Skip Links

USGS - science for a changing world

Open-File Report 2012–1133

Prepared in cooperation with the U.S. Army Corps of Engineers

An Environmental Streamflow Assessment for the Santiam River Basin, Oregon

By John C. Risley, J. Rose Wallick, Joseph F. Mangano, and Krista L. Jones

Thumbnail of and link to report PDF (6.7 MB)Abstract

The Santiam River is a tributary of the Willamette River in northwestern Oregon and drains an area of 1,810 square miles. The U.S. Army Corps of Engineers (USACE) operates four dams in the basin, which are used primarily for flood control, hydropower production, recreation, and water-quality improvement. The Detroit and Big Cliff Dams were constructed in 1953 on the North Santiam River. The Green Peter and Foster Dams were completed in 1967 on the South Santiam River. The impacts of the structures have included a decrease in the frequency and magnitude of floods and an increase in low flows. For three North Santiam River reaches, the median of annual 1-day maximum streamflows decreased 42–50 percent because of regulated streamflow conditions. Likewise, for three reaches in the South Santiam River basin, the median of annual 1-day maximum streamflows decreased 39–52 percent because of regulation.

In contrast to their effect on high flows, the dams increased low flows. The median of annual 7-day minimum flows in six of the seven study reaches increased under regulated streamflow conditions between 60 and 334 percent. On a seasonal basis, median monthly streamflows decreased from February to May and increased from September to January in all the reaches. However, the magnitude of these impacts usually decreased farther downstream from dams because of cumulative inflow from unregulated tributaries and groundwater entering the North, South, and main-stem Santiam Rivers below the dams. A Wilcox rank-sum test of monthly precipitation data from Salem, Oregon, and Waterloo, Oregon, found no significant difference between the pre-and post-dam periods, which suggests that the construction and operation of the dams since the 1950s and 1960s are a primary cause of alterations to the Santiam River basin streamflow regime.

In addition to the streamflow analysis, this report provides a geomorphic characterization of the Santiam River basin and the associated conceptual framework for assessing possible geomorphic and ecological changes in response to river-flow modifications. Suggestions for future biomonitoring and investigations are also provided. This study was one in a series of similar tributary streamflow and geomorphic studies conducted for the Willamette Sustainable Rivers Project. The Sustainable Rivers Project is a national effort by the USACE and The Nature Conservancy to develop environmental flow requirements in regulated river systems.

First posted July 9, 2012

For additional information contact:
Director, Oregon Water Science Center
U.S. Geological Survey
2130 SW 5th Avenue
Portland, Oregon 97201
http://or.water.usgs.gov

Part or all of this report is presented in Portable Document Format (PDF); the latest version of Adobe Reader or similar software is required to view it. Download the latest version of Adobe Reader, free of charge.


Suggested citation:

Risley, J.C., Wallick, J.R., Mangano, J.F., and Jones, K.F., 2012, An environmental streamflow assessment for the Santiam River basin, Oregon: U.S. Geological Survey Open-File Report 2012-1133, 66 p.



Contents

Abstract

Introduction

Methods

Streamflow Assessment

Geomorphic and Ecological Synopsis

Future Studies

Summary

Acknowledgements

References Cited

Appendix A. Streamflow Data Time-Series Extension

Appendix B. U.S. Army Corps of Engineers Computed Unregulated Streamflow Data Time Series

Appendix C. Indicators of Hydrologic Alteration Results

Appendix D. Description of Study Reaches


Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: http://pubsdata.usgs.gov/pubs/of/2012/1133/index.html
Page Contact Information: GS Pubs Web Contact
Page Last Modified: Saturday, 12-Jan-2013 15:17:29 EST