

GEOLOGY AND
EXPLORATION OF THE

**NATIONAL
PETROLEUM
RESERVE
IN ALASKA,**

1974 to 1982

USGS tent camp at Drenchwater Creek, East Ramparts, De Long Mountains, Alaska, August 1951. Copyrighted painting, used by permission of Marvin D. Mangus, Anchorage, Alaska.

2. HISTORY OF EXPLORATION IN THE NATIONAL PETROLEUM RESERVE IN ALASKA, WITH EMPHASIS ON THE PERIOD FROM 1975 TO 1982

By JOHN F. SCHINDLER¹

INTRODUCTION

When the Department of the Navy conducted exploration for oil in Naval Petroleum Reserve No. 4 during the years 1944 to 1953, the stated aim was to ascertain whether or not petroleum existed in commercial amounts in the Alaskan Arctic (Reed, 1958). Those original efforts resulted in a partial appraisal and the discovery of two widely separated possible oil fields (the Umiat and Simpson discoveries), a gas field (South Barrow field) and other gas accumulations of undetermined size. The discovery of gas deposits in the Arctic was of little interest to the Navy at that time. During the intervening years, geologic, seismic, and logistic methods and techniques became much more sophisticated. The so-called second exploration, 1975 to 1982, had the advantage of the knowledge previously gained and the improved techniques of investigation and operation.

When Public Law 94-258 transferred the reserve and the responsibility for its exploration from the Secretary of the Navy to the Secretary of the Interior, a subtle change took place in exploration philosophy. The congressional mandate directed the Secretary of the Interior to learn as much as possible about the reserve and its renewable and nonrenewable resources in order to

plan its wise management and utilization. The principal aim of this second period of exploration became the acquisition of knowledge—the discovery of oil or gas was a hoped-for, but yet secondary, objective.

This report provides a historical overview of this more recent (1975-1982) exploration. It was prepared originally to serve as a unifying prologue for a series of contract reports by Husky Oil NPR Operations, Inc., concerning various phases of the project (see list at end of chapter).

The program of Government exploration and investigation of the oil resources of the Alaskan North Slope spans a period of 38 years (1944 to 1982) and has witnessed the use of many types of equipment, methods of investigation, and logistical support. All of this reflects the progress in technology and an increased respect for the environment. The severe climate of the Arctic has been an overriding influence affecting plans, budgets, and operations. Few other areas of the world require such attention to climatic constraints.

The second (1975-1982) exploration program was built on the earlier experience of the U.S. Navy and also on lessons learned at Prudhoe Bay. It evolved into a sophisticated operation and its successful execution is a tribute to all of the personnel involved.

THE ALASKAN ARCTIC

The Arctic Slope of Alaska extends northward from the Brooks

Range to the Arctic Ocean and from Cape Lisburne on the west to the United States-Canadian border on the east (for general descriptions, see Brooks, 1906; Reed, 1958). It covers more than 960 km (600 mi) from east to west and 320 km (200 mi) from north to south, and its area includes one-seventh of the State of Alaska. Much of the Arctic Slope is within the National Petroleum Reserve in Alaska (NPRA). The reserve boundary (pl. 2.1) extends due south from Icy Cape (approximate long 162°W.) to the drainage divide of the Brooks Range. It then follows that divide eastward to long 156°10' W., from where it trends due north to the Colville River. It then follows the Colville to the mouth of the river at approximately lat 70°25' N., long 151°20' W. The area of the reserve encompasses approximately 95,000 km² (37,000 mi²) of Arctic terrain.

The Arctic Slope is divided into three physiographic provinces—the coastal plain, the foothills, and the northern slope of the Brooks Range. Each of these provinces has its own unique topography, geology, soil, vegetation, and to some extent climate (pl. 2.1).

