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Abstract

Spatio-temporal systems with heterogeneity in their structure and behavior have two

major problems associated with them. The first one is that such complex real world

systems extend over very large spatial and temporal domains and consume so many

computational resources to simulate that they are infeasible to study with current

computational platforms. The second one is that the data available for understanding

such systems is limited because they are spread over space and time making it hard to

obtain micro and macro measurements . This also makes it difficult to get the data for

validation of their constituent processes while simultaneously considering their global

behavior. For example, the valley fever fungus considered in this dissertation is spread

over a large spatial grid in the arid Southwest and typically needs to be simulated

over several decades of time to obtain useful information. It is also hard to get the

temperature and moisture data (which are two critical factors on which the survival

of the valley fever fungus depends) at every grid point of the spatial domain over the

region of study. In order to address the first problem, we develop a method based on

the discrete event system specification which exploits the heterogeneity in the activity

of the spatio-temporal system and which has been shown to be effective in solving

relatively simple partial differential equation systems. The benefit of addressing the

first problem is that it now makes it feasible to address the second problem.

We address the second problem by making use of a multilevel methodology based

on modeling and simulation and systems theory. This methodology helps us in the

construction of models with different resolutions (base and lumped models). This

allows us to refine an initially constructed lumped model with detailed physics-based

process models and assess whether they improve on the original lumped models.

For that assessment, we use the concept of experimental frame to delimit where the

improvement is needed. This allows us to work with the available data, improve
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the component models in their own experimental frame and then move them to the

overall frame. In this dissertation, we develop a multilevel methodology and apply

it to a valley fever model. Moreover, we study the model’s behavior in a particular

experimental frame of interest, namely the formation of new sporing sites.
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construction of models with different resolutions (base and lumped models). This

allows us to refine an initially constructed lumped model with detailed physics-based

process models and assess whether they improve on the original lumped models.

For that assessment, we use the concept of experimental frame to delimit where the

improvement is needed. This allows us to work with the available data, improve

the component models in their own experimental frame and then move them to the

overall frame. In this dissertation, we develop a multilevel methodology and apply

it to a valley fever model. Moreover, we study the model’s behavior in a particular

experimental frame of interest, namely the formation of new sporing sites.
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Chapter 1

Introduction

The study of methods to simulate systems which vary in both time and space is

important as it can lead to the discovery of efficient methods which can exploit the

spatio-temporal heterogeneity in the activity [11] of the system. One such methodol-

ogy is based on the Discrete Event System Specification(DEVS) [29]. A method based

on DEVS is inherently efficient in simulating systems which exhibit spatio-temporal

heterogeneity in their activity behaviors. It does so by allocating more computational

resources to the areas of high activity and less computational resources to the regions

of low activity. On the other hand, a method which allocates its computational re-

sources uniformly without regard to the spatio-temporal heterogeneity in the activity

of a system is inefficient when compared with a method based on DEVS.

Valley fever is a disease which affects the lungs of an individual. It is prevalent in

the Southwestern parts of the United States and Northern Mexico. It is caused by a

fungus known as Coccidiodes. The fungus is hosted in soil and uses airborne spores

as a means of propagation.

To start with, we had an agent-based implementation of the valley fever model

[10] which used the NetLogo software [10]. As judged by domain experts (Dr. Get-

tings), the agent-based implementation was inaccurate and produced more than usual

number of new sites in the simulation of the valley fever model. Another major lim-

itation of this implementation was that it could run the valley fever model only for

23 years because of memory limitations and took about 10 hours to run [10]. To

address this issue, we developed the DEVS counterpart for the valley fever model

which runs much faster than the agent-based model while providing the same accu-

racy as the agent-based model. Since the DEVS counterpart runs much faster, we
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decided to develop more accurate process models in the DEVS framework. These

physics-based process models were developed from first principles approach and with

parameter tuning with the actual data. The DEVS model which includes the high

resolution components now became a base model and it was studied for its behavior

with respect to the experimental frame of formation of new sites in the valley fever

model. But to study the base model in a 1500 × 1500 spatial region with variable

favorableness was not feasible. So, we studied the behavior of the base and lumped

models in a 200 × 200 spatial region which had binary favorableness for the growth

of the valley fever fungus. We found out that the base model was more accurate and

produced fewer new sites than the lumped model. But, the execution time of the

base model was much higher than the execution time of the lumped model. So, we

made an attempt to correct the parameters of the lumped model using the concept

of parameter morphism.

1.1 Goals

The main goals of this dissertation were:

1. To apply the multilevel modeling methodology(concept of base and lumped

models [28]) to the valley fever model and to experiment with parameter mor-

phism to see if we can get the behavior of the lumped model as close as possible

to the base model within a given experimental frame.

2. To show that a method based on DEVS is inherently efficient in simulating

systems which exhibit spatio-temporal heterogeneity in their activity behaviors.

3. To show that the behavior of the agent-based implementation of the valley fever

model can be reproduced by a counterpart DEVS model.

4. To develop physics-based moisture and temperature models for the valley fever

model and study their effect on the behavior of the valley fever fungus with
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respect to a given experimental frame.

5. To find an approximate relation between the diffusivity κ of the temperature

model and the moisture content of the soil at a certain depth. In the absence

of one of the parameters, this relationship can be used to get an approximate

value for the missing parameter.

As will be shown in the later chapters, most of these goals have been met by:

1. Applying the concept of base and lumped models to the valley fever model

and by showing that certain parameters can be varied to bring the behavior

of the lumped model as close as possible to the base model within a specified

experimental frame-the formation of new sites.

2. Showing that a method based on DEVS is efficient in simulating the valley fever

model when compared with an equivalent agent-based implementation.

3. Showing that the behavior of the agent-based model can be faithfully reproduced

by a counterpart DEVS model.

4. Developing physics-based moisture and temperature models for the valley fever

model and by studying the effect of them on the behavior of the valley fever

fungus with respect to the experimental frame of formation of new sites.

5. Finding an approximate relation between the diffusivity κ of the temperature

model and the moisture content of the soil at a certain depth.

1.2 Previous Work

This section discusses prior work in the area of Modeling and Simulation and the

previous agent-based implementation of the valley fever model.
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1.2.1 Modeling and Simulation

A model which must be capable of accounting for all the input-output behavior of a

real system and be valid in all allowable experimental frames can never be fully known.

This model, called the base model, would be very complex and require such great

computational resources that it would be almost impossible to simulate. However,

given an experimental frame of current interest, a modeler is likely to find it possible

to construct a relatively simple model that will be valid in that frame. This is a

lumped model. It is the experimenter’s image of the real system with components

lumped together and interactions simplified. The concept of lumped and base models

was applied to the predator-prey(Lotka-Volterra) model by Dr. Zeigler in [28].

1.2.2 Valley Fever Model

The previous implementation of the valley fever model [10] was based on an agent-

based simulation and used the NetLogo [26] software. The ground model considered

in this implementation had binary favorableness i.e. either the ground was favorable

for the growth of the fungus or it was unfavorable for the growth of the fungus. The

temperature model was simulated using a cosine function given in [4]. The wetting

wave of the moisture model was simulated by using a rainfall model for the surface

rain. The drying wave of the moisture model was simulated by computing the heat

flow (the thermal conductivity of the soil multiplied by the temperature difference be-

tween soil-depths of 20 cm and 2.5 cm). Then, the amount of moisture corresponding

to this heat flow was evaporated from the moisture present at the depth of 20 cm. As

a result of the usage of coarse moisture, temperature and ground models, this imple-

mentation produced far more new sites(dormant + sporing sites) in the valley fever

model. Another major limitation of this implementation was that it could only simu-

late the valley fever model for 23 years due to memory limitations and took 10 hours

to run. This is because it did not exploit the spatio-temporal heterogeneity in the
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activity behavior of the valley fever model. There is spatial heterogeneity in activity

as the ground has binary favorableness. There is temporal heterogeneity in activity as

the factors on which the survival of the fungus depends(temperature, moisture, wind)

are functions which vary with time. The behavior of the previous implementation of

the valley fever model was similar to that of a discrete time model which allocates

computational resources uniformly without regard to the heterogeneity in activity of

the system.

1.3 Contributions of this dissertation

1.3.1 Modeling and Simulation

This dissertation extends the work done by Dr. Zeigler [28] and applies it to the

valley fever model. Figure 1.1 shows the multi level methodology which is explained

as follows. We have a spatio-temporal system to start with and it is abstracted

into a base model which would consume a lot of computational resources and whose

execution time is so long that it is not viable for practical usage. In order to address

this issue, we specify an experimental frame of interest and convert the base model

into a lumped model. In the process of this conversion, we preserve the behavior of the

base model in the frame of interest and at the same time exploit the spatio-temporal

heterogeneity in the activity of the spatio-temporal system.

Figure 1.2 shows the application of the multi level methodology to the valley

fever model. Here the spatio-temporal system is the valley fever spread model. As

mentioned before, the conversion of the Agent-based implementation of the valley

fever model into the corresponding DEVS implementation results in a large reduction

in the run time while preserving the behavior of the Agent-based implementation.

Here the experimental frame is the formation of new sites(dormant+sporing sites) in

the valley fever model.

In this dissertation, we apply the concept of base and lumped models [28, 29] to
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Figure 1.1. The multi-level modeling methodology.

the valley fever model and we experiment with parameter morphism to see if we can

get the behavior of the lumped model as close as possible to the base model within a

given experimental frame-formation of new sites(dormant+sporing sites).

This dissertation also builds upon the work done by Zhang [30] and proposes a

new activity-based partition algorithm and uses distributed simulation to apply this

algorithm to the valley fever model.

