Angola ANGL Benguela Bonga -14.2680555555555556 -14 -16 -05 13.9672222222222222 13 58 02 1950 n.d. apatitic carbonatite, rauhaugite, svite 824 10 0.48 0 0 Kamitani and Hirano (1990) 138130 K-Ar; 1128 Rb-Sr (biotite) 130 Cretaceous Moamedes Arch in easternmost part of Paran-Angola-Etendeka alkaline province at junction of Brazilian and Angolan shields carbonatite, fenite granite gneiss (Proterozoic); alkali gabbro, ijolite, nepheline syenite, phonolite, tephrite (Cretaceous Mt. Tchivira complex) apatite, barite, magnetite, parisite, pyrite, pyrochlore, rutile, strontianite, synchysite ankerite, biotite, calcite, dolomite, garnet plug 4 12.6 4 brecciation, fenitization (ring) 0.5 10 n.d. Alberti, A, Castorina, F., Censi, P., Comin-Chiaramonti, P., and Gomes, C.B., 1999, Geochemical characteristics of Cretaceous carbonatites from Angola: Journal of African Earth Sciences, v. 29, no. 4, p. 736759. Coltorti, M., Alberti, A., Beccaluva, L., Dos Santos, A.B., Mazzucchelli, M., Morais, E., Rivalenti, G., and Siena F., 1993, The Tchivira-Bonga alkaline-carbonatite complex (Angola)petrological study and comparison with some Brazilian analogues: The European Journal of Mineralogy, v. 5, no. 6, p. 10011024. Kamitani, M., and Hirano, H., 1990, Important carbonatite-alkaline/alkaline complexes and related mineral resources in the world: Bulletin of the Geological Survey of Japan, v. 41, no. 11, p. 631640. Orris, G.J., and Grauch, R.I., 2002, Rare earth element mines, deposits, and occurrences: U.S. Geological Survey Open-File Report 02-189, 174 p. Woolley, A.R., 2001, Alkaline rocks and carbonatites of the world, Part 3Africa: London, The Geological Society, 372 p. Australia AUWA West Australia Cummins Range -19.2866666666666667 -19 -17 -12 127.1625 127 09 45 1978 n.d. svite 3.55 10 0 2.0 11.2 Jaques (2008); 1% Re2O3 cutoff to 80 m depth within weathered zone, including 216 ppm U3O8 101212 U-Pb, zircon; 85457 K-Ar pyroxene 1,012 southern apex of Precambrian Kimberley block at junction of Halls Creek and King Leopold mobile zones breccia, carbonatite, carbonatized pyroxenite, pyroxenite gneiss, graywacke, phyllite, slate (Archean) aeschynite, allanite, apatite, baddeleyite, barite, bastnaesite, chalcopyrite, columbite, fluorite, magnetite, monazite, parisite, pyrite, pyrochlore, pyrrhotite, sphene, thorianite, zircon alkali amphibole, biotite, calcite, chlorite, diopside, dolomite, phlogopite plug 1.8 2.4 1.7 amphibolization, carbonatization n.d. n.d. n.d. At +2% Re2O3 cutoff: 1.1 Mt at 3.5% Re2O3 and 1.3 Mt at 414 ppm U3O8 (Jaques, 2008). Best intersections include also 14 m at 0.64% Nb2O5, 18 m at 0.49% ZrO2, 9 m at 0.05% Y2O3 (Navigator, 2007). Apatitic rocks contain 1.27% SrO. Andrew, R.L., 1990, Cummins Range carbonatite, in Hughes, F.E., ed., Geology of the mineral deposits of Australia and Papua New Guinea: Melbourne, Australasian Institute of Mining and Metallurgy Monograph 14, v. 1, p. 711713. Jaques, A.L., 2008, Australian carbonatitestheir resources and geodynamic setting: 9th International Kimberlite Conference. Extended Abstract no. 91KC-A-00347, 3 p. Navigator Resources Ltd., 2007, Rare Cummins Range, July 17, 2007, 6 p., www.navigatorresources.com.au/asx/NAVASXCummins17July2007Final.pdf (last visited February 3, 2009) Navigator Resources Ltd., 2007, High grade rare earths confirmed at Cummins Range, September 18, 2007, 5 p., www.navigatorresources.com.au/asx/NAVASXCummins18-09-07FinalRevised.pdf (last visited February 3, 2009) Navigator Resources Ltd., 2007, Quaterly Report, December 31, 2007, 17 p., www.asx.com.au/asxpdf/20080131/pdf/3177clpzl3r380.pdf (last visited February 3, 2009) Australia AUWA West Australia Mount Weld -28.8644444444444444 -28 -51 -52 122.5480555555555556 122 32 53 1966 2007 svite 270 10 0.9 0.63 16.7 indicated resources include 270 Mt at 0.9% Nb2O5, 15.2 Mt at 11.2% RE2O3, 250 Mt at 18% P2O5, and 145 Mt at 0.034% Ta2O5 (Duncan and Willett, 1990; Jaques, 2008; Lynas Corp., 2008) 2025 2025 Eastern Goldfields province of Precambrian Yilgarn craton; Laverton tectonic zone breccia, carbonatite, glimmerite conglomerate, mafic volcanics, metasediments (Archean) allanite, anatase, apatite, baddeleyite, barite, beudantite, Ce-crandallite, cerianite, cheralite, churchite, florencite, fluorite, galena, goethite, gorceixite, hematite, magnetite, manganite, monazite, Nb-ilmenite, Nb-rutile, perovskite, psilomelane, pyrite, pyrochlore, sphalerite, strontianite, synchysite, zircon aegirine, ankerite, biotite, calcite, dolomite, Fe-phlogopite, feldspar, jacobsite, kaolinite, Mg-crocidolite, montmorillonite, olivine, phlogopite, quartz, riebeckite, tremolite, vermiculite plug 3 7 3 glimmeritization, fenitization (ring) 0.5 n.d. n.d. Re2O3 grade includes lantanides and yttrium oxides. Ore bearing regolith 90 m thick. Duncan, R.K., and Willet, G.D., 1990, Mount Weld carbonatite, in Hughes, F.E., ed., Geology of the mineral deposits of Australia and Papua New Guinea: Melbourne, Australasian Institute of Mining and Metallurgy Monograph 14, v. 1, p. 591597. Graham, S., Lambert, D., and Shee, S., 2004, The petrogenesis of carbonatite, melnoite and kimberlite from the Eastern Goldfields Province, Yilgarn Craton: Lithos, v. 76, p. 519533. Jaques, A.L., 2008, Australian carbonatitestheir resources and geodynamic setting: 9th International Kimberlite Conference. Extended Abstract no. 91KC-A-00347, 3 p. Lottermoser, B., 1990, Rare-earth mineralisation within the Mt. Weld carbonatite laterite, Western Australia: Lithos, v. 24, p. 151167. Lottermoser, B., 1990, Ore minerals Mt. Weld rare-earth element deposit, Western Australia: Applied Earth Science, v.104, p. B203B209. Lottermoser, B., and England, B.M., 1988, Compositional variation in pyrochlores from the Mt. Weld carbonatite laterite, Western Australia: Mineralogy and Petrology, v. 38, p. 3751. Lynas Corporation, 2008, Annual Report, 88 p.: www.lynascorp.com/content/upload/files/Reports/6854_Lynas_AR08_FINAL.pdf (last visited February 4, 2009) Orris, G.J., and Grauch, R.I., 2002, Rare earth element mines, deposits, and occurrences: U.S. Geological Survey Open-File Report 02-189, 174 p. Singer, D.A., 1998, Revised grade and tonnage model of carbonatite deposits: U.S. Geological Survey Open-File Report 98-235, 8 p. Brazil BRZL Minas Gerais Araxa Barreiro -19.6611111111111111 -19 -39 -40 -46.9419444444444444 -46 -56 -31 n.d. n.d. beforsite 462 10 2.48 0.234 15 Singer (1998), Orris and Grauch (2002) 9877, K-Ar, Ar-Ar, U-Pb 85 Cretaceous Alta Paranaba igneous province in Proterozoic Brasilia belt dividing So Francisco craton and Paran basin carbonatite, glimmerite, lamprophyre, phoscorite quartzite, biotite schist (Precambrian) ancylite, apatite, Ba-pyrochlore, barite, burbankite, calzirtite, Ce-pyrochlore, chromite, goethite, gorceixite, goyazite, hematite, ilmenite, isokite, limonite, magnetite, monazite, perovskite, pyrite, pyrochlore, pyrrhotite, rutile, strontianite, zirkelite aegerine, alunite, ankerite, anthophyllite, arfvedsonite, barytocalcite, bmite, breunnerite, calcite, dolomite, eckermannite, gibbsite, kaolinite, norsethite, phlogopite, quartz, siderite, vermiculite circular plug 4.5 15.9 4.5 fenitization, glimmerization n.d. n.d. n.d. Laterite ore 200 m thick, 8 Mt at 13.5% Re2O3, 2% Nb2O5, 0.05% U3O8 (Orris and Grauch, 2002). Kamitani, M., and Hirano, H., 1990, Araxa carbonatite deposit and its lateratization: Bulletin of the Geological Survey of Japan, v. 41, no. 11, p. 594604. Nasraoui, M., and Waerenborgh, J., 2001, Fe speciation in weathered pyrochlore-group minerals from the Lueshe and Arax (Barreiro) carbonatites by 57Fe Mssbauer spectroscopy: The Canadian Mineralogist, v. 39, p. 10731080. Orris, G.J., and Grauch, R.I., 2002, Rare earth element mines, deposits, and occurrences: U.S. Geological Survey Open-File Report 02-189, 174 p. Silva, A.B., 1986, Jazida de nibio de Arax, Minas Gerais, in Schobbenhaus, C., and Silva Coelho, C.E., eds., Principas depsitos minerais do Brasil, v. 2, Captulo 25: Brasilia, Departmento Nacional da Produo Mineral, p. 435453. Singer, D.A., 1998, Revised grade and tonnage model of carbonatite deposits: U.S. Geological Survey Open-File Report 98-235, 8 p. Traversa, G., Gomes, C.B., Brotzu, P., Baraglini, P., Morbidelli, L., Principato, S.M., Ronca, S., and Ruberti, E., 2001, Petrography and mineral chemistry of carbonatites and mica-rich rocks from the Arax complex (Alta Paranaba province, Brazil): Anais da Academia Brasileira de Cincias, v. 73, no. 1, p. 132. Woolley, A.R., 1987, Alkaline rocks and carbonatites of the world Part 1: North and South America: London, British Museum (Natural History), 216 p. Brazil BRZL Goias Catalao I -18.13 -18 -07 -48 -47.7997222222222222 -47 -47 -59 n.d. 1976 beforsite, svite 46 10 0.34 1.3 8.9 calculated from Carvalho and Bressan (2005), Singer (1998) 82.94.2 K-Ar, whole rock 83 Cretaceous Alta Paranaba igneous province in the Proterozoic Brasilia belt dividing So Francisco craton and Paran basin carbonatite, dunite, glimmerite, pyroxenite quartzite, schist (Precambrian) anatase, ancylite, apatite, barite, collophane, florencite, goethite, gorceixite, goyazite, hematite, ilmenite, lusungite, magnetite, monazite, perovskite, pyrite, pyrochlore, pyrolusite, pyrrhotite, rhabdophane, sphene, titanite, zircon aegerine, amphibole, bmite, calcite, dolomite, feldspar, gibbsite, kaolinite, nepheline, olivine, phlogopite, pyroxene, quartz, serpentine, svanbergite, vermiculite, vivianite round alkali-carbonatite intrusion 5.25 20.6 5 fenitization (circular) 0.3 n.d. 10 Deposit is obscured by thick mantle of lateritic soils. Additional reserves: 422 Mt at >5% P2O5; 278 Mt at >10% TiO2, 10 Mt at >10% vermiculite (Carvalho and Bressan, 2005). Diamond-bearing kimberlite pipes are located 20 km SE (Vaaldiam Res., 2008). Carvalho, W.T., and Bressen, S.R., 1989, The phosphate deposit of Catalo I ultramafic alkaline complex, Goias, Brazil, in Notholt, A.J.G., Sheldon, R.P., and Davidson, D.F., eds., Phosphate deposits of the world: Cambridge University Press, v. 2, p.104110. Gierth, E., and Baecker, M.L., 1986, A mineralizao de nibio e as rochas alcalinas associadas no complexo Catalo I, Gois: in Schobbenhaus, C., and Silva Coelho, C.E., eds., Principas depsitos minerais do Brasil, v. 2, Captulo 26: Brasilia, Departmento Nacional da Produo Mineral, p. 455462. Guimares, H.N., and Weiss, R.A., 2008, The complexity of the niobium deposits in the alkaline- ultramafic intrusions Catalo I and II Brazil, 15 p., www.cbmm.com.br/portug/sources/techlib/science_techno/table_content/sub_1/ images/pdfs/002A.pdf (last visited February 4, 2009) Kamitani, M., and Hirano, H., 1990, Important carbonatite-alkaline/alkaline complexes and related mineral resources in the world: Bulletin of the Geological Survey of Japan, v. 41, no. 11, p. 631640. Morikiyo, T., Hirano, H., and Matsuhisa, Y., 1990, Carbon and oxygen isotopic composition of the carbonates from the Jacupiranga and Catalao I carbonatite complexes, Brazil: Bulletin of the Geological Survey of Japan, v. 41, no. 11, p. 619626. Orris, G.J., and Grauch, R.I., 2002, Rare earth element mines, deposits, and occurrences: U.S. Geological Survey Open-File Report 02-189, 174 p. Palmieri, M., Pereira, G.S.B., Brod, J.A., Junqueira-Brod. T.C., Petrinovic, I.A., and Ferrari, A.J.D., 2008, Orbicular magnetite from the Catalo I phoscorite-carbonatite complex: International Kimberlite Conference Abstract no. 9IKC-A-00337, 3 p. Schobbenhaus, C., 1986, Geologia do nibio e do tntalo: in Schobbenhaus, C., and Silva Coelho, C.E., eds., Principas depsitos minerais do Brasil, v. 2, Captulo 24: Brasilia, Departmento Nacional da Produo Mineral, p. 429434. Singer, D.A., 1998, Revised grade and tonnage model of carbonatite deposits: U.S. Geological Survey Open-File Report 98-235, 8 p. Toledo, de, M.C.M.,, Lenharo, S.L.R., Ferrari, V.C., Fontan, F., Parseval, de, P., and Leroy, G., 2004, The compositional evolution of apatite in the weathering profile of the Catalo I alkaline-carbonatitic complx, Goias, Brazil: The Canadian Mineralogist, v. 42, p. 11391158. Vaaldiam Resources Ltd., 2008, Catalao kimberlites, 5 p.: www.vaaldiam.com/mining/catalao.html (last visited February 4, 2009) Woolley, A.R., 1987, Alkaline rocks and carbonatites of the world Part 1: North and South America: London, British Museum (Natural History), 216 p. Brazil BRZL Goias Catalao II -18.0480555555555556 -18 -02 -53 -47.8744444444444444 -47 -52 -28 n.d. n.d. beforsite, svite 2 10 2.18 0 0 tonnage-grade of lateritic mantle (Woolley, 1987) 82.94.2 K-Ar, syenite 83 Cretaceous Alta Paranaba igneous province in the Proterozoic Brasilia belt dividing So Francisco craton and Paran basin carbonatite, glimmerite, lamprophyre, phoscorite, pyroxenite, syenite quartzite, schist (Precambrian) Ba-pyrochlore, barite, goethite, goyazite, perovskite, pyrochlore, REE-phosphates, rutile, magnetite alkali-feldspar, calcite, kaolinite, Na-amphibole, phlogopite, pyroxene, quartz, serpentine, vermiculite NE elongated bicentric intrusion 5 10.6 2.7 fenitization n.d. n.d. 10 Guimaraes, H.N., and Weiss, R.A., 2008, The complexity of the niobium deposits in the alkaline- ultramafic intrusions Catalao I and II Brazil, 15 p.: www.cbmm.com.br/portug/sources/techlib/science_techno/table_content/sub_1/images/pdfs/002A.pdf (last visited February 5, 2009) Morikiyo, T., Hirano, H., and Matsuhisa, Y., 1990, Carbon and oxygen isotopic composition of the carbonates from the Jacupiranga and Catalao I carbonatite complexes, Brazil: Bulletin of the Geological Survey of Japan, v. 41, no. 11, p. 619626. Orris, G.J., and Grauch, R.I., 2002, Rare earth element mines, deposits, and occurrences: U.S. Geological Survey Open-File Report 02-189, 174 p. Singer, D.A., 1998, Revised grade and tonnage model of carbonatite deposits: U.S. Geological Survey Open-File Report 98-235, 8 p. Woolley, A.R., 1987, Alkaline rocks and carbonatites of the world Part 1: North and South America: London, British Museum (Natural History), 216 p. Brazil BRZL Sao Paulo Jacupiranga -24.7008333333333333 -24 -42 -03 -48.1325 -48 -07 -57 n.d. 1970 beforsite, svite 97 10 0 0 5.59 Hirano and others (1990) 1305, K-Ar; 1313, Sr-Sr isochrone 130 Cretaceous Paran alkaline province at Brazilian shield carbonatite, ijolite, peridotite, jacupirangite, nepheline syenite granodiorite, schist (Precambrian) allanite, ancylite, apatite, baddeleyite, barite, calzirtite, carbocernaite, galena, ilmenite, magnetite, monazite, perovskite, pyrite, pyrochlore, pyrophanite, pyrrhotite, strontianite, zirconolite Ba-phlogopite, barytocalcite, calcite, dolomite, forsterite, monticellite, norsethite, phlogopite, serpentine, siderite, spinel two close plugs extended along NNW structure 1.0 0.3 0.4 fenitization n.d. n.d. n.d. Alkaline ultramafic complex of 65 sq. km area includes central late carbonatite plug of 0.3 sq. km area. Secondary hydrothermal Sr-Ba-REE-assemblage in carbonatite that contains insignificant Nb mineralization (pyrochlore and 3.68% Nb2O5+Ta2O5 in ilmenite). Bellatreccia, F., Della Ventura, G., Carpilli, E., Williams, C.T., and Parodi, G.C., 1999, Crystal-chemistry of zirconolite and calzirtite from Jacupiranga, So Paulo (Brazil): Mineralogical Magazine, v. 63, no. 5, p. 649660. Born, H., 2005, The Jacupiranga apatite deposit, So Paulo, Brazil, in Notholt, A.J.G., Sheldon, R.P., and Davidson, D.F., eds., Phosphate deposits of the world: Cambridge University Press, v. 2, p.111115. Costanzo, A., Moore, K.R., Wall, F., and Feely, M., 2006, Fluid inclusions in apatite from Jacupiranga calcite carbonatitesEvidence for a fluid-stratified carbonatite magma chamber: Lithos, v. 91, p. 208228. Gaspar, J.C., and Wyllie, P.J., 1983, Ilmenite (high Mg, Mn, Nb) in the carbonatites from the Jacupiranga Complex, Brazil: American Mineralogist; October 1983; v. 68; no. 9-10; p. 960971. Hirano, H., Kamitani, M., and Daix, E.C., 1990, Jacupirango carbonatites in Sao Paulo State, BrazilTheir mode of occurrence: Bulletin of the Geological Survey of Japan, v. 41, no. 11, p. 605610. Huang, Y.