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Seasonal  Flux  and  Assemblage  Composition  of  Planktic  

Foraminifera  from t he  Northern  Gulf  of  Mexico  

By  Kathy  A.  Tedesco,  Jessica  W.  Spear,  Eric  Tappa,  and  Richard  Z.  Poore   

Abstract  

A  year-long sediment-trap experiment  was  conducted in the  northern  Gulf  of  Mexico (GOM)  

between January and December  2008 to  study the  flux and assemblage  composition of  planktic  

foraminifera  from  the  region for  comparison with concurrent  hydrographic  and climatic  measurements.   

Ten species,  or  varieties,  of  planktic  foraminifera  constitute  >80 percent  of  the  assemblage: 

Globigerinoides  ruber  (pink and white  varieties),  Gs.  sacculifer, Globigerina calida,  Globigerinella 

aequilateralis,  Globorotalia menardii  group,  Gt.  crassaformis,  Gt.  truncatulinoides,  Pulleniatina  spp.,  

and Neogloboquadrina dutertrei.   The  mean daily flux is  about  200 tests  per  meter  square  per  day (m-2  

day-1)  with  the  maximum  fluxes  of   >600  tests  m-2  day-1  occurring  during October-March and minimum  

fluxes  of  <30 tests  m-2  day-1  during April-June.   The  annual  flux  is  weighted toward  October-March;  

approximately 73.2  percent  of  the  total  annual  flux  is  produced during this  period,  while  the  April-June  

and July-September  fluxes  make  up 14  percent  and  12  percent,  respectively.   During  2008,  Gs.  ruber  

(white)  contributed ~1.5  percent  to  the  total  annual  flux and  averaged 4.5  percent  during April-

September,  the  period of  highest  fluxes  for  this  species.   Results  from  previous  work in the  GOM  show  

Gs.  ruber  (white)  contributing 20-30  percent  of  the  late  Holocene  sediment  record.  
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Introduction  

To better  anticipate  future  changes  in the  Earth’s  climate,  natural  and anthropogenic  influences  

on the  climate  system  must  be  differentiated.   Paleoclimate  reconstructions  provide  information  on the  

rate  and extent  of  pre-anthropogenic  climate  variability,  which  is  critical  to understanding  natural  

climate-forcing mechanisms  and feedbacks.   The  accuracy of  these  reconstructions  depends  on the  

reliability of  the  proxies  used.   

Quantitative  analysis  of  planktic  foraminiferal  abundance  and shell  chemistry has  improved our  

understanding of  paleoenvironmental  change  in  the  world oceans  (Imbrie  and  Kipp,  1971;  CLIMAP,  

1976;  1981;  Ruddiman,  1985).   The  faunal  assemblage  composition and flux  are  indicators  of  local  

environmental  parameters,  such as  temperature,  salinity,  nutrients,  and  productivity  (Bé,  1959;  1960;  Bé  

and Tolderlund,  1971;  Prell  and Curry,  1981;  Kroon,  1990).   Sediment-trap studies  have  greatly  

increased our  understanding of  the  ecology of  planktic  foraminifera  and,  thus,  our  interpretation  of  

paleoceanographic  reconstructions.   These  studies  supply key information  for  relating  planktic  

foraminiferal  flux  and assemblage  composition to overlying environmental  conditions  (Kemle-von  

Mücke  and Oberhänsli,  1999;  Fairbanks  and Wiebe,  1980;  Ravelo and  others,  1990).   

No sediment-trap studies  and relatively  few  plankton tow  studies  that  describe  Gulf  of  Mexico 

planktic  foraminifera  populations  in  detail  (Bé,  1982;  Ravula,  2004)  have  been done.   Previous  efforts  

to reconstruct  late  Pleistocene  and Holocene  climate  history for  the  Gulf  of  Mexico involving  the  

abundance  and shell  chemistry (Mg/Ca  and 18δ O)  of  planktic  foraminifera  have  based their  

interpretations  on the  sensitivity of  certain species  to glacial  versus  interglacial  conditions  (Leventer  and 

others,  1982;  1983;  Kennett  and  others,  1985;  Flower  and Kennett,  1990;  Poore  and others,  2003)  or  

sediment-trap data  from  the  Sargasso Sea  (Flower  and others,  2004;  LoDico  and others,  2006;  Richey  

and others,  2007).   In  this  paper,  we  present  sediment-trap results  from  the  northern  Gulf  of  Mexico 
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collected between January and December  2008 for  direct  comparison with the  climatology and  

hydrography on  seasonal  scales.   