1.3.2 Valley Fever Model

As mentioned before, the previous agent-based implementation of the valley fever

model did not take advantage of the spatio-temporal heterogeneity that was present

in the model. As a result of this, the agent-based implementation could simulate the
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Figure 1.2. An application of the multi-level modeling methodology to the valley
fever model.
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valley fever model only for 23 years due to memory limitations and took 10 hours to

run. Several studies [11, 20, 21, 13, 12, 14] have shown us that a simulation methodol-

ogy which is based on DEVS is inherently efficient in simulating models which exhibit

spatio-temporal heterogeneity in their activity behaviors. This motivated us to reim-

plement the valley fever model using a simulation methodology that was based on

DEVS. As will be shown, this resulted in a significant improvement in the execution

time of the valley fever model.

The agent-based implementation of the valley fever model used a cosine function

given in [4] in order to model the temperature. But, it was noticed that the rate

of heating was higher than the rate of cooling. In order to accurately model this

behavior, this dissertation contributes a new temperature model which is based on

the works of [19] and [4, 5]. This new temperature model is validated by fitting it

to a 2-year temperature data which was collected by Dr. Gettings [8]. The agent-

based implementation used a ground model with binary favorableness. But, the

actual ground has variable favorableness. This dissertation contributes a new ground

model(by using MATLAB’s fuzzy logic toolbox) which is based on the data collected

by Dr. Bultman [9]. The agent-based implementation takes the rainfall data on

the surface of the soil as input and computes the moisture at a depth of 20 cm by

evaporating moisture that corresponds to the heat flow. But, this is a very crude

approximation for computing the moisture. To address this issue, this dissertation

contributes a new moisture model which is based on the works of [19, 4, 5] and on the

data collected by Dr. Gettings [8]. As stated in the goals section, this was one of the

major goals of this dissertation. According to domain experts such as Dr. Gettings,

the usage of these new physics-based models should reduce the formation of new

sites in the valley fever model. As will be shown, the use of the new models indeed

reduces the formation of new sites in the valley fever model. Another contribution

of this dissertation is to find an approximate relation between the diffusivity κ of the

temperature model and the moisture content of the soil at a certain depth. This is
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useful because in most places it is easy to record the temperature but it is hard to

record the moisture.

The main usage of the contributions of this dissertation are that they help the

United States Geological Survey(USGS) in knowing the weather patterns(right com-

binations of the factors(temperature, moisture, wind) which affect the growth of the

valley fever fungus) in the past which triggered an outbreak in the valley fever. This is

very useful because it can help predict what kind of weather patterns to look forward

to in the future which might result in an outbreak of the valley fever. In addition to

that, the new moisture, temperature and ground models can be useful to anybody

who wants to do epidemiology modeling of organisms which depend on the soil for

their survival.

1.4 Organization of this dissertation

Chapter 2 gives a brief introduction to the Discrete Event System Specification

(DEVS) and the concept of Activity [11].

Chapter 3 gives a detailed description of the valley fever model. It also explains

in detail the old temperature, moisture and ground models and explains their limi-

tations. Then, it explains the new temperature and moisture models and validates

them by fitting them to the data collected by Dr. Gettings [8]. It also shows a brief

comparison between a discrete time model and a model based on DEVS and shows

the fundamental difference between them.

Chapter 4 explains the multilevel modeling methodology and shows its application

to the valley fever model. It gives a detailed description of the concepts of lumped and

base models and shows their application to the valley fever model within a specified

experimental frame.

Chapter 5 discusses the compatibility of the base and lumped models within a

specified experimental frame. It shows the performance advantage of the lumped
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model over the base model for the valley fever model by comparing their execution

times.

Chapter 6 shows several results of running the lumped and base versions of the

valley fever model by varying the parameters which affect the spread of the valley

fever fungus. According to domain experts such as Dr. Gettings, the usage of the

new moisture and temperature models should result in a significant reduction in

the formation of new sites(dormant+sporing sites) in the valley fever model. This

chapter shows results which validate the use of the new physics-based moisture and

temperature models by verifying that their use indeed reduces the formation of new

sites(dormant+sporing sites) in the valley fever model. It also explains the concept

of parameter morphism and shows some experiments in which we try to bring the be-

havior of the lumped and base models as close as possible within a given experimental

frame.

Chapter 7 extends the work done by Zhang [30] and proposes an activity-based

partition algorithm for performing distributed simulation of the valley fever model.

It then shows some results of applying this algorithm to the valley fever model and

compares its performance with a method based on an algorithm which doesn’t exploit

the spatio-temporal heterogeneity in the activity present in the valley fever model.

Chapter 8 concludes this dissertation and discusses future work.
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Chapter 2

Discrete Event System Specification-DEVS

This chapter gives a brief introduction to Discrete Event System Specification(DEVS).

It explains the structure of DEVS and describes the basic constituent of any DEVS

model- atomic model. Then, it describes a simplified simulation algorithm which

is useful for simulating flat models. It concludes by briefly explaining the concept

of activity and shows its significance in explaining the performance advantage of a

DEVS based method over a method which allocates its resources uniformly without

regard to the heterogeneity in the activity behavior of a system.

2.1 DEVS

This section provides a rudimentary introduction to DEVS. A thorough treatment

can be found in [21, 29].

DEVS uses two types of structures to describe a discrete event system. Atomic

models describe the behavior of elementary components. Coupled models describe

collections of interacting components, where components can be atomic and coupled

models.

An atomic model is described by a set of inputs, set of outputs, and set of states,

a state transition function decomposed into three parts, an output function, and a

time advance function. Formally, the structure is

M =< X, Y, S, δint, δext, δcon, λ, ta >
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where

X is a set of inputs,

Y is a set of outputs,

S is a set of states,

δint : S → S is the internal state transition function,

δext : Q×Xb → S is the external state transition function

with Q = {(s, e) | s ∈ S & 0 ≤ e ≤ ta(s)}
and Xb is a bag of values appearing in X,

δcon : S ×Xb → S is the confluent state transition function,

λ : S → Y is the output function, and

ta : S → R is the time advance function.

The external transition function describes how the system changes state in re-

sponse to input. When input is applied to the system, it is said that an external

event has occurred. The internal transition function describes the autonomous be-

havior of the system. When the system changes state autonomously, an internal event

is said to have occurred. The confluent transition function determines the next state

of the system when an internal event and external event coincide. The output func-

tion generates output values at times that coincide with internal events. The output

values are determined by the state of the system just prior to the internal event. The

time advance function determines the amount of time that must elapse before the

next internal event will occur, assuming that no input arrives in the interim.

Coupled models are described by a set of components and a set of component

couplings. Components of a coupled model can be atomic models and other coupled

models. Just as with atomic models, coupled models have an interface defined in terms

of input and output sets. The coupled model behavior is defined by its component

models and their interconnections. DEVS is a modular modeling formalism, and so
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interactions with a coupled model must occur through its external interface; a coupled

model is indistinguishable from an atomic model when viewed from the outside.

Coupled models are described by a set of components and a set of component

output to input mappings. For this introduction, we restrict our attention to flat

models (i.e., a structure composed entirely of atomic models) without external input

or output coupling (i.e., the component models can not be affected by elements outside

of the network). With these restrictions, a coupled model is described by the structure

N =< {Mk}, {zij} >

where

{Mk} is a set of atomic models, and

{zij} is a set of output to input maps zij : Yi → Xj ∪ {Φ}
where the i and j indices correspond to Mi and Mj in {Mk} and Φ is the non-event.

The output to input maps describe how atomic models affect one another. The

output to input map is, in this application, somewhat over generalized and could

be replaced with a more conventional block diagram description. The non-event is

used, in this instance, to represent components that are not connected. That is, if

component i does not influence component j, then zij(yi) = Φ, where yi ∈ Yi.

These structures describe what a model can do. A canonical simulation algorithm

is used to generate dynamic behavior from the description. Algorithm 1 is a sim-

plified version of the complete simulation procedure. This algorithm is suitable for

simulating flat models. Algorithm 1 assumes a coupled model N , with a component

set {M1, M2, ..., Mn}, and a suitable set of output to input maps. For every com-

ponent model Mi, there is a time of last event and time of next event variable, tLi

and tNi respectively. There are also state, input, and output variables si, xi, and yi,

in addition to the basic structural elements (i.e., state transition functions, output
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(a) Continuous (b) Discrete state

Figure 2.1. Discrete state simulation of a continuous system.

function, and time advance function). The variables xi is a bag, with elements taken

from the input set Xi. The simulation time is kept in variable t.

The complete coupled model system specification and its simulation procedure

can be found in [29]. Typically, DEVS modelers will rely on one of several DEVS

simulation engines, many of which are available on-line. These simulation engines

provide an object oriented interface for describing atomic and coupled models, and

simulation classes for executing models that properly implement the interfaces.

A discrete state (or quantized) numerical integration scheme can be specified in

terms of DEVS (see, e.g., [29], [21], and [15]). Discrete event integrators operate

on a discretization of the system state space. Events correspond to jumps from one

discrete state to the next. The time at which a jump occurs is approximated using

the derivative of the system. Figure 2.1 demonstrates the end result of this discrete

state approximation to a continuous process.