THE COASTAL PLAIN

The elevation of the coastal plain ranges from sea level to between 150 and 300 m (500-1,000 ft). It is flat, poorly drained, and underlain almost everywhere by permafrost. Frost polygons with both high and low centers are common, especially where there is a vegetative cover

Manuscript received for publication on April 16, 1985.

¹Husky Oil NPR Operations, Inc.; present affiliation: U.S. Minerals Management Service, Anchorage, AK 99508.

(fig. 2.1). About one-fifth of the coastal plain is covered with lakes, which are frozen for nine months of the year. Streams thaw in June and meander toward the coast in

broad, shallow silty channels, often braided. Much of the soil is unconsolidated silt and sand, and it generally contains dark-reddish-brown organic material near the

FIGURE 2.1.—Arctic Alaska coastal plain east of Dease Inlet, 1979. Polygons (5-12 m on a side) outlined by ice wedges are most common feature. Photograph by S. Krogstad.

FIGURE 2.2.—Foothills province near Archimedes Ridge, August 1978, showing variation of topography in the province. View north-northwestward; photograph by D. Braden.

surface. Deposits of peat are common. Flood-plain deposits along the rivers and lakes have been sorted by wind and water. The climate of the coastal plain (see Black, 1954) is modified by the cool ocean. The average temperature of the three summer months at the point farthest north (Barrow) is only 3 °C (38 °F), and there are only about 60 days above freezing during the entire summer. During the summer months, winds average more than 19 km/h (12 mi/h), and most of the time it is cloudy or foggy.

THE FOOTHILLS

The foothills province consists of rolling hills and valleys with poorly drained lowlands. It is a treeless belt that extends along the entire north side of the Brooks Range, varying in width from about 30 km (20 mi) near the United States-Canadian border to about 130 km (80 mi) in the vicinity of the Colville River. The foothills rise from about 215 m (700 ft) along the northern boundary to as much as 1,220 m (4,000 ft) along the southern boundary. The province consists of two subsections—northern and southern. The northern foothills are characterized by long parallel east-west ridges and valleys, the ridges being formed of rather resistant sandstone and conglomerate (fig. 2.2). The southern foothills have a more complex topography: isolated hills of sandstone or limestone are separated by lowlands underlain by softer shale. The province has three widespread types of soil: (1) the residual silty soils of the uplands, (2) the peat deposits of the wetter lowlands and depressions, and (3) the coarse sand and gravel along the river beds and flood plains. The climate of the foothills is somewhat warmer than that of the coastal plain or the mountain provinces, and the vegetation reflects this higher temperature.

Birds are present on the reserve in large numbers and in great variety during the brief summer season. Gulls, Arctic terns, and jaegers are common, as are ptarmigan, plovers, and longspurs. Shore birds can be seen on sandy stretches of beaches, and ducks, geese, loons, and swans on the many lakes of the reserve. Hawks, including the rough-leg hawk and the peregrine falcon, are common. Many great snowy owls appear when the lemmings are numerous. For a few weeks in the summer (from about mid-June until about early August), mosquitoes are present in unbelievable swarms. They are harmless so far as disease is concerned, but all activities are plagued by them. Repellents and other sorts of protection are required in order to carry on any effective operations.

INHABITANTS

Anthropologists believe that Eskimos have inhabited the Arctic for more than 8,000 years. Two distinct groups of Eskimos are found on the North Slope: the Nunamiat, an inland people whose mode of living revolved around the caribou; and the Tareumiut, a coastal people whose lives depended on hunting sea mammals (Spencer, 1959). Historically, the Eskimo population consisted of nomadic bands who lived on fish and wildlife. Today the Eskimos of the reserve reside principally in four communities: Ukpuk-avvik (Barrow) has a population of approximately 3,000; Olgooonik (Wainwright) has a population of approximately 400; the resettled village of Atkasook (Meade River) has a population of approximately 150; and the new village of Nuiqsut on the Colville River has a population of approximately 300. The North Slope Borough estimates its total population at 7,500 persons, of whom 1,750 are concerned with the

production of oil and gas (that is, they are temporary residents of Prudhoe Bay).

