in the NFMR (fig. 29; Schwabe and others, 2006). However, sampling bull trout was not a 
focus of our study, sample sizes were low, and more information is needed to confirm any notions 
about prey availability, condition of bull trout, and the effects of water-level management on their 
health and well being.  

Our bioenergetics modeling simulations suggested that current water-level management 
could limit bull trout production in Beulah Reservoir and the NFMR. Our analysis revealed that 
under a moderate drawdown, there probably would be enough prey fish in the fall to support a large 
population of bull trout under some growth and diet scenarios. After a complete dewatering of the 
reservoir, however, predation by even a modest population of bull trout could exceed or remove a 
high proportion of the prey biomass. The key variables determining the extent of predator impact in 
Beulah Reservoir were the biomass of prey available in the fall, the number of bull trout inhabiting 
the reservoir, diet composition of bull trout, and their growth rate. Of these, we had empirical data 
on prey biomass, and the diet and growth of bull trout to base our simulations on. We did not know 
how many bull trout actually used the reservoir for overwintering and modeled two hypothetical 
populations based on recovery criteria. Obviously, this was a key variable in our bioenergetics 
analysis and is an area of study for future research. Because of the possibility that bull trout can 
deplete their forage base, dewatering of Beulah Reservoir may adversely affect the health and well-
being of bull trout. 

There are several ways to improve our bioenergetics analysis. First, as we just alluded to, 
more information is needed on the number and percentage of bull trout of all sizes in the NFMR that 
actually use Beulah Reservoir during certain times. This probably is the biggest gap in our 
knowledge of the potential predatory impact of bull trout in Beulah Reservoir and is fundamental for 
evaluating the adequacy of the forage base. Such information also would help define the life history 
of bull trout in the NFMR and could be useful for establishing recovery criteria. For example, if 
substantial numbers of resident bull trout exist in the NFMR, then a recovery criterion based on 
adult population size (for example, 1,000–1,500 fish; U.S. Fish and Wildlife Service, 2002) could be 
distributed amongst interconnected populations. We also need more information on the activity, diet, 
feeding rates, and growth of bull trout from fall through spring to parameterize the model with 
relevant data from the field. For example, we used diet information and growth data from only a 
small number of individuals and were not able to partition diet data into size cohorts or describe 
temporal variation with much detail. Evaluating the predatory impact of other species, particularly 
northern pikeminnow and redband trout, would provide a more thorough understanding of predator-
prey interactions in Beulah Reservoir and potential effects of reservoir management on bull trout. 
Clearly, bull trout predation does not occur in a vacuum and a more thorough, food-web based 
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analysis would be more informative and useful. Finally, evaluating recruitment of prey fish during 
the simulation period would provide a better depiction of prey dynamics within the reservoir. 
Addressing these, and perhaps other, issues about bull trout and their prey in the NFMR basin would 
not only improve model results, but it also would allow for more informed decision making 
regarding reservoir operations and species recovery.  

Summary 
The overall goal of our research was to evaluate the effects of seasonal drawdowns on 

measures of insect and fish production in Beulah Reservoir. We wanted to use this information to 
determine a pool level, or volume, in Beulah Reservoir to maintain after drawdown to ensure 
adequate forage for bull trout that may overwinter in the reservoir. In 2 consecutive years, we 
evaluated the effects of a moderate (about a 68-percent decrease in pool volume) drawdown and a 
complete dewatering of Beulah Reservoir and concluded that adequate forage for bull trout would 
exist after the moderate but not the severe drawdown. The complete dewatering, and to a lesser 
extent the moderate drawdown, resulted in decreases in the abundance of pelagic and benthic 
invertebrates, the relative abundance and biomass of several species of fish, the absolute abundance 
of northern pikeminnow and redside shiners, and changes in the size and species composition of our 
catches. These changes were evident at least 8 months after the dewatering event and we do not 
know how long it will take fish and insect populations to recover. Based on bioenergetics modeling 
simulations, we hypothesize that the forage fish populations remaining after a moderate drawdown 
would be sufficient for a large population of bull trout under several growth and diet scenarios. After 
a complete dewatering, however, there would be inadequate time for forage fish populations to 
recover and the biomass of prey would be insufficient for even a modest overwintering population of 
bull trout.  