2.2 Activity

This section gives a brief overview of the concept of activity. For more details, the

reader is referred to [11]. We say that something is active when there is a change in a

particular parameter. The definition of the parameter may depend upon the context

in which we want to define the activity. Activity as it relates to DEVS is defined

as the rate of change of the parameter in the temporal and spatial dimensions. The
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Algorithm 1 DEVS simulation algorithm.
t← 0
for all i ∈ [1, n] do

tLi ← 0
set si to the initial state of Mi

end for
while terminating condition not met do

for all i ∈ [1, n] do
tNi ← tLi + tai(si)
Empty the bag xi

end for
t← min{tNi}
for all i ∈ [1, n] do

if tNi = t then
yi ← λi(si)
for all j ∈ [1, n] & j �= i & zij(yi) �= Φ do

Add zij(yi) to the bag xj

end for
end if

end for
for all i ∈ [1, n] do

if tNi = t & xi is empty then
si ← δint,i(si)
tLi ← t

else if tNi = t & xi is not empty then
si ← δcon,i(si, xi)
tLi ← t

else if tNi �= t & xi is not empty then
si ← δext,i(si, t− tLi, xi)
tLi ← t

end if
end for

end while
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activity of a time function is defined as the total change in the function over a closed

time interval. The activity of a function y(t) over an interval [t1, t2] is given by

A(y(t), t1, t2) =

t2∫
t1

∣∣∣∣ ddt
y(t)

∣∣∣∣ dt . (2.1)

The concept of activity can be generalized to the spatio-temporal domain. For

example, the valley fever model has a spatial heterogeneity in its activity as the ground

model has a variable degree of favorableness. Also, it has a temporal heterogeneity

in its activity as the various factors which affect the growth of the fungus(moisture,

temperature, wind) are functions of time. Several studies [11, 16, 17, 18] have shown

that a simulation which is based on DEVS methodology can efficiently exploit such

spatio-temporal heterogeneity in activities by focusing its computational resources on

the regions of high activity.
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Chapter 3

The Valley Fever Model

This chapter gives a brief description of the valley fever disease. Then, it gives

a detailed description of the valley fever model. It also explains in detail the old

temperature, moisture and ground models and explains their limitations. Then, it

explains the new physics-based temperature and moisture models and validates them

by fitting them to the data collected by Dr. Gettings [8]. It also shows an approximate

relation between the diffusivity κ of the temperature model and the moisture content

of the soil at a certain depth in the soil.

3.1 Valley Fever Disease

Valley fever is a disease which affects the lungs of an individual. It is prevalent in

the Southwestern parts of the United States and Northern Mexico. It is caused by a

fungus known as Coccidiodes. The fungus is hosted in soil and uses airborne spores as

a means of propagation. The fungus form that can be airborne, the arthroconidia does

not survive for long periods of time and relatively extreme conditions of temperature,

humidity, and ultraviolet radiation, but under favorable conditions it can survive for

a long period of time, especially in the soil [23, 10]. In this dissertation, we will refer

to the arthroconidia as spores. In most cases, the fungus is asymptomatic. But, in

the case of immunocompromised individuals, the treatment is very expensive and is

a time consuming process. In some cases, it may be fatal.

3.2 Model Description

The model assumes that for a new site to become established, four factors must be

simultaneously satisfied. First, there must be transport of spores from a source site to
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sites that are favorable for the growth of the fungus. Second, there must be sufficient

moisture for fungal growth. Third, the temperature of the surface and soil must be

favorable for growth. Fourth, the temperature and moisture must remain in favorable

ranges for a long enough time interval for the fungus to grow down to depths at which

spores at least will survive subsequent heat, aridity and ultraviolet radiation of the

hot, dry season. The model starts with a given number of dormant sites. These

will become active sources of spores when they receive enough moisture and have

the correct temperature for the time required for the fungus to grow from a survival

depth(20 cm in the model) in the soil up to the surface and produce spores. When

this occurs for a dormant site it becomes a sporing site. A site becomes colonized

when the wind blows from a sporing site to a favorable site, and there is at least a

minimum amount of moisture in the ground at that site, and the temperature must be

below the maximum for fungus growth. The colonized site will continue to grow until

it runs out of moisture or the temperature becomes too warm for growth. If the site

has grown long enough for the fungus to penetrate the soil to the survival depth, then

the colonized site becomes a sporing site. A sporing site produces wind-borne spores.

A colonized site dies if it does not have enough moisture or gets too hot before the

growth interval to become a permanent site passes. A sporing site becomes dormant

when there is too little moisture or the temperature gets too high, killing the fungus

down to the survival depth in the soil. Figure 3.1 shows the state transition diagram

for the valley fever fungus.

3.3 Ground Model

The favorableness of the ground was determined by using a fuzzy logic model [9]

taking into account the following factors : [the] soil type, slope, aspect, presence of

bedrock and clay content. MATLAB’s fuzzy logic toolbox was used for this purpose.

The spatial heterogeneity in the favorableness can be easily noticed from figure 3.2.
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Figure 3.1. State transition diagram for the valley fever fungus
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Figure 3.2. Favorableness of the ground.

Figure 3.2 shows the resulting ground model for the Organ Pipe National Monu-

ment in Southwestern Arizona with the scale ([0, 1]) on the right denoting the degree

of favorableness of the ground for the growth of the valley fever fungus. In the scale,

the number 0 represents least favorableness and the number 1 represents highest

favorableness for the growth of the fungus.

Tables 3.1, 3.2, 3.3 show some of the rules that were used in determining the

degree of favorableness for the ground model.

Table 3.1. Slope to favorableness conversion table.

Slope Favorableness
Very Low (0− 3) Very High

Low (4− 7) High
Medium (8− 15) Medium
High (15− 25) Very Low

Very High (> 25) Very Low
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Table 3.2. Aspect to favorableness conversion table.

Aspect Favorableness
East (45− 135) High

South (135− 225) Very High
West (225− 315) High
North (315− 45) Medium

Table 3.3. Clay Content to favorableness conversion table.

Clay Content Favorableness
Very Low Very Low

Low Low
Medium Very High

High Low
Very High Very Low

The favorable region is divided into sites or patches for the purposes of computa-

tion. Each patch can be in any of the following states: favorable, colonized, sporing

or dormant.

3.4 Temperature Model

Figure 3.3 shows a cosine fit [10, 4] and an average daily temperature for day of the

year, 1894-2001, for Tucson, Arizona. The coarse version of the valley fever model

used this cosine fit to model the temperature.

The data in figures 3.4, 3.5 and 3.6 was obtained from the foothills(Latitude:

32 ◦21′5.0′′, Longitude: 110 ◦57′44.8′′ and Elevation: 2758.4 feet) region of Tucson,

Arizona [8]. It was collected using temperature sensors that were buried at depths of

2.5 cm, 20 cm and 29.2 cm respectively [8]. It can be seen from figures 3.4, 3.5 and 3.6

that the actual rate of cooling is less than the rate of heating. In order to model this
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Figure 3.3. A cosine fit for the average daily temperature for day of the year,
1894-2001, for Tucson, Arizona.

behavior, the accurate temperature model was built using the error function solution

given in [4]. Equation 3.1 gives the temperature at depth x and time t.

v(x, t) =
x

2
√

πκ

∫ t

0

φ(λ)
e

−x2

4κ(t−λ)

(t− λ)3/2
dλ (3.1)

where φ(t) is the surface temperature, κ is the diffusivity and v(x, t) is the temperature

at a depth x and time t.

Equation 3.1 can be approximated as a sum of step function solutions [25] i.e.

the transient temperature field T (zj , t) at an arbitrary depth zj may be expressed in

terms of a series of step changes ΔTi over the time interval tp (present) to ti as shown

in equation 3.2

T (zj, tp) = T̄0 +

tp−1∑
i=0

ΔTierfc

(
zj√

4κ(tp − ti)

)
(3.2)

In equation 3.2, T̄0 denotes the record of surface temperatures averaged over the

data collection interval and is the approximation of the φ(λ) function in equation

3.1. T̄0 is the input to the accurate temperature model. The temperature data from

the surface and at depth in the soil is used to determine the thermal diffusivities
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Figure 3.4. Temperature at depth = 2.5 cm at a site near the foothills region of
Tucson, Arizona.
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Figure 3.5. Temperature at depth = 20 cm at a site near the foothills region of
Tucson, Arizona.
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Figure 3.6. Temperature at depth = 29.2 cm at a site near the foothills region of
Tucson, Arizona.
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Figure 3.7. Fit for Kappa as a function of moisture content.
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Figure 3.8. Fit for temperature at a depth of 20 cm when the temperature at a
depth of 2.5 cm was given as input to the accurate temperature model.

Table 3.4. Kappa and Moisture Values.

Moisture Content (in cm) at a depth of 20 cm κ ( cm2

sec
)

0.0154 0.0132
0.0109 0.01188
0.0088 0.01232
0.0077 0.0128
0.0068 0.01156
0.0062 0.01322
0.0058 0.01056
0.0054 0.01225
0.0051 0.01246
0.0048 0.01043
0.0046 0.01388
0.0044 0.01186
0.0042 0.01239
0.0041 0.01169
0.0039 0.01339
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used in the model. As figure 3.7 shows, the variations in the thermal diffusivity

are approximately explained by moisture content variations. Table 3.4 shows the κ

and moisture values that have been used to come up with the fit function given by

equation 3.3.

κ(moisture) = 0.05 ∗moisture + 0.012 (3.3)

The χ−square fit for the observed temperatures was obtained by using the Fortran

code given in [3]. Figure 3.8 shows the fit for the temperature at a depth of 20 cm

when the temperature at a depth of 2.5 cm was given as input (T̄0) to the accurate

temperature model. The mean χ− square value for the fit is 0.46.