The first representatives of the Western World to see Wainwright and Barrow were Captain F.W. Beechey and his crew of the H.M.S. *Blossom*. When Beechey had passed

Wainwright and was stopped by ice, he sent First Mate Thomas Elson and Seaman William Smyth in an open boat to explore northward. Beechey named the northernmost point of the coast in September 1826, for Sir John Barrow, the First Lord of the Admiralty of the

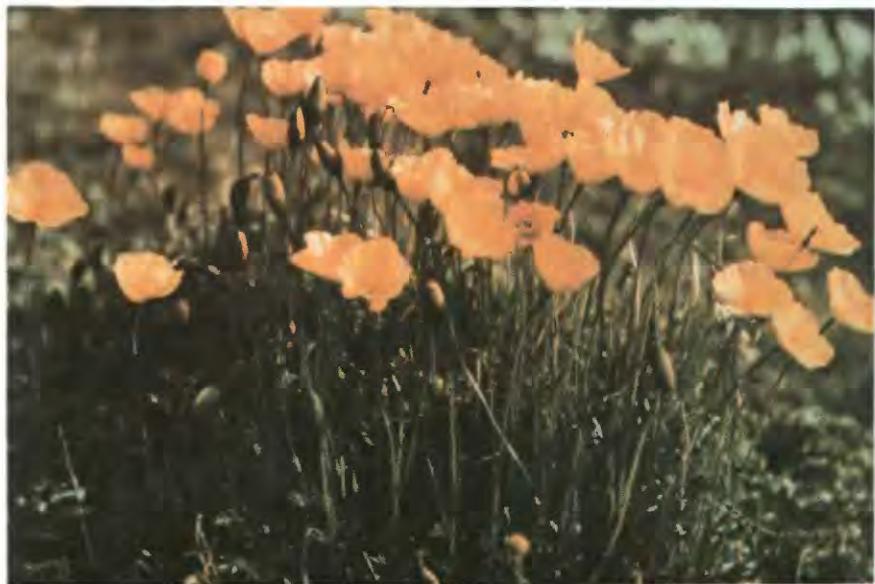


FIGURE 2.3.—Arctic poppy, *Papaver lapponicum* subsp. *occidentale*, growing near Tunalik No. 1 well in summer 1980. The plants are about 30 cm high.

FIGURE 2.4.—Arctic cotton grass, *Eriophorum vaginatum* subsp. *spissum*, growing near Walakpa No. 1 well in summer 1979. The plants are about 30 cm high.

British Naval Administration and a strong believer in exploratory navigation. The city of Barrow, about 15 km (10 mi) southwest of the point, was called Barrow by the non-Eskimo residents, because they

found it easier to pronounce than the Eskimo name (Ukpeagvik). The village of Wainwright was named by Beechey for Lt. John Wainwright, the astronomical observer and navigational officer on his ship.

Over the years, the Natives have survived sporadic contacts with the white man that have changed their way of life. They are resilient and able always to return to subsistence living when necessary. Originally the Natives succumbed to common diseases of the white man, such as measles and tuberculosis; but over the years, with increased health care and increased contact, their resistance has improved. The Eskimo people contributed greatly to the early exploration program, as well as to the later one, by sharing their experience in coping with the harsh environment.

TRAVELING

In the early days, the Eskimos traveled great distances by dog team to hunt the caribou. Today they travel by snow machine, again covering great distances pulling sleds behind them. They are often on the trail for two to three weeks following the caribou.

Travel is still most feasible during the winter, especially for large equipment. During the first period of petroleum exploration (1944-1953), large caterpillar tractors were by far the most important pieces of equipment. Tractors are still important but are being supplemented by Rolligons and other vehicles with large rubber tires. Aircraft (figs. 2.7 and 2.8) were already used during the early Navy exploration, but they have become the real work-horses of the Government's latest programs. Modern helicopters became the mode of support for almost all summer operations. Travel will be discussed again in later sections on equipment and each year's history of exploration.