-M., Hawkesworth, C.J., van Calsteren, P., and McDermott, F., 1995, Geochemical characteristics and origin of Jacupiranga carbonatites, Brazil: Chemical Geology, v. 119, p. 7999. Woolley, A.R., 1987, Alkaline rocks and carbonatites of the world Part 1: North and South America: London, British Museum (Natural History), 216 p. Brazil BRZL Minas Gerais Salitre Salitre I and II -19.0341666666666667 -19 -02 -03 -46.7811111111111111 -46 -46 -52 n.d. n.d. svite 200 10 2 0 0 Singer (1998) 82.74.2 to 78.74.0, biotite 81 Cretaceous Alta Paranaba igneous province in the Proterozoic Brasilia belt dividing So Francisco craton and Paran basin bebedourite (phlogopitic pyroxenite), carbonatite, phoscorite, syenite, trachyte quartzite, schist (Precambrian) apatite, hematite, ilmenite, magnetite, monazite, perovskite, pyrite, titanite, zircon aegirine, aegirine-augite, calcite, cancrinite, diopside, melanite, nepheline, olivine, phlogopite, zeolite plug in pyroxenite-syenite complex of 35 sq. km area n.d. n.d. n.d. fenitization n.d. n.d. n.d. 84 Mt at 23.28% TiO2 in Salitre I; 92 Mt at 13.0 TiO2 in Salitre II (Kamitani and Hirano, 1990). Barbosa, E.S., Junqueira-Brod, T.C., Brod, J.A., and Dantas, E.L., 2008, Petrology of bebedourites from the Salitre phoscorite-carbonatite complex, Brazil: 9th International Kimberlite Conference Extended Abstrac no 91KC-A-00332, 3 p. Gomes, C.B., Ruberti, E., and Morbidelli, L., 1990, Carbonatite complexes from BrazilA review: Journal of South American Earth Sciences, v. 3, no. 1, p. 5163. Kamitani, M., and Hirano, H., 1990, Important carbonatite-alkaline/alkaline complexes and related mineral resources in the world: Bulletin of the Geological Survey of Japan, v. 41, no. 11, p. 631640. Orris, G.J., and Grauch, R.I., 2002, Rare earth element mines, deposits, and occurrences: U.S. Geological Survey Open-File Report 02-189, 174 p. Singer, D.A., 1998, Revised grade and tonnage model of carbonatite deposits: U.S. Geological Survey Open-File Report 98-235, 8 p. Ulbrich, H.H.G.J., and Gomes, C.B., 1981, Alkaline rocks from continental Brazil: Earth-Science Reviews, v. 17, p. 135154. Woolley, A.R., 1987, Alkaline rocks and carbonatites of the world Part 1: North and South America: London, British Museum (Natural History), 216 p. Brazil BRZL Amazonas Seis Lagos Morro dos Seis Lagos .2819444444444444 0 16 55 -66.6802777777777778 -66 -40 -49 1975 n.d. beforsite 2,898 10 2.81 1.5 0 Cuadros Justo and de Souza (1986), Kamitani and Hirano (1990) Cretaceous (?) 100 (?) Guyana shield breccia, carbonatite, syenite gneiss, migmatite (Precambrian) barite, crandallite, florencite, goethite, hematite, limonite, Nb-brookite, Nb-rutile, pyrite, pyrochlore ankerite, dolomite, siderite 3 plugs of 4, 0.9, and 0.8 km in diameter, along NS zone 8 km long 4 12.6 (main plug) 4 laterite n.d. n.d. n.d. 1.5% Re2O3, 0.07% ThO2, and 0.09% V2O5 reported in lateritic cover ~230 m thick (Woolley, 1987). The largest Nb deposit in the world. Cuadros Justo, L.J.E., and Souza de, M.M., 1986, Jazida de nibio do morro dos Seis Lagos, Amazonas: in Schobbenhaus, C., and Silva Coelho, C.E., eds., Principas depsitos minerais do Brasil, v. 2, Captulo 37: Brasilia, Departmento Nacional da Produo Mineral, p. 463468. Gomes, C.B., Ruberti, E., and Morbidelli, L., 1990, Carbonatite complexes from BrazilA review: Journal of South American Earth Sciences, v. 3, no. 1, p. 5163. Jacobi, P., 2009, Seis Lagos the largest niobium reserve in the world is still waiting to be developed, 5 p.: www.geologo.com.br/seislagos.asp (last visited February 6, 2009) Kamitani, M., and Hirano, H., 1990, Important carbonatite-alkaline/alkaline complexes and related mineral resources in the world: Bulletin of the Geological Survey of Japan, v. 41, no. 11, p. 631640. Singer, D.A., 1998, Revised grade and tonnage model of carbonatite deposits: U.S. Geological Survey Open-File Report 98-235, 8 p. Ulbrich, H.H.G.J., and Gomes, C.B., 1981, Alkaline rocks from continental Brazil: Earth-Science Reviews, v. 17, p. 135154. Woolley, A.R., 1987, Alkaline rocks and carbonatites of the world Part 1: North and South America: London, British Museum (Natural History), 216 p. Brazil BRZL Minas Gerais Serra Negra -18.9202777777777778 -18 -55 -13 -46.8866666666666667 -46 -53 -12 n.d. n.d. svite 200 10 0 0.9 0 (Kamitani and Hirano, 1990), REE grade approximately calculated 81.6 K-Ar, biotite 82 Cretaceous Alta Paranaba igneous province in the Proterozoic Brasilia belt dividing So Francisco craton and Paran basin carbonatite, dunite, jacupirangite, peridotite, shonkinite phyllite, quartzite (Precambrian) anatase, apatite, baddeleyite, perovskite, pyrochlore, Th and U minerals (disseminated) biotite, calcite, quartz oval carbonatite-alkaline intrusive complex n.d. 65 n.d. fenitization (weak) n.d. n.d. n.d. 200 Mt at 27.63% TiO2 (Kamitani and Hirano, 1990); >3% Re2O3 in concentrate, extracted as byproduct (Orris and Grauch, 2002). Lateritic cover 150 m thick at oval intrusive complex 65 sq. km. Gomes, C.B., Ruberti, E., and Morbidelli, L., 1990, Carbonatite complexes from BrazilA review: Journal of South American Earth Sciences, v. 3, no. 1, p. 5163. Kamitani, M., and Hirano, H., 1990, Important carbonatite-alkaline/alkaline complexes and related mineral resources in the world: Bulletin of the Geological Survey of Japan, v. 41, no. 11, p. 631640. Orris, G.J., and Grauch, R.I., 2002, Rare earth element mines, deposits, and occurrences: U.S. Geological Survey Open-File Report 02-189, 174 p. Singer, D.A., 1998, Revised grade and tonnage model of carbonatite deposits: U.S. Geological Survey Open-File Report 98-235, 8 p. Ulbrich, H.H.G.J., and Gomes, C.B., 1981, Alkaline rocks from continental Brazil: Earth-Science Reviews, v. 17, p. 135154. Woolley, A.R., 1987, Alkaline rocks and carbonatites of the world Part 1: North and South America: London, British Museum (Natural History), 216 p. Brazil BRZL Minas Gerais Tapira -19.8644444444444444 -19 -51 -52 -46.8358333333333333 -46 -50 -09 1966 1983 svite 166 10 1.18 0.03 8.3 Singer (1998); Jackson and Christiansen (1993) 69.53.5 K-Ar, biotite 70 Cretaceous Alta Paranaba igneous province in the Proterozoic Brasilia belt dividing So Francisco craton and Paran basin bebedourite, carbonatite, dunite, jacupirangite, peridotite, silexite, syenite, trachyte, tuff phyllite, quartzite, schist (Precambrian) anatase, apatite, Ba-pyrochlore, barite, calzirtite, crandallite, ilmenite, magnetite, perovskite, pyrochlore, rhabdophane, sphene, sulfide minerals, titanite augite, biotite, calcite, diopside, dolomite, garnet, norsethite, olivine, phlogopite, vermiculite five plugs and veins inside oval alkali ultramafic complex ~35 sq. km 2.3 2.7 (main plug) 1.5 fenitization (irregular) n.d. n.d. n.d. Lateritic cover is 30 to 200 m thick. According to Kamitani and Hirano (1990), reserves include also 95 Mt at 17.68% TiO2, 921 Mt at 8.32% P2O5. Brigatti, M.F., Malferrari, D., Medici, L., Ottolini, L., and Poppi, L., 2004, Crystal chemistry of apatites from Tapira carbonatite complex, Brazil: European Journal of Mineralogy, v.16, p. 677685. Brod, J.A., Gaspar, J.C., Diniz-Pinto, H.S., and Junqueira-Brod, T.C., 2005, Spinel chemistry and petrogenetic processes in the Tapira alkaline-carbonatite complex, Minas Gerais, Brazil: Revista Brasileira de Geoscincias, v. 35, no. 1, p. 2332. Brod, J.A., Junqueira-Brod, T.C., Gaspar, J.C., Gibson, S.A., and Thompson, R.N., 2003, Ti-rich and Ti-poor garnet from Tapira carbonatite complex, SE BrazilFingerprinting fractional crystallisation and liquid immiscibility: 8th International Kimberlite Conference, Long Abstract, 5 p. Gomes, C.B., Ruberti, E., and Morbidelli, L., 1990, Carbonatite complexes from BrazilA review: Journal of South American Earth Sciences, v. 3, no. 1, p. 5163. Jackson, W.D., and Christiansen, G., 1993, International strategic inventory summary report-rare-earth oxides: U.S. Geological Survey Circular 930-N, 68 p. Kamitani, M., and Hirano, H., 1990, Important carbonatite-alkaline/alkaline complexes and related mineral resources in the world: Bulletin of the Geological Survey of Japan, v. 41, no. 11, p. 631640. Orris, G.J., and Grauch, R.I., 2002, Rare earth element mines, deposits, and occurrences: U.S. Geological Survey Open-File Report 02-189, 174 p. Singer, D.A., 1998, Revised grade and tonnage model of carbonatite deposits: U.S. Geological Survey Open-File Report 98-235, 8 p. Ulbrich, H.H.G.J., and Gomes, C.B., 1981, Alkaline rocks from continental Brazil: Earth-Science Reviews, v. 17, p. 135154. Woolley, A.R., 1987, Alkaline rocks and carbonatites of the world Part 1: North and South America: London, British Museum (Natural History), 216 p. Burundi BRND Karonge Gakara -3.5022222222222222 -03 -30 -08 29.4491666666666667 29 26 57 1940s produced till 1978 n.d. 0.2 10 0 1.59 0 Jackson and Christiansen (1993) 5874, La-Ba isochron, bastnaesite 587 East African rift system carbonatite? gneiss, granite, pegmatite (Neoproterozoic) barite, bastnaesite, cerianite-(Ce), crandallite, fluocerite, galena, goethite, goyazite, molybdenite, monazite, pyrite, pyromorphite, rhabdophane-(Ce) biotite, kaolinite, microcline, quartz, vermiculite veins and stockworks n.d. n.d. n.d. silicification, biotitization n.d. 11d n.d. Mineable ore contains 3% bastnaesite. The deposit assumed to have carbonatite source. Veins and stockworks occupy area 20x20 km. Jackson, W.D., and Christiansen, G., 1993, International strategic inventory summary report-rare-earth oxides: U.S. Geological Survey Circular 930-N, 68 p. Lehman, B., Nakai, S., Hndorf, A., Brinckmann, J., Dulski, P., Hein, U.F., and Masuda, A., 1994, REE mineralization at Gakara, BurundiEvidence for anomalous upper mantle in the western Rift Valley: Geochimica and Cosmochimica Acta, v. 58, no. 2, p. 985992. Van Wambeke, L., 1977, The Karonge Rare Earth deposits, Republic of BurundiNew mineralogcal-geochemical data and origin of the mineralization: Mineralium Deposita, v. 12, p. 373380. Woolley, A.R., 2001, Alkaline rocks and carbonatites of the world Part 3: Africa: London, The Geological Society, 372 p. Canada CNBC British Columbia Aley 56.4661111111111111 56 27 58 -123.7491666666666667 -123 -44 -57 1980 n.d. rauhaugite, svite 10 0 0 0 349339 12 K-Ar, mica 344 CambrianDevonian sedimentary miogeoclinal succession of foreland belt (margin of ancient North American continent) amphibolite, carbonatite, lamprophyre dolostone, limestone, marl, sandstone, shale, volcaniclastics (CambrianSilurian) apatite, baddeleyite, barite, bastnaesite, burbankite, cheralite, columbite, cordylite, fersmite, fluorite, huanghoite-(Ce), magnetite, monazite, Nb-rutile, pyrite, pyrochlore, thorianite, thorite, zircon, zirkelite biotite, calcite, chlorite, dolomite, Na-amphibole (richterite), phlogopite cylindrical stock rounded by sheets 3.5 8.2 3.0 amphibolization, fenitization n.d. n.d. n.d. Prospective resource: 2030 Mt at average 0.75% Nb2O5, >5% P2O5 (MINFILE, 2007). Amphibolitic margin 1 km wide encircles carbonatite. Birkett, T.C., and Simandl, G.J., 1999, Carbonatite-associated deposits: magmatic, replacement and residual: British Columbia Ministry of Energy, Mines and Petroleum Open File 1999-10, 3 p., http://empr.gov.bcca/Mining/Geoscience/MineralDepositProfiles/ListbyDepositGroup/Pages/ NCarbonatites.aspx (last visited February 9, 2009) MINFILE, 2007, Aley, developed prospect no. 094B 027, 7 p.; 094B 028, 1 p., http://minfile.gov.bc.ca/Summary.aspx?minfilno=094B++027 (last visited February 9, 2009) Pell, J., 1994, Carbonatites, nepheline syenites, kimberlites and related rocks in British Columbia: British Columbia Ministry of Energy, Mines and Petroleum Bulletin 88, 136 p. Pell, J., and Hy, T., 1989, Carbonatite in a continental margin environmentthe Canadian Cordillera, in in Bell, K., ed., Carbonatites: genesis and evolution: London, Unwin Hyman, p. 200220. Taseko Mines, Ltd., 2007, News Releases, Nov. 8, 2007, 2 p., www.tasekomines.com/tko/Aley.asp (last visited February 9, 2009) Canada CNBC British Columbia Upper Fir Fir 52.3094444444444444 52 18 34 -119.175 -119 -10 -30 1949 n.d. beforsite, svite 26.45 10 0.12 0 3.2 Gorham (2007); Commerce Res. Corp. (2008) 32830 U-Pb, zircon 360 Neoproterozoic metamorphic complex of Omineca crystalline belt of Canadian Cordillera carbonatite, mafic rocks, nepheline syenite gneiss (Neoproterozoic) apatite, columbite, fersmite, pyrite, pyrochlore, pyrrhotite, sphene aegerine-augite, amphibole, calcite, columbite, dolomite, olivine, phlogopite, pyroxene, sphene series of sills 80 m thick 3 2.8 1.2 fenitization (0.5 m selvages) n.d. n.d. 10 0.02% Ta2O5 in ore at 0.015% Ta2O5 cut-off. Carbonatite sills and associated rocks are folded and boudinaged. Commerce Resources Corporation, 2008, Upper Fir Project, 10 p., www.commerceresources.com/s/UpperFir.asp (last visited February 9, 2009) Gorham, J.G., 2007, Technical Report on the Upper Fir tantalum-niobium-bearing carbonatite: Commerce Resources Corporation, 66p., www.commerceresources.com/i/pdf/NI43-101UpperFir.pdf (last visited February 9, 2009) Pell, J., 1994, Carbonatites, nepheline syenites, kimberlites and related rocks in British Columbia: British Columbia Ministry of Energy, Mines and Petroleum Bulletin 88, 136 p. Pell, J., and Hy, T., 1989, Carbonatite in a continental margin environmentthe Canadian Cordillera, in in Bell, K., ed., Carbonatites: genesis and evolution: London, Unwin Hyman, p. 200220. Resource Investor, 2008, Commerce Resources Corp. expands tantalum and niobium mineralization at the Upper Fir deposit, 3 p., www.resourceinvestor.com/s/pebble.asp?relid=40810 (last visited February 9, 2009) Woolley, A.R., 1987, Alkaline rocks and carbonatites of the world Part 1: North and South America: London, British Museum (Natural History), 216 p. Canada CNON Ontario Argor James Bay 50.7252777777777778 50 43 31 -80.5794444444444444 -80 -34 -46 1966 n.d. svite 56.2 10 0.52 0 0 Stockford (1972); RE/REE (2008) 1,655 K-Ar, biotite 1,655 Canadian shield Superior province at edge of Paleozoic cover; Kapuskasing structural zone; north end of regional gravity high carbonatite, pyroxenite gneiss (Precambrian), sedimentary rocks (Paleozoic cover) apatite, chalcopyrite, hematite, magnetite, molybdenite, pyrite, pyrochlore, pyrrhotite, titanite, zircon amphibole, augite, biotite, calcite, chlorite, dolomite, olivine, phlogopite, pyroxene, riebeckite, siderite lense-shaped body along N fault 2.5 0.59 0.3 fenitization ? n.d. n.d. n.d. The deposit occurs under 30 m glacial till and Paleozoic sedimentary cover; open at depth. Erdosh, G., 1979, The Ontario carbonatite province and its phosphate potential: Economic Geology, v.74, p. 331338. Gittins, J., MacIntyre, R.M., and York, D., 1967, The ages of carbonatite complexes in eastern Canada: Canadian Journal of Earth Science, v. 4, p. 651655. RE/REE in Ontario, 2008, Rare element and rare earth element mineralization and exploration in Ontario, 2 p., www.mndm.gov.on.ca/mines/ogs/resgeol/rfe/commodity/rare-earth.pdf (last visited February 10, 2009) Sage, R., and Watkinson, D.H., 1991, Alkalic rock-carbonatite complexes of the Superior structural province, northern Ontario, Canada: Chronique de la Recherche Miniere, no. 504, p. 519. Singer, D.A., 1998, Revised grade and tonnage model of carbonatite deposits: U.S. Geological Survey Open-File Report 98-235, 8 p. Stockford, H.R., 1972, The James Bay pyrochlore deposit: Canadian Mining and Metallurgical Bulletin, 65 (722), p. 6169. Woolley, A.R., 1987, Alkaline rocks and carbonatites of the world Part 1: North and South America: London, British Museum (Natural History), 216 p. Canada CNON Ontario Lackner Lake Nemogos 47.7477777777777778 47 44 52 -83.165 -83 -09 -54 n.d. n.d. svite 113 10 0.21 0.12 3.19 calculated from Sage and Watkinson (1991) 109025 K-Ar, quartz syenite; 113828 and 107811, Rb-Sr isochron 1,090 Canadian shield Superior province; Kapuskasing structural zone; south end of regional gravity high carbonatite, ijolite, nepheline syenite, syenite gneiss (Precambrian) apatite, fluorite, magnetite aegerine-augite, amphibole, biotite, calcite, cancrinite, fayalite, pyrophyllite, riebeckite, zeolite carbonatite lens and dikes in circular alkaline complex 6 km in diameter n.d. n.d. n.d. fenitization n.d. n.d. n.d. Rare earths mostly contained in apatite of Zone no. 6 (Sage and Watkinson, 1991). Erdosh, G., 1979, The Ontario carbonatite province and its phosphate potential: Economic Geology, v.74, p. 331338. Orris, G.J., and Grauch, R.I., 2002, Rare earth element mines, deposits, and occurrences: U.S. Geological Survey Open-File Report 02-189, 174 p. Sage, R., and Watkinson, D.H., 1991, Alkalic rock-carbonatite complexes of the Superior structural province, northern Ontario, Canada: Chronique de la Recherche Miniere, no. 504, p. 519. Singer, D.A., 1998, Revised grade and tonnage model of carbonatite deposits: U.S. Geological Survey Open-File Report 98-235, 8 p. Woolley, A.R., 1987, Alkaline rocks and carbonatites of the world Part 1: North and South America: London, British Museum (Natural History), 216 p. Canada CNON Ontario Manitou Island 46.2794444444444444 46 16 46 -79.5672222222222222 -79 -34 -02 n.d. 1950s svite 4.85 10 0.756 0 0 Singer (1998) 570560 K-Ar, biotite 565 Canadian shield, Paleozoic Ottawa-Bonnechere regional graben carbonatite, pegmatite vein, pyroxenite, syenite conglomerate, limestone (Ordovician) apatite, monazite, pyrite, U-pyrochlore, uraninite amphibole, biotite, calcite, quartz veins and thick body in central area of alkaline pyroxenite complex 3.2 6.8 2.7 fenitization n.d. n.d. n.d. In ore 0.0410.049% U3O8. Ordovician limestone and conglomerate overlie alkalic complex that mostly located underwater at the Nipissing lake. Syenitic dikes cut the fenites. Erdosh, G., 1979, The Ontario carbonatite province and its phosphate potential: Economic Geology, v.74, p. 331338. Gittins, J., MacIntyre, R.M., and York, D., 1967, The ages of carbonatite complexes in eastern Canada: Canadian Journal of Earth Science, v. 4, p. 651655. Lowdon, J.A., Stockwell, C.H., Tipper, H.W., and Wanless R.K., 1963, Age determination and geological studies: Geological Survey of Canada, Paper 6217, 140 p. Sage, R., and Watkinson, D.H., 1991, Alkalic rock-carbonatite complexes of the Superior structural province, northern Ontario, Canada: Chronique de la Recherche Miniere, no. 504, p. 519. Singer, D.A., 1998, Revised grade and tonnage model of carbonatite deposits: U.S. Geological Survey Open-File Report 98-235, 8 p. Woolley, A.R., 1987, Alkaline rocks and carbonatites of the world Part 1: North and South America: London, British Museum (Natural History), 216 p. Canada CNON Ontario Martinson Lake 50.4125 50 24 45 -83.1513888888888889 -83 -09 -05 1981 n.d. beforsite, svite 145 10 0.35 0 20.1 Potapoff (1989) n.d. n.d. Canadian shield Superior province; NW flank of Kapuskasing structural zone carbonatite, ultramafic breccia granite, granite gneiss (Archean) apatite, magnetite, pyrite, pyrochlore biotite, calcite, dolomite, olivine, phlogopite, serpentine intrusive complex 31sq. km (three plugs at distance 2 km, main plug 4 sq. km) 3 4 1.7 fenitization? n.d. n.d. n.d. The area covered by glacial till 3090 m thick. Tonnage and grades estimated for residuum of coarse apatite sand 170 m thick containing also ~0.12% La2O3 and possible U-mineralization. Orris, G.J., and Grauch, R.I., 2002, Rare earth element mines, deposits, and occurrences: U.S. Geological Survey Open-File Report 02-189, 174 p. Potapoff, P., 1989, The Martinson carbonatite deposit, in Notholt, A.J.G., Sheldon, R.P., and Davidson, D.F., eds., Phosphate deposits of the world, v. 2: Cambridge University Press, p. 7178. Sage, R.P., 1979, Alkalic rocks carbonatite complexes: Ontario Geological Survey,Summary of field work, 1979, Miscellaneous Paper, v. 90, p. 7075. Sage, R., and Watkinson, D.H., 1991, Alkalic rock-carbonatite complexes of the Superior structural province, northern Ontario, Canada: Chronique de la Recherche Miniere, no. 504, p. 519. Woolley, A.R., 1987, Alkaline rocks and carbonatites of the world Part 1: North and South America: London, British Museum (Natural History), 216 p. Canada CNON Ontario Nemegosenda Lake 48.0188888888888889 48 01 08 -83.0794444444444444 -83 -04 -46 1956 n.d. svite 20 10 0.47 0 0 Sage and Watkinson (1991); Woolley (1987) 1010 K-Ar, nepheline; 101563 Rb-Sr isoch., whole rock 1,010 Canadian shield Superior province; Kapuskasing structural zone; south end of regional gravity high carbonatite, fenite, gabbro, jacupirangite, malignite, nepheline syenite, pyroxenite gneiss (Archean) apatite, barite, fluorite, galena, magnetite, pyrochlore, sphalerite, zirkelite aegerine, Na-amphibole, biotite, K-feldspar, nepheline, melanite, wollastonite plug and sheets at NE margin of syenite oval complex 7 x 5 km 3 1.4 0.6 fenitization n.d. n.d. n.d. Historic resources are shown. Sarissa Resources, Inc. reported from 15 additional drillholes average 0.52% Nb2O5 and 0.018% Ta2O5 (Reuters, 2008). Erdosh, G., 1979, The Ontario carbonatite province and its phosphate potential: Economic Geology, v.74, p. 331338. Hawkins, W., 2008, Preliminary analysis and recommendations for National Instrument 43-101 compliant reserve estimate on the Nemegosenda Lake Property, Porcupine mining district, Ontario, 27 p., www.sarissaresources.com/media/hawkins_report.pdf (last visited February 10, 2009) Orris, G.J., and Grauch, R.I., 2002, Rare earth element mines, deposits, and occurrences: U.S. Geological Survey Open-File Report 02-189, 174 p. REUTERS, 2008, Assays from Nemegosenda adit confirm presence of Niobium, Tantalum and Rare Earth element mineralization, 4 p., www.reuters.com/article/pressRelease/idUS121260+21-Jul-2008+MW20080721 (last visited February 11, 2009) Sage, R., and Watkinson, D.H., 1991, Alkalic rock-carbonatite complexes of the Superior structural province, northern Ontario, Canada: Chronique de la Recherche Miniere, no. 504, p. 519. Woolley, A.R., 1987, Alkaline rocks and carbonatites of the world Part 1: North and South America: London, British Museum (Natural History), 216 p. Canada CNON Ontario Prairie Lake 49.0352777777777778 49 02 07 -86.7175 -86 -43 -03 n.d. n.d. Si-carbonatite, svite 0.18 10 0.25 0 0 historic resource of mid-1960s (Reuters, 2008) 10691033 Rb-Sr, whole rock 1,051 Mesoproterozoic Midcontinent rift system, Trans-Superior tectonic zone carbonatite, ijolite, malignite, pyroxenite gneiss (Archean) baddeleyite, betafite, marianoite, perovskite, pyrochlore, titanite, whlerite, zirconolite biotite, calcite, dolomite, pectolite, phlogopite, quartz, vesuvianite, wollastonite circular plug 1.7 2.5 1.7 fenitization n.d. n.d. n.d. In ore: 0.9% U3O8 (Sage and Watkinson, 1991, Reuters, 2008) and 1.59.2% P2O5 (Erdosh, 1979, Resource Investor, 2008). Grades are confirmed by recent drilling. Chakhmouradian, A.R., Mitchell, R.H., Burns, P.C., Mikhailova, Y., and Reguir, E.P., 2008, Marianoite, a new member of the cuspidine group from the Prairie Lake silicocarbonatite, Ontario: The Canadian Mineralogist, v. 46, p.10231032. Erdosh, G., 1979, The Ontario carbonatite province and its phosphate potential: Economic Geology, v.74, p. 331338. Heaman, L.M., and Machado, N., 1992, Timing and origin of midcontinent rift alkaline magmatism, North AmericaEvidence from the Coldwell complex: Contributions to Mineralogy and Petrology, v. 110, p. 289303. Mariano, A.N., and Roeder, P.I., 1989, Whlerite: chemical composition, cathodoluminescence and environment of crystallization: The Canadian Mineralogist, v. 27, p.709720. Resource Investor, 2008, Nuinsco Resources Limited, 3 p., www.resourceinvestor.com/pebble.asp?relid=39364 (last visited February 10, 2009) Reuters, 2008, Nuinsco Resources Limited: diamond drilling to commense immediately at Prairie Lake Project, 3 p., www.reuters.com/article/pressRelease/idUS152116+17-Jul-2008+MW20080717 (last visited February 10, 2009) Sage, R., and Watkinson, D.H., 1991, Alkalic rock-carbonatite complexes of the Superior structural province, northern Ontario, Canada: Chronique de la Recherche Miniere, no. 504, p. 519. Woolley, A.R., 1987, Alkaline rocks and carbonatites of the world Part 1: North and South America: London, British Museum (Natural History), 216 p. Canada CNQU Quebec Oka 45.5041666666666667 45 30 15 -74.0222222222222222 -74 -01 -20 n.d. n.d. svite 221 10 0.23 0.1 0 Singer (1998) 1147 K-Ar, and 955 Rb-Sr, biotite 105 Canadian shield, eastern part of Paleozoic Ottawa-Bonnechere regional graben; Lower Cretaceous Monteregian alkaline petrologic province alnoite, carbonatite, ijolite, melteigite, okaite, urtite gneiss (Archean) apatite, britholite, ilmenite, magnetite, niocalite, perovskite, pyrite, pyrochlore, pyrrhotite biotite, calcite, dolomite, hauyne, melanite, melilite, nepheline, pyroxene, richterite, wollastonite oval double-ring complex 7 13.7 2.5 fenitization n.d. n.d. n.d. Tonnge-grade includes 4.0 Mt at 0.31% Nb2O5, 0.39% Re2O3, and 3.8% P2O5 (Orris and Grauch (2002). Area covered by glacial sediments 60120 m thick. Eby, G.N., 1973, Scandium geochemistry of the Oka carbonatite complex, Oka, Quebec: American Mineralogist, v. 58, p. 819825. Eby, G.N., 1975, Abundance and distribution of the rare-earth elements and yttrium in the rocks and minerals of the Oka carbonatite complex, Quebec: Geochemica et Cosmochemica Acta, v. 39, p. 597620. Orris, G.J., and Grauch, R.I., 2002, Rare earth element mines, deposits, and occurrences: U.S. Geological Survey Open-File Report 02-189, 174 p. Singer, D.A., 1998, Revised grade and tonnage model of carbonatite deposits: U.S. Geological Survey Open-File Report 98-235, 8 p. Treiman, A.H., and Essene, E.J., 1985, The Oka carbonatite complex, QuebecGeology and evidence for silicate-carbonate liquid immiscibility: American Mineralogist, v. 70, p. 11011113. Woolley, A.R., 1987, Alkaline rocks and carbonatites of the world Part 1: North and South America: London, British Museum (Natural History), 216 p. Zurevinski, S.E., and Mitchell, R., 2004, Extreme compositional variation of pyrochlore-group minerals at the Oka carbonatite complex, QuebecEvidence of magma mixing?: The Canadian Mineralogist, v. 42, p. 11591168. Canada CNQU Quebec St. Honore Niobec 48.5352777777777778 48 32 07 -71.1491666666666667 -71 -08 -57 1967 1976 beforsite, svite 47.2 10 0.675 0 0 Briggs (2006) 656629 K-Ar, feldspar 643 Grenville province, NW trending graben structure of Saguenay rift 240 km long, 30 km wide carbonatite, ijolite, nepheline syenite, syenite anorthosite, charnockite, gneiss (Archean) apatite, barite, bastnaesite, columbite, fluorite, hematite, monazite, pyrite, pyrochlore, sphene ankerite, biotite, calcite, chlorite, dolomite, montichellite, phlogopite oval intrusive complex with carbonatite central core and sheets 6.3 15.8 3.2 fenitization n.d. n.d. n.d. Tonnage-grades includes production 1976-2004 and reserves 2004, (Briggs, 2006). Locally overlain by Paleozoic limestone 80 m thick. Internal shales of paleokarst in carbonatite. Briggs, D.F., 2006, Mining operations report, version 2005. Unpublished. Cambior Inc., 2002, Significant Increase in Mineral Reserves at Niobec Mine, 3 p., http://goliath.ecnext.com/coms2/gi_0199-1342161/Cambior-Inc-Significant-Increase-in.html (last visited February 11, 2009) Dufresne, C., and Goyette, G., 2002, The production of ferroniobium at the Niobec mine, 7 p.: www.cbmm.com.br/portug/sources/techlib/science_techno/table_content/sub_1/images/pdfs/start.pdf (last visited February 11, 2009) Edmonton Journal, 2008, IAMGOLD says can double reserves at Niobec mine, 2 p.: www2.canada.com/edmontonjournal/news/business/story.html?id=aa20b6f8-eead-40f5-9cce-f12812378c74 (last visited February 11, 2009) Thivierge, S., Roy,, D.-W., Chown, E.H., and Gauthier, A., 1983, Evolution du complexe alcalin de St.-Honor (Quebc) apres sa Mise en Place: Mineralium Deposita, v. 18, p. 267283. Woolley, A.R., 1987, Alkaline rocks and carbonatites of the world Part 1: North and South America: London, British Museum (Natural History),216 p. China CINA Inner Mongolia Bayan Obo Baiyun Obo 41.7991666666666667 41 47 57 109.9744444444444444 109 58 28 1927 1957 beforsite, svite 800 10 0.13 6 0 Drew and others (1990) 1400 1,400 Mesoproterozoic rift at northern margin of North China craton; subsequent fold belt, 10 km south of suture zone albitite, carbonatite, metabasalt, metatrachyte, peridotite, syenite gneiss, granite, quartzite, sandstone, schist (Mesoproterozoic) aeschynite, allanite, anatase, apatite, bafertisite, baotite, barite, bastnaesite, britholite-(Ce), carbocernaite, cebaite-(Ce), cebaite-(Nd), chalcopyrite, chevkinite, columbite, cordylite-(Ce), daqingshanite-(Ce), dingdaohengite-(Ce), fergusonite-(Ce), fergusonite-(Nd), fergusonite-(Y), fersmite, fluorite, galena, hematite, huanghoite-(Ce), ilmenite, lanthanite, limonite, magnetite, monazite, Nb-rutile, parisite-(Ce), parisite-(Nd), pyrite, pyrochlore, pyrrhotite, rhabdophane, sphalerite, strontianite, thorite, xenotime-(Ce) actinolite, aegerine, aegerine-augite, albite, alstonite, ankerite, arfvedsonite, barytocalcite, benstonite, biotite, calcite, diopside, dolomite, garnet, hornblende, hyalophane, microcline, Mn-calcite, norsethite, phlogopite, quartz, riebeckite, Sr-calcite, tremolite, witherite sheet-like carbonatite alkali-carbonatite unit (intrusive complex?) containing two main lenses of economic ore and >50 dikes 18 21 1.5 feldspathization, fenitization n.d. 11d n.d. 1,500 Mt Fe-ore at 35% Fe (Drew and others, 1990). The Mesoproterozoic initial deposit age by Nakai and others (1989) (1350149 Ma La-Ba, monazite, and 1,426 + 40 Ma, Sm-Nd, allanite, huanghoite, and parisite), also by Yuan and others (1992) (1580 Ma Sm-Nd isochron, whole-rock). Multiphase deformation, metamorphism and hydrothermal alteration of ore-bearing carbonatite at ~900 Ma and ~425 Ma (Caledonian, low amphibolite facies), and regional granitoids at ~260 Ma (Hercynian). Campbell, L.S., and Henderson, P., 1997, Apatite paragenesis in the Bayan Obo REE-Nb-Fe ore deposit, Inner Mongolia, China: Lithos, v. 42, p. 89103. Chao, E.C.T., Back, J.M., Minkin, J.A., Tatsumoto, M., Wang, J., Conrad, J.E., McKee, E.H., Hou, Z., Meng, Q., and Huang, S., 1997, The sedimentary carbonate-hosted giant Bayan Obo REE-Fe-Nb ore deposit of Inner Mongolia, ChinaA cornerstone example for giant polymetallic ore deposits of hydrothermal origin: U.S. Geological Survey Bulletin 2143, 65 p. Drew, L.J., Meng, Q., and Sun, W., 1990, The Bayan Obo ironrare-earthniobium deposits, Inner Mongolia, China: Lithos, v. 26, p. 4365. Le Bas, M.J., Keller, J., Tao, K., Wall, F., Williams, C.T., and Zhang, P., 1992, Carbonatite dykes at Bayan Obo, Inner Mongolia, China: Mineralogy and Petrology, v. 46, p. 195228. Le Bas, M.J., Yang, X., Taylor, R.N., Spiro, B., Milton, J.A., and Zhang, P., 2007, New evidence from a calcite-dolomite carbonatite dyke for the magmatic origin of the massive Bayan Obo ore-bearing dolomite marble, Inner Mongolia, China: Mineralogy and Petrology, v. 90, p. 223248. Liu, Y., Yang, G., Chen, J., Du, A., and Xie, Z., 2004 Re-Os dating of pyrite from giant Bayan Obo REE-Nb-Fe deposit: Chinese Science Bulletin, v. 49, no. 24, p. 26272631. Mindat.org, 2009, Bayan Obo (Bayun-Obo; Baiyunebo) deposit, Bayan Obo, Darhan Muminggan United Banner, Inner Mongolia, China, 3 p., www.mindat.org/loc-720.html (last visited February 12, 2009) Nakai, S., Masuda, A., Shimizu, H., and Qi, L., 1989, La-Ba dating and Nd and Sr isotope studies on the Baiyun Obo rare earth element ore deposits, Inner Mongolia, China: Economic Geology, v. 84, p. 22962299. Neler, J., 2009, Giant Bayan Obo REE-Fe-Nb ore deposit of Inner Mongolia, China, 16 p., www.geoberg.de/text/geology/07032101.php (last visited February 12, 2009) Wu, C., 2008, Bayan Obo controversy: carbonatites versus iron oxide-Cu-Au-(REE-U): Resource Geology, v. 58, no. 4, p. 348354. Wu, C., Yuan, Z., and Bai, G., 1996, Rare earth deposits in China, in Jones, A.P., Wall, F., and Williams, C.T., eds., Rare earth minerals: chemistry, origin and ore deposits: New York, Chapman and Hall, The Mineralogical Society Series 7, p. 281310. Yang, Z., and Woollley, A., 2006, Carbonatites in ChinaA review: Journal of Asian Earth Sciences, v. 27, p. 559575. Yuan, Z., Bai, G., Wu, C., Zhang, Z., and Ye, X., 1992, Geological features and genesis of the Bayan Obo REE ore deposit, Inner Mongolia, China: Applied Geochemistry, v. 7, p. 429442. Zhang, P., Yang, Z., Tao, K., and Yang, X., 1995, Mineralogy and geology of rare earths in China: Beijing, Science press, 209 p. China CINA Sichuan Dalucao Daluxiang 27.1675 27 10 03 101.8516666666666667 101 51 06 mid 1980s n.d. svite 0.76 10 0 5 0 Hou and others (2009) 11.3 9.8 K-Ar , biotite; 15.30.5 Rb-Sr isochron 10.4 Yangtze craton western margin; Cenozoic collision related Himalyan Mianning-Dechang REE belt involving Paleozoic longitudinal Panxi rift breccia pipes, carbonatite, nordmarkite (quartz syenite) quartz diorite (Proterozoic) apatite, allanite, barite, celestite, cerussite, chalcopyrite, chevkinite, copper, Cu-Sn alloy, Cu-Zn alloy, bastnaesite, fluorite, galena, ilmenite, limonite, magnetite, molybdenite, monazite, pyrite, rutile, Sn-Zn alloy, sphalerite, Sr-barite, strontianite, tin, witherite, wulfenite albite, aegerine-augite, arfvedsonite, biotite, calcite, microcline vein zone 1.2 0.6 0.6 fenitization, carbonatization n.d. 11d n.d. Vein zone occurs mostly in breccia pipes in nordmarkite, generally controlled by strike-slip fault. Two main ore lenses (175 m thick and 450 m down dip) and numerous small orebodies (vein swarms). Hou, Z., Tian, S., Xie, Y., Yang, Z., Yuan, Z., Yin, S., Yi, L., Fei, H., Zou, T., Bai, G., and Li, X., 2009, The Himalayan Mianning-Dechang