3.5 Wind and Precipitation Model

Wind plays an important role in the valley fever model as it is the main carrier of

the spores and hence it decides what part of the ground model will be most active

[11]. Wind and precipitation are modeled using random variables. Wind can have a

preferred azimuth and a wedge angle which determines the width in which the wind

can blow. Precipitation in the model occurs as a rainstorm with an azimuth and a

specified width. Rainstorm azimuths are isotropic in this model. Wind occurrence,

direction, and intensity are based on observed probabilities for the Tucson, Arizona

area, as are precipitation occurrence and amplitude for the period 1894-2001.

3.6 Moisture Model

We modeled the moisture content of a patch by keeping track of the amount of rain on

the surface for the patch and by using equation 3.5 which gives the moisture content

at any depth (see [5, 4, 19]). This model was derived by starting with the diffusion

equation ut = D ∗ uxx(where u is the state variable and D is the diffusivity, [4]) with
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the boundary condition u(0, t) = constant and initial condition given by u(x, 0) = 0

∀x [19].

Table 3.5. Tensiometer to Volumetric Water Content conversion table.

Tensiometer Reading (centibars) Volumetric Water Content (Inch/Inch)
0 1
2 0.30
5 0.26
9 0.21
17 0.17
26 0.15
37 0.12
51 0.12
200 0.0

Table 3.5 was used to convert the Tensiometer readings to the volumetric water

content [7]. This table was used to find an empirical conversion formula which will

convert a given tensiometer reading to the corresponding volumetric water content.

The formula is given by equation 3.4.

function(tensiometer) = 0.153241 + 0.187131× e−0.1129×tensiometer

− 0.0007 ∗ tensiometer (3.4)

The data used to find this model was collected from the foothills (Latitude:

32 ◦21′5.0′′, Longitude: 110 ◦57′44.8′′ and Elevation: 2758.4 feet) region of Tucson,

Arizona [8]. It was collected by putting Irrometers (moisture sensors) at depths of

20 cm and 29.2 cm [8]. We modeled the amount of the moisture present at a certain

depth in the soil using two diffusive waves from the surface of the soil. This model

was derived by approximating the moisture content as a function of depth and time

by the sum of two diffusion waves - a wetting wave from recent rain events propa-

gating downward, followed by a drying wave propagating downward at a later time.
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This model is explained as follows. Let t1 be the time when the rain starts falling on

the surface of the soil, let t2 be the time when the rain stops falling on the surface

of the soil and lets assume that t2 is also the time when it starts evaporating from

the certain depth in the soil. Let Di denote the diffusivity of the rain water into the

soil and De denote the diffusivity of the drying wave. Let τ denote the amount of

time(in days) to look back from the current time t in order to account for the past

rain events. Then, the moisture at a depth x in the soil as a function of depth and

time is given by equation 3.5.

moisture(x, t) =
t∑

i=t−τ

t2∑
j=t1

rainfall(j)
(

erfc
( x

2 ∗√600 ∗Di ∗ (t− t1i)

)

− erfc
( x

2 ∗√600 ∗Di ∗ (t− t2i)

)
+ erf

( x

2 ∗√600 ∗De ∗ (t− t2i)

))
(3.5)

In equation 3.5, rainfall denotes the amount of rain that fell on the surface of the

soil, t1i and t2i denote the start and stop times of the rain for the ith rain event in

the interval [t − τ, t]. These start and stop times were determined by splitting the

surface rainfall data. Any two rain events with a time difference of a couple of hours

were treated as different. The reason for the factor of 600 is explained as follows. The

data which we got from the site was separated by 10 minute time intervals. Since we

wanted Di and De in units of cm2

sec
, we multiplied the time differences by a factor of

600 (10 minutes = 600 seconds). A depth of 20 cm and a τ value of 11 days were

used to validate the moisture model. The model was fitted to the actual data using

the NMinimize function of Mathematica and the mean Di and De were found to be

Di = 0.451 cm2

sec
and De = 0.183 cm2

sec
. The data and the fit are shown in figure 3.9. The

fit that we got matches the data at most of the places but at some places it dries out

completely when the data does not.

The moisture content of the patch is thus increased by rain on the patch and
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Figure 3.9. Fit for the moisture model.

decreased by heat flow, which causes evaporation. The moisture was modeled by

heat flow with forced convection before, but now we model it based on the fit to data

as shown by figure 3.9.

3.7 Description of the Discrete Time Model

In the discrete time valley fever model [26], the state of a site is computed at each

time step. The new state of the site is a function of the current states of the site and

its neighbors and of the inputs that the site receives from the wind and rain models.

The time step is in hours; the simulation interval is in years. If the number of total

sites (both favorable and unfavorable) is N, the total time of simulation T and the

time step is Δt, then the total number of transitions made by the discrete time model

is equal to

N ∗ T

Δt
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For a typical run

N = 10000 sites

T = 5 years

Δt = 1 hour

the number of transitions made by the discrete time model is 4.38 ∗ 108.

3.8 Description of the DEVS Model

In contrast to the discrete time model, processing in a discrete event model takes

place in the state space. We observed that in the discrete time model most of the

sites are unfavorable and hence no state changes take place at those sites. Discrete

event formulation of such a model is naturally more efficient than the corresponding

discrete time version because it schedules events only at the sites that are favorable

for the growth of the fungus. For example, in a discrete event implementation of the

valley fever model, if spores fall on a site that is favorable, the model knows when

to schedule the next event since it knows the time required for a site to become a

sporing site. If the conditions are unfavorable the model does not need to schedule

any further events. This results in a considerable reduction in computational effort

in simulating models which exhibit spatio-temporal heterogeneity in their behaviors.
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Chapter 4

Multilevel Modeling- Description of the Base

and Lumped Model

This chapter explains the multilevel modeling methodology and shows its applica-

tion to the valley fever model. It gives a detailed description of the concepts and

lumped and base models and shows their application to the valley fever model within

a specified experimental frame- spread of the valley fever fungus.

A model which must be capable of accounting for all the input-output behavior

of a real system and be valid in all allowable experimental frames can never be fully

known [27].This model, called the base model, would be very complex and require

such great computational resources that it would be almost impossible to simulate.

For the valley fever model, the base model can never be fully known because of

the complexity of the system and the impossibility of observing all possible states.

However, given an experimental frame of current interest(for example the number of

sporing sites after a certain time period), a modeler is likely to find it possible to

construct a relatively simple model that will be valid in that frame. This is a lumped

model. It is the experimenter’s image of the real system with components lumped

together and interactions simplified [27, 28].

Modeling an ecosystem requires knowledge of the real system, obtained with ex-

periments, and its abstraction within a mathematical framework. Systems methods

can be used effectively in the latter phase of model development. Indeed, when cou-

pled with experimental work, system-theoretic concepts can help in the development

of an ecologically realistic mathematical model. The state space approach is the most

widely used in modern systems analysis because it allows description of both observ-

able and unobservable variables. The models are memoryless and nonanticipatory
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and the state of the system is predicted using information on the present state and

inputs to the system [28].

The organization of the simulation models is accomplished by considering several

elements and their relationships. These elements are a collection of experimental

frames, the real system, and the domain of possible models. The experimental frames

specify restrictions on experimental access to the real system. The models are as-

sumed to be transition systems which are specifiable at various levels of structure and

behavior within short-hand conventions(e.g., discrete event, and differential equation

formalisms). Thus, the models are the various distributed and lumped models which

can be postulated to account for the observed data and to predict the results of future

experiments [28].

Ecosystems, as examples of large-scale multifaceted systems, require that a mul-

tiplicity of models be developed since a single all-encompassing model, however de-

sirable as a conceptual goal, is not a practical object. By decomposing questions

and modeling objectives into an ordered structure of elements called experimental

frames [27], useful partial models may be constructed, validated, and employed, each

one attuned to a particular experimental frame. Concomitant with the pluralism of

such partial models is the recognition that models are expressible in different for-

malisms, each offering conceptual and computational advantages within its domain

of application [28].

Figure 4.1 shows the base and lumped models for the valley fever model. The

version of the valley fever model consisting of the fine resolution temperature, ground

and moisture models constitutes the base model. The version of the valley fever model

consisting of the low resolution temperature,ground and moisture models constitutes

the lumped model.

Figure 1.2 shows the detailed view of the application of the multilevel model-

ing methodology to the valley fever model. The base model constitutes of the fine

moisture and temperature models of the valley fever model. The lumped model con-
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Figure 4.1. Base and lumped Models for the valley fever model.
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stitutes of the coarse moisture and temperature models. In both the lumped and base

versions of the valley fever model we exploit the spatio-temporal heterogeneity in its

activity behavior. While doing the conversion of the base model to the lumped model

using the concept of parameter morphism we try to bring the behaviors of the base

and lumped models as close as possible to each other withing a specified experimental

frame. In the case of the valley fever model, the experimental frame is the formation

of new sites(dormant+sporing sites).

The lumped model is of low resolution as it doesn’t deal with the nitty-gritty

details of the composite model. It provides a high level overview of the whole model

and is useful when a user wants to know the general behavior of a system in a short

amount of time. In other words, a lumped model provides a qualitative picture of the

behavior of a model. It is also computationally less taxing as all the models of the

composite model are in a coarse form and as a result do not need lot of computations

to be performed. The main disadvantage of using a lumped model is that the final

result is of low fidelity and therefore is not useful when the user needs very accurate

results.

The base model is of high resolution as it deals with the nitty-gritty details of the

composite model. It provides a low level view of the whole model and is useful when

a user wants to know the exact behavior of a system. The main advantage of the base

model over the lumped model is that it provides results of high accuracy. In other

words, in addition to providing a qualitative picture, a base model also provides a

quantitative picture of the behavior of a model. On the flip side, it is computationally

very taxing as all the models of the composite model are in a fine form and as a result

they do need a lot of computations to be performed. The final result is of high fidelity

and therefore is useful when the user needs very accurate results.