ACKNOWLEDGMENTS

The success or failure of any program depends largely on the contributions of the people involved, and the credit for the successful ex-

FIGURE 2.5.—Arctic fox near weather shack at Tunalik, March 1979. Including tail, the animal is about 1 m long. Photograph by P.D.J. Smith.

FIGURE 2.6.—Caribou behind Camp Lonely, 1981. Structure in background is stored drill rig on sled. Photograph by C.K. Lee.

ploration of the NPRA belongs to all such personnel. Numerous local, State, and Federal Government agencies contributed to the program, as well as many private organizations and industrial contractors and subcontractors.

EARLY EXPLORATION

As far as the record (see Stefansson, 1922) shows, the first European to see any part of the reserve was Captain James Cook, who in 1778 entered the Bering Strait and sailed northeastward along the coast of Alaska as far as Icy Cape, where the western boundary of the reserve reaches the Arctic Ocean. It was 48 years later in 1826 that Captain F.W. Beechey pushed farther northeastward, was blocked by ice north of Franklin Point, and sent Elson and Smyth north as far as Point Barrow. At the same time, Sir John Franklin was working westward from the McKenzie River and reached a point near the eastern edge of the Colville Delta, where he too was stopped by ice. Eleven years later, in 1837, P.W. Dease and Thomas Simpson, after sailing down the McKenzie, pushed westward past the Colville and reached a point a little beyond Cape Simpson, where they landed and proceeded on foot. A short time later they reached Point Barrow, finally closing the exploration gap after the long trek from the east.

Knowledge of the north was gained from the various expeditions sent out between 1848 and 1853 to search for the missing party of Sir John Franklin, who was lost in 1845. On one of these (in 1849), Lt. Pollen sailed in a small boat from Kotzebue Sound all the way around the Arctic coast to the McKenzie River and then up the river to the Hudson Bay Company post.

In 1848 and almost annually thereafter, American whaling vessels made their way into Arctic

waters. In 1881, Lt. P.H. Ray led an international polar expedition to the vicinity of Barrow. By that time northern Alaska had been American territory for 14 years.

The first overland exploration of the reserve was made by Ensign W.L. Howard when he left the valley of the Noatak in the spring of 1886 and proceeded northeast to the valley of the Colville. He continued overland to the Chipp River, followed the river to the coast in a skin boat, and arrived at Point Bar-

row on July 15 (Croft, 1939; Riverain, 1966).

Starting in the early 1900's, the U.S. Geological Survey sponsored many parties for exploration and geologic investigation, including ones led by W.J. Peters and F.C. Schraeder in 1901 and by E. de K. Leffingwell and Anderson in 1906-1914 (see Leffingwell, 1915). Further valuable contributions were made by Vilhjálmur Stefansson between 1908 and 1918 (see Stefansson, 1922). With the establishment

FIGURE 2.7.—Loading passengers at Lonely airport for flight to Anchorage, March 1981.
Photograph by E. Grant.

FIGURE 2.8.—Lockheed Hercules C-130, the workhorse of the air logistics program, Camp Lonely, March 1981. Photograph by E. Grant.

of the Naval Petroleum Reserve by President Harding in 1923, another series of investigations by the U.S. Geological Survey was begun at the request of the Navy Department. By the late 1940's, these, together with the information from the field surveys, provided a reasonably adequate, but still generalized, picture of the major geologic features of the reserve and the surrounding areas. Geographic positions were known with reconnaissance accuracy, and topographic maps had been made of large areas.