REE belt associated with alkaline complexes, eastern Indo-Asian collision zone, SW, China: Ore Geology Reviews, v. xx, p. xxxx, in press. Hou, Z., Tian, S., Yuan, Z., Xie, Y., Yin, S., Yi, L., Fei, H., and Yang, Z., 2006, The Himalayan collision zone carbonatites in western Sichuan, SW, ChinaPetrogenesis, mantle source and tectonic implication: Earth and Planetary Science Letter, v. 244, p. 234250. Li, X., 2005, Geological characteristics of Dulucao REE deposit in Dechang county, Sichuan, China: Mineral Deposits, v. 24, no. 2, p. 151160 (in Chinese with English abstract). Niu, H., Shan, Q., Chen, X., and Zhang, H., 2003, Relationship between light rare earth deposits and mantle processes in Panxi rift, China: Science in China (Series D), v. 46, Suppl., p. 4149. Wan, D., Tian, S., Luo, M., and Shaoyong, J., 2005, Stable isotope composition of the Dalucao rare earth deposit in western Sichuan, in Mao, J., and Bierlein, F.P., eds., Mineral Deposit ResearchMeeting the Global Challenge: Proceedings of the 8th Biennial SGA Meeting, Springer, Berlin, p. 849852. Xu, C., Campbell, I.H., Kynicky. J., Allen, C.M., Chen, Y., Huang, Z., and Qi, L., 2008, Comparison of the Daluxiang and Maoniuping carbonatitic REE deposits with Bayan Obo Ree deposit, China: Lithos, v. 106, no. 1-2, p. 1224. Yang, Z., and Woollley, A., 2006, Carbonatites in ChinaA review: Journal of Asian Earth Sciences, v. 27, p. 559575. China CINA Sichuan Maoniuping 28.4566666666666667 28 27 24 101.9775 101 58 39 1985 1989 svite 62.3 10 0 2.89 0 Xie and others (2009) 40.30.7 31.80.7 K-Ar, biotite and arfvedsonite 40 Yangtze craton western margin; Cenozoic collision related Himalyan Mianning-Dechang REE belt involving Paleozoic longitudinal Panxi rift carbonatite, nordmarkite (quartz syenite) alkaline granite (146 Ma), rhyolite (unknown age); clastic rocks (Middle Devonian) aenigmatite, aeschynite, allanite, apatite, Ba-celestite, barite, bastnaesite, betafite, britholite-(Ce), celestite, cerianite-(Ce), chalcopyrite, chevkinite-(Ce), columbite, copper, Cu-Zn alloy, fergusonite, fluocerite, fluorite, galena, hematite, ilmenite, iron, kainosite-(Y), limonite, magnetite, maoniupingite-(Ce), molybdenite, monazite, parisite-(Ce), pyrite, pyrochlore, rntgenite-(Ce), rutile, samarskite-(Y), sphalerite, Sr-barite, Sn-Cu alloy, strontianite, synchysite, thorite, titanite, tongxinite, uranothorite, wulfenite, xenotime-(Y), zircon aegirine, aegirine-augite, albite, arfvedsonite, augite, biotite, calcite, epidote, garnet, gypsum, microcline, Mg-riebeckite, pectolite, Mn-pectolite, quartz vein zone 2.65 1.7 0.8 fenitization, aegerine-carbonatization n.d. 11d n.d. The reserve includes additional 0.33 Mt Pb, 174 t Ag, 3.78 Mt BaSO4, and 2.4 Mt CaF2 (Wang and others, 2001). The carbonatite contains 9.06 ppb Pt. Vein zone controlled by strike-slip fault, consists of syenite stocks, carbonatite sills, granite porphyry and pegmatite dike swarm, and ore stockwork zone. Contains 71 economic ore bodies, en-echelon S-shaped layer 1168 m long and 32 m thick. Hou, Z., Tian, S., Xie, Y., Yang, Z., Yuan, Z., Yin, S., Yi, L., Fei, H., Zou, T., Bai, G., and Li, X., 2009, The Himalayan Mianning-Dechang REE belt associated with alkaline complexes, eastern Indo-Asian collision zone, SW, China: Ore Geology Reviews, v. xx, p. xxxx, in press. Hou, Z., Tian, S., Yuan, Z., Xie, Y., Yin, S., Yi, L., Fei, H., and Yang, Z., 2006, The Himalayan collision zone carbonatites in western Sichuan, SW, ChinaPetrogenesis, mantle source and tectonic implication:Earth and Planetary Science Letter, v. 244, p. 234250. Niu, H., Shan, Q., Chen, X., and Zhang, H., 2003, Relationship between light rare earth deposits and mantle processes in Panxi rift, China: Science in China (Series D), v. 46, Suppl., p. 4149. Tian, S., Ding, T., Mao, J., Li, Y., and Yuan, Z., 2006, S, C, O, H isotope data and noble gas studies of the Maoniuping LREE deposit, Sichuan province, ChinaA mantle connection for mineralization: Acta Geologica Sinica, v. 80, no. 4, p. 540549. Wang, D., Yang, J., Yan, S., Xu, J., Chen, Y., Pu, G., and Luo, Y., 2001, A special orogenic-type rare earth element deposit in Maoniuping, Sichuan, ChinaGeology and geochemistry: Resources Geology, v. 51, no. 3, p. 177188. Wu, C., Yuan, Z., and Bai, G., 1996, Rare earth deposits in China, in Jones, A.P., Wall, F., and Williams, C.T., eds., Rare earth mineralsChemistry, origin and ore deposits: New York, Chapman and Hall, The Mineralogical Society Series 7, p. 281310. Xie, Y., Hou, Z., Yin, S., Dominy, S.C., Xu, J., Tian, S., and Xu, W., 2009, Continuous carbonatitic melt-fluid evolution of a REE mineralization systemEvidence from inclusions in the Maoniuping REE deposit, western Sichuan, China: Ore Geology Reviews, v. xx, p. xxxx, in press. Xu, C., Campbell, I.H., Kynicky. J., Allen, C.M., Chen, Y., Huang, Z., and Qi, L., 2008, Comparison of the Daluxiang and Maoniuping carbonatitic REE deposits with Bayan Obo Ree deposit, China: Lithos, v. 106, no. 1-2, p. 1224. Xu, C., Huang, Z., Liu, C., Qi, L., Li, W., and Guan, T., 2003, PGE geochemistry of carbonatites in Maoniuping REE deposit, Sichuan province, ChinaPreliminary study: Geochemical Journal, v. 37, p. 391399. Xu, C., Huang, Z., Liu, C., Qi, L., Li, W., and Guan, T., 2003, Geochemistry of carbonatites in Maoniuping REE deposit, Sichuan province, China: Science in China (Series D), v. 46, no. 3, p. 246256. Xu, C., Qi, L., Huang, Z., Chen, Y., Yu, X., Wang, L., and Li, E., 2008, Abundances and significance of platinum group elements in carbonatites from China: Lithos, v. 105, p. 201207. Xu, C., Zhang, H., Huang, Z., Liu, C., Qi, L., Li, W., and Guan, T., 2004, Genesis of the carbonatite-syenite complex and REE deposit at Maoniuping, Sichuan province, ChinaEvidence from Pb isotope geochemistry: Geochemical Journal, v. 38, p. 6776. Yang, Z., and Woollley, A., 2006, Carbonatites in ChinaA review: Journal of Asian Earth Sciences, v. 27, p. 559575 China CINA Hubei Miaoya 32.2502777777777778 32 15 01 110.2005555555555556 110 12 02 1962 n.d. Fe-carbonatite, svite 71.5 10 0.25 1.7 0 Chinamining (2006); Kamitani and Hirano (1990); Orris and Grauch (2002) 278251 K-Ar, microcline, carbonatite 265 southern margin of Qiling-Qilian-Kunlun orogenic belt albitite, carbonatite, syenite, syenite porphyry metavolcanics (Neoproterozoic), schist (Silurian) apatite, bastnaesite, betafite, burbankite, columbite, fersmite, fluorite, monazite, Nb-aeschynite, Nb-rutile, parisite, pyrite, pyrochlore, rutile ankerite, biotite, calcite, dolomite, microcline lens-shaped alkaline-carbonatite complex 2.95 1.9 0.82 n.d. n.d. n.d. n.d. Carbonatite contains 0.7% Nb2O5 and 3.69% Re2O3 (Yang and Woolley, 2006); 0.885 ppb Pt and 0.984 ppb Pd (Xu and others, 2008). 2006 resources are 1.215 Mt Re2O3 and 929.5 Kt Nb2O5 (Chinamining, 2006). Chinamining.org, 2006, REE Resources, 4 p., www.chinamining.org/Facts/2006-10-10/ 1160466862d1499.html (last visited February 13, 2009) Kamitani, M., and Hirano, H., 1990, Important carbonatite-alkaline/alkaline complexes and related mineral resources in the world: Bulletin of the Geological Survey of Japan, v. 41, no. 11, p. 631640. Li, S., 1980, Geochemical features and petrogenesis of Miaoya carbonatites, Hupeh: Geochimica, v. 12, no. 4, p. 345355 (in Chinese with English abstract). Mindat.Org, 2009, Miaoya REE deposit, Zhushan Co., Shiyan prefecture, Hubei province, China, 2 p., www.mindat.org/loc-144543.html (last visited February 13, 2009) Orris, G.J., and Grauch, R.I., 2002, Rare earth element mines, deposits, and occurrences: U.S. Geological Survey Open-File Report 02-189, 174 p. Wu, C., Yuan, Z., and Bai, G., 1996, Rare earth deposits in China, in Jones, A.P., Wall, F., and Williams, C.T., eds., Rare earth mineralsChemistry, origin and ore deposits: New York, Chapman and Hall, The Mineralogical Society Series 7, p. 281310. Xu, C.,Qi, L., Huang, Z., Chen, Y., Yu, X., Wang, L., and Li, E., 2008, Abundances and significance of platinum group elements in carbonatites from China: Lithos, v. 105, p. 201207. Yang, Z., and Woollley, A., 2006, Carbonatites in ChinaA review: Journal of Asian Earth Sciences, v. 27, p. 559575. Zhang, P., Yang, Z., Tao, K., and Yang, X., 1995, Mineralogy and geology of rare earths in China: Beijing, Science press, 209 p. China CINA Shandong Weishan Xishan 34.7555555555555556 34 45 20 117.2080555555555556 117 12 29 n.d. 1970s beforsite 10 0 0 0 ore tonnage unavailable 110 K-Ar, muscovite; 140 K-Ar, syenite 110 North China craton albitite, carbonatite, lamprophyre, quartz syenite, syenite porphyry gneiss (Archean) aeschynite, allanite, anatase, ancylite-(Ce), apatite, barite, bastnaesite-(Ce), britholite-(Ce), carbocernaite-(Ce), chevkinite, columbite, fluorite, goethite, hematite, magnetite, monazite-(Ce), parisite-(Ce), perovskite, pyrite, pyrochlore, rutile, thorite, wulfenite aegerine-augite, biotite, calcite, chlorite, diopside, dolomite, epidote, feldspar, muscovite, phlogopite, quartz, riebeckite, tremolite vein cluster related to syenite stock 2.4 2.5 1.3 n.d. n.d. 11d n.d. Production at 1.6% Re2O3 (Wu and others, 1996), medium-sized deposit (Chinamining, 2006). NW trending bastnaesite-barite-carbonatite vein cluster associated with syenite plug and dikes Chinamining.org, 2006, REE Resources, 4 p., www.chinamining.org/Facts/2006-10-10/ 1160466862d1499.html (last visited February 13, 2009) Mindat.Org, 2009, Weishan mine (Chisan mine, Xishan mine, deposit No. 101), Xuecheng district, Zaozhuang prefecture, Shangdong province, China, 2 p., www.mindat.org/loc-144544.html (last visited February 13, 2009) Orris, G.J., and Grauch, R.I., 2002, Rare earth element mines, deposits, and occurrences: U.S. Geological Survey Open-File Report 02-189, 174 p. Wu, C., Yuan, Z., and Bai, G., 1996, Rare earth deposits in China, in Jones, A.P., Wall, F., and Williams, C.T., eds., Rare earth mineralsChemistry, origin and ore deposits: New York, Chapman and Hall, The Mineralogical Society Series 7, p. 281310. Yang, Z., and Woollley, A., 2006, Carbonatites in ChinaA review: Journal of Asian Earth Sciences, v. 27, p. 559575 Zhang, P., Yang, Z., Tao, K., and Yang, X., 1995, Mineralogy and geology of rare earths in China: Beijing, Science press, 209 p. Democratic Republic of Congo DRCO Kivu Bingo Bingu .5297222222222222 0 31 47 29.3169444444444444 29 19 01 n.d. n.d. beforsite, svite 7 10 2.86 0 0 Singer (1998) 558? 558 western brunch of East African rift carbonatite, fenite, ijolite, nepheline syenite gneiss (Precambrian); dolerite and gabbro dikes apatite, baddeleyite, Ba-pyrochlore, cassiterite, columbite, crandallite, gtzenite, magnetite, pyrochlore, Sr-Ba carbonate, Sr-REE carbonate, titanite, zircon aegerine, calcite, dolomite, melanite, mica plug inside alkaline complex 6x4 km 4 7.9 2.5 fenitization n.d. n.d. n.d. The deposit age is possibly similar to the Early Cambrian Lueshe deposit (Woolley and others, 1995). Lubala, R.T., Kampunzu, A.B., and Makutu, M.N., 1985, Un inventaire des complexes anorogniques du Burundi, du Ruanda et du Zaire: Journal of African Earth Sciences, v. 3, no. 1/2, p. 169174. Orris, G.J., and Grauch, R.I., 2002, Rare earth element mines, deposits, and occurrences: U.S. Geological Survey Open-File Report 02-189, 174 p. Singer, D.A., 1998, Revised grade and tonnage model of carbonatite deposits: U.S. Geological Survey Open-File Report 98-235, 8 p. Van Wambeke , L., 1971, Pandaite, baddeleyite and associated minerals from the Bingo niobium deposit, Kivu, Democratic Republic of Congo: Mineralium Deposita, v. 6, p. 153156. Williams, C.T., Wall, F., Woolley, A.R., and Phillipo, S., 1997, Compositional variation in pyrochlore from the Bingo carbonatite, Zaire: Journal of African Earth Sciences, v. 25, no. 1, p. 137145. Woolley, A.R., Williams, C.T., Wall, F., Garca, D., and Moute, J., 1995, The Bingo carbonatite-ijolite- nepheline syenite complex, ZaireGeology, petrography, mineralogy and petrochemistry: Journal of African Earth Sciences, v. 21, no. 3, p. 329348. Woolley, A.R., 2001, Alkaline rocks and carbonatites of the world Part 3: Africa: London, The Geological Society, 372 p. Democratic Republic of Congo DRCO Kivu Lueshe -.9866666666666667 0 -59 -12 29.1408333333333333 29 08 27 1938 1984 beforsite, svite 30 10 1.34 0 7 Maravic and others (1989), Milesi and others (2006) 51626 K-Ar, biotite; 55811 Rb-Sr, biotite, feldspar 558 western brunch of East African rift carbonatite, pyroxenite, cancrinite-syenite quartzite, schist (Precambrian) ancylite, apatite, barite, celestite, parisite, pyrochlore, strontianite, synchysite, zircon aegerine, amphibole, biotite, calcite, cancrinite, dolomite, fayalite, microcline, pyroxene, vermiculite oval intrusion 3 5.9 2.5 fenitization n.d. n.d. n.d. Mining of lateritic cover 30150 m thick during 19841993 and 20002003. Kramm, U., Maravic, H.v., and Morteani, G., 1997, Neodymium and Sr isotopic constraints on the petrogenetic relationships between carbonatites and cancrinite syenites from the Lueshe alkaline complex, east Zaire: Journal of African Earth Sciences, v. 25, no. 1, p. 5576. Lubala, R.T., Kampunzu, A.B., and Makutu, M.N., 1985, Un inventaire des complexes anorogniques du Burundi, du Ruanda et du Zaire: Journal of African Earth Sciences, v. 3, no. 1/2, p. 169174. Maravic, H.v. and Morteani, G., 1980, Petrology and geochemistry of the carbonatite and syenite complex of Lueshe (NE Zaire): Lithos, v. 13, no. 2, p. 159170. Maravic, H.v., Morteani, G., and Roethe, G., 1989, Cancrinite-syenite/carbonatite complex of Lueshe, Kivu/NE-Zaire: Journal of African Earth Sciences, v. 9, no. 2, p. 341355. Milesi, J.P., Toteu, S.F., Deschamps, Y., and others, 2006, An overview of the geology and major ore deposits of Central AfricaExplanatory note for the 1:4,000,000 map Geology and major ore deposits of Central Africa: Journal of African Earth Sciences, v. 44, p. 571595. Nasraoui, M., and Bilal, E., 2000, Pyrochlores from the Lueshe carbonatite complex (Democratic Republic of Congo):A geochemical record of different alteration stages: Journal of Asian Earth Sciences, v.18, p. 237251. Woolley, A.R., 2001, Alkaline rocks and carbonatites of the world Part 3: Africa: London, The Geological Society, 372 p. Gabon GABN Moyen-Ogoou Mabounie -.5927777777777778 0 -35 -34 10.3688888888888889 10 22 08 1986 n.d. beforsite, svite 380 10 1.02 2.52 24 Orris and Chernoff (2002), REE grade from Jackson and Christiansen (1993) 66013 K-Ar, phlogopite 660 Western branch of Pan-African tectonic belt; Ikoye-Ikobe fault system carbonatite, fenite, syenite gneiss, migmatite (Precambrian), trachyte dike apatite, baddeleyite, barite (veins), bastnaesite, crandallite, florencite, goethite, hematite, ilmenite, magnetite, monazite, pyrite, pyrochlore, pyrrhotite, synchysite, xenotime calcite, dolomite, kaolinite, phlogopite, quartz central plug in carbonatite-alkaline complex 1.2 0.8 1.2 fenitization (ring) 1 n.d. n.d. Resource of residual lateritic cover 30120 m thick. Jackson, W.D., and Christiansen, G., 1993, International strategic inventory summary report-rare-earth oxides: U.S. Geological Survey Circular 930-N, 68 p. Laval, M., Johan, V., and Tourlire, B., 1988, La carbonatite de Mabouni: exemple de formation dun gte rsiduel pyrochlore: Chronique de la Recherche Miniere, v. 56, no. 491, p. 125136. Laval, M., and Piantone, P., 1989, Niobium deposit of Mabounie (Gabon): 28th International Geological Congress, Abstracts, v. 2, p. 2-263. Laval, M., Piantone, P., Freyssinet, P., and Kosakevitch, A., 1993, Role of florencite and pyrochlore in the behavior of REE during lateritizationExample of Mabounie carbonatite (Gabon): Terra Abstracts v. 5, no. 3, p. 2526. Milesi, J.P., Toteu, S.F., Deschamps, Y., and others, 2006, An overview of the geology and major ore deposits of Central Africa: explanatory note for the 1:4,000,000 map Geology and major ore deposits of Central Africa: Journal of African Earth Sciences, v. 44, p. 571595. Orris, G.J., and Chernoff, C.B., 2002, Data set of world phosphate mines, deposits, and occurrencesPart B. Location and mineral economic data: U.S. Geological Survey, Open-File Report 02-0156B, 328 p. Piantone, P., Itard, Y., Pillard, F., and Boulingui, B., 1995, Compositional variation in pyrochlores from the weathered Mabouni carbonatite (Gabon), in Pasava, J., Kribek, B., and Zak, K., eds., Mineral deposits; from their origin to their environmental impacts: Rotterdam, A.A. Balkema Publishers, Third Biennial SGA Meeting, p. 629632. Woolley, A.R., 2001, Alkaline rocks and carbonatites of the world Part 3: Africa: London, The Geological Society, 372 p. India INDA Gujarat Amba Dongar 21.9875 21 59 15 74.0616666666666667 74 03 42 n.d. 1970 Fe-carbonatite, svite 11.6 10 0 1.06 0 30% CaF2 (Viladkar, 1981); Re2O3 approximate grade calculated from Viladkar and Dulski (1986). 