Because we sampled Beulah Reservoir before and after only two drawdown events, we can 
not determine the minimum pool volume needed to sustain a suitable forage fish population for bull 
trout. Continued monitoring of fish populations in Beulah Reservoir over a wider range of 
drawdown scenarios, particularly moderate to high levels, would increase our understanding of the 
effects of reservoir operations and may allow for minimum pool recommendations. In addition, 
because of their importance to the diet of bull trout, more detailed information on the responses of 
aquatic insect populations to drawdown in Beulah Reservoir would be prudent. Finally, and perhaps 
most importantly, detailed study of the movements, distribution, habitat use, and general life history 
of bull trout in the NFMR and Beulah Reservoir are needed to develop recommendations for water 
management of the reservoir. 

Acknowledgments 
We thank Katy Hanna, Alexis Koenings, and Joseph Mullins for their invaluable assistance 

in the field and during data processing. Tim Walters and Ray Perkins from Oregon Department of 
Fish and Wildlife, and Lawrence Schwabe and Jason Fenton of the Department of Fish and Wildlife 
of the Burns Paiute Tribe, provided field gear and technical advice. This manuscript benefited from 
the careful peer review of Tim Walters, Sally Sauter, and biologists from the Bureau of Reclamation.  

 



19 

 

References Cited 
Bayley, P.B., and Osborne, L.L., 1993, Natural rehabilitation of stream fish populations in an Illinois 

catchment: Freshwater Biology, v. 29, p. 295-300. 
Beauchamp, D.A., LaRiviere, M.G., and Thomas, G.L., 1995, Evaluation of competition and 

predation as limits to juvenile kokanee and sockeye salmon production in Lake Washington: North 
American Journal of Fisheries Management, v. 15, p. 193-207. 

Beauchamp, D.A., and Van Tassell, J.J., 2001, Modeling seasonal trophic interactions of adfluvial 
bull trout in Lake Billy Chinook, Oregon: Transactions of the American Fisheries Society, v. 130, 
p. 204-216. 

Benson, N.G., and Hudson, P.L., 1975, Effects of a reduced fall drawdown on benthos abundance in 
Lake Francis Case: Transactions of the American Fisheries Society, v. 104, p. 526-528. 

Black, E.C., 1953, Upper lethal temperatures of some British Columbia Fishes: Journal of the 
Fisheries Research Board of Canada, v. 10, p. 196-200. 

Bureau of Reclamation, 2002, Beulah Reservoir water quality modeling study: Vale Irrigation 
Project, Oregon, Denver, Colorado.  

Cassano, C.R., Castilho-Noll, M.S.M., and Arcifa, M.S., 2002, Water mite predation on zooplankton 
of a tropical lake: Brazilian Journal of Biology, v. 62, no. 4a, p. 565-571. 

Castleberry, D.T., and Cech, J.J., 1986, Physiological-responses of a native and introduced desert 
fish to environmental stressors: Ecology, v. 67, p. 912-918.  

Eaton, J.G., McCormick, J.H., Goodno, B.E., O’Brien, D.G., Stefan, H.G., Hondzo, M., and Scheller 
R.M., 1995, A field information-based system for estimating fish temperature tolerances: 
Fisheries, v. 20, no. 4, p. 10-18. 

Estes, R.D., 1972, Ecological impact of fluctuating water levels in reservoirs, in Hoffman, D.A., ed., 
Ecological impact of water resource development: a technical session of the symposium, “Water, 
man, nature”: Washington, D.C., Bureau of Reclamation.  

Fillion, D.B., 1967, The abundance and distribution of benthic fauna of three mountain reservoirs on 
the Kananskis River in Alberta: Journal of Applied Ecology, v. 4, no. 1, p. 1-11.  

Fox, J.L., Brezonick, P.L., and Kerin, M.A., 1977, Lake drawdown as a method of improving water 
quality: Washington D.C., U.S. Environmental Protection Agency, 93 p. 

Fraley, J.J., and Shepard, B.B., 1989, Life history, ecology, and population status of migratory bull 
trout (Salvelinus confluentus) in the Flathead Lake and River System, Montana: Northwest 
Science, v. 63, p. 133-143. 

Furey, P.C., Nordin, R.N., and Mazumberm, A., 2006, Littoral benthic macroinvertebrates under 
contrasting drawdown in a reservoir and a lake: Journal of the North American Benthological 
Society, v. 25, no. 1, p. 19-31. 