Regional Setting  

The  Gulf  of  Mexico (GOM)  is  a  semi-enclosed basin surrounded by  the  Gulf  Coast  of  the  United 

States,  Mexico,  and Cuba  (fig.  1).   Sea-surface  temperature  (SST)  at  the  trap site  ranges  from  a  winter  

low  of  around 21°C  to  a  gradually  increased high of  30°C (World Ocean Atlas  2005 data  cited in  

Locarnini  and others,  2006)  as  the  Western Hemisphere  Warm  Pool  extends  to the  northern  GOM.   Sea-

surface  salinity (SSS)  ranges  from  about  35  practical  salinity units  (psu)  in the  winter  to 32  psu in the  

summer  (World  Ocean Atlas  2005 data  cited  in Antanov and others,  2006).    

The  GOM  is  connected to the  Caribbean and tropical  North Atlantic  through  the  Loop  Current  

(LC).   The  GOM,  Caribbean  Sea,  and  western tropical  North Atlantic  comprise  the  Atlantic  Warm  Pool  

(AWP),  the  Atlantic  portion  of  the  Western Hemisphere  Warm  Pool.   The  AWP  is  defined by the  region 

covered by water  warmer  than  28.5ºC  and constitutes  a  large  part  of  the  tropical  heat  engine,  supplying 

moisture  to the  atmosphere  and latent  heat  to North America  as  it  evolves  from  early spring  to early  fall  

(Wang and Enfield,  2001;  Wang and  others,  2006).   World Ocean Atlas  2005  climatology indicates  the  

trap site  is  part  of  the  AWP  during July,  August,  and September  (summer)  (Locarnini  and others,  2006).   

The  LC  is  a  surface  current  that  enters  the  GOM  between Cuba  and the  Yucatan Peninsula  and typically 

loops  east  and south before  exiting  through  the  Florida  Straits.   A  statistical  analysis  of  LC  frequency in 

the  western GOM,  spanning 27 years  (1976-2003),  suggests  LC  penetration to the  trap  site  occurs   

minimally (4-6 percent  of  the  time).   In  addition,  eddies  shedding off  the  LC,  at  intervals  ranging from  

6-17 months,  were  found  to reach the  trap site  only  about  5 percent  of  the  time  (Vukovich,  2005).   

7  



 

Figure  1.  Location  of  the  sediment  trap  mooring  (inverted  triangle)  and  its  proximity  to  the  Pigmy  Basin  (black  dot) i n  

the  northern  Gulf  of  Mexico.   Bathymetric  lines  are  in  meters.  

Materials and Methods  

A  sediment-trap mooring,  equipped with  a  McLane  Mark 78 sediment  trap with 21  sample  cups  

(fig.  2),  was  deployed in  the  northern GOM  in  early January 2008.  The  sediment  mooring  is  located at  

27.5ºN.  and 90.3ºW.  in  ~1,150  meters  (m) of  water  depth,  and the  trap  is  positioned at  700  m  of  water  depth 

on the  mooring to  guarantee  the  collection  of  deeper  dwelling species  of  planktic  foraminifera  (for  

example,  Globorotalia spp.).   Each  cup contains  a  buffered (sodium  borate)  formalin solution to poison 

and preserve  the  samples  (Tedesco and Thunell,  2003).   Each trap sample  represents  a  1-week collection 

period,  and  the  trap was  recovered and redeployed every 3 months.    During  cruises  to the  trap site,  

conductivity-temperature-depth  (CTD)  measurements  were  conducted using a  Sea-Bird  Electronics  

SBE-16plus  to provide  seasonal  profiles  of  temperature  and salinity (fig.  3).   

The  sediment-trap samples  were  wet  split  into  four  aliquots  using a  precision rotary  splitter  at  

the  University of  South  Carolina  and then  stored in  buffered  deionized water  and  refrigerated.   A  quarter  

split  was  wet  sieved over  a  150-micrometer  (µm)  sieve  and subsequently wet  picked for  all  

foraminifera.   To  supplement  total  test  counts  in  intervals  with  less  than 300 foraminifera,  we  sieved 

and picked an additional  one-quarter  split  and summed the  counts.   All  planktic  foraminifera  were  

identified to  species.   The  species  counts  are  reported as  flux in  tests  per  meter  square  per  day.  