650.3 Ar-Ar, phlogopite 65 Indian craton; Narmada rift zone carbonatite breccia, carbonatite, nepheline syenite, nephelinite, phonolite basalt (Eocene), limestone, sandstone (Cretaceous), fragments of metamorphic rocks (Precambrian), syenite plugs apatite, barite, bastnaesite, chalcopyrite, fluorite, galena, magnetite, pyrochlore, zirconolite ankerite, calcite, dickite, phlogopite, quartz, siderite alkali-carbonatite intrusion 4.5 10.6 3 fenitization (ring) 0.15 n.d. n.d. Produced fluorite only. Fluorite disseminated in carbonatite, mainly postdated hydrothermal veins and replacement bodies in carbonatite and in brecciated sandstone. Gwalani, L.G., Rock, N.M.S., Chang, W.-J., Fernandez, S., Allgre, C.J., and Prinzhofer, A., 1993, Alkaline rocks and carbonatites of Amba Dongar and adjacent areas, Deccan igneous province, Gujarat, India1. Geology, petrography and petrochemistry: Mineralogy and Petrology, v. 47, p. 219253. Palmer, D.A.S., and Williams-Jones, A.E., 1996, Genesis of the carbonatite-hosted fluorite deposit at Amba Dongar, IndiaEvidence from fluid inclusions, stable isotopes, and whole rock-mineral geochemistry: Economic Geology, v. 91, p. 934950. Ray, J.S., Ramesh, R., Pande, K., Trivedi, J.R., Shukla, P.N., and Patel, P.P., 2000, Isotope and rare earth element chemistry of carbonatite-alkaline complexes of Deccan volcanic provinceImplications to magmatic and alteration processes: Journal of Asian Earth Sciences, v. 18, p. 177194. Simonetti, A., and Bell, K., 1995, Nd, Rb, and Sr isotope systematics of fluorite at the Amba Dongar carbonatite complex, IndiaEvidence for hydrothermal and crustal fluid mixing: Economic Geology, v. 60, p. 20182027. Viladkar, S.G., 1981,The carbonatites of Amba Dongar, Gujarat, India: Bulletin of the Geological Society of Finland, v. 53, p. 1728. Viladkar, S.G., and Dulski, P., 1986, Rare earth element abundances in carbonatites, alkaline rocks and fenites of the Amba Dongar complex, Gujarat, India: Neues Jahrbuch fr Mineralogie, Monatshefte, H. 1, p. 3748. India INDA Meghalaya Sung Valley 25.5691666666666667 25 34 09 92.1172222222222222 92 07 02 n.d. n.d. beforsite, svite 6.75 10 0.02 0 0 Krishnamurthy and others (2000) 107 107 NS system of lineaments, including Um Ngot lineament, with Late JurassicEarly Cretaceous alkaline-ultramafic and flood basalt activities probably related to Ninety-East ridge in Indian ocean carbonatite, ijolite, peridotite, pyroxenite, syenite phyllite, quartzite, schist (Paleoproterozoic) apatite, magnetite, perovskite, pyrochlore, titanite calcite, dolomite, phlogopite small plugs and dikes inside oval alkaline complex 7.5x5.6 km 7.5 33 5.6 fenitization n.d. n.d. n.d. Different radiologic ages span 90 to 150 Ma (Srivastava and Sinha, 2004). Krishnamurthy, P., Hoda, S.Q., Sinha, R.P., Banerjee, D.C., and Dwivedy, K.K., 2000, Economic aspects of carbonatites of India: Journal of Asian Earth Sciences, v. 18, p. 229235. Srivastava, R.K., and Sinha, A.K., 2004, Early Cretaceous Sung Valley ultramafic-alkaline-carbonatite complex, Shilong Plateau, northeastern IndiaPetrological and genetic significance: Mineralogy and Petrology, v. 80, p. 241263. Veena, K., Pandey, B.K., Krishnamurthy, P., and Gupta, J.N., 1998, Pb, Sr and Nd isotopic systematics of the carbonatites of Sung Valley, Meghalaya, northeast IndiaImplications for contemporary plume-related mantle source characteristics: Journal of Petrology, v. 39, no. 11&12, p. 18751884. Viladkar, S.G., Schlecher, H., and Pawaskar, P., 1994, Mineralogy and geochemistry of the Sung Valley carbonatite complex, Shilong, Meghalaya, India: Neues Jahrbuch fr Mineralogie, Monatshefte, H. 11, p. 499517. Kenya KNYA Coast Mrima Hill -4.4861111111111111 -04 -29 -10 39.2527777777777778 39 15 10 1952 n.d. beforsite, svite 49 10 0.7 0.61 0 Deans (1966) post-Karroo n.d. Early-Middle Jurassic Kenya Coast rift carbonatite, carbonatite agglomerate, monchiquite sandstone, shale, siltstone (Jurassic) anatase, apatite, Ba-pyrochlore, barite, brookite, florencite, galena, gorceixite, goyazite, hematite, ilmenite, limonite, magnetite, marcasite, monazite, perovskite, psilomelane, pyrite, pyrochlore, pyrrhotite, rutile, sphalerite, zircon amphibole, biotite, calcite, chlorite, dolomite, epidote, feldspar, kaolinite, melilite, phlogopite, quartz, scapolite, spinel oval plug 2.2 2.4 1.4 fenitization, argillization (mostly supergene) n.d. n.d. n.d. Resources of lateritic soil 100 m thick. According to Deans (1966), 49 Mt of residual ore include 6 Mt at 5% Re2O3, ore contains 0.040.2% MoO3. Deans, T., 1966, Economic mineralogy of African carbonatites, in Tuttle, O.F., and Gittins, J., eds., Carbonatites: New York, Interscience Publishers, p. 385413. Goetze, G.L., and Edwards, C.B., 1959, The Mrima Hill carbonatite, Coast province, Kenya: Transactions of the Geological Society of South Africa, v. 62, p. 373396. Harris, P.M., 1965, Pandaite from the Mrima Hill niobium deposit (Kenya): Mineralogical Magazine, v. 35, p. 277290. Horkel, A.D., 1984, Notes on the geology and mineral resources of the southern Kenyan cost: Mitteilungen sterreichische Geologische Gesellschaft, Band 77, p. 151159. Woolley, A.R., 2001, Alkaline rocks and carbonatites of the world Part 3: Africa: London, The Geological Society, 372 p. Kenya KNYA Ruri -.53 0 -31 -48 34.3344444444444444 34 20 04 n.d. n.d. svite 3.75 10 0 3.92 0 Jackson and Christiansen (1993); Re2O3 grade calculated from 5.6% monazite content in ore 13 Sr-Nd 13 Cenozoic (post-Karroo) East-African rift carbonatite, carbonatite agglomerate, carbonatite tuff, ijolite, nepheline syenite metabasalt (Neoarchean) apatite, barite, bastnaesite, eudialyte, fluorite, gtzenite, magnetite, monazite, pyrochlore aegerine, biotite, calcite, cancrinite, wollastonite cone sheets and dikes in twin alkaliine-carbonatite volcanes 5.5 13 3 fenitization n.d. 10 n.d. Deines, P., and Gold, D.P., 1973, The isotopic composition of carbonatite and kimberlite carbonates and their bearing on the isotopic composition of deep-seated carbon: Geochimica et Cosmochimica Acta, v. 37, p. 17091733. Jackson, W.D., and Christiansen, G., 1993, International strategic inventory summary report-rare-earth oxides: U.S. Geological Survey Circular 930-N, 68 p. Jaff, F.C., and Collins, B., 1969, Rare-earth concentrations in the South Ruri carbonatite in western Kenya: Transactions of Institution of Mining and Metallurgy, Section B, v. 78, no. 756, p. B161B163. Kalt, A., Hegner, E., and Satir, M., 1997, Nd, Sr, and Pb isotopic evidence for diverse lithospheric mantle sources of East African carbonatites: Tectonophysics, v. 278, p. 3145. Le Bas, M.J., 2008, Fenites associated with carbonatites: The Canadian Mineralogist, v. 46, p. 915932. McCall, G.J., 1963, A reconsideration of certain aspects of the Rangwa and Ruri carbonatite complexes in Western Kenya: Geological Magazine, v. 100, no. 2, p. 181185. Orris, G.J., and Grauch, R.I., 2002, Rare earth element mines, deposits, and occurrences: U.S. Geological Survey Open-File Report 02-189, 174 p. Woolley, A.R., 2001, Alkaline rocks and carbonatites of the world Part 3: Africa: London, The Geological Society, 372 p. Malawi MLWI Chilwa Island -15.3316666666666667 -15 -19 -54 35.6019444444444444 35 36 07 n.d. n.d. Fe-carbonatite, svite 0.375 10 0.95 5 0 Gupta and Kishnamurthy (2004), Malunga (2009), Ministry... (2009) 1367 K-Ar, biotite; 125.87.7 fission-track, titanite & zircon 136 East African rift system; southern part of Tanganyike-Rukwa-Malawi transcurrent fault zone; Chilwa alkaline province agglomerate, carbonatite, feldspathic breccia, foyaite, ijolite, nepheline syenite, dikes of nephelinite, phonolite, and trachyte gneiss, granulite (Precambrian), syenite (Cretaceous) apatite, barite, bastnaesite, columbite, florencite, fluorite, pyrite, pyrochlore, rutile, synchysite, titanite amphibole, ankerite, biotite, calcite, feldspar, melanite, phlogopite, pyroxene, siderite, quartz, spinel circular plug 3.4 8.5 3.2 fenitization 1 10 n.d. 5% Re2O3 in ore, including 2.2% Sm2O3, 0.47% Eu2O3, 1.64% Y2O3; apatite contains 7.12% La and 13.7% Ce; pyrochlore contains 1.32.76% Ce (Gupta and Kishnamurthy, 2004). Eby, G.N., Roden-Tice, M., Krueger, H.L., Ewing, W., Faxon, E.H., and Woolley, A.R., 1995, Geochronology and cooling history of the northern part of the Chilwa alkaline province, Malawi: Journal of African Earth Sciences, v.20, no. 3-4, p. 275288. Garson, M.S., 1966, Carbonatites in Malawi, in Tuttle, O.F., and Gittins, J., eds., Carbonatites: New York, Interscience Publishers, p. 3371. Gupta, C.K., and Kishnamurthy, N., 2004, Extractive metallurgy of rare earth: CRC Press, 506 p. Malunga, G.W.P., 2009, Mineral potential of the Nacala corridor, Malawi, 12 p., www.sdnp.org.mw/geosoc-mw/mineralpotential.htm (last visited February 17, 2009) Ministry of Energy and Mines, Republic of Malawi, 2009, Mineral potential of Malawi, 8 p., www.bgs.ac.uk/downloads/start.cfm?id=1239 (last visited February 17, 2009) Tiercelin, J.J., Chorowicz, J., Belloni, H., Richert, J.P., Mwanbene, J.T., and Walgenwitz, F., 1988, East African Rift SystemOffset, age and tectonic significance of the Tanganyika-Rukwa-Malawi intracontinental transcurrent fault zone: Tectonophysics, v. 148, p. 241252 Woolley, A.R., 2001, Alkaline rocks and carbonatites of the world Part 3: Africa: London, The Geological Society, 372 p. Malawi MLWI Kangankunde -15.125 -15 -07 -30 34.9094444444444444 34 54 34 n.d. n.d. beforsite 11 10 2 0.62 0 Malawi... (2009); Ministry... (2009); Singer (1998) 1236 K-Ar, phlogopite 123 East African rift system; Chilwa alkaline province agglomerate, carbonatite, feldspathic breccia gneiss, schist (Precambrian) apatite, barite, bastnaesite, daqingshanite, florencite, fluorite, goyazite, magnetite, monazite, perovskite, pyrochlore, sphalerite, strontianite ankerite, biotite, calcite, dolomite, feldspar, melilite, montichellite, nepheline, olivine, phlogopite, quartz, siderite, staurolite plugs and sheets in core of oval alkaline complex 7.2 14.1 2.5 fenitization 1 n.d. n.d. 8.4% SrCO3 in ore. 13 Kt monazite production to 30 m depth at average 10% Re2O3 (Gupta and Kishnamurthy, 2004). Garson, M.S., 1966, Carbonatites in Malawi, in Tuttle, O.F., and Gittins, J., eds., Carbonatites: New York, Interscience Publishers, p. 3371. Gupta, C.K., and Kishnamurthy, N., 2004, Extractive metallurgy of rare earth: CRC Press, 506 p. Lynas Corporation, Ltd., 2007, Lynas Acquires New Rare Earths Resource in Malawi, 5 p., www.infomine.com/index/pr/PA536540.PDF (last visited February 18, 2009) Malawi Geological Surveys Department, 2009, Mineral resources of Malawi, 7 p., www.malawi.gov.mw/publications/geo/mineralsdoc.htm (last visited February 18, 2009) Ministry of Energy and Mines, Republic of Malawi, 2009, Mineral potential of Malawi, 8 p., www.bgs.ac.uk/downloads/start.cfm?id=1239 (last visited February 18, 2009) Orris, G.J., and Grauch, R.I., 2002, Rare earth element mines, deposits, and occurrences: U.S. Geological Survey Open-File Report 02-189, 174 p. Singer, D.A., 1998, Revised grade and tonnage model of carbonatite deposits: U.S. Geological Survey Open-File Report 98-235, 8 p. Tiercelin, J.J., Chorowicz, J., Belloni, H., Richert, J.P., Mwanbene, J.T., and Walgenwitz, F., 1988, East African Rift SystemOffset, age and tectonic significance of the Tanganyika-Rukwa-Malawi intracontinental transcurrent fault zone: Tectonophysics, v. 148, p. 241252. Wall, F., and Mariano, A.N., 1996, Rare earth minerals in carbonatitesA discussion centered on the Kangakunde carbonatite, Malawi, in Jones, A.P., Wall, F., and Williams, C.T., eds., Rare earth mineralsChemistry, origin and ore deposits: Chapman & Hall, p. 193225. Woolley, A.R., 2001, Alkaline rocks and carbonatites of the world Part 3: Africa: London, The Geological Society, 372 p. Malawi MLWI Tundulu Nathache -15.5391666666666667 -15 -32 -21 35.8075 35 48 27 n.d. n.d. svite 3.225 10 0.53 2.4 12.9 Dill (2007); Malawi... (2009); Ministry... (2009) 1337 K-Ar, biotite 133 East African rift system; southern part of Tanganyike-Rukwa-Malawi transcurrent fault zone; Chilwa alkaline province breccia, carbonatite, carbonatite agglomerate, foyaite, nepheline syenite, trachyte gneiss, granite, granulite (Precambrian), dolerite dike (Karoo) anatase, apatite, barite, bastnaesite, celestite, florencite, fluorite, goethite, ilmenite, magnetite, monazite, parisite, pyrochlore, strontianite, synchysite, titanite aegerine, ankerite, biotite, calcite, dolomite, K-feldspar, melanite, quartz, siderite ring complex 4 11 3.5 fenitization 2.5 10 n.d. In apatite % oxides: 0.85 Ce, 0.39 La, and 0.36 Nd; in ilmenite 0.84% Nb2O5 (Dawson, 1996). Three mineralized zones in Nathache Hill area contain 0.6 Mt at 1.77% Re2O3 to 50 m depth (Gupta and Kishnamurthy, 2004). Ngwenya (1994) considers quartz-barite-REE veins hydrothermal. Dawson, J.B., Steele, I.M., Smith, J.V., and Rivers, M.L., 1996, Minor and trace element chemistry of carbonates, apatites and magnetites in some African carbonatites: Mineralogical Magazine, v. 60, no. 3, p. 415425. Dill, H.G., 2007, A review of mineral resources in MalawiWith special reference to aluminum variation in mineral deposits: Journal of African Earth Sciences, v. 47, p. 153173. Garson, M.S., 1966, Carbonatites in Malawi, in Tuttle, O.F., and Gittins, J., eds., Carbonatites: New York, Interscience Publishers, p. 3371. Gupta, C.K., and Kishnamurthy, N., 2004, Extractive metallurgy of rare earth: CRC Press, 506 p. Malawi Geological Surveys Department, 2009, Mineral resources of Malawi, 7 p., www.malawi.gov.mw/publications/geo/mineralsdoc.htm (last visited February 18, 2009) Malunga, G.W.P., 2009, Mineral potential of the Nacala corridor, Malawi, 12 p., www.sdnp.org.mw/geosoc-mw/mineralpotential.htm (last visited February 18, 2009) Ministry of Energy and Mines, Republic of Malawi, 2009, Mineral potential of Malawi, 8 p., www.bgs.ac.uk/downloads/start.cfm?id=1239 (last visited February 18, 2009) Ngwenya, B.T., 1994, Hydrothermal rare earth mineralisation in carbonatites of the Tundulu complex, Malawi: Geochimica and Cosmochimica Acta, v. 58, no. 9, p. 20612072. Tiercelin, J.J., Chorowicz, J., Belloni, H., Richert, J.P., Mwanbene, J.T., and Walgenwitz, F., 1988, East African Rift SystemOffset, age and tectonic significance of the Tanganyika-Rukwa-Malawi intracontinental transcurrent fault zone: Tectonophysics, v. 148, p. 241252 Woolley, A.R., 2001, Alkaline rocks and carbonatites of the world Part 3: Africa: London, The Geological Society, 372 p. Mauritania MRTA Bou Naga 18.9833333333333333 18 59 -13.3166666666666667 -13 -19 n.d. 1968 beforsite? 0.1 10 0 4.4 0 Jackson and Christiansen (1993) 6788 U-Pb zircon from syenite 680 West-African craton window in Mauritania fold belt alkaline granite, carbonatite (?), syenite gneiss (Neoarchean, 2709136 Ma) apatite, barite, bastnaesite, fluorite, monazite carbonate carbonatite (?)