Gaboury, M.N., and Patalas, J.W., 1984, Influence of water-level drawdown on the fish populations 
of Cross Lake, Manitoba: Canadian Journal of Fisheries and Aquatic Sciences, v. 41, p. 118-125. 

Gliwicz, Z.M., and Biesiadka, E., 1975, Pelagic mites (Hydracarina) and their effect on the plankton 
community in a neo-tropical man-made lake: Arch. Hydrobiologia, v. 76, p. 65-88.  

Gonzalez, D., 1998, Evaluate the life history of salmonids in the Malheur River Basin: Portland, 
Oregon, Annual Report to the Bonneville Power Administration. 



20 

Graham, P., Penkal, R., McMullin, S., Schladweiler, P., Mayes, H., Riggs, V., and Klaver, R.W., 
1981, Montana: Recommendations for fish and wildlife program: Portland, Oregon, prepared for 
Pacific Northwest Electric Council. 

Heman M.L., Cambell, R.S., and Redmond, L.C., 1969, Manipulation of fish populations through 
reservoir drawdown: Transaction of the American Fisheries Society, v. 2, p. 293–304. 

Hillman, T.W., Miller, M.D., and Nishitani, B.A., 1999, Evaluation of seasonal-cold-water 
temperature criteria: Boise, Idaho, Idaho Division of Environmental Quality. 

Howmiller, P.P., 1972, Effects of preservatives on weights of some common macrobenthic 
invertebrates: Transactions of the American Fisheries Society, v. 101, no. 4, p. 7433–7746. 

Hulsey, A.H., 1957, Effects of a fall and winter drawdown on a flood control lake: Proceedings of 
the Annual Conference Southeastern Association of Game and Fish Commissioners, p. 285–289. 

Johnson, R.P., 1963, Studies on the life history and ecology of the bigmouth buffalo, Ictiobus 
cyprinellus (Valenciennes): Journal of the Fisheries Research Board of Canada, v. 20, p. 1397–
1429.  

Kaya, C.M., 1978, Thermal resistance of rainbow trout from a permanently heated stream, and of 
two hatchery strains: The Progressive Fish-Culturist, v. 4, p. 138-142. 

Kerfoot, W.C., 1982, A question of taste: crypsis and warning coloration in freshwater zooplankton 
communities: Ecology, v. 63, no. 2, p. 538–554. 

Lagler, K.F., 1956, Freshwater Fishery Biology: Dubuque, Iowa, W.M.C. Brown. 
Lantz, K.E., Davis, J.T., Hughes, J.S., and Schafer, H.E., Jr., 1967, Water level fluctuation—its 

effects on vegetation control and fish population management: Proceedings of the Annual 
Conference Southeastern Association of Game and Fish Commissioners, v. 18, p. 483–494. 

Luecke, C., and Brandt, D., 1993, Estimating the energy density of daphnid prey for use with 
rainbow trout bioenergetics models: Transactions of the American Fisheries Society, v. 122,  
p. 386–389. 

Malheur Watershed Council and Burns Piute Tribe, 2004, Malheur River Subbasin assessment and 
management plan for fish and wildlife mitigation, Appendix A, Part 2 Assessment Aquatic: 
Portland, Oregon, Northwest Power and Conservation Council. 

Martin, D.B., Mengel, L.J., Novotny, J.F., and Walburg, C.H., 1981, Spring and summer water 
levels in a Missouri River Reservoir: Effects on age-0 fish and zooplankton: Transactions of the 
American Fisheries Society, v. 110, p. 370–381.  

Matthews, W.J., 1986, Fish faunal structure in an Ozark stream: stability, persistence, and a 
catastrophic flood: Copeia, v. 1986, p. 388–397. 

Mesa, M.G., Sauter, S.T., Phelps, J., and Petersen, J.H., 2007, Development of a bioenergetic model 
for bull trout: Longview, WA, report to U.S. Fish and Wildlife Service. 

Miranda, L.E., Shelton, W.L., and Bryce, T.D., 1984, Effects of water level manipulation on 
abundance, mortality, and growth of young-of-year largemouth bass in West Point Reservoir, 
Alabama: North American Journal of Fisheries Management, v. 4, p. 314–320. 