For example, consider the lumped and base model versions of the valley fever

model. As will be shown in the results section, if the user is only concerned about

the overall(qualitative) spread/survival of the valley fever fungus, then he is much
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better off using the lumped version of the valley fever model as it is less demanding

on the computational resources. It also runs much faster than the base version of the

valley fever model. On the other hand, if the user is interested in knowing the sites

at which the fungus survived or what phase the fungus is in at that particular site,

he needs to go for the base model. The only disadvantage of the base model is that

it is computationally very demanding and time consuming.

4.1 Organization

The following are the concepts that are needed for the organization and integration

of the above models [28]:

1. ξ - a collection of experimental frames. A frame E ∈ ξ represents a restricted

set of questions by specifying the restrictions on experimental access to the real

system sufficient to answer them. Such a frame E determines a collection of

data sets Δ(E), such that D ∈ Δ(E) is an apriori possible result of complete

data acquisition within frame E.

2. R- the real system, comprises the specific data that have been, or would be,

collected by experimenting with the system.

3. μ - the domain of possible models. These are assumed to be transition systems

which are specifiable at various levels of structure and behavior and within vari-

ous short-hand conventions such as the discrete event, and differential equation

formalisms.

Roughly, the experimental frames will encode the various choices of observables

(for example number of new sites in the valley fever model) and conditions (initial

number of dormant sites, direction of Wind) under which experiments were run. The

real system is the data collectible by making the implied observations under the given
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conditions. Finally, the models are the various distributed and lumped models which

can be postulated to account for the observed data and to predict the results of future

experiments.

In an ideal situation for each frame E ∈ ξ there is a known model M ∈ ξ which best

answers the questions posable in E. By best we mean that the model can reproduce

without error the data set Δ(E) in a manner which requires the least consumption of

computer resources. Realistically, this ideal is not realizable after a necessarily finite

span of data acquisition. The dynamics of modeling concern successive approxima-

tions to the ideal.

4.2 Experimental Frames

There are four main types of experimental frames. These types are distinguished by

the descriptors: global, local, total and occupancy. The global descriptor refers to the

fact that all cells(all the favorable locations in the valley fever model where the fungus

may grow) in the model are being observed. On the other hand, in the local condition,

only some subset of the cells are of interest. The total descriptor refers to the fact

that the quantities of interest in a frame have been totaled to produce aggregate

quantities, so that only these aggregates are observable in the frame. Finally, the

occupancy descriptor refers to the fact that a frame permits only the observation of

discrete occupancy states, such as whether or not a cell is favorable, whether or not

a new site had been established on the cell, and whether or not that cell is producing

any spores.

The occupancy frames are the most restricted. But still they permit consideration

of the persistence of new sites since to determine whether or not there are any new

sites requires only a binary consideration(whether that site is favorable/unfavorable

for the growth of the fungus). On the other hand, the global frames permit observation

of detailed spatial distribution of sites. The total frames correspond to classical
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populations in which spatial structure has been averaged out. It is obvious that

certain frames are more informative than others.

Each experimental frame names a set of variables of interest, called the com-

pare variables, and a set of variables determining the conditions under which exper-

iments are to be performed, called the control variables. The most inclusive frame,

Eglobal
sporing,colonized,dormant specifies as compare variables: number of sporing, colonized

and dormant cells. There are no control variables for this frame. An example of a

frame which has a nonempty set of control variables is Eglobal
sporing,colonized,dormant
wind,temperature,moisture

. Here,

the set (sporing,colonized,dormant) are the phases in which a given cell can be and the

set (wind,temperature,moisture) are the control variables which determine in what

phase a given cell can be in.

In a frame, the compare variables readings are recorded against time for the dura-

tion of any particular experiment. This yields a time function also called a segment,

or a trajectory which is referred to as a data element belonging to the frame [28].

Figures 4.2, 4.3, 4.4, 4.5, 4.6 show the number of dormant, sporing, dormant plus

sporing, colonized and favorable sites as a function of time for a 25 year simulation

run of the valley fever model whose ground model has binary favorableness.
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Figure 4.2. Number of dormant sites as a function of time.
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Figure 4.3. Number of sporing sites as a function of time.

The next chapter explores the possible combinations of the constituent models of

the valley fever model and discusses their compatibility in relevance to the spread of

the valley fever fungus.
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Figure 4.4. Number of dormant and sporing sites as a function of time.
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Figure 4.5. Number of colonized sites as a function of time.
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Figure 4.6. Number of favorable sites as a function of time.
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Chapter 5

Comparison of Base and Lumped Models with

respect to Experimental Frame

This chapter begins by comparing the agent-based implementation of the valley fever

model with its counterpart DEVS model. As mentioned before, the agent-based

implementation uses coarse moisture, temperature and ground models. According to

domain experts such as Dr. Gettings this results in the formation of far more new

sites(dormant+sporing sites) in the simulation of the valley fever model. In order

to produce the counterpart DEVS model(lumped model), we used the same coarse

moisture, temperature and ground models that have been used by the agent-based

model. As a result, we see that the use of lumped model also produces far more new

sites(dormant+sporing sites) in the simulation of the valley fever model. Then, this

chapter describes the compatibility of the base/fine and lumped/coarse models within

a specified experimental frame. It shows the performance advantage of the lumped

model over the base model for the valley fever model by comparing their execution

times.

5.1 Compare agent-based implementation of the
valley fever model with its counterpart DEVS model

In order to validate the DEVS model with the agent based implementation we consid-

ered two test cases. Figures 5.1 and 5.2 show the results of simulating the agent-based

and DEVS models using the test cases in columns 1 and 2 of table 5.1 for 20 years

using a 200× 200 ground model with binary favorableness. In the agent based model

which uses the NetLogo software [26, 10], a brown color denotes a dormant site, a

black color denotes a site which is unfavorable for the growth of the valley fever
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fungus, a yellow color denotes a site which is favorable for the growth of the valley

fever fungus and a red color denotes a site which is in the sporing phase. The swaths

represent rain storms on the surface of the soil.

Table 5.1. Parameters for comparing agent-based model with its counterpart DEVS
model.

Parameter 1 2
wjmax 5 1

tradeWindAz 0 271
windAZRange 60 89

tempMax 40 30
moistMin(inches) 0.2 0.4

SiteMin(days) 9 9

In the DEVS model, a purple color denotes a dormant site, a white color denotes

a site which is unfavorable for the growth of the valley fever fungus, a yellow color

denotes a site which is favorable for the growth of the fungus and a red color denotes

a site which is in the sporing phase.

In the first test case, the wind is blowing towards North. As a result, we see that

in both the implementations(agent-based and counterpart DEVS implementation),

the spread of the valley fever fungus is prominent in the Northern direction.

In the second test case, the wind is blowing towards East. As a result, we see that

in both the implementations(agent-based and counterpart DEVS implementation),

the spread of the valley fever fungus is prominent in the Eastern direction.

Table 5.2 shows the total number of new sites(dormant+sporing sites) formed by

using the agent-based and DEVS implementation for the valley fever fungus.

As can be seen from table 5.2, the output of the DEVS model is comparable to

that of the agent-based model.

Table 5.3 shows the execution times of the agent-based model [10] and the coun-

terpart DEVS model as the simulation time is varied. From table 5.3, it can be seen
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Table 5.2. New sites(dormant+sporing sites) for the agent-based model and its
counterpart DEVS model.

Test Case Agent-Based Implementation DEVS Implementation
1 167 187
2 207 185

(a) Agent Based Model (b) DEVS Model

Figure 5.1. Outputs of Agent Based and DEVS models.

(a) Agent Based Model (b) DEVS Model

Figure 5.2. Outputs of Agent Based and DEVS models.
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that the counterpart DEVS model is very efficient when compared with the agent-

based model. This is because, a DEVS model is inherently more efficient in simulating

systems which have spatio-temporal heterogeneity in their activity behaviors.

Table 5.3. Execution times for the agent-based model and its counterpart DEVS
model.

Simulation Time Agent-Based Implementation DEVS Implementation
5 years 2 hours 1.2 minutes
25 years 10 hours 6 minutes
100 years 40 hours(extrapolated) 24 minutes

5.2 Description of Coarse and Fine Models

Figure 4.1 also shows the nine possible combinations of the constituents of the valley

fever model. These nine different combinations can be arranged into a table. Table

5.4 shows these nine different combinations and their compatibility in relevance to

the spread of the valley fever fungus.

In the table, coarse temperature refers to the temperature model which models

the temperature using a Cosine wave as shown in figure 3.3. Fine temperature refers

to the temperature model which models the temperature using the equation given in

[4] whose fit is as shown in figure 3.8. Coarse moisture refers to the moisture model

which computes the moisture at a depth of 20 cm using heat flow calculation. Fine

moisture refers to the moisture model which models the moisture using equation 3.5

Table 5.4. Nine possible combinations of the constituents of the valley fever model.

Fine Temp Fine Moisture Fine Ground
Coarse Temp N/A Incompatible Compatible
Coarse Moisture Incompatible N/A Compatible
Coarse Ground Compatible Compatible N/A
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whose fit is as shown in figure 3.9. Coarse ground refers to the ground model which

has binary favorableness. That is, either the ground is favorable to the growth of the

valley fever fungus or it is not favorable for the growth of the valley fever fungus.

Fine ground refers to the ground model which has variable degree of favorableness.