-alkaline ring complex 113 sq. km n.d. n.d. n.d. n.d. n.d. 11d n.d. Production 19681970. Blanc, A., Bernard-Griffiths, J., Caby, R., Caruba, C., Caruba, R., Dars, R., Fourcade, S., and Peucat, J.J., 1992, U-Pb dating and isotopic signature of the alkaline ring complexes of Bou Naga (Mauritania)Its bearing on Late Proterozoic plate tectonics around the West African craton: Journal of African Earth Sciences, v. 14, p. 301311. British Geological Survey, 2005, Mapping Mauritanians desert, 2 p., www.bgs.ac.uk/downloads/start.cfm?id=446 (last visited February 19, 2009) Jackson, W.D., and Christiansen, G., 1993, International strategic inventory summary report-rare-earth oxides: U.S. Geological Survey Circular 930-N, 68 p. Orris, G.J., and Grauch, R.I., 2002, Rare earth element mines, deposits, and occurrences: U.S. Geological Survey Open-File Report 02-189, 174 p. Secretariat of ACP (African, Caribbean, and Pacific Group of States), 2009, Mining Data Bank, Bou Naga, 4 p., http://mines.acp.int/html/mine_MRT-00062_en.html (last visited February 19, 2009) Mongolia MNGL Lugiingol Lugin Gol 42.9541666666666667 42 57 15 108.5633333333333333 108 33 48 1971 n.d. svite 0.72 10 0 3.2 0 ESCAP (1999) 24422.4 Rb-Sr isochron, whole rock 244 GobiTien Shan rift, Late PaleozoicEarly Mesozoic alkaline magmatic belt alkali granite porphyry (post-mineral dike), carbonatite, ijolite, nepheline syenite sandstone, shale, siltstone (Paleozoic) barite, bastnaesite, fluorite, parisite, pyrite, rutile, synchysite calcite, dolomite, phlogopite, quartz dike zones in circle alkaline complex 2.3 1.5 0.8 fenitization, hornfels, skarn n.d. n.d. n.d. Circle alkaline complex (9.3 sq. km) with 20 carbonatite dike zones (>1000 m long, >1 m thick) containing separated mineralized pods. ESCAP (Economic and Social Commission for Asia and the Pacific), 1999, Geology and mineral resources of Mongolia: Atlas of Mineral Resources of the Asia-Pacific Region, ESCAP, United Nations, v. 14, 192 p. Kovalenko,V.I., and Yarmolyuk, V.V., 1995, Endogenous rare metal formations and rare metal metallogeny of Mongolia: Economic Geology, v. 90, p. 520529. Munkhtsengel, B., and Iizumi, S., 2005, Petrology and geochemistry of the Lugiin Gol, in Seltman, R., Gerel, O., and Kirwin, D., eds., Geodynamics and metallogeny of Mongolia with a special emphasis on copper and gold deposits:London, CERCAMS, IAGOD Guidebook Series 11, p. 203214. Orris, G.J., and Grauch, R.I., 2002, Rare earth element mines, deposits, and occurrences: U.S. Geological Survey Open-File Report 02-189, 174 p. Samoilov, V.S., and Kovalenko, V.I., 1983, Complexes of alkaline rocks and carbonatites in South Mongolia: Moscow, Nauka, Transactions of Joint Soviet-Mongolian Scientific Geological Expedition, v. 35, 195 p. (in Russian). Mongolia MNGL Mushgai-Khudag Mushugay-Khuduk 44.4008333333333333 44 24 03 104.0513888888888889 104 03 05 1974 n.d. svite 367 10 0 1.6 0 Kamitani and Hirano (1990) 139.95.9 Rb-Sr isochron, whole rock 140 Mongolian main lineament; Late Mesozoic central Gobi alkaline magmatic belt carbonatite, carbonatitic agglomerate, carbonatite eruptive breccia, carbonatitic tuff, nepheline syenite, melanephelinite, quartz syenite, trachyte conglomerate, dacite, granite, rhyolite, sandstone (SilurianDevonian) apatite, barite, bastnaesite, celestite, fluorite, galena, magnetite, pyrite, pyrrhotite, thorianite ankerite, calcite, diopside, dolomite, K-feldspar, phlogopite, quartz lenses, veins and stockworks, eruptive breccia in paleovolcano (80x200 m) n.d. n.d. n.d. n.d. n.d. 11d, apatite-magnetite n.d. Different reserve and resource estimations: 6.1 Mt at 1.37% Re2O3 (Singer, 1998); 200 Mt at 1.5% Re2O3 (ESCAP, 1999). The deposit contains also 0.44 Mt at 0.8814% P2O5, 0.22 Mt at 0.95% BaSO4, and 0.22 Mt at 0.9% Sr; resources of 1.2 Mt Fe (Nokleberg and others, 2003). ESCAP (Economic and Social Commission for Asia and the Pacific), 1999, Geology and mineral resources of Mongolia: Atlas of Mineral Resources of the Asia-Pacific Region, ESCAP, United Nations, v. 14, 192 p. Gerel, O., Munkhtsengel, B., Enkhtuvshin, H., and Iizumi, S., 2005, Mushgai-Khudag and Bayan Khoshuu volcanic-plutonic alkaline complexes with REETa, Nb, Fe carbonatite mineralization, in Seltman, R., Gerel, O., and Kirwin, D., eds., Geodynamics and metallogeny of Mongolia with a special emphasis on copper and gold deposits: London, CERCAMS, IAGOD Guidebook Series 11, p. 215221. Kamitani, M., and Hirano, H., 1990, Important carbonatite-alkaline/alkaline complexes and related mineral resources in the world: Bulletin of the Geological Survey of Japan, v. 41, no. 11, p. 631640. Kovalenko,V.I., Samoylov, V.S., Vladykin, N.V., Goreglyad, A.V., and Makagon, L.D., 1977, Geochemical characteristics of a shallow carbonatite complex in the Gobi desert: Geochemistry International, v. 14, no. 5, p. 2336. Kovalenko,V.I., and Yarmolyuk, V.V., 1995, Endogenous rare metal formations and rare metal metallogeny of Mongolia: Economic Geology, v. 90, p. 520529. Nokleberg, W.J., Bounaeva, T.M., Miller, R.J., Seminskiy Z.V., and Diggles, M.F., eds., 2003, Significant Metalliferous and Selected Non-Metalliferous Lode Deposits, and Selected Placer Districts of Northeast Asia, Database: U.S. Geological Survey Open-File Report 03-220, http://pubs.usgs.gov/of/2003/of03-220/DATABASE/lode_deposits.txt (last visited March 24, 2009) Samoilov, V.S., and Kovalenko, V.I., 1983, Complexes of alkaline rocks and carbonatites in South Mongolia: Transactions of Joint Soviet-Mongolian Scientific Geological Expedition, Moscow, Nauka, v. 35, 195 p. (in Russian). Samoilov, V.S., Kovalenko,V.I., Sengee, D., Ivanov, V.G., Smirnova, E.V., Konusova, V.V., Pakhomova, N.N., 1988, Geology, ore composition, and genesis of the one of rare-earth deposits in Mongolia: Geology of Ore Deposits, v. 30, no. 2, p. 6274 (in Russian). Singer, D.A., 1998, Revised grade and tonnage model of carbonatite deposits: U.S. Geological Survey Open-File Report 98-235, 8 p. Namibia NAMB Damaraland Eureka -22.0558333333333333 -22 -03 -21 15.2636111111111111 15 15 49 n.d. n.d. beforsite 0.03 10 0 6.3 0 McManus and Schneider (1994); Orris and Grauch (2002) 50020 U-Pb, 44051 Sm-Nd isochrone 500 Neoproterozic Damara orogenic belt carbonatite calc-silicate rocks, quartzite (Neoproterozoic) magnetite, monazite, zircon calcite, dolomite, garnet dikes (7 m thick) n.d. n.d. n.d. fenitization n.d. n.d. n.d. Potential resource of 1.9 Kt Re2O3 in 30 Kt ore to 20 m depth. Burger, A.J., Von Knorring, O., and Clifford, T.N., 1965, Mineralogical and radiometric studies of monazite and sphene occurrences in the Namibia desert, South-West Africa: Mineralogical Magazine, v. 35, p. 519528. Dunai, T., Stoessel, G.F.U., and Ziegler, U.R.F., 1989, A Sr isotope study of the Eureka carbonatite, Damaraland, Namibia: Communications of Geological Survey of Namibia, v. 5, p. 8990. McManus, M.N.C., and Schneider, G.I.S, 1994, Namibia: industrial minerals, in Mathers, S.J., and Notholt, A.J.G., eds., Industrial minerals in developing countries: British Geological Survey, AGID Report Series, no. 18, p. 111134. Orris, G.J., and Grauch, R.I., 2002, Rare earth element mines, deposits, and occurrences: U.S. Geological Survey Open-File Report 02-189, 174 p. Verwoerd, W.J., 1993, Update on carbonatites of South Africa and Namibia: South African Journal of Geology, v. 96, no. 3, p. 7595. Woolley, A.R., 2001, Alkaline rocks and carbonatites of the world Part 3: Africa: London, The Geological Society, 372 p. Ziegler, U.R.F., and Dunai, T.J., 1991, A Nd-Sr isotope study of the Eureka carbonatite, Damaraland, Namibia [abs.]: Terra Abstracts, v. 3, no. 1, p. 14. Namibia NAMB Damaraland Kalkfeld -20.8194444444444444 -20 -49 -10 16.1325 16 07 57 n.d. 1963 svite 10 0 0 0 172.8153.6 K-Ar, biotite 163 Neoproterozic Damara orogenic belt; Late Mesozoic alkaline magmatic province probably related to opening of South Atlantic and to Tristan da Cunha plume carbonatite, hematitic iron ore, fenite, foyaite, syenite granite, marble, quartzite (Neoproterozoic) apatite, barite, burbankite, carbocernaite, chalcocite, eudialyte, hematite, magnetite, monazite, pyrite, pyrochlore, sphalerite, strontianite, titanite albite, ankerite, biotite, calcite, chlorite, phlogopite, quartz plug in alkaline complex 4x8 km 2 2.4 1.5 fenitization n.d. 10 n.d. 0.5% ThO2 in hematitic iron ore; 6.7% P2O5, 1.82% SrO in carbonatite. Iron ore was mined as a flux for the Tsumeb Cu-Pb plant. Bhn, B., 2008, The role of volatile phase for REE and Y fractionation in low-silica carbonate magmasImplications from natural carbonatites, Namibia: Mineralogy and Petrology, v. 92, p. 453470. Bhn, B., and Rankin, A.H., 1999, Composition of natural, volatile-rich Na-Ca-REE-Sr carbonatitic fluids trapped in fluid inclusions: Geochimica and Cosmochimica Acta, v. 63, p. 37813797. Comin-Chiaramonti, P., de Barros Gomes, C., Cundari, A., Castorina, F., and Censi, P., 2007, A review of carbonatite magmatism in the Paran-Angola-Namibia (PAN) system: Periodico di Mineralogia, v. 76, no. 2-3, p. 2578. McManus, M.N.C., and Schneider, G.I.S, 1994, NamibiaIndustrial minerals, in Mathers, S.J., and Notholt, A.J.G., eds., Industrial minerals in developing countries: British Geological Survey, AGID Report Series, no. 18, p. 111134. Prins, P., 1981, The geochemical evolution of the alkaline and carbonatite complexes of the Damaraland igneous province, south west Africa: Annale Universiteit van Stellenbosch, Serie A1 (Geologie), v. 3, p. 145278. Verwoerd, W.J., 1967, The carbonatites of South Africa and South West Africa: Geological Survey of Republic of South Africa Handbook 6, 452 p. Verwoerd, W.J., 1993, Update on carbonatites of South Africa and Namibia: South African Journal of Geology, v. 96, no. 3, p. 7595. Woolley, A.R., 2001, Alkaline rocks and carbonatites of the world Part 3: Africa: London, The Geological Society, 372 p. Namibia NAMB Damaraland Ondurukurume -20.7697222222222222 -20 -46 -11 16.2544444444444444 16 15 16 n.d. n.d. beforsite, svite 8 10 0.3 3 7 Verwoerd (1967, 1986) 129? 129 Neoproterozic Damara orogenic belt; Late Mesozoic alkaline magmatic province probably related to opening of South Atlantic and to Tristan da Cunha plume carbonatite, nepheline syenite, syenite, volcanic breccia granite, marble, quartzite, graywacke, schist (Neoproterozoic) ancylite, apatite, barite, carbocernaite, cerianite, galena, hematite, monazite, psilomelane, pyrite, pyrochlore, strontianite, zircon aegerine, ankerite, calcite, biotite, chlorite, dolomite, quartz, vermiculite circular plug, dikes 2 2.4 1.5 fenitization 0.3 10 n.d. 0.060.47% ThO2, 2.5% SrCO3, 0.02 kg/t U3O8 in ore. Bhn, B., 2008, The role of volatile phase for REE and Y fractionation in low-silica carbonate magmasImplications from natural carbonatites, Namibia: Mineralogy and Petrology, v. 92, p. 453470. Comin-Chiaramonti, P., de Barros Gomes, C., Cundari, A., Castorina, F., and Censi, P., 2007, A review of carbonatite magmatism in the Paran-Angola-Namibia (PAN) system: Periodico di Mineralogia, v. 76, no. 2-3, p. 2578. McManus, M.N.C., and Schneider, G.I.S, 1994, NamibiaIndustrial minerals, in Mathers, S.J., and Notholt, A.J.G., eds., Industrial minerals in developing countries: British Geological Survey, AGID Report Series, no. 18, p. 111134. Prins, P., 1981, The geochemical evolution of the alkaline and carbonatite complexes of the Damaraland igneous province, south west Africa: Annale Universiteit van Stellenbosch, Serie A1 (Geologie), v. 3, p. 145278. Verwoerd, W.J., 1986, Mineral deposits associated with carbonatites and alkaline rocks, in Anhaeusser, C.R., and Maske, S., eds., Mineral deposits of Southern Africa: Geological Society of South Africa, Johannesburg, v. 2, p. 21732191. Verwoerd, W.J., 1967, The carbonatites of South Africa and South West Africa: Geological Survey of Republic of South Africa Handbook 6, 452 p. Verwoerd, W.J., 1993, Update on carbonatites of South Africa and Namibia: South African Journal of Geology, v. 96, no. 3, p. 7595. Woolley, A.R., 2001, Alkaline rocks and carbonatites of the world Part 3: Africa: London, The Geological Society, 372 p. Norway NRWY Telemark Sve Fen complex 59.2808333333333333 59 16 51 9.2694444444444444 09 16 10 early 1900s n.d. rauhaugite, svite 55.3 10 0.23 0 0 Singer (1998) 58315 Ar-Ar, phlogopite; 583 paleo-magnetic. 583 Neoproterozoic extension zone probably related to Iapetus ocean spreading dividing Baltica and Laurentia carbonatite, ijolite, melteigite, nepheline syenite gneiss (Proterozoic) anatase, apatite, barite, chalcopyrite, columbite, fersmite, fergusonite-(Y), goethite, hematite, hibonite, ilmenite, isokite, kobeite-(Y), loparite-(Ce), magnetite, monazite-(Ce), parisite-(Ce), perovskite, perrierite-(Ce), pyrite, pyrochlore, pyrolusite, pyrrhotite, rutile, synchysite-(Ce), thorianite, thorite, thortveitite, titanite, villiaumite, zircon biotite, brucite, calcite, corundum, dolomite, garnet, phlogopite, pyroxene, spinel dike swarm at NW flank of Fen alkaline complex 3.5x2.7 km 1.6 0.6 0.5 fenitization n.d. 11d n.d. Andersen, T., 1986, Magmatic fluids in the Fen carbonatite complex, S.E. Norway: Contributions to Mineralogy and Petrology, v. 93, p. 491503. Andersen, T., 1989, Carbonatite-related contact metasomatism in the Fen complex, NorwayEffects and petrogenetic implications: Mineralogical Magazine, v. 53, p. 395414. Andersen, T., and Taylor, P., 1988, Pb isotope geochemistry of the Fen carbonatite complex, S.E. NorwayAge and petrogenetic implications: Geochimica et Cosmochimica Acta, v. 52, p. 209215. Kresten, P., and Morogan, V., 1986, Fenitization at the Fen complex, southern Norway: Lithos, v. 19, p. 2742. Meert, J.G., Torsvik, T.H., Eide, E.E., and Dahlgren, S., 1998, Tectonic significance of the Fen province, S. NorwayConstraints from geochronology and paleomagnetism: Journal of Geology, v. 106, p. 553564. Mindat.org, 2009, Fen complex, Nome, Telemark, Norway, 2 p., www.mindat.org/loc-14357.html (last visited March 20, 2009) Singer, D.A., 1998, Revised grade and tonnage model of carbonatite deposits: U.S. Geological Survey Open-File Report 98-235, 8 p. Russia RUSA Krasnoyarsk Chuktukonskoye Chadobetskoye 59.4852777777777778 59 29 07 99.2875 99 17 15 n.d. n.d. beforsite, svite 455 10 0.62 3.78 17 Industrial Minerals (2006) 26010 K-Ar, phlogopite, 200 Pb-Pb, zircon 230 Siberian platform, southwestern margin; Chadobetski uplift containing alkaline ultramafic magmatic province breccia pipes, carbonatite, gabbro-dolerite, melteigite, montichellite, picrite, pyroxenite limestone, mudstone, sandstone, siltstone (NeoproterozoicLower Cambrian) anatase, apatite (francolite), barite, cerianite, crandallite, florencite, goethite, gorceixite, hematite, ilmenite, monazite, perovskite, psilomelane, pyrite, pyrochlore, pyrolusite albite, calcite, dolomite, hydromica, phlogopite, pyroxene, quartz dikes, sills, and stocks combined with bodies of alkaline ultramafic rocks n.d. n.d. n.d. n.d. n.d. 11d n.d. Carbonatite stocks up to 1 sq. km, veins and dikes are over several meters in thickness over area >600 sq. km of the Chadobetski uplift. Oxidized cover 70 to >350 m thick. Industrial Minerals, 2006, Russian RE and zeolite deposit plans: Industrial Minerals, no. 469, p.14. Kogarko, L.N., Kononova, V.A., Orlova, M.P., and Woolley, A.R., 1995, Alkaline rocks and carbonatites of the world, Part 2Former USSR: London, Chapman & Hall, 226 p. Lapin, A.V., 1993, Classification and assessment of residual carbonatite ore deposits: Geology of Ore Deposits (Geologiya Rudnykh Mestorozhdeni), v. 38, no. 2, p. 172185 (in Russian). Lapin, A.V., Pyatenko, I.K., 1992, The Chadobetski complex of alkaline ultramafic rocks and carbonatites: new data on composition, structure and origin: Proceedings of Russian Academy of Sciences, Geological Series, no. 6, p. 88101 (in Russian). Nokleberg, W.J., Bounaeva, T.M., Miller, R.J., Seminskiy Z.V., and Diggles, M.F., eds., 2003, Significant Metalliferous and Selected Non-Metalliferous Lode Deposits, and Selected Placer Districts of Northeast Asia, Database: U.S. Geological Survey Open-File Report 03-220, http://pubs.usgs.gov/of/2003/of03-220/DATABASE/lode_deposits.txt (last visited March 24, 2009) Russia RUSA Murmansk, Kola peninsula Khibiny Khibina 67.7577777777777778 67 45 28 34.2388888888888889 34 14 20 1923 1929 apatite Fe-carbonatite, svite 10 0 0 0 36647 Sm-Nd, carbonatite; 36513 Rb-Sr isochron 366 Devonian Kola peninsula rift system, NE Kontozero graben carbonatite, eruptive breccia, foyaite, ijolite, melteigite, nepheline syenite, phoscorite, urtite gneiss, granite (Archean), volcanic-sedimentary rocks (Proterozoic) ancylite-(Ce), apatite, barite, bastnaesite, burbankite, carbocernaite, cebaite-(Ce), chalcopyrite, cordylite-(Ce), fluorite, galena, hematite, ilmenorutile, kukharenkoite-(Ce), mackelveyite-(Y), magnetite, Nb-sphene, parisite-(Ce), perovskite, pyrite, pyrochlore, pyrrhotite, rutile, sphalerite, sphene, strontianite, synchysite-(Ce), zircon aegerine, albite, amphibole, ankerite, barytocalcite, biotite, calcite, cancrinite, dawsonite, dolomite, edingtonite, Fe-rhodochrosite, garnet, Mn-siderite, natrolite, quartz, siderite, talc, wollastonite carbonatite stock, 0.5 sq. km, in eastern part of circular zonal alkaline complex n.d. 1327 n.d. fenitization, carbonatization n.d. apatite alkaline apatite alkaline Resources of apatite ore 4,000 Mt at 15% P2O5 (Ilyin, 1989). The carbonatite stock, covered by quaternary sediments and water of the Umba lake, was traced to 1,700 m depth (Dudkin, 1991), containing 9% RE2O3, 6.5% Sr, and 3% Ba (Kogarko and others, 1995). Downes, H., Balaganskaya, E., Beard, E., Liferovich, R., Demaiffe, D., 2005, Petrogenetic processes in the ultramafic, alkaline and carbonatitic magmatism in the Kola alkaline province: a review: Lithos, v. 85, p. 4875. Dudkin, O.B., 1991, Carbonatite and the sequence of formation of the Khibiny pluton: International Geology Review, v. 33, no. 4, p. 375384. Ilyin, A.V., 1989, Apatite deposits in the Khibiny and Kovdor alkaline igneous complexes, Kola peninsula, northwestern USSR, in