Mousavi, S.K., Sandring, S., and Amundsen, P., 2002, Diversity of chironomid assemblages in 
contrasting subarctic lakes–impact of fish predation and lake size: Archiv Fur Hydrobiologie,  
v. 154, p. 461–484. 

Muhlfeld, C.C., Glutting, S., Hunt, R., Daniels, D., and Marotz, B., 2003, Winter diel habitat use and 
movement by subadult bull trout in the Upper Flathead River, Montana: North American Journal 
of Fisheries Management, v. 23, p. 163–171.  

Murphy, G.I., 1962, Effect of mixing depth and turbidity on the productivity of fresh-water 
impoundments: Transactions of the American Fisheries Society, v. 91, p. 69–76. 



21 

Nelson, W.R., and Walburg, C.H., 1977, Population dynamics of yellow perch (Perca flavescens), 
sauger (Stizostedion canadense), and walleye (Stizostedion vitreum) in four main stem Missouri 
River reservoirs: Journal of the Fisheries Research Board of Canada, v. 34, p. 1748–1763. 

Nichols, S.A., 1975, The impact of over winter drawdown on the aquatic vegetation of the Chippewa 
Flowage, Wisconsin, USA: Transactions of the Wisconsin Academy of Sciences, Arts, and 
Letters, v. 63, p. 176–186. 

Nielsen, L.A., and Johnson, D.L., 1983, Fisheries Techniques: Bethesda, MD, American Fisheries 
Society. 

Paller, M.H., 1997, Recovery of a reservoir fish community from drawdown related impacts: North 
American Journal of Fisheries Management, v. 17, p. 726–733. 

Paterson, C.G., and Fernando, C.H., 1969, The macroinvertebrate colonization of a small reservoir 
in Eastern Canada: Verb. Int. Ver. Limnology, v. 17, no. 126–136. 

Pechen, G.A., 1965, Produktsiya vetvistousykh rakoobraznykh ozernogo zooplanktona, in 
Edmondson, W.T., and Winberg, G.G., eds., A manual on methods for the assessment of 
secondary productivity in fresh waters: London, England, International Biological Programme. 

Petersen, J.H., and Kofoot, E.E., 2002, Conditions for growth and survival of bull trout in Beulah 
Reservoir, Oregon: Boise, Idaho, 2001 Annual Report to the Bureau of Reclamation, Pacific 
Northwest Region.  

Petersen, J.H., Kofoot, E.E., and Rose, B., 2003, Conditions for growth and survival of bull trout in 
Beulah Reservoir, Oregon: Boise, Idaho, 2002 Annual Report to the Bureau of Reclamation, 
Pacific Northwest Region.  

Pinder, L.C.V., 1986, Biology of freshwater Chironomidae: Annual Review of Entomology, v. 31, 
no. 1–23.  

Popp, A., and Hoagland, K.D., 1995, Changes in benthic community composition in response to 
reservoir aging: Hydrobiologia, v. 306, p. 159-171. 

Ratliff, D.E., and Howell, P.J., 1992, The status of bull trout populations in Oregon, in Howell, P.J., 
and Buchanan, D.V., eds., Proceedings of the Gearhart Mountain bull trout workshop: Oregon 
Chapter of the American Fisheries Society, p. 10-17. 

Rieman, B.E., and McIntyre, J.D., 1993, Demographic and habitat requirements for conservation of 
bull trout: Ogden, Utah, U.S. Department of Agriculture, Forest Service, Intermountain Research. 

Riessen, H.P., 1982, Pelagic water mites: their life history and seasonal distribution in the 
zooplankton community of a Canadian lake: Arch. Hydrobiologia Supp., v. 62, p. 410–439. 

Rose, B.P., and Mesa, M.G., 2007, Bull trout forage investigations in Beulah Reservoir, Oregon. 
2006 Annual Report: Boise, Idaho, Bureau of Reclamation.  

Schneider, J.C., 1998, Lake fish population estimates by mark-and-recapture methods, chap. 8 of 
Schneider, J.C., ed., Manual of fisheries survey methods II: with periodic updates: Ann Arbor, 
Michigan, Michigan Department of Natural Resources, Fisheries Special Report 25. 