Figure  2.  McLane  Mark  78  automated  sediment  trap  equipped  with  21  cups.  
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 Results and Discussion  

Climatology  and Hydrography  

During 2008,  the  annual  range  of  SSTs  was  about  6°C,  from  24ºC  in January to  29.6ºC  in  July 

(fig.  3,  top panel).   During  January-March (winter),  the  surface  mixed-layer  depth is  about  100 m.   The  

mixed layer  begins  to  shoal  in April-June  (spring)  to about  75  m  and by July-September  (summer),  a  

strong thermocline  develops  at  35  m,  and the  water  becomes  more  stratified.   By October-December  

(fall),  the  mixed layer  deepens  to 70 m.   Sea-surface  salinity was  highest  in January (36.5 psu),  as  

expected,  due  to higher  rates  of  evaporation.   Sea-surface  salinity began to  decrease  in April  (36.2 psu)  

and was  lowest  during July (31.3  psu)  (fig.  3,  lower  panel).   

Figure  3.  Temperature  (top  panels) a nd  salinity  (lower p anels) d epth  profiles  from  this  study  (red  and  blue) a nd  

World  Ocean  Atlas  2005  climatology  (Locarnini  and  others,  2006)  for t he  trap  site  (black).   The  temperature  and  

salinity  profiles  for J anuary  include  2008  (red) a nd  2009  (blue).   m,  meters;  psu,  pratical  salinity  units.  

A  comparison of  World Ocean Atlas  climatology  2005 (WOA05)  with  temperature  data  from  

the  National  Data  Buoy Center  (NDBC),  Moderate  Resolution Imaging Spectroradiometer  (MODIS),  

and our  CTD  casts  showed that  both the  NDBC  and MODIS  data  agreed well  with the  CTD  data  (fig.4).   

In addition,  NDBC,  MODIS,  and CTD  records  indicate  that  SSTs  were  1.5-2ºC  warmer  between 

January and April  2008  than the  WOA05 climatology would predict.   World  Ocean Atlas  (2005)  

climatology also suggests  the  trap site  experienced  higher  than  average  SSS  during  most  of  2008.   The  

increase  in salinity relative  to  climatological  means  ranged from  as  large  as  +3.6  psu in  April  to +0.8 

psu in July.    
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Figure  4.  Comparison  of  sea-surface  temperature  data  from  the  NDBC,  MODIS,  and  World  Ocean  Atlas  2005  

(Locarnini  and  others,  2006) f rom  2005  to  early  2009  with  SST measurements  from  conductivity-temperature-

depth  (CTD)  casts  at  the  trap  site.  

Planktic  foraminifera  flux  and assemblage  composition  

More  than 25 species  of  planktic  foraminifera  were  identified in  the  sediment-trap material.   Ten 

species,  or  varieties,  of  planktic  foraminifera  constitute  >80 percent  of  the  assemblage:  Globigerinoides  

ruber  (d’Orbigny)  (pink and  white  varieties),  Gs.  sacculifer  (Brady),  Globigerina calida  (Parker), 

Globigerinella aequilateralis  (Brady),  Globorotalia menardii  group (The  Gt.  menardii  group includes  

Gt.  menardii  (Parker,  Jones,  and Brady),  Gt.  tumida  (Brady),  and Gt.  ungulata  (Bermudez),  Gt.  

crassaformis  (Galloway and Wissler),  Gt.  truncatulinoides  (d’Orbigny),  Pulleniatina  spp.,  and 

Neogloboquadrina dutertrei  (d’Orbigny)  (table  1,  figs.  5 and  7).   The  seasonal  range  of  several  of  these  

species  has  important  implications  for  paleoceanographic  reconstructions  of  the  region  (for  example,  

Gs.  ruber, Gs.  sacculifer).   

Table  1.   Planktic  foraminifera  flux  (tests  per s quare  meter p er d ay,  m-2 d-1) a nd  percent  contribution  (in   

parentheses) t o  the  total  assemblage  for t he  10  dominant  species.   

The  mean daily  flux  of  planktic  foraminifera  recovered from  the  sediment  trap in  2008 was  

about  200 tests  m-2  day-1  (fig.  5 and  table  1).   The  fall  and winter  assemblages,  combined,  account  for  

73.2  percent  of  the  total  annual  flux  and dominate  the  annual  flux.   The  spring  and summer  contribute 

~14  percent  and 12  percent,  respectively,  to  the  annual  flux.   The  mean winter  seasonal  flux is  ~300  

tests  m -2  day-1  with  a  maximum  daily flux of   ~600  tests  m-2  day-1.   The  mean  seasonal  flux in the  spring 

decreases  to ~110 tests  m-2  day-1  with  the  lowest  average  flux in  the  summer  of  about  94  tests  m-2  day-1.   