Notholt, A.J.G., Sheldon, R.P., and Davidson, D.F., eds., Phosphate deposits of the world: Cambridge University Press, v. 2, p. 485493. Kogarko, L.N., Kononova, V.A., Orlova, M.P., and Woolley, A.R., 1995, Alkaline rocks and carbonatites of the world, Part 2Former USSR: London, Chapman & Hall, 226 p. Sindern, S., Zaitsev, A.N., Demny, A., Bell, K., Chakmouradian, A.R., Kramm, U., Moutte, J., and Rukhlov, A.S., 2004, Mineralogy and geochemistry of silicate dyke rocks associated with carbonatites from the Khibina complex (Kola, Russia)Isotope constraints on genesis and small-scale mantle sources: Mineralogy and Petrology, v. 80, p. 215239. Zaitsev, A.N., Wall, F., and Le Bas, M.J., 1998, REE-Sr-Ba minerals from the Khibina carbonatites, Kola peninsula, RussiaTheir mineralogy, paragenesis and evolution: Mineralogical Magazine, v. 62, no. 2, p. 225250. Zaitsev, A.N., 1996, Rhomboedral carbonates from carbonatites of the Khibina massif, Kola peninsula, Russia: The Canadian Mineralogist, v. 34, p. 453468. Russia RUSA Murmansk, Kola peninsula Kovdor 67.5605555555555556 67 33 38 30.4294444444444444 30 25 46 1933 1962 beforsite, svite 1255 10 0.18 0 6.6 Laznicka (2006); Exploration Finland (2009) 3823 377.60.7 U-Pb, baddeleyite, zircon 380 Devonian Kola peninsula rift system carbonatite, dunite, ijolite, melteigite, phoskorite, pyroxenite gneiss, granite gneiss (Archean) apatite, baddeleyite, chalcopyrite, crandallite, gorceixite, goyazite, ilmenite, juonniite, magnetite, pyrochlore, pyrrhotite, strontianite, zircon, zirconolite actinolite, ankerite, calcite, diopside, dolomite, forsterite, garnet, phlogopite, tremolite, vermiculite, wollastonite irregular bodies and veins within apatite-magnetite ore field (0.5 sq. km) at western flank of concentric zoning alkaline ultramafic complex n.d. 40.5 n.d. fenitization (ring) 1.5 apatite-magnetite n.d. 487 Mt reserve, 768 Mt production at 35% Fe, 6.6% P2O5, 0.3% Zr, Ta, Nb (0.16% Zr) (byproducts) (Laznicka, 2006; Exploration Finland, 2009); carbonatites are mined along with magnetite-apatite ores; phlogopite and vermiculite also in production. Downes, H., Balaganskaya, E., Beard, E., Liferovich, R., Demaiffe, D., 2005, Petrogenetic processes in the ultramafic, alkaline and carbonatitic magmatism in the Kola alkaline provinceA review: Lithos, v. 85, p. 4875. Exploration Finland, 2009, Large mines in Fennoscandia, 1 table, http://en.gtk.fi/export/sites/default/ExplorationFinland/fodd/largemines.pdf (last visited March 27, 2009) Ilyin, A.V., 1989, Apatite deposits in the Khibiny and Kovdor alkaline igneous complexes, Kola peninsula, northwestern USSR, in Notholt, A.J.G., Sheldon, R.P., and Davidson, D.F., eds., Phosphate deposits of the world: Cambridge University Press, v. 2, p. 485493. Kogarko, L.N., Kononova, V.A., Orlova, M.P., and Woolley, A.R., 1995, Alkaline rocks and carbonatites of the world, Part 2Former USSR: London, Chapman & Hall, 226 p. Laznicka, P., 2006, Giant metallic deposits: Springer, 732 p. Krasnova, N.I., 2001, The Kovdor phlogopite deposit, Kola peninsula, Russia: The Canadian Mineralogist, v. 39, p. 3344. Lee, M.J., Lee, J.I., Hur, S.D., Kim, Y., Moutte, J., Balaganskaya E., 2006, Sr-Nd-Pb isotopic compositions of the Kovdor phoscorite-carbonatite complex, Kola peninsula, NW Russia: Lithos, p. 250261. Zaitsev, A., Bell, K., 1995, Sr and Nd isotope data of apatite, calcite, and dolomite as indicators of source and the relationship of phoscorites and carbonatites from the Kovdor massif, Kola peninsula, Russia: Contributions to Mineralogy and Petrology, v. 121, p. 339344. Zatsev, A., and Polezhaeva, L., 1994, Dolomite-calcite textures in early carbonatites of the Kovdor ore deposit, Kola peninsula, Russia: their genesis and application for calcite-dolomite geothermometry: Contributions to Mineralogy and Petrology, v. 115, p. 324335. Russia RUSA Sakha (Yakutia) Tomtor 71.0536111111111111 71 03 13 116.5711111111111111 116 34 16 n.d. 2006 (?) beforsite, svite 10 0 0 0 Approved resources are unavailable. 660 660 Neoproterozoic longitudinal Udgy paleorift between Anabar shield and Olenek uplift carbonatite, jacupirangite, nepheline syenite, picrite breccia, urtite dolomite, sandstone, siltstone (Neoproterozoic) apatite, barite, columbite, crandallite, florencite-(Ce), galena, goethite, gorceixite, goyazite, ilmenorutile, limonite, magnetite, monazite-(Ce), pyrite, pyrochlore, rabdophane-(Ce), rntgenite-(Ce), rutile, sphalerite, Sr-pyrochlore, tin, xenotime-(Y) aegerine, amphibole, ankerite, Ba-phlogopite, calcite, chlorite, clinopyroxene, dolomite, forsterite, garnet, gypsum, hydromica, K-feldspar, kaolinite, leucite, phlogopite, rhodochrosite, svanbergite central stock, 31.4 sq. km in circular alkaline complex n.d. 300 n.d. fenitization n.d. n.d. n.d. Resources approximately calculated on a base of data from Kogarko and others (1995), Kravchenko and others (1993, 1995), Lapin and Tolstov (1993): Upper oxidized zone (325 m thick, ~1.2 sq. km area, 2.24 g/cubic cm specific gravity) 40 Mt at 12% Nb2O5, 1130% RE2O3. Lower oxidized zone (300 m thick, ~150 m average, ~9 sq. km area, ~2.5 specific gravity) contains >3,000 Mt resources at 11.5% Nb2O5 and 46% RE2O3. Primary carbonatite contains 0.50.7% RE2O3 and lower content of niobium. Mined ore contains 912% RE2O3 (Naumov, 2008). Deposit is covered by Mesozoic-Cenozoic sediments. Upper oxidized zone (formed at ~400 Ma) occurs under Permian clastic rocks in local paleodepressions above carbonatite stock. Hydrothermal overprint (400320 Ma) at 250200 C. Kogarko, L.N., Kononova, V.A., Orlova, M.P., and Woolley, A.R., 1995, Alkaline rocks and carbonatites of the world, Part 2Former USSR: London, Chapman & Hall, 226 p. Kravchenko, S.M., Belyakov, A.Y., Kubyshev, A.I., and Tolstov, A.V., 1990, Scandium-rare earth-yttrium-niobium oresa new economic resource: International Geology Review, v. 32, no. 3, p. 280284. Kravchenko, S.M., Belyakov, A.Y., and Pokrovskiy, B.G., 1993, Geochemistry and origin of the Tomtor massif in the north Siberian platform: Geochemistry International, v. 30, no. 3, p. 2036. Kravchenko, S.M., and Pokrovskiy, B.G., 1995, The Tomtor alkaline ultrabasic and related REE-Nb deposits, northern Siberia: Economic Geology, v. 90, p. 676689. Lapin, A.V., and Tolstov, A.V., 1993, A new unique rare metals ore deposit in the carbonatitic crust weathering: Exploration and Protection of Mineral Resources (Razvedka i Okhrana Nedr), no. 3, p. 711 (in Russian). Naumov, A.V., 2008, Review of the world market of rare-earth metals: Russian Journal of Non-Ferrous Metals, v. 49, no. 1, p. 1422. South Africa SAFR Limpopo Glenover -23.8688888888888889 -23 -52 -08 27.1627777777777778 27 09 46 n.d. 1962 beforsite, svite 11.5 10 0.68 0 25 Verwoerd (1967, 1986) 1000200 Pb-Pb 1,200 Kaapvaal craton apatite-hematite breccia, carbonatite, pyroxenite quartzite (Archean) anatase, apatite, barite, bornite, celestite, chalcopyrite, chondrodite, columbite, galena, hematite, magnetite, monazite, samarskite, perovskite, pyrite, pyrochlore, rutile, sphalerite, synchysite, zircon calcite, dolomite, garnet, phlogopite, vermiculite, zeolite central plug and circular dikes around it in oval pyroxenite-carbonatite complex 4.7 x 3.5 km 1.0 0.4 0.5 fenitization n.d. n.d. n.d. Verwoerd, W.J., 1967, The carbonatites of South Africa and South West Africa: Geological Survey of Republic of South Africa Handbook 6, 452 p. Verwoerd, W.J., 1986, Mineral deposits associated with carbonatites and alkaline rocks, in Anhaeusser, C.R., and Maske, S., eds., Mineral deposits of Southern Africa: Johannesburg, Geological Society of South Africa, v. 2, p. 21732191. Verwoerd, W.J., 1993, Update on carbonatites of South Africa and Namibia: South African Journal of Geology, v. 96, no. 3, p. 7595. Woolley, A.R., 2001, Alkaline rocks and carbonatites of the world, Part 3Africa: London, The Geological Society, 372 p. South Africa SAFR Limpopo Phalaborwa Palabora -23.9791666666666667 -23 -58 -45 31.1244444444444444 31 07 28 1912 1932, 1965 beforsite, svite 652 10 0 0.15 9.0 Singer (1998) 2047+11-8 U-Pb 2047 Kaapvaal craton carbonatite, phoscorite, micaceous pyroxenite, pyroxene-phlogopite-apatite pegmatoid granite gneiss (Archean), dolerite dike (Precambrian) Ag-pentlandite, apatite, baddeleyite, betekhtinite, bismuth, bornite, bravoite, cabriite, chalcocite, chalcopyrite, Co-pentlandite, copper, cubanite, electrum, froodite, galena, gold, hessite, ilmenite, jalpaite, kstelite, lead, mackinawite, magnetite, majakite, millerite, molybdenite, monazite, naummanite, parkerite, pentlandite, pyrrhotite, shadlunite, siegenite, silver, sperrylite, stromeyerite, synchysite, talnakhite, titanite, U-thorianite, uraninite, valleriite, violarite, wittichenite, zircon, zirconolite calcite, clinohumite, dolomite, hornblende, olivine, phlogopite, pyroxene, serpentine, vermiculite oval vertical stock surrounded by circular sheets in phoscorite of central part of ultramafic intrusive complex, 6.5 x 2.7 km 6.5 13.8 2.7 fenitization (along some contacts of the intrusive complex) n.d. n.d. n.d. Three open-cast mines producing Cu, apatite, and vermiculite. Byproducts of Cu mining: Zr oxide, U oxide, magnetite, Ni sulfate, Au, Ag, Pt, Pd. Apatite concentrates contain 0.40.9% Re2O3, potential byproduct Re2O3 recovery. According to data collected by Briggs (2006) from reports of Newmont Mining Corporation (19661987), Palabora Mining Company Ltd. (19822004), Rio Tinto PLC (19972004), and RTZ Corporation PLC (19891996), summary 19652004 production is 915.8 Mt ore at 0.54% Cu, 0.024% ZrO2, 4.53 g/t U3O8, 0.575 g/t Au, Ag, Pt, Pd extracted from slimes; and 54.3 Mt at 11.85% vermiculite. 2004 underground reserve of 201.3 Mt at 0.68% Cu. In flotation sulfide concentrate: 0.23 g/t Pt, 0.4 g/t Pd and 2.0 g/t Au (Rudashevsky and others, 2001). Post-carbonatite dolerite dikes probably Paleoproterozoic 188025 Ma. Briggs, D.F., 2006, Mining operations report, version 2005. Unpublished. Eriksson, S.C., 1989, PhalaborwaA saga of magmatism, metasomatism and miscibility, in Bell, K., ed., Carbonatites genesis and evolution: London, Unwin Hyman, p. 221254. Groves, D.I., and Vielreicher, N.M., 2001, The Phalaborwa (Palabora) carbonatite-hosted magnetite-copper sulfide deposit, South AfricaAn end-member of the iron-oxide copper-gold-rare earth element deposit?: Mineralium Deposita, v. 36, p. 189194. Harmer, R.E., 2000, Mineralisation of the Phalaborwa complex and the carbonatite connection in iron oxide Cu-Au-U-REE deposits, in Porter, T.M., ed., Hydrothermal iron oxide copper-gold and related depositsA global perspective: Adelaide, PGC Publishing, v. 1, p. 331340. Jager de, D.H., 1989, Phosphate resources in the Palabora igneous complex, Transvaal, South Africa, in Notholt, A.J.G., Sheldon, R.P., and Davidson, D.F., eds., Phosphate deposits of the world: Cambridge University Press, v. 2, p.267272. Orris, G.J., and Grauch, R.I., 2002, Rare earth element mines, deposits, and occurrences: U.S. Geological Survey Open-File Report 02-189, 174 p. Palabora Mining Company, 1976, The geology and the economic deposits of copper, iron, and vermiculite in the Palabora igneous complex: Economic Geology, v. 72, p. 177192. Rudashevsky, N.S., Kretser, Y.L., Bulakh, A.C., Krasnova, N.I., Rudashevsky, V.N., Karchevsky, P.I., 2001, Platinum-palladium and gold-silver mineralization in carbonatite ores of Loolekop deposit (Phalaborwa massif, South Africa): Transactions of All-Russian Mineralogical Society (Zapiski Vserossiiskogo Mineralogicheskogo Obshchestva), v. 130, no. 5, p. 2135 (in Russian). Singer, D.A., 1998, Revised grade and tonnage model of carbonatite deposits: U.S. Geological Survey Open-File Report 98-235, 8 p. Verwoerd, W.J., 1986, Mineral deposits associated with carbonatites and alkaline rocks, in Anhaeusser, C.R., and Maske, S., eds., Mineral deposits of Southern Africa: Johannesburg, Geological Society of South Africa, v. 2, p. 21732191. Verwoerd, W.J., 1993, Update on carbonatites of South Africa and Namibia: South African Journal of Geology, v. 96, no. 3, p. 7595. Woolley, A.R., 2001, Alkaline rocks and carbonatites of the world,Part 3Africa: London, The Geological Society, 372 p. South Africa SAFR Northern Cape Sandkopfsdrif Zandkops Drift -30.8841666666666667 -30 -53 -03 17.9419444444444444 17 56 31 n.d. n.d. svite 57 10 0.15 1.0 3.2 Singer (1998) 5654 55 Proterozoic Namaqualand metamorphic complex of South African craton margin breccia, carbonatite, glimmerite gneiss (Proterozoic) apatite, churchite, goyazite, gorceixite, ilmenite, pyrochlore, titanite aegirine-augite, amphibole, calcite, phlogopite, quartz, vermiculite stock (pipe), dikes 1 0.8 1 fenitization n.d. n.d. n.d. Mainly oxidized zoneferruginous and manganiferous gossans. An inference deposit age after Verwoerd (1993). Moor, A.E., and Verwoerd, W.J., 1985, The olivine melilitite-kimberlite-carbonatite suite of Namaqualand and Bushmanland, South Africa: Transactions of the Geological Society of South Africa, v. 88, pt. 2, p. 281294. Orris, G.J., and Grauch, R.I., 2002, Rare earth element mines, deposits, and occurrences: U.S. Geological Survey Open-File Report 02-189, 174 p. Singer, D.A., 1998, Revised grade and tonnage model of carbonatite deposits: U.S. Geological Survey Open-File Report 98-235, 8 p. Verwoerd, W.J., 1986, Mineral deposits associated with carbonatites and alkaline rocks, in Anhaeusser, C.R., and Maske, S., eds., Mineral deposits of Southern Africa: Johannesburg, Geological Society of South Africa, v. 2, p. 21732191. Verwoerd, W.J., 1993, Update on carbonatites of South Africa and Namibia: South African Journal of Geology, v. 96, no. 3, p. 7595. Woolley, A.R., 2001, Alkaline rocks and carbonatites of the world,Part 3Africa: London, The Geological Society, 372 p. Tanzania TNZN Panda Hill Mbeya -9.0077777777777778 -09 00 -28 33.2480555555555556 33 14 53 1950 n.d. beforsite, svite 480 10 0.33 0 3.4 Yager (2003), Mchihiyo (1991) 1136 K-Ar, mica 116 Mesozoic (post-Karroo) East-African rift agglomerate, carbonatite, fenite, phoscorite, tuff, volcanic breccia gneiss (Archean) apatite, fluorite, ilmenite, magnetite, monazite, pyrite, pyrochlore, REE-carbonate, rutile, titanite calcite, dolomite, phlogopite, quartz circular plug 1.7 2.3 1.7 fenitization 0.75 n.d. n.d. Bell, K., and Tilton, G.R., 2001, Nd, Pb and Sr isotopic compositions of East African carbonatitesEvidence for mantle mixing and plume inhomogeneity: Journal of Petrology, v. 42, no. 10, p. 19271945. Fawley, A.P., and James, T.C., 1955, A pyrochlore (columbium) carbonatite, Southern Tanganyika: Economic Geology, v. 50, p. 571585. Mchihiyo, E.P., 1991, Phosphate potential in Tanzania: Fertilizer Research, v. 30, p. 177180. Van Straten, P., 1989, Nature and structural relationships of carbonatites from southwest and west Tanzania, in Bell, K., ed., Carbonatites genesis and evolution: London, Unwin Hyman, p. 177199. Woolley, A.R., 2001, Alkaline rocks and carbonatites of the world,Part 3Africa: London, The Geological Society, 372 p. Yager, T.R., 2003, The mineral industry of Tanzania: U.S. Geological Survey Minerals Yearbook2003, p. 31.131.10 Turkey TRKY Kizilcaren 39.6194444444444444 39 37 10 31.3508333333333333 31 21 03 late 1950s n.d. svite 30 10 0 3.14 0 Yigit (2009) 24.21.8 Ar-Ar, volcanics; 28 K-Ar ,carbonatite 24 Suggested latitudinal Cenozoic riftogenic graben system carbonatite, mineralized breccia, phonolite, trachyte, tuff basalt, serpentinite, sandstone, shale (PaleozoicTriassic) apatite, barite, bastnaesite, braunite, fluorite, goethite, magnetite, psilomelane, pyrite, pyrolusite, rutile calcite, biotite, diopside, quartz dike n.d. n.d. n.d. silicification, argillization, hematitization n.d. 11d n.d. The open pit mineable reserve includes 37.44% CaF2 and 31.04% BaSO4, also 0.384 Mt at 0.212 ThO2 (Yigit, 2009). Some investigators (Gltekin and others, 2003; Yigit, 2009) ascribe epithermal-type to the deposit. Carbonatite dike outcrop 50x1,5 m. Ore veins and mineralized breccia bodies at 4x3 km area. Delaloye, M., and zgen, I., 1983, Petrography and age determinations of the alkaline volcanic rocks and carbonatite of Kizilcaren district, Beylikahir-Elki ehir, Turkey: Schweizerische Mineralogische und Petrographische Mitteilungen, v. 63, p. 289294. Gltekin, A.H., rgn, Y., and Suner, F., 2003, Geology, mineralogy and fluid inclusion data of the Kizilcaren fluorite-barite-REE deposit, Elkisehir, Turkey: Journal of Asian Earth Sciences, v. 21, p. 365376. Orris, G.J., and Grauch, R.I., 2002, Rare earth element mines, deposits, and occurrences: U.S. Geological Survey Open-File Report 