Schwabe, L., Fenton, J., Perkins, R.R., DeHaan, P., Diggs, M., and Arden, W., 2006, Evaluation of 
the life history of native salmonids in the Malheur subbasin: Portland, Oregon, Annual Report to 
the Bonneville Power Administration Project 19701900.  

Schwabe, L., and Tiley, M., 1999, Evaluation of the life history of native salmonids in the Malheur 
River basin: Portland, Oregon, Annual Report to the Bonneville Power Administration Project 
9701900/9701901.  

Scott, W.B., and Crossman, E.J., 1973, Freshwater fishes of Canada: Fisheries Research Board of 
Canada Bulletin 184. 



22 

Selong, J.H., McMahon, T.E., Zale, A.V., and Barrows, F.T., 2001, Effect of temperature on growth 
and survival of bull trout, with applications of an improved method for determining thermal 
tolerance in fishes: Transactions of the American Fisheries Society, v. 130, p. 1026–1037.  

Sokal, R.R., and Rohlf, J.R., 2003, Biometry third edition: New York, W.H. Freeman and Company. 
Stewart, D.J., Weininger, D., Rottiers, D.V., and Edsall, T.A., 1983, An energetic model for lake 

trout Salvelinus namaycush

Symons, P.E.K., Metcalfe, J.L., and Harding, G.D., 1976, Upper lethal and preferred temperatures of 
the slimy sculpin, 

: application to the Lake Michigan population: Canadian Journal of 
Fisheries and Aquatic Sciences, v. 40, p. 681-698. 

Stroud, R.H., 1948, Growth of the basses and black crappies in Norris Reservoir, Tennessee: Journal 
of Tennessee Academy of Science, v. 23, no. 1, p. 31–99. 

Cottus cognatus: The Journal of the Fisheries Research Board of Canada, v. 33, 
no. 180–183. 

Takagi, S., Kikuchi, E., Doi, H., and Shikano, S., 2005, Swimming behavior of Chironomus 
acerbiphilus larvae in Lake Katanuma: Hydrobiologia, v. 548, p. 153–165. 

U.S. Fish and Wildlife Service, 2002, Malheur Recovery Unit, Oregon, chap. 14 of U.S. Fish and 
Wildlife Service: Portland, Oregon, Bull Trout (Salvelinus confluentus) Draft Recovery Plan, 71 p. 

Voshell, J.R., and Simmons, G.M., Jr., 1984, Colonization and succession of macroinvertebrates in a 
new reservoir: Hydrobiologia, v. 112, p. 27-39.  

Wilhelm, F.M., Parker, B.R., Schindlerm, D.W., and Donald, D.B., 1999, Seasonal food habits of 
bull trout from a small alpine lake in Canadian Rocky Mountains: Transactions of the American 
Fisheries Society, v. 128, p. 1176-1192. 

Willis, D.W., 1986, Review of water level management of Kansas reservoirs, in Hall, G.E., and Van 
Den Avyle, M.J., eds., Reservoir fisheries management: strategies for the 80s: Bethesda, 
Maryland, American Fisheries Society, Southern Division, Reservoir Committee, p. 110-114. 

Woods, P.F., and Falter, C.M., 1982, Limnological investigations: Lake Koocanusa, Montana. Part 
4: Factors controlling primary productivity. Special report 82–15: Seattle District, Seattle, U.S. 
Army Corps of Engineers. 

Yamagishi, H., and Fukuhara, H., 1971, Note on the swimming behavior of Chironomus plumosus 
larvae in Lake Suwa: Japanese Journal of Ecology, v. 20, p. 256-257.  

http://www.itis.usda.gov/servlet/SingleRpt/SingleRpt?search_topic=all&search_value=Cottus+cognatus&search_kingdom=every&search_span=exactly_for&categories=All&source=html&search_credRating=All�


23 

 

 
 

Figure 1. Map showing general location and tributaries of Beulah Reservoir, Oregon.  
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Figure 2. Discharge of water entering and exiting Beulah Reservoir 
and reservoir volume, 2004–08. Our study occurred during years  
marked with an asterisk. 
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Figure 3. Photographs of a fish kill that occurred downstream of Agency Valley Dam on the North Fork of the 
Malheur River during the fall of 2007 after the end of irrigation season and the release of water. By November, 
the fish kill extended about 500 m downstream Photograph taken by Brien P Rose, USGS, November 2007).  

