Skip Links

USGS - science for a changing world

Open-File Report 2014–1177

Prepared in cooperation with the U.S. Army Corps of Engineers

Behavior and Dam Passage of Juvenile Chinook Salmon at Cougar Reservoir and Dam, Oregon, March 2012–February 2013

By John W. Beeman, Hal C. Hansel, Amy C. Hansen, Scott D. Evans, Philip V. Haner, Tyson W. Hatton, Eric E. Kofoot, Jamie M. Sprando, and Collin D. Smith

Thumbnail of and link to report PDF (3.4 MB)Abstract

The movements and dam passage of individual juvenile Chinook salmon (Oncorhynchus tshawytscha) were studied at Cougar Reservoir and Dam, near Springfield, Oregon, during 2012 and 2013. Cougar Dam is a high-head flood-control reservoir with a temperature control tower as its outlet enabling selective withdrawals of water at various depths to control the temperature of water passed downstream. This report describes the second year of a 2-year study with the goal of providing information to inform decisions about future downstream passage alternatives. Inferences were based on the behavior of yearling-size juvenile Chinook salmon implanted with acoustic transmitters. The fish were released near the head of the reservoir during the spring (March, April, and May) and fall (September, October, and November) of 2012. Most tagged fish were of hatchery origin (468 spring, 449 fall) because of the low number of wild fish captured from within the reservoir (0 spring, 65 fall). Detections at hydrophones placed in several lines across the reservoir and within a collective system used to estimate three-dimensional positions near the temperature control tower were used to determine fish behavior and factors affecting dam passage rates. Most tagged fish made repeated non-random migrations from one end of the reservoir to the other and took a median of 3.7–11.7 days to travel about 7 kilometers from the release site to within about 100 meters of the temperature control tower, depending on season and origin. Reservoir passage efficiency (percentage of tagged fish detected at the head of the forebay) was 97.8 percent for hatchery fish and 74.2 percent for wild fish. Tagged fish commonly were within about 100 meters of the temperature control tower, and often spent considerable time near the entrance to the tower; however, the dam passage efficiency (percentage of dam passage of fish detected at the head of the forebay) was low for fish released during the spring (11.1 percent) and moderate for fish released during the fall (58.1 percent for hatchery fish, 65.2 percent for wild fish) over the 90th percentile of the empirically determined tag life, which was about 90 days. The primary factors affecting the dam passage rate were diel period, dam discharge, and reservoir elevation, and most passage occurred during conditions of night, high dam discharge, and low reservoir elevation. Most fish entering the temperature control tower passed the dam without returning to the reservoir. The common presence of tagged fish near the tower entrance and high proportion of dam passage after tower entry suggests that the primary cause of the poor dam passage rate was the low rate of tower entry. We hypothesize that fish reject the tower entrance because of low water velocities contributing to a small flow field, an abrupt deceleration at the trash rack, or a combination of those two conditions. Results of a controlled test of head differential (the difference between water elevation outside and inside the temperature control tower) indicated weak statistical support (P= 0.0930) for a greater tower entry rate when the differential was 0.65–1.00 foot compared to 0.00–0.30 foot. Results from hatchery and wild fish were similar, with the exception of the reservoir passage efficiency, indicating hatchery fish were suitable surrogates for the wild fish for the purpose of this study.

First posted August 25, 2014

For additional information, contact:
Director, Western Fisheries Research Center
U.S. Geological Survey
6505 NE 65th Street
Seattle, Washington 98115
http://wfrc.usgs.gov/

Part or all of this report is presented in Portable Document Format (PDF). For best results viewing and printing PDF documents, it is recommended that you download the documents to your computer and open them with Adobe Reader. PDF documents opened from your browser may not display or print as intended. Download the latest version of Adobe Reader, free of charge. More information about viewing, downloading, and printing report files can be found here.


Suggested citation:

Beeman, J.W., Hansel, H.C., Hansen, A.C., Evans, S.D., Haner, P.V., Hatton, T.W., Kofoot, E.E., Sprando, J.M., and Smith, C.D., 2014, Behavior and dam passage of juvenile Chinook salmon at Cougar Reservoir and Dam, Oregon, March 2012–February 2013: U.S. Geological Survey Open-File Report 2014-1177, 52 p., https://dx.doi.org/10.3133/ofr20141177.

ISSN 2331-1258 (online)



Contents

Abstract

Introduction

Methods

Results

Discussion

Acknowledgments

References Cited

Appendix A.  Transition Probabilities and Model Comparisons from the Assessment of Upstream and Downstream Movements of Juvenile Chinook Salmon in Cougar Reservoir, 2012 Spring and Fall Study Periods


Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: http://pubsdata.usgs.gov/pubs/of/2014/1177/index.html
Page Contact Information: GS Pubs Web Contact
Page Last Modified: Wednesday, 07-Dec-2016 19:38:44 EST