THE U.S. NAVY SEARCH FOR OIL: 1944 TO 1953

In February of 1944, the Director of the Naval Petroleum Reserves sent a proposal to the Secretary of the Navy to undertake an exploration and test well drilling program of Naval Petroleum Reserve No. 4. By the following month the feasibility of this proposal had been determined, and the executive and legislative branches of the Government were so informed. A reconnaissance study was made in March and April of that year, and in June the President approved the project. By the end of 1944, a camp had been built near Point Barrow by a Navy construction battalion, and air service was established; the project was ready to proceed. By the spring of 1945, the first tractor-drawn sled train was hauling large tonnages over long distances; the first ship-based expedition that summer was successful, and air support was established. Information from the geological and geophysical investigations as well as from the drilling program was accumulated and interpreted.

In 1946 the operations switched from a military CB (Construction Battalion) detachment to a civilian contractor. Air photography and mapping were done, as well as airborne magnetometer surveys. The

first test hole, Umiat Test Well No. 1, was drilled to 1,830 m (6,005 ft). In 1947 more than 4,500 m (15,000 ft) of drilling was completed, and over 700,000 ton miles of winter freight was hauled. Through 1947-48, the results of the drilling were supplying an ever-increasing and ever-improving amount of background data. During 1948, Simpson Test Well No. 1 was drilled to the basement rocks in the Cape Simpson area, and a stratigraphic test well had been drilled near Barrow. In 1949 winter freighting reached a total of 1.3 million ton miles, and South Barrow Test Well No. 2 was completed as a gas well and began supplying gas to the Barrow Camp. In 1950 drilling totaled 11,000 m (36,000 ft) at 16 separate sites. Both the Umiat and Simpson wells showed indications of gas and oil. In 1951 the program was slow to start because of doubt as to whether or not it was to continue. Despite the late start, winter freighting totaled 1,860,000 ton miles, and drilling at over 20 separate sites totaled more than 14,452 m (47,710 ft). The presence of oil at Cape Simpson was verified, and the Umiat field was better defined. In 1952 only 4,615 m (15,142 ft) of hole was drilled at four sites. However, winter freighting totaled 2,412,000 ton miles.

It was decided to recess the exploration in 1953, and equipment and supplies were moved to central points for inventory, storage, or return shipment. No drilling was done, but geologic and geophysical work was continued to logical conclusions. Over the ten-year period of exploration a total of 80 holes (36 cores tests and 44 test wells) were drilled for a total of 51,590 linear m (169,250 linear ft). Most of these were shallow wells, Topagoruk and Oumalik being deeper. Three small oil fields were discovered—Umiat, Simpson, and Fish Creek—and six natural gas fields—Barrow, Gubik,

Wolf Creek, Oumalik, Meade, and Square Lake. It is interesting to note that when the exploration was recessed in 1953 by Presidential order, the Navy had a drill rig and supplies ready to move out from the Umiat area to drill on the Shaviovik River, just to the east of Prudhoe Bay.

THE INTERIM: 1953 TO 1974

Between the early Government exploration from 1944 to 1953 and the later program, a number of important events occurred.

In 1947, at the height of the Navy's exploration activity, another branch of the Navy, the Office of Naval Research, established a basic research laboratory in a vacant quonset hut in the Barrow Camp. The laboratory slowly grew in number of staff and in stature, and when the oil-exploration activity closed down, the Arctic Research Laboratory (ARL) fell heir to the Barrow Camp, many of the facilities, and much of the equipment that was declared surplus by the exploration group. The laboratory was the sole occupant of the camp until 1955, when the Air Force, under an agreement with the Navy, assumed the custodial responsibilities in order to use the facility as a base for the construction of the western third of the North American DEW (Distant Early Warning) Line. In 1957, when the DEW Line was commissioned, the Air Force retained the Barrow Camp as a support base for activities along the line. The laboratory was renamed the Naval Arctic Research Laboratory (NARL) in 1968.