 



26 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

Te
m

pe
ra

tu
re

 (°
C

)

0

5

10

15

20

25

2006
2007
2008

 
 

Figure 4. Mean daily temperatures at the outflow of Beulah Reservoir, 2006–08.  
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Figure 5. Water-temperature profiles in three regions of Beulah Reservoir, 2006–08. The length of each profile 
corresponds to depths of the reservoir for each period. The middle and north sites were not sampled on April 
17, 2006, and data were not collected at some sites due to insufficient water depths or because the sites were 
dry. 
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Figure 6. Dissolved-oxygen profiles in three regions of Beulah Reservoir, 2006–08. The length of each profile 
corresponds to depths of the reservoir for each period. The middle and north sites were not sampled on April 
17, 2006, and data were not collected at some sites due to insufficient water depths or because the sites were 
dry. 
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Figure 7. Mean (± SD) Secchi disk depths measured in Beulah Reservoir, 2006–08. Means were derived from 
sampling at three sites (when water depths permitted). 
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Figure 8. Mean (± 95-percent confidence intervals) and median (white circles) catch per m3 of Hydracarina 
(upper panel) and chironomids (lower panel) collected with vertical net tows in Beulah Reservoir during spring, 
2006–08. Asterisks denote significant differences in catch rates between consecutive sampling periods (that is, 
* = P < 0.05, ** = P < 0.01, *** = P < 0.001). NS = not significant. 
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Figure 9. Mean (± 95-percent confidence intervals) and median (white circles) catch per m2 (upper panel) and 
mass (lower panel) of benthic dipterans collected from locations in Beulah Reservoir that were frequently, 
occasionally, or usually not dewatered during typical summer drawdown, 2006–07. Means with letters in 
common did not differ significantly (P > 0.05).  
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Figure 10. Mean (± 95-percent confidence intervals) and median (white circles) catch per m2 of benthic 
dipterans collected during the spring in Beulah Reservoir, 2006–07. Areas of reservoir substrate that were 
frequently, occasionally, or usually not dewatered were pooled for analysis. Means with letters in common did 
not differ significantly (P > 0.05). 
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Figure 11. Locations of sampling with fyke nets in Beulah Reservoir, 2006–08.  
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Figure 12. Locations of sampling with gillnets in Beulah Reservoir, 2006–08. 
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Figure 13. Mean (and 95-percent confidence interval) and median (white circles) catch per hour of fyke nets for 
species of dace in Beulah Reservoir, 2006–08. Asterisks denote significant differences in catch rates between 
consecutive sampling periods (that is, * = P < 0.05, ** = P < 0.01, *** = P < 0.001). NS = not significant.  
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Figure 14. Catch rates of fyke nets for longnose and speckled dace of different sizes in Beulah Reservoir, 
2006–08. Data were plotted at 5-mm intervals.  
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Figure 15. Mean (and 95-percent confidence interval) and median (white circles) catch per hour of fyke nets 
and gillnets for northern pikeminnow in Beulah Reservoir, 2006–08. Asterisks denote significant differences in 
catch rates between consecutive sampling periods (that is, * = P < 0.05, ** = P < 0.01, *** = P<0.001). NS = not 
significant.  
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Figure 16. Catch rates of fyke nets (upper panels) and gillnets (lower panels) for northern pikeminnow of 
different sizes in Beulah Reservoir, 2006–08. Data were plotted at 5-mm intervals for fish <201 mm and at 20-
mm intervals for fish >200 mm. Data for larger fish were multiplied by 0.25 to facilitate visual comparisons 
across sizes. 
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Figure 17. Mean (and 95-percent confidence interval) and median (white circles) catch per hour of fyke nets 
and gillnets for redside shiners in Beulah Reservoir, 2006–08. Asterisks denote significant differences in catch 
rates between consecutive sampling periods (that is, * = P < 0.05, ** = P < 0.01, *** = P < 0.001). NS = not 
significant. 
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Figure 18. Catch rates of fyke nets (upper panel) and gillnets (lower panel) for redside shiners of different sizes 