A picture of this ground model is as shown in figure 3.2

The fine temperature model and the fine moisture model are inter-linked to each

other. For each cell in the cellspace, the diffusion coefficient κ of the temperature

model is dependent on the moisture for that cell which is computed by 3.5. This

relation is given by equation 3.3. Therefore one model is incompatible without the

other.

In a similar manner, the coarse temperature model and the coarse moisture model

are inter-linked with each other. In order to calculate the amount of moisture that

is present at a depth of 20 cm at any given time, the temperature at two depths is

calculated and the amount of water that accounts for that temperature difference is

subtracted from the amount of water which is already present at that depth due to

rainfall.

The combination (Coarse temperature,Fine temperature) is not applicable as only

one of the temperature models must be used.

The combination (Coarse temperature, Fine moisture) is incompatible as temper-

ature and moisture are inter-dependent.

The combination (Coarse temperature, Fine ground) is compatible as they are

independent of each other.

The combination (Coarse moisture, Fine temperature) is incompatible as temper-

ature and moisture are inter-dependent.

The combination (Coarse moisture, Fine moisture) is not applicable as only one

of the moisture models must be used.

The combination (Coarse moisture, Fine ground) is compatible as they are inde-

pendent of each other.
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Table 5.5. Run times for the possible combinations for the valley fever model.

Moisture and Temp Models Ground Model Time Taken
Coarse 200 by 200 Coarse 6 minutes
Fine 200 by 200 Coarse 3 hours
Coarse 200 by 200 fine 8.5 hours
Coarse 1500 by 1500 fine 2.5 days
Fine 1500 by 1500 fine 75 days

The combination (Coarse ground, Fine temperature) is compatible as they are

independent of each other.

The combination (Coarse ground, Fine moisture) is compatible as they are inde-

pendent of each other.

The combination (Coarse ground, Fine ground) is not applicable as only one of

the ground models must be used.

5.3 Execution Times of Coarse and Fine Models

Table 5.5 shows the run times(run times have been extrapolated where it is unrea-

sonable to actually run the simulation) for the possible combinations for the valley

fever model. These combinations were run on a machine with dual core AMD Athlon

Processor (3.0 GHz) and 6.0 GB of RAM. The ADEVS [22] package(version 2.0.5.4)

was used for running the valley fever model.

As it can be seen from the table, if the user is interested in a high level or qual-

itative view of the spread of the valley fever fungus, he should just use the coarse

combinations in order to see the results quickly.

On the other hand, if he is interested in a low level or quantitative view of the

spread of the valley fever fungus, he should use the fine combinations in order to get

the detailed results.
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In chapter 6, we will compare the base and lumped models from the point of view

of parameter morphism and self-organized criticality.
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Chapter 6

Use of the multilevel modeling methodology to

study self-organized criticality of the valley

fever model

This chapter has two parts. The first part gives a brief introduction to the concept of

self-organized criticality [2, 1, 6]. The first part also shows the results of simulating

the valley fever model using the multilevel modeling methodology. As mentioned

before, the agent-based implementation of the valley fever model uses the coarse

moisture and temperature models. In order to faithfully reproduce the same, we

included the same coarse versions of the moisture and temperature models into the

lumped version of the valley fever model. According to expert judgement of domain

experts such as Dr. Gettings, the use of the coarse versions of the moisture and

temperature models results in the formation of far more new sites(dormant+sporing

sites) in the valley fever model. This observation can be made by looking at the

results shown in this part which show that the lumped model version of the valley

fever model produces significant number of new sites(dormant+sporing sites) when

compared with the corresponding base version of the valley fever model which uses

the fine versions of the moisture and temperature models. For each of the results,

the number of new sites(dormant+sporing sites) is shown as a function of time. This

is useful because it helps us in understanding the weather patterns which cause an

outbreak in the valley fever fungus. This information can then be used in predicting

what weather patterns to look for in the future that might result in an outbreak of

the valley fever fungus. The second part discusses about parameter morphism and

discusses about future work that needs to be done in this area.
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6.1 Self-Organized Criticality

Self-Organized Criticality also known as SOC [2, 1] is an attempt to explain the

occurrence of complex phenomena. The valley fever model is an example of a complex

system as the effect of each factor which affects the growth of the fungus is known

individually, but, its hard to predict the combined effect that these factors would have

on the growth of the valley fever fungus. It is an example of a system which exhibits

emergent behavior where simple rules in a system give rise to complex behavior [6].

The following are the characteristics of an SOC system [6]:

1. The components in the system are governed by simple rules.

2. Threshold exists within the system.

3. Pressure builds in the system until it exceeds the threshold.

4. Small agitations in the system can lead to system effects called avalanches.

The next section shows the application of the multilevel modeling methodology

to study self-organized criticality.

6.1.1 Multilevel Modeling Methodology

to Study Self-Organized Criticality

This section shows several results of running the lumped and base versions of the

valley fever model by varying the parameters which affect the spread of the valley

fever fungus. It also shows results which validate the use of the new moisture and

temperature models by verifying that their use reduces the formation of new sites in

the valley fever model.

The parameters that affect the growth of the fungus are:

1. Number of patches to blow the wind (denoted by wjmax).
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2. Azimuth of the trade wind (denoted by tradeWindAz).

3. Azimuth range for the wind (denoted by windAZRange).

4. Maximum tolerable temperature for the fungus (denoted by tempMax).

5. Minimum moisture required for the survival of the fungus (denoted by moist-

Min).

6. Time taken to form a new site (denoted by SiteMin).

The distance that the wind can blow spores to is directly proportional to the value

of the parameter wjmax. As a result of this, other factors being favorable, a high

value of wjmax facilitates the formation of new sites.

The parameter tradeWindAz denotes the direction in which the wind is blowing.

A value of 0 ◦ denotes that the wind is blowing towards North, a value of 90 ◦ denotes

that the wind is blowing towards the East, a value of 180 ◦ denotes that the wind is

blowing towards South and a value of 270 ◦ denotes that the wind is blowing towards

the West. The direction of the wind plays a significant role in determining the spread

of the fungus as the wind is the main carrier of spores in the valley fever model.

The parameter windAZRange denotes the angle (or the width) in which the wind

can blow. This also plays a significant role in determining the spread of the valley

fever fungus.

The parameter tempMax denotes the maximum tolerable temperature for the sur-

vival of the fungus. That is, a soil temperature that exceeds this value is unfavorable

for the growth of the valley fever fungus.

The parameter moistMin denotes the minimum amount of moisture that is re-

quired for the survival of the fungus. That is, the fungus cannot survive in a soil

whose moisture content is less than moistMin.

The parameter SiteMin denotes the time taken by the fungus to form a new site.

The higher this value is, the lower is the spread of the valley fever fungus.
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In all figures, a White color denotes unfavorable ground, a Yellow color denotes

favorable ground, a Green color denotes that the patch is in a colonized phase, a Red

color denotes that the patch is in a sporing phase and a Purple color denotes that

the patch is in a dormant phase. The ADEVS [22] package(version 2.0.5.4) was used

for running the valley fever model.

6.2 Binary Favorableness

The ground model with binary favorableness shown in figure 6.1 is used as input for

both the base and lumped models. As will be shown, the use of the base model has its

pros and cons. The main advantage is that the valley fever model is mathematically

more accurate and is based on temperature and moisture observations. As a result,

the base model is more realistic. This is reflected in the few number of new sites that

are formed when using the base model. The main disadvantage is the run time. For

a typical grid size of 200× 200, the base model takes about 3 hours to run, whereas

the lumped model takes about 6 minutes to run.

The parameters which were described at the beginning of this section were varied

in six different ways most of which were taken from [10]. The first case is a test case.

Table 6.1 shows the values of all the parameters for each of these test cases.

Table 6.1. Parameters for a test run of the valley fever model.

Parameter 1 2 3 4 5 6
wjmax 5.0 1.0 1.0 5.0 5.0 1.0

tradeWindAz 0 271 89 0 0 0
windAZRange 89 89 89 89 60 89

tempMax 40 30 25 40 40 40
moistMin(inches) 0.5 0.4 0.5 0.2 0.2 0.2

SiteMin(days) 9 9 13 9 9 9



65

0

20

40

60

80

100

120

140

160

180

200
0 20 40 60 80 100 120 140 160 180 200

Initial Condition

Figure 6.1. Input to the valley fever model.

Figure 6.1 shows the input that was given to the base and lumped versions of the

valley fever model.

Figures 6.3, 6.4, 6.5, 6.6, 6.7 show the results of simulating the basic version (with

binary favorableness) of the valley fever model for 25 years when the parameters were

chosen according to column 1 of table 6.1. Figure 6.2 shows the outputs of the models

in this case.

Figure 6.5 shows the total number of new sites of the valley fever model for 25 years

when the parameters were chosen according to column 1 of table 6.1. This figure is

an example of the self-organized criticality behavior in the valley fever model. Similar

behavior can be seen in other test cases of table 6.1.

Figures 6.9, 6.10, 6.11, 6.12, 6.13 show the results of simulating the basic version

(with binary favorableness) of the valley fever model for 25 years when the parameters

were chosen according to column 2 of table 6.1. These parameters were taken from

[10]. Figure 6.8 shows the output of the model in this case.