02-189, 174 p. Stumpfl, E.F., and Kirikoglu, M.S., 1986, Fluorite-barite-rare earth deposits at Kizilcaren, Turkey: Mitteilungen der sterrichische Geologische Gesellschaft, v. 78, p. 193200. Yigit, O., 2009, Mineral deposits of Turkey in relation to Tethyan metallogenyImplications for future mineral exploration: Economic Geology, v. 104, p. 1951. Uganda UGND Sukulu -.625 0 -37 -30 34.1583333333333333 34 09 30 n.d. late 1960s beforsite, svite (alvikite) 230.7 10 0.24 0 12.8 Karagambe-Kaliiza (1989) 2624 K-Ar 25 Cenozoic (post-Karroo) East-African rift carbonatite, syenite gneiss (Archean) anatase, apatite, baddeleyite, barite, chalcopyrite, galena, goethite, gold, gorceixite, hematite, ilmenite, limonite, magnetite, monazite, perovskite-(Ce), pyrochlore, pyrrhotite, zircon calcite, biotite, dolomite, olivine, phlogopite, vermiculite ring dikes and cone sheets 4.2 11 3.3 fenitization n.d. 10 n.d. Mining ceased in late 1970s. Resources contain 0.07% Zr, 0.3% Zn, and 5.8% BaO. Apatite of residual soil contains 0.32% La2O3. Age of 40 Ma by Sr-Nd model (Bell and Tilton, 2001). Bell, K., and Tilton, G.R., 2001, Nd, Pb and Sr isotopic compositions of East African carbonatitesEvidence for mantle mixing and plume inhomogeneity: Journal of Petrology, v. 42, no. 10, p. 19271945. Karagambe-Kaliiza, F.A., 1989, The Sukulu phosphate deposits, south-eastern Uganda, in Bell, K., ed., Carbonatites genesis and evolution: London, Unwin Hyman, p. 184186. King, B.C., and Sutherland, D.S., 1966, the carbonatite complexes of eastern Uganda, in Tuttle, O.F., and Gittins, J., eds., Carbonatites: New York, Interscience Publishers, p. 73126. Reedman, J.H., 1984, Resources of phosphate, niobium, iron, and other elements in residual soils over the Sukulu carbonatite complex, southeastern Uganda: Economic Geology, v. 79, p. 716724. Ting, W., Rankin, A.H., and Woolley, A.R., 1994, Petrogenetic significance of solid carbonate inclusions in apatite of the Sukulu carbonatite, Uganda: Lithos, v. 31, p. 177178. Woolley, A.R., 2001, Alkaline rocks and carbonatites of the world Part 3: Africa: London, The Geological Society, 372 p. United States USAR Arkansas Magnet Cove 34.4358333333333333 34 26 09 -92.8544444444444444 -92 -51 -16 1806 1944 svite 7.26 10 0.11 0 0 Erickson and Blade (1963) 97955 K-Ar, biotite; 10310 fission-track, apatite 101 North America Paleozoic midcontinent carbonate platform carbonatite, ijolite, jacupirangite, melteigite, metagabbro, nepheline syenite, phonolite, trachyte calc-silicate rocks, chert, conglomerate, limestone, sandstone, shale (Paleozoic) anatase, apatite, barite, brookite, chalcopyrite, eudialyte, fluorite, ilmenite, kimzeyite, magnetite, molybdenite, perovskite, pyrite, pyrrhotite, rutile, synchysite actinolite, aegerine, ankerite, biotite, calcite, garnet, gypsum, hercynite, kaolinite, montichellite, phlogopite, quartz, smectite, vesuvianite, wollastonite, zeolite oval alkaline complex 5 x 4.7 km containing carbonatite lenses 5 18.5 4.7 fenitization (ring) 0.8 n.d. n.d. Past production mainly Ti and Fe, 0.04% Nb2O5 in ore (Kun, 1962). According to Erickson and Blade (1963), reserves contain 48% TiO2 and 0.050.15% Nb2O5 or 5.4 t Nb2O5 content. Erickson, R.L., and Blade, L.V., 1963, Geochemistry and petrology of the alkalic igneous complex at Magnet Cove, Arkansas: U.S. Geological Survey Professional Paper 425, 94 p. Flohr, M.J., 1994, Titanium, vanadium, and niobium mineralization and alkali metasomatism from the Magnet Cove complex, Arkansas: Economic Geology, v. 89, p. 105130. Flohr, M.J., and Ross, M., 1990, Alkaline igneous rocks of Magnet Cove, ArkansasMineralogy and geochemistry of syenites: Lithos, v. 26, p. 6798. Howard, J.M., and Chandler, A., 2007, Magnet Cove, a synopsis of its geology, lithology and mineralogy: AGES Brochure Series 004, 11 p., www.geology.arkansas.gov/pdf/pamphlets/magnet_cove.pdf (last visited April 15, 2009) Kun de, N., 1962, The economic geology of columbium (niobium) and of tantalum: Economic Geology, v. 57, p. 377404. Nesbitt, B.E., and Kelly, W.C., 1977, Magmatic and hydrothermal inclusions in carbonatite of the Magnet Cove complex, Arkansas: Contributions to Mineralogy and Petrology, v. 63, p.272294. Woolley, A.R., 1987, Alkaline rocks and carbonatites of the world, Part 1North and South America: London, British Museum (Natural History), 216 p. United States USCA California Mountain Pass 35.4786111111111111 35 28 43 -115.5322222222222222 -115 -31 -56 1949 1952 beforsite, Si-carbonatite, svite 90 10 0 5 0 Olson and others (1954); Parker (1965); Singer (1998) ~1,400 1,400 Mojave Paleoproterozoic crystalline block (~1.81.6 Ga) carbonatite, shonkinite, syenite amphibolite, gneiss, granite (Paleoproterozoic) allanite, apatite, azurite/malachite, barite, bastnaesite, celestite, cerite, chalcopyrite, fluorite, galena, goethite, hematite, magnetite, monazite, parisite, pyrite, sahamalite-(Ce), strontianite, tetrahedrite, thorite, wulfenite, zircon aegirine, amphibole, ankerite, augite, biotite, calcite, chlorite, crocidolite, dolomite, epidote, muscovite, olivine, orthoclase, phlogopite, quartz, riebeckite, siderite, talc alkali-carbonatite complex 14 58.3 5.3 fenitization n.d. 11d n.d. 2025% barite in ore. Molycorp (2008) started mining in 1952 at average 15% RE2O3 producing till middle 1990s, restarted in 2007. Reserve 1987 estimated 29 Mt at 8.9% RE2O3, at 5% RE2O3 cut-off, current reserves are > 20 Mt at similar grade (Castor, 2008). Castor, S.B., 2008, Rare earth deposits of North America: Resource Geology, v. 58, no. 4, p. 337347. Castor, S.B., 2008, The Mountain Pass rare earth carbonatite and associated ultrapotassic rocks, California: The Canadian Mineralogist, v. 46, p. 779806. Castor, S.B., and Nason, G.W., 2004, Mountain Pass rare earth deposit, California, in Castor, S.B., Papke, K.G., and Meeuwig, R.O., eds., Betting on industrial minerals, Proceedings of the 39th Forum on the Geology of Industrial Minerals: Nevada Bureau of Mines and Geology Special Publication 33, p. 6881. Haxel, G.B., 2005, Ultrapotassic mafic dikes and rare earth element- and barium-rich carbonatite at Mountain Pass, Mojave Desert, southern CaliforniaSummary and field trip localities: U.S. Geological Survey Open-File Report 2005-1219, 56 p. Molycorp Minerals, 2008, Molycorp over the years - rare earth operations, 2 p., www.molycorp.com/operational_excellence/rehistory.asp (last visited April 17, 2009) Olson, J.C., Shawe, D.R., Pray, L.C., and Sharp, W.N., 1954, Rare-earth mineral deposits of the Mountain Pass district, San Bernardino County, California: U.S. Geological Survey Professional Paper 261, 75 p. Orris, G.J., and Grauch, R.I., 2002, Rare earth element mines, deposits, and occurrences: U.S. Geological Survey Open-File Report 02-189, 174 p. Parker, J.G., 1965, Rare-earth elementsMineral and Facts, U.S. Bureau of Mines Bulletin 630, p. 753768. Singer, D.A., 1998, Revised grade and tonnage model of carbonatite deposits: U.S. Geological Survey Open-File Report 98-235, 8 p. Woolley, A.R., 1987, Alkaline rocks and carbonatites of the world, Part 1North and South America: London, British Museum (Natural History), 216 p. United States USCO Colorado Iron Hill Powderhorn 38.2347222222222222 38 14 05 -106.7086111111111111 -106 -42 -31 1880s n.d. beforsite 655.6 10 0.057 0.397 0 Staatz and others (1979); Jackson and Christiansen (1993) 570 570 Plateau Coloradoseparated part of North-American platform carbonatite, ijolite, nepheline syenite, pyroxenite, uncompahgrite, diabase dike gneiss, granite, metamorphic rocks (Paleoproterozoic) apatite, barite, bastnaesite, fluorite, ilmenite, leucoxene, magnetite, monazite, perovskite, pyrochlore, rabdophane, rutile, synchysite, thorite, titanite, zircon biotite, calcite, diopside, dolomite, Na-amphibole, phlogopite, siderite, vermiculite carbonatite stock included in pear-shaped magmatic complex, 31 sq. km 3.5 4.1 1.5 fenitization n.d. Ti in ultramafic rocks n.d. 0.0043% ThO2 in ore (Staatz and others,1979). 1958 reserve of 36.3 Mt at 0.25% Nb2O5 was substantionally increased by underground work and additional drilling (Temple and Grogan,1965). Perovskite-rich pyroxenite mineable reserves 1994, by Teck Resources, 44.6 Mt at 13.2 % TiO2; possible resource 1.6 billion tonnes at 10.9% TiO2 (Van Gosen, 2009). Metamorphism of country rocks at ~1.7 Ga. Jackson, W.D., and Christiansen, G., 1993, International strategic inventory summary report-rare-earth oxides: U.S. Geological Survey Circular 930-N, 68 p. Olson, J.C., and Hedlund, D.C., 1981, Alkalic rocks and resources of thorium and associated elements in the powderhorn district, Gunnison county, Colorado: U.S. Geological Survey Professional Paper 1049-C, 34 p. Orris, G.J., and Grauch, R.I., 2002, Rare earth element mines, deposits, and occurrences: U.S. Geological Survey Open-File Report 02-189, 174 p. Singer, D.A., 1998, Revised grade and tonnage model of carbonatite deposits: U.S. Geological Survey Open-File Report 98-235, 8 p. Staatz, M.H., Armbrustmacher, T.J., Olson, J.C., Brownfield, I.K., Brock, M.R., Lemons, J.F., Jr., Coppa, L.V., and Clingan, B.V., 1979, Principal thorium resources in the United States: U.S. Geological Survey Circular 805, 42 p. Temple, A.K., and Grogan, R.M., 1965, Carbonatite and related alkalic rocks at Powderhorn, Colorado: Economic Geology, v. 60, p. 672692. Van Gosen, B.S., and Lowers, H.A., 2009, Iron Hill (Powderhorn) carbonatite complex, Gunnison county, ColoradoA potential source of several uncommon mineral resources: Mining Engineering, v. 59, no. 10, p. 5662. Van Gosen, B.S., 2009, The Iron Hill (Powderhorn) carbonatite complex, Gunnison county, Coloradoa potential sourceof several uncommon mineral resources: U.S. Geological Survey Open-File Report 02-189, 28 p. Woolley, A.R., 1987, Alkaline rocks and carbonatites of the world, Part 1North and South America: London, British Museum (Natural History), 216 p. United States USCO Colorado Wet Mountains 38.2613888888888889 38 15 41 -105.3469444444444444 -105 -20 -49 1960s n.d. beforsite 13.96 10 0.017 1.01 0 resources 1989 from Jackson and Christiansen (1993); Nb2O5 grade from Armbrustmacher (1979) 520 520 Plateau Coloradoseparated part of North-American platform alkaline mafic-ultramafic rocks, carbonatite, lamorophyre, nepheline syenite, syenite amphibolite, gneiss (Paleoproterozoic) anatase, ancylite, apatite, barite, bastnaesite, cerussite, chalcopyrite, chromite, fluorite, galena, goethite, hematite, ilmenite, magnetite, monazite, pyrite, pyrochlore, rutile, sphalerite, sphene, strontianite, synchysite, thorite, xenotime, zircon aegerine, amphibole, ankerite, biotite, calcite, chlorite, dolomite, epidote, K-feldspar, muscovite, phlogopite, quartz, siderite, spinel, vermiculite dike swarm with alkaline stocks, 25 x 10 km general area n.d. 11d 11d carbonatization n.d. 11d n.d. Armbrustmacher, T.J., 1979, Replacement and primary magmatic carbonatites from the Wet Mountains Area, Custer and Fremont Counties, Colorado: Economic Geology, v. 74, p. 888901. Armbrustmacher, T.J., 1984, Alkaline Rock Complexes in the Wet Mountains Area, Custer and Fremont Counties, Colorado: U. S. Geological Survey Professional Paper 1269, 33 p. Jackson, W.D., and Christiansen, G., 1993, International strategic inventory summary report-rare-earth oxides: U.S. Geological Survey Circular 930-N, 68 p. Orris, G.J., and Grauch, R.I., 2002, Rare earth element mines, deposits, and occurrences: U.S. Geological Survey Open-File Report 02-189, 174 p. Woolley, A.R., 1987, Alkaline rocks and carbonatites of the world, Part 1North and South America: London, British Museum (Natural History), 216 p. United States USWY Wyoming Bear Lodge Bear Lodge Mts. 44.4786111111111111 44 28 43 -104.4516666666666667 -104 -27 -06 1949 n.d. svite 10.7 10 0 3.6 0 Rare Element Resources (2009) at 1% RE2O3 cutoff grade 50.51.2 48.81.7 38.30.6 K-Ar, sanidine 49 North-American platform, Eocene Black Hills uplift, western end of westerly trended alkaline intrusive belt carbonatite, intrusive breccia, lamprophyre, nepheline syenite, phonolite, syenite, trachyte granite (Precambrian), limestone, mudstone, sandstone, shale (PaleozoicMesozoic) ancylite, apatite, barite, bastnaesite, brookite, chalcopyrite, Fe-oxide, fluorite, galena, hematite, magnetite, Mn-oxide, monazite, molybdenite, parisite, pyrite, pyrolusite, pyrrhotite, rutile, sphalerite, sphene, strontianite, synchysite, thorianite, uraninite, xenotime, zircon aegerine, biotite, calcite, K-feldspar, quartz, sanidine dike, vein, plug within alkaline intrusive complex 43 sq. km n.d. n.d. n.d. K-feldsparpyrite, fenitization n.d. 11d, 25a n.d. Flanks and depth of estimated resources are open. Early resource evaluations: 76.2 Mt at 1.5% RE2O3 by Gersic and others (1990); 726 Mt at 1.306% RE2O3 and 0.034% ThO2 by Jackson and Christiansen (1993). Oxidized zone to >100 m depth, carbonatite ranges from hairline veinlets to dikes 30m thick. Bliss. J.D., ed., 1992, Developments in deposit modeling: U.S. Geological Survey Bulletin 2004, 168 p. Gersic, J., Peterson, E.K., Schreiner, R.A., 1990, Appraisal of selected mineral resources of the Black Hills National Forest, South Dakota and WyomingExecutive summary: U.S. Bureau of Mines, MLA Series, no. 4-90, 29 p. Noble, A.C., Clark, J.G., Ranta, D.E., 2009, Technical report on the mineral resources of the Bear Lodge rare-earth project: Rare Element Resources Ltd., 171 p. Jackson, W.D., and Christiansen, G., 1993, International strategic inventory summary report-rare-earth oxides: U.S. Geological Survey Circular 930-N, 68 p. Orris, G.J., and Grauch, R.I., 2002, Rare earth element mines, deposits, and occurrences: U.S. Geological Survey Open-File Report 02-189, 174 p. Rare Element Resources Ltd., 2009, Rare Element Reports More than 125% Increase in rare-earth mineral resource at Bear Lodge: 9.8 million-ton inferred mineral resource averaging 4.07% rare-earth oxides: News Release of March 23, 2009, 4 p., www.rareelementresources.com/s/NewsReleases.asp?ReportID=342327 (last visited June 5, 2009) Staaz, M.H., 1983, Geology and description of thorium and rare-earth deposits in the southern Bear Lodge Mountains, northeastern Wyoming: U.S. Geological Survey Professional Paper 1049-D, 52 p. Woolley, A.R., 1987, Alkaline rocks and carbonatites of the world, Part 1North and South America: London, British Museum (Natural History), 216 p. Zambia ZMBA Nkombwa Hill Nkumbwa Hill -10.1494444444444444 -10 -08 -58 32.8516666666666667 32 51 06 1954 n.d. Fe-carbonatite, rauhaugite 130 10 0.1 0.3 7.3 Sliwa (1991), Rocks for Crops (2001); RE2O3 grade calculated from these sources 67925 K-Ar, phlogopite 680 Pan-African tectonic belt; NE fault system carbonatite, fenite gneiss (Proterozoic) apatite, barite, bastnaesite, daqingshanite, fluorite, ilmenite, isokite, monazite-(Ce), pyrite, pyrochlore, sellaite, strontianite ankerite, calcite, dolomite, magnesite, phlogopite, quartz, siderite oval plug, dikes 1.7 1.2 0.9 fenitization n.d. n.d. n.d. Calcite carbonatite (svite) is not present, silica-iron oxide rocks are widespread. Appleton, J.D., Bland, D.J., and others, 1992, The occurrence daqingshanite-(Ce) in the Nkombwa Hill carbonatite, Zambia: Mineralogical Magazine, v. 56, p. 419422. Bailey, D.K., 1966, Carbonatite volcanoes and shallow intrusions in Zambia, in Tuttle, O.F., and Gittins, J., eds., Carbonatites: New York, Interscience Publishers, p. 127154. Orris, G.J., and Grauch, R.I., 2002, Rare earth element mines, deposits, and occurrences: U.S. Geological Survey Open-File Report 02-189, 174 p. Rocks for Crops, 2001, Zambia, p. 311322: www.uoguelph.ca/~geology/rocks_for_crops/55zambia.PDF Sliwa, A.S., 1991, Phosphate resources of Zambia and progress in their exploration: Fertilizer Research, v. 30, p. 203212. Turner, D.C., Andersen, L.S., Punukollu, S.N., Sliwa, A., and Tembo, F., 1989, Igneous phosphate resources in Zambia, in Notholt, A.J.G., Sheldon, R.P., and Davidson, D.F., eds., Phosphate deposits of the world: Cambridge University Press, v. 2, p. 247257. Witika, L.K., 2007, The Nkombwa Hill carbonatite of Isoka district, as a potential source of phosphate minerals, agricultural lime and rare minerals, 6 p., www.unza.zm/index.php?option=com_docman&task=doc_download&gid= 127 (last visited May 18, 2009) Woolley, A.R., 2001, Alkaline rocks and carbonatites of the world, Part 3Africa: London, The Geological Society, 372 p. Zambezi, P., Voncken, J.H.L., Hale, M., and Touret, J.L.R., 1997, Bastnsite-(Ce) at the Nkombwa Hill carbonatite complex, Isoka district, northeast Zambia: Mineralogy and Petrology, v. 59, p. 239250.