in Beulah Reservoir, 2006–08. Data were plotted at 5-mm intervals. 
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Figure 19. Mean (and 95-percent confidence interval) and median (white circles) catch per hour of fyke nets 
and gillnets for species of suckers in Beulah Reservoir, 2006–08. Asterisks denote significant differences in 
catch rates between consecutive sampling periods (that is, * = P < 0.05, ** = P < 0.01,  
*** = P < 0.001). NS = not significant. 
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Figure 20. Catch rates of fyke nets (upper panels) and gillnets (lower panel) for bridgelip and largescale 
suckers of different sizes in Beulah Reservoir, 2006–08. Data were plotted at 5-mm intervals for fish  
<201 mm and at 20-mm intervals for fish >200 mm. Data plotted for larger fish were multiplied by 0.25 to 
facilitate comparisons across sizes. 
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Figure 21. Mean (and 95-percent confidence interval) and median (white circles) catch per hour of fyke nets 
and gillnets for white crappies in Beulah Reservoir, 2006–08. Asterisks denote significant differences in catch 
rates between consecutive sampling periods (that is, * = P < 0.05, ** = P < 0.01, *** = P < 0.001). NS = not 
significant. 
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Figure 22. Catch rates of fyke nets (upper panel) and gillnets (lower panel) for white crappies of different sizes 
in Beulah Reservoir, 2006–08. Data were plotted at 5-mm intervals. 
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Figure 23. Population abundance estimates (± 95-percent confidence intervals) for northern pikeminnow  
<156 mm, and redside shiners and redband trout of different sizes in Beulah Reservoir, 2006–08. No data were 
available for redband trout in the spring of 2006. 
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Figure 24. Length-frequency distributions of bull trout collected from Beulah Reservoir, 2007–08.  
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Figure 25. Fulton’s condition factor of bull trout collected from Beulah Reservoir, 2007–08.  
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Figure 26. Per capita daily consumption estimates of bull trout for three prey types in Beulah Reservoir under 
three different growth rates and assuming a diet comprised of 20 percent zooplankton, 60 percent fish, 20 
percent invertebrates. Bioenergetics model simulations ran for 210 days from fall through spring. Growth rates 
of bull trout were representative of fish in Lake Billy Chinook, Oregon (upper panel), Beulah Reservoir and 
North Fork of the Malheur River (middle panel), and a maintenance growth rate of about  
1 percent during the simulation period (lower panel). The solid line denotes the mean daily water temperature in 
Beulah Reservoir during the simulation period. 
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Figure 27. Predicted biomass of fish <156 mm remaining in Beulah Reservoir after consumption by 
hypothetical populations of 188 (black lines) or 1,000 (grey lines) bull trout with three different growth rates 
during a 210-day period from fall through spring, 2006–07. Prey fish biomass remaining was calculated by 
subtracting the cumulative consumption estimates of each population from the initial prey fish biomass in the 
fall. The simulations in the top graph assumed a diet comprised of 60 percent fish, 20 percent invertebrates, 
and 20 percent zooplankton, and the bottom graph assumed a diet comprised of only fish.  
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Figure 28. Predicted biomass of fish <156 mm remaining in Beulah Reservoir after consumption by a 
hypothetical population of 188 (black lines) or 1,000 (grey lines) bull trout with three different growth rates 
during a 210-day period from fall through spring, 2007–08. Prey fish biomass remaining was calculated by 
subtracting the cumulative consumption estimates of each population from the initial prey fish biomass in the 
fall. The simulations in the top graph assumed a diet comprised of 60 percent fish, 20 percent invertebrates, 
and 20 percent zooplankton, and the bottom graph assumed a diet comprised of only fish.  
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Figure 29. Number of bull trout redds counted in the North Fork Malheur River and the minimum pool level of 
Beulah Reservoir. The x- axes are plotted offset by 1 year.  
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Table 1. Day of simulation, reference month, temperature range in Beulah Reservoir during that month, and 
temperatures used in bioenergetics modeling of bull trout feeding and growth.  
 