Figures 6.15, 6.16, 6.17, 6.18, 6.19 show the results of simulating the basic version

(with binary favorableness) of the valley fever model for 25 years when the parameters

were chosen according to column 3 of table 6.1. These parameters were taken from

[10]. Figure 6.14 shows the output of the models in this case.
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(a) Lumped Model
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Figure 6.2. Results of test case for the lumped and base valley fever models.
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(a) Lumped Model
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Figure 6.3. Number of dormant sites as a function of time.
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(a) Lumped Model
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(b) Base Model

Figure 6.4. Number of sporing sites as a function of time.
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(a) Lumped Model
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(b) Base Model

Figure 6.5. Number of dormant and sporing sites as a function of time.
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(a) Lumped Model
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(b) Base Model

Figure 6.6. Number of favorable sites as a function of time.
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(a) Lumped Model
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(b) Base Model

Figure 6.7. Number of colonized sites as a function of time.
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(a) Lumped Model
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Figure 6.8. Results of lumped and base models for the parameters in column 2 of
table 6.1.
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(a) Lumped Model

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
14

15

16

17

18

19

20

time in days

nu
m

be
r 

of
 d

or
m

an
t s

ite
s

(b) Base Model

Figure 6.9. Number of dormant sites as a function of time.
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(a) Lumped Model
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(b) Base Model

Figure 6.10. Number of sporing sites as a function of time.
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(a) Lumped Model
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Figure 6.11. Number of dormant and sporing sites as a function of time.
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(a) Lumped Model
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(b) Base Model

Figure 6.12. Number of favorable sites as a function of time.
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(a) Lumped Model
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(b) Base Model

Figure 6.13. Number of colonized sites as a function of time.
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(a) Lumped Model
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Figure 6.14. Results of lumped and base models for the parameters in column 3 of
table 6.1.
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(a) Lumped Model
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Figure 6.15. Number of dormant sites as a function of time.
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(a) Lumped Model
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Figure 6.16. Number of sporing sites as a function of time.
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(a) Lumped Model
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(b) Base Model

Figure 6.17. Number of dormant and sporing sites as a function of time.
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(a) Lumped Model
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Figure 6.18. Number of favorable sites as a function of time.

Figures 6.21, 6.22, 6.23, 6.24, 6.25 show the results of simulating the basic version

(with binary favorableness) of the valley fever model for 25 years when the parameters

were chosen according to column 4 of table 6.1. These parameters were taken from

[10]. Figure 6.20 shows the output of the models in this case.
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(a) Lumped Model
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(b) Base Model

Figure 6.19. Number of colonized sites as a function of time.
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Figure 6.20. Results of the lumped and base models for the parameters in column
4 of table 6.1.
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(a) Lumped Model
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Figure 6.21. Number of dormant sites as a function of time.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

20

40

60

80

100

120

time in days

nu
m

be
r 

of
 s

po
rin

g 
si

te
s

(a) Lumped Model
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Figure 6.22. Number of sporing sites as a function of time.
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(a) Lumped Model
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Figure 6.23. Number of dormant and sporing sites as a function of time.

Figures 6.27, 6.28, 6.29, 6.30, 6.31 show the results of simulating the basic version

(with binary favorableness) of the valley fever model for 25 years when the parameters

were chosen according to column 5 of table 6.1. These parameters were taken from

[10]. Figure 6.26 shows the output of the models in this case.

Figures 6.33, 6.34, 6.35, 6.36, 6.37 show the results of simulating the basic version

(with binary favorableness) of the valley fever model for 25 years when the parameters

were chosen according to column 6 of table 6.1. These parameters were taken from

[10]. Figure 6.32 shows the output of the models in this case.

Table 6.2 summarizes the results of the testcases shown in 6.1.

As can be inferred from table 6.2, the use of the Base model significantly reduces

the formation of new sites. It can also be noticed that after 25 years of simulation,

the base model contains only sites which are dormant, whereas the lumped model

contains a large number of sporing sites (which can serve as a source of formation for

new sites). This validates the use of the new mathematical models for temperature

and moisture which reduce the formation of new sites in the valley fever model.

But, as noted before, this advantage of accuracy comes with a cost. The time taken
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(a) Lumped Model
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(b) Base Model

Figure 6.24. Number of favorable sites as a function of time.
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(a) Lumped Model
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(b) Base Model

Figure 6.25. Number of colonized sites as a function of time.
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(a) Lumped Model
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Figure 6.26. Results of the lumped and base models for the parameters in column
5 of table 6.1.
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Figure 6.27. Number of dormant sites as a function of time.
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(a) Lumped Model
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(b) Base Model

Figure 6.28. Number of sporing sites as a function of time.
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(a) Lumped Model
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Figure 6.29. Number of dormant and sporing sites as a function of time.
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(a) Lumped Model
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(b) Base Model

Figure 6.30. Number of favorable sites as a function of time.
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(b) Base Model

Figure 6.31. Number of colonized sites as a function of time.



82

0

20

40

60

80

100

120

140

160

180

200
0 20 40 60 80 100 120 140 160 180 200

Final state after 25 years of simulation
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Figure 6.32. Results of the Lumped and Base models for the parameters in column
6 of table 6.1.
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Figure 6.33. Number of dormant sites as a function of time.
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(a) Lumped Model
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Figure 6.34. Number of sporing sites as a function of time.
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(a) Lumped Model
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(b) Base Model

Figure 6.35. Number of dormant and sporing sites as a function of time.
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(a) Lumped Model
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(b) Base Model

Figure 6.36. Number of favorable sites as a function of time.
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(a) Lumped Model
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(b) Base Model

Figure 6.37. Number of colonized sites as a function of time.
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Table 6.2. Results of the test cases in table 6.1 for the Lumped and Base models.

Test Case Lumped (Sporing/Dormant/Total) Base (Sporing/Dormant/Total)
1 128, 13, 141 0, 53, 53
2 18, 2, 20 0, 20, 20
3 18, 2, 20 0, 20, 20
4 100, 8, 108 0, 55, 55
5 76, 7, 83 0, 61, 61
6 18, 2, 20 0, 20, 20

Table 6.3. Run times of the test cases in table 6.1 for the Lumped and Base models.

Case Lumped Model Run Time(in Hours) Base Model Run Time(in Hours)
1 0.102 3.11
2 0.104 3.10
3 0.105 3.2
4 0.107 3.21
5 0.107 3.10
6 0.101 3.12
7 0.104 3.10

to run the base model is about 30 times the time taken to run the corresponding

lumped model. Table 6.3 summarizes the results of running the simulation on a

machine with a dual core AMD Athlon Processor (3.0 GHz) and 6 GB of RAM for

each of the test cases in table 6.1.

6.3 Variable Favorableness

This section shows some results of running the lumped version of the valley fever

model along with the fine resolution(variable favorableness) ground model.

Figure 6.39 shows the result of running the lumped version of the valley fever

model for 25 years when the input is given as in figure 6.38. The dormant sites

were chosen at the sites which were most favorable for the growth of the valley fever
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fungus. This simulation took 2.5 days when run on a machine with a dual core

Athlon Processor (3.0 GHz) and 6 GB of RAM. All the parameters except SiteMin

were chosen according to column 4 of table 6.1. SiteMin for each site was varied

inversely as the favorableness of the ground at that site.

Figures 6.40, 6.41, 6.42, 6.44, 6.43 show the results of simulating the valley fever

model for 25 years.

Figure 6.38. the input to the valley fever model with a ground model of variable
favorableness.

Figure 6.45 shows the result of running the lumped version of the valley fever

model for 25 years when the input is given as in figure 6.38. The dormant sites

were chosen at the sites which were most favorable for the growth of the valley fever

fungus. This simulation took 2.5 days when run on a machine with a dual core

Athlon Processor (3.0 GHz) and 6 GB of RAM. All the parameters except SiteMin

and moistMin were chosen according to column 4 of table 6.1. SiteMin was varied

inversely as the favorableness of the ground. A value of 0.4 was assigned to the
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Figure 6.39. the output of the valley fever model with a ground model of variable
favorableness after 25 years of simulation.
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Figure 6.40. Number of dormant sites as a function of time.
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Figure 6.41. Number of sporing sites as a function of time.
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Figure 6.42. Number of dormant and sporing sites as a function of time.
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Figure 6.43. Number of colonized sites as a function of time.
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Figure 6.44. Number of favorable sites as a function of time.
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Table 6.4. Result of running the lumped version of the valley fever model along
with the ground model with variable favorableness.

Case Input(dormant sites) Output(dormant/sporing/colonized)
4 75 142, 9, 6
4(moistMin=0.4) 75 75,0,8

variable moistMin.

Figures 6.46, 6.47, 6.48, 6.49 and 6.50 show the results of simulating the valley

fever model for 25 years.

Figure 6.45. The output of the valley fever model with a ground model of variable
favorableness after 25 years of simulation.

Table 6.4 summarizes the results of these two simulation.
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Figure 6.46. Number of dormant sites as a function of time.
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Figure 6.47. Number of sporing sites as a function of time.
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Figure 6.48. Number of dormant and sporing sites as a function of time.
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Figure 6.49. Number of colonized sites as a function of time.
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Figure 6.50. Number of favorable sites as a function of time.

6.4 Parameter Morphism

The goal of parameter morphism is to map the parameters of the base model to the

parameters of the lumped model while preserving the behavior of the base model

within a specified experimental frame. For the valley fever model, the experimental

frame is the formation of new sites(dormant+sporing sites). The base version of the

moisture model depends upon the rain events that have occurred in the past. The

soil has a certain porosity and therefore the amount of moisture at a certain depth

cannot exceed the total amount of rain that fell on the surface of the soil in the past.

In order to account for this in the base version of the moisture model, the value of the

computed moisture was compared with a predetermined threshold. If the computed

moisture was greater than the threshold, the threshold was returned, otherwise the

computed moisture value was returned.