The law making Alaska a State was passed and signed in January 1959. This law included the provision that the State might select from Federal lands as much as 42 million hectares (104 million acres) for support of the fledgling State Government. Some leases and exploratory

EAST TESHEKPUK TEST WELL NO. 1

In January 1976 the crew from the construction contractor, Arctic Slope Alaska General (AS/AG), left Service City, their base camp in the Prudhoe area, to travel overland or, more accurately, over ice, arriving at the East Teshekpuke No. 1 location on January 26. They immediately began to construct the reserve pit and pad. It was planned to excavate a reserve pit at this well rather than release the drilling fluids to the tundra surface as had been done at Halkett. East Teshekpuke was planned for greater depth so there would be a greater volume of mud and cuttings. The site was located on a narrow peninsula of land at the east end of Lake Teshekpuke, approximately 40 km (25 mi) south of Camp Lonely (lat $70^{\circ}34.2' N.$, long $152^{\circ}56.6' W.$). The construction material for the pad was sand from a deltaic deposit at the mouth of Kealok Creek about 8.5 km (5.3 mi) to the southwest, where the creek emptied into Teshekpuke Lake. A road was cleared over the ice between the drill site and the borrow site. At the same time, a C-130 runway was cleared on the lake ice immediately south of the drilling location. The strip was oriented generally northeast-southwest, the direction of the prevailing winds. Field operations were plagued by frequent storms, blowing snow, and whiteouts, but the site was ready by February 12.

The rig scheduled to drill East Teshekpuke was Parco Rig No. 128. It was stacked at the Cape Halkett location, approximately 27 km (17 mi) to the northeast. However, the rig was moved over ice roads that were laid out in a meandering pattern to take advantage of the frozen lakes, streams, and even sea ice, resulting in a 58-km (36-mi) haul. The move was frequently delayed by high winds and blowing snow; the road had to be cleared and

recleared. Mukluk Freight, AS/AG, and Parco personnel all worked together to move the rig. It took from February 4 to February 17 to get the first piece of rig moved. "Digging out" and "Opening road" were the two most frequent entries in the daily reports. Rig-up at East Teshekpuke was actually started on February 22, while the moving of the rig, camp, and supplies con-

tinued. Once the drilling camp was in place (February 28), the AS/AG construction camp moved overland to the South Harrison Bay location (lat $70^{\circ}25.6' N.$, long $151^{\circ}43.8' W.$). Rig-up at East Teshekpuke was completed on March 12, and the well was spudded that same day.

During late April, the drilling fluid in the reserve pit reached such a volume that its depth exceeded

FIGURE 2.10.—All-terrain vehicles used by seismic trains in the NPRA, spring 1975. Note racks on rear bed to hold geophones. Photograph by U.S. Navy.

FIGURE 2.11.—Seismic drill rig mounted on Nodwell vehicle, spring 1975. Photograph by U.S. Navy.

the excavated depth of the pit, and it melted out an ice-rich area of the retaining berm. The failed section of berm was composed principally of material that had been excavated from the reserve pit. As a result of this failure, some mud escaped and flowed to the nearby edge of Teshekpuk Lake. Although the amount was minor and minimal environmental damage was caused,

the event inspired a redesign of the reserve pits. All future reserve pits were designed to contain the total estimated volume of drill cuttings and muds below the level of the original tundra surface, and the containment volume provided by the dikes was to serve as a safety factor in case an emergency discharge of mud should occur. Material excavated from the pit was

spread as a so-called primary lift in the camp area of the drill pad. Dike material surrounding the reserve pit was to be clean, well-drained, and free of ice masses.

The well was drilled to a total depth of 3,250 m (10,664 ft), reached on May 7, 1976, in order to penetrate and evaluate mainly the Sadlerochit Group and secondarily the pebble shale unit, the Sag River Sandstone, and the carbonate rocks of the Lisburne Group. At the conclusion of the drilling and evaluating operations, the well was abandoned and cement plugs were placed at selected intervals. Diesel oil was left in the wellbore across the permafrost interval to allow for subsequent temperature measurements planned by the U.S. Geological Survey as part of an ongoing North Slope geothermal program. The abandoned wellhead was also designed to accommodate