Simulation 
day 

 
Reference month 

Temperature range 
°C 

Temperature 
modeled 

 1 November 8.5-5.7 8.5 
 31 December 4.5-4.5 4.5 
 61 January 5.0-2.0 5.0 
 91 February 5.0-4.5 5.0 
 121 March 8.0-6.0 8.0 
 151 April 13.0-12.5 13.0 
 181 May 15.5-8.5 15.5 

 
 
 

Table 2. Percent occurrence ( %O), percent of total number (%N), and percent of total mass (%M) of prey 
items consumed by bull trout in Beulah Reservoir during the spring (N=5) and fall (N=5) of 2007. 
 

 Spring 2007  Fall 2007 
Prey type %O %N %M  %O %N %M 
Northern pikeminnow 20 <1 59  0 0 0 
  
Redband trout 

 
20 

 
<1 

 
25 

  
60 

 
30 

 
88 

  
Redside shiner 

 
20 

 
<1 

 
12 

  
60 

 
70 

 
12 

  
Zooplankton 

 
40 

 
95 

 
1 

  
0 

 
0 

 
0 

  
Diptera 

 
20 

 
3 

 
4 

  
0 

 
0 

 
0 
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Table 3. Mean length (and SD), weight, sample size, and energy density of fish from Beulah Reservoir that we 
used in bioenergetics modeling of bull trout feeding and growth.  
 
[Fish were collected during the spring and fall of 2006. The energy densities of invertebrates were from the literature and 
assumed constant between seasons. RBT = redband trout, RSS = redside shiner, NPM = northern pikeminnow] 
 

 
Season and 
Species 

Mean 
length 
(mm) 

Mean 
weight 

(g) 

 
 

N 

Mean caloric 
density 
(kJ/g) 

Spring     

RBT 108 (9.3) 14.7 (3.8) 9 5.08 (0.46) 

RSS 78 (6.1) 6.8 (1.4) 10 5.63 (0.45) 

NPM 99 (18.4) 12.9 (10.4) 10 5.36 (0.61) 

All Fish 94 (18) 11.3 (7.0) 29 5.37 (0.55) 

 - - -  

Fall     

RBT 88 (9.2) 6.7 (2.2) 9 5.56 (0.24) 

RSS 70 (12.7) 4.6 (2.3) 11 5.07 (0.30) 

NPM 63 (5.5) 2.7 (0.6) 10 5.47 (0.37) 

All Fish 73 (13.9) 4.6 (2.4) 30 5.35 (0.37) 

Daphnia - - - 3.56 

Invertebrates - - - 3.35 

     
 

Table 4. Fyke net and gillnet sampling effort and overall catch rates of fish in Beulah Reservoir, 2006–08.  
 

 Fyke net  Gillnet   
 
Sampling 
period 

N 
of 

sets 

 
Hours 

sampled 

Mean 
soak time 

(h) 

Overall 
catch 

(fish/hour) 

 N 
of 

sets 

 
Hours 

sampled 

Mean 
soak time 

(h) 

Overall 
catch 

(fish/hour) 
Spring 2006 71 1,650 23 6.0  142 61.3 0.4 1.8 
Fall 2006 39 1,143 29 5.0  47 16.6 0.4 10.6 
Spring 2007 76 1,813 24 6.5  73 27.2 0.4 4.7 
Fall 2007 65 1,514 23 1.5  83 38.2 0.5 4.5 
Spring 2008 100 2,378 24 1.2  80 36.5 0.5 1.8 
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Table 5. Bioenergetics model estimates of consumption (kg) by bull trout with a hypothetical population size of 
188 or 1,000 fish using three growth rates and two diet scenarios.  
 
[Simulations ran for 210 days during late fall through spring] 
 

 Fish and invertebrate 
diet 

____________________________
_ 

All fish 
Diet 

________________
____ 

Growth rate and  
population size Fish 

Macro-
invertebrates 

Zoo-
plankton Fish 

0.01 g/day 
  

 188  49.1 11.3 11.3 60.5 
 1,000 261.0 60.0 60.0 321.8 
0.64 g/day 
 188 105.1 25.4 25.4 130.5 
 1,000 559.2 135.2 135.2 694.4 
2.30 g/day  
 188 255.3 65.9 65.9 319.8 
 1,000 1,357.9 350.4 350.4 1701.0 

 

Table 6. Number of rainbow trout that were stocked in Beulah Reservoir, 2004–08.  
 
[T = triploid fish] 
  

Year Date stocked Number stocked Fish Stock 

2004 5/12/2004 35,000 Oak Springs 

2005 5/12/2005 30,000 Oak Springs 

2006 5/16/2006 79,974 Oak Springs (T=47%) 

2007 5/15/2007 80,000 Oak Springs (T) 

2008 5/15/2008 29,970 Oak Springs (T) 
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