In order to mimic similar behavior, we experimented with the lumped version of

the moisture model(for the test case in column 1 of table 6.1) by setting a threshold

limit for the computed moisture to see the effect of it on the spread of the valley fever

fungus.
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Table 6.5 shows the results of this experiment after simulating the lumped and

base versions of the valley fever model for 25 years.

Table 6.5. Parameter morphism experiment.
Threshold(Moisture Model) New sites(Lumped Model) New Sites(Base Model)
0.8 inches 0 53
1.0 inches 0 53
No threshold 98 53
1.2 inches 267 53

From table 6.5, we can see that as the threshold for the lumped version of the

moisture model is varied, the number of new sites formed after 25 years of simulation

changes. The rate of the growth of the valley fever fungus is higher when the threshold

value of the computed moisture is set to 1.2 inches when compared with the threshold

value of 1.0 inches.

In this chapter, we have shown the self-organized criticality behavior of the valley

fever model by running it with different test cases. We also introduced the concept of

parameter morphism and compared the lumped and base models within the experi-

mental frame of formation of new sites in the valley fever model. More research needs

to be done to pinpoint the threshold value of the computed moisture in order for the

lumped version of the valley fever model to mimic the behavior of the base version of

the valley fever model. This will be quite useful, as the lumped model offers potential

speedup advantages over the corresponding base model.
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Chapter 7

Activity and Distributed Simulation

This chapter extends the work done by Zhang [30] and proposes an activity-based

partition algorithm for performing distributed simulation of the valley fever model.

It then shows some results of applying this algorithm to the valley fever model and

compares its performance with a method based on an algorithm which doesn’t exploit

the spatio-temporal heterogeneity in the activity present in the valley fever model.

Recent research [24, 20, 30, 14] has shown that a DEVS based distributed simula-

tion offers potential advantages over other methodologies which don’t exploit spatio-

temporal heterogeneity in the model. The valley fever model has spatial heterogeneity

as it contains a ground model which has varying degree of favorableness. The valley

fever model also has temporal heterogeneity as it contains models (Wind, Tempera-

ture, Moisture) which vary in time. A DEVS based simulation efficiently exploits this

spatio-temporal heterogeneity in activity by allocating its computational resources to

regions of high activity. Because of its spatio-temporal heterogeneity, the valley fever

is an ideal model for using a DEVS based distributed simulation.

This chapter describes an algorithm to partition the ground model based upon

its activity i.e. it describes an algorithm which allocates more computing nodes

to patches which have a high degree of favorableness and less computing nodes to

patches which have a low degree of favorableness. This algorithm is similar to the

one given in [30]. The activity-based partition algorithm described in [30] used the

state transition count for each cell and put the cells with high state transition count in

the high-activity list and the cells with low state transition count in the low-activity

list.
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7.1 Activity Based Partition Algorithm

Figure 7.1 shows the activity-based partition algorithm that is used to partition the

cells of the valley fever model according to their favorableness.

The algorithm whose flow chart is shown in figure 7.1 works as follows. For each

cell in the cellspace of the valley fever model, it records the favorableness of the cell

for the growth of the valley fever fungus. If the favorableness of a cell is greater

than or equal to a certain threshold value(which in this particular case is 0.5), it

adds that cell to the high-activity list as it has a higher chance of undergoing many

state transitions due to its above-average favorableness. On the other hand, if the

favorableness of a cell is less than the threshold value, the algorithm adds that cell

to the low-activity list as it has a lower chance of undergoing state transitions due to

its below-average favorableness.

7.2 Test Environment

The test environment that was used for testing the activity-based partition algorithm

consists of a 5-node cluster where each node is composed of an AMD Athlon processor

(2.0 GHz and 512 MB RAM). The DEVS-RMI [30] software was used for running

these simulations. For the purpose of comparison, two different configurations are

considered. The first one is a static partition i.e. this method of partitioning the

cell space does not exploit the spatial heterogeneity in the activity. The second one

is based on the proposed activity-based partition algorithm. In the static partition

method, all the cells in the grid were evenly distributed among the available computing

nodes. On the other hand, in the activity-based partition method, all the cells in the

low-activity list were assigned to a single node and all the cells in the high-activity list

were evenly distributed among the rest of the computing nodes. For simulating the

variable favorableness of the ground, a random number was generated for each cell in

the grid and if that random number was greater than a pre-determined threshold, then
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Figure 7.1. Activity-based partition algorithm.
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Table 7.1. Run times for the static and activity-based partition algorithms when 3
computing nodes were used.

Grid Size Static Partition Activity Based Partition

3× 3
14.07 secs (threshold=0.5) 13.84 secs
14.07 secs (threshold=0.8) 13.15 secs
14.07 secs (threshold=0.95) 11.75 secs

5×5
35.0 secs (threshold=0.5) 59.59 secs
35.0 secs (threshold=0.8) 54.10 secs
35.0 secs (threshold=0.95) 47.65 secs

7× 7
145.0 secs (threshold=0.5) 175.48 secs
145.0 secs (threshold=0.8) 161.81 secs
145.0 secs (threshold=0.95) 147.89 secs

8× 8
201.68 secs (threshold=0.5) 276.48 secs
201.68 secs (threshold=0.8) 253.34 secs
201.68 secs (threshold=0.95) 237.37 secs

10× 10
551.74 secs (threshold=0.5) 591.85 secs
551.74 secs (threshold=0.8) 566.0 secs
551.74 secs (threshold=0.95) 539.82 secs

the cell was added to the high-activity list; otherwise it was added to the low-activity

list. Table 7.1 shows the result of applying the activity-based partition algorithm

to different grid sizes when 3 computing nodes with 1 head node were used and the

model was run for a simulation time of 10 days..

It can be noticed from table 7.1 that the performance of the activity-based parti-

tion algorithm increases as the grid size is increased. Also notice that as the threshold

value is increased, the run time of the activity-based partition algorithm decreases

significantly.

Table 7.2 shows the result of applying the activity-based partition algorithm to

different grid sizes when 5 computing nodes with 1 head node were used and the

model was run for a simulation time of 10 days. A threshold value of 0.95 was used

for the activity-based partition algorithm.

It can be noticed from table 7.2 that the activity-based partition algorithm based
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method outperforms the static partition method.

Table 7.2. Run times for the static and activity-based partition algorithms when 5
computing nodes were used.

Grid Size Static Partition Activity Based Partition Performance Gain
10× 10 605.52 secs 536.69 secs 12.8%
15× 15 2784.78 secs 2497.27 secs 11.5%

One of the main reasons for the low performance of an algorithm which uses the

DEVS-RMI environment is the overhead due to communication between the nodes.

Zhang [30] discusses techniques such as workload injection to improve the performance

of the DEVS-RMI environment. More research needs to be done to explore techniques

which can reduce the communication overhead in the DEVS-RMI environment.
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Chapter 8

Conclusions and Future Work

In order to study spatio-temporal systems with heterogeneous activity we need to

address two major problems associated with them. The first problem that needs to

be addressed is that such complex real world systems extend over very large spatial

and temporal domains and consume so many computational resources to simulate that

it is not possible to study them with currently available computational resources. The

second problem that needs to be addressed is that the data available for understanding

such systems is limited because they are spread over space and time making it hard

to obtain measurements both at the micro and macro levels. The second problem also

makes it difficult to get the data for validation of their constituent processes while

simultaneously considering their global behavior. One particular example of a spatio-

temporal model with heterogeneous activity behavior is the valley fever fungus model

which was considered in this dissertation. The valley fever fungus model was spread

over a large spatial grid in the arid Southwest and it typically needed to be simulated

over several decades of time to obtain useful information. It was also hard to get the

temperature and moisture data (which are two critical factors on which the survival

of the valley fever fungus depends) at every grid point of the spatial domain over

the region of study. The valley fever model has spatial heterogeneity as the ground

on which it is modeled has variable favorableness. It has temporal heterogeneity

as the temperature and moisture models which decide the two critical factors on

which the survival of the valley fever fungus depends vary with time. In order to

address the first problem, we developed a method based on the discrete event system

specification which exploits the heterogeneity in the activity of the spatio-temporal

system by allocating more computational resources to the regions of high activity
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and less computational resources to the regions of low activity. Also, a method based

on the discrete event system specification has been shown to be effective in solving

relatively simple partial differential equation systems which are typical examples of

systems which have heterogeneous activity behavior in space and time. The benefit

of addressing the first problem was that it helped us to address the second problem.

In order to address the second problem we made use of a multilevel methodology

which was based on modeling and simulation and systems theory. This methodology

helped us in the construction of models with different resolutions(base and lumped

models). This allowed us to refine an initially constructed lumped model with detailed

physics-based temperature and moisture models and assess whether they improve on

the original lumped models. For that assessment, we used the concept of experimental

frame to delimit where the improvement was needed. This allowed us to work with the

available data, improve the component models in their own experimental frame and

then move them to the overall frame. In this dissertation, we developed a multilevel

methodology and applied it to a valley fever model. Moreover, we studied the model’s

behavior in a particular experimental frame of interest, namely the formation of new

sporing sites.

In this dissertation, we also have shown a simple activity-based partition algo-

rithm for doing distributed simulation of the valley fever model. The experiments

suggest that the performance advantage of using the activity-based partition algo-

rithm increases as the cell space is increased. More research needs to be done in

this area to develop techniques to reduce the communication overhead caused due to

DEVS-RMI.

We have experimented with the concept of parameter morphism to see if we can

get the lumped model to behave as close as possible to the base model within a

given experimental frame. More research needs to be done in this area to develop a

mathematical framework to modify the parameters which bring the behavior of the

lumped model as close as possible to the base model within a given experimental
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frame.
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