The  fall  mean flux  is  close  to that  of  winter,  ~288  tests  m-2  day-1,  with a  daily  maximum  flux  of  ~640  

tests  m -2  day-1  in  late  fall  as  well.   
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Figure  5.  Weekly  flux  (tests  per m eter s quare  per d ay,  m-2  day-1) o f  all  planktic  foraminifera  and  the  10  most  

abundant  species/groups  during  2008.   Note  the  scale  changes  in  the  y-axes.  

The  diversity of  species  was  measured as  the  total  number  of  species  identified for  each interval  

(that  is,  species  richness)  (fig.  6).   Diversity ranged  from  11 to  20 different  species  and averages  15.1 

±2.4 throughout  2008.   The  average  number  of  species  did not  change  substantially from  winter  (15.1  

±2.2)  to  spring (15.4 ±2.7).  Diversity in  the  summer  (14.7 ±3.1)  was  not  significantly different  from  the  

winter  and spring.   However,  there  was  a  sharp decrease  in diversity in  mid-June,  from  18 species  to 11 

species,  when the  deeper  dwelling species  (for  example,  Globorotalia spp.)  are  absent.   Species  

diversity remains  low,  averaging 11.6 ±0.9  species,  until  mid-July  when it  increases  for  2  weeks  to 16.5 

species  before  decreasing to an average  of  13.3  ±1.9 until  mid-September.   Diversity increases  to 19.5  

species  for  the  last  2 weeks  of  September  before  lowering back down to  an average  of  15.6 ±1.3  during 

the  fall.  

Figure  6.  Species  diversity  during  2008.   The  x-axis  is  the  mid-week  day  for e ach  7-day  collection  period.   On  

average,  species  diversity  is  lowest  during  the  majority  of  the  summer.   There  is  a  large  decrease  in  diversity  in  

mid-June  and  the  end  of  July,  when  the  deeper d welling  species  are  absent.  

Globorotalia truncatulinoides  dominates  the  winter  assemblage  with fluxes  up to  450 tests  m -2  

day-1  and contributing 46  percent  to  the  assemblage  (fig.  7).   In  the  spring,  total  fluxes  begin  to decrease.   

The  abundance  of  the  shallow-dwelling,  symbiont-bearing species  Gs.  ruber  (white  and pink varieties)  

increases,  whereas  the  deeper  dwelling,  omnivorous  species  Gt.  truncatulinoides, Pulleniatina  spp.,  and 

N.  dutertrei  decrease.   As  SST i ncreases  during summer  and the  water  becomes  more  stratified,  the  

seasonal  average  flux reaches  its  lowest  values.   The  deeper  dwelling foraminifera  disappear  during  late  

spring and summer,  causing a  sharp decline  in  species  diversity in mid-June.   Globigerinoides  ruber  
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(pink)  dominates  the  summer  assemblage  with fluxes  as  high as  102 tests  m-2  day-1.   This  species  

contributes  between 13 and 55  percent  to  the  assemblage,  while  Gs.  ruber  (white)  rarely exceeds  10 

percent.   By  the  fall,  Gs.  ruber  (white  and pink  varieties)  fluxes  decrease,  fluxes  of  Gl.  aequilateralis, 

Gt.  crassaformis, Gt.  menardii  group,  N.  dutertrei  increase,  and the  assemblage  is  dominated by 

Pulleniatina spp.  with  fluxes  up to  322 tests  m-2  day-1  and contributing 37  percent  to  the  assemblage.   

The  seasonal  variations  in total  foraminiferal  flux and assemblage  composition relate  to changes  

in hydrographic  conditions  in the  overlying  surface  waters.   The  winter  assemblage  in the  GOM  

sediment  trap is  most  abundant  in the  deep-dwelling species  Gt.  truncatulinoides,  a  finding similar  to  

those  of  other  sediment-trap studies  from  the  Sargasso Sea  (Deuser  and others,  1981;  Deuser  and Ross,  

1989).   Lohmann  and Schweitzer  (1990)  have  suggested that  Gt.  truncatulinoides  needs  deep mixing  

and low-density stratification  to introduce  juvenile  specimens  from  the  deep  into surface  waters.   In 

subtropical  waters,  the  primary  calcification of  Gt.  truncatulinoides  begins  in weakly stratified winter  

surface  waters  (Hemleben and others,  1985;  Deuser  and Ross,  1989;  Lohmann and  Schweitzer,  1990).   

This  may explain the  high abundance  of  Gt.  truncatulinoides  in the  winter  in  the  northern GOM,  when 

SSTs  are  lower  and the  water  column  is  less  stratified.   

Figure  7.  Total  planktic  foraminifera  flux  (tests  m-2  day-1) ( top  panel) a nd  weekly  percent  abundance  of  the  10  most  

abundant  species/groups  of  planktic  foraminifera  during  2008.   Note  the  scale  changes  in  the  y-axes.  

Globigerinoides  ruber  is  a  subtropical  to tropical  species  that  lives  in the  upper  50 m  of  the  

photic  zone  and is  often used in low-latitude  paleoceanographic  reconstructions  (Keigwin,  1996;  Flower  

and others,  2004;  Schmidt  and others,  2004;  Richey and others,  2007).   It  occurs  in two  forms,  pink  and 

white,  distinguished by the  presence  of  pink  pigmentation that  ranges  in coverage  from  the  proloculus  to 

the  entire  test.   Numerous  studies  over  the  past  four  decades  demonstrate  the  difference  in ecology 

between the  two varieties  including  temperature  tolerance  (Bijma  and others,  1990),  seasonality (Bé,  
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1960;  Deuser  and others,  1981),  depth  preference  (Bé,  1982;  Anand and  others,  2003),  latitudinal  

distribution (Bé,  1959;  Bé  and  Hamlin,  1967;  Bé  and others,  1971;  Bé  and Tolderlund,  1971;  Zaric  and 

others,  2005),  seasonal  average  weights  (Deuser  and others,  1981),  and stable-isotope  ratios  of  carbon 

and oxygen (Deuser  and Ross,  1989).   In  fact,  recent  RNA  analyses  on the  two varieties  reveal  an 

adequate  genetic  difference  for  species-level  distinction (Darling  and Wade,  2008).  

Confined to the  Atlantic  since  120,000  years  ago (Thompson and others,  1979),  Gs.  ruber  (pink)  

is  a  major  contributor  to the  assemblage  in the  southern subtropical  to  tropical  waters  within the  North 

Atlantic  but  typically  does  not  dominate  the  assemblage  (Bé  and Hamlin,  1967;  Bé  and others,  1971).   

In  this  study,  however,  Gs.  ruber  (pink)  was  much more  abundant  than Gs.  ruber  (white),  with  fluxes  of  

102 tests  m-2  day-1  compared with  a  maximum  flux  of  13  tests  m-2  day-1  for  the  white  variety.    

Sediment-trap experiments  assume  that  the  material  collected in  the  trap  is  representative  of  that  

reaching the  seafloor.   In results  from  previous  studies  in the  Gulf  of  Mexico (Kennett  and others,  1985;  

LoDico and others,  2006;  Poore  and  others,  in press),  Gs.  ruber  (white  and pink)  makes  up ~30-45  

percent  (fig.  8)  of  the  total  assemblage,  while  Gs.  ruber  (pink)  only  contributes  around  8-10  percent.   

However,  in the  trap  material  collected in 2008,  Gs.  ruber  (white)  contributes  on average  <2 percent  to 

the  total  annual  flux,  while  Gs.  ruber  (pink)  contributes  9.75 percent  which,  when combined,  only  

account  for  ~11  percent  of  the  annual  flux.   Sediment-core  and plankton-tow  studies  of  Gs.  ruber  in the  

Atlantic  have  demonstrated that  the  abundances  from  tows  show  a  similar  pattern with  those  in  the  

underlying sediments  (Kemle-von Mücke  and Oberhänsli,  1999).   We  currently do  not  understand the  

unusually low  fluxes  of  Gs.  ruber  (white).   The  comparison of  WOA05 regional  climatology  to NDBC  

and MODIS  data  back to  2005 with  our  CTD  data  from  2008  indicate  2008  was  not  anomalous.     

13 
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Figure  8.  Faunal  assemblage  data  from  nearby  Pigmy  Basin  (Poore  and  others,  in  press)  shows  the  abundance  of  

Gs.  ruber  (white  and  pink) w as  on  average  31  percent  of  the  total  planktic  foraminifera  population  during  the  last  

2000  years  and  rarely  fell  below  20  percent.   

Conclusions  

New  sediment-trap data  from  the  northern  GOM  indicate  the  seasonal  variability in the  flux  of  

planktic  foraminifera  closely tracks  changes  in hydrography.   Species  diversity peaks  in  early spring  and 

late  summer.   The  highest  fluxes  of  non-spinose  species  (for  example,  Gt.  truncatulinoides  and 

Pulleniatina spp.)  occurred during  the  fall  and winter,  when the  depth of  the  mixed layer  was  greatest.   

The  highest  fluxes  of  symbiont-bearing  spinose  species  (for  example,  Gs.  ruber)  occurred  during  the  

summer,  when the  water  column  was  thermally stratified and SSTs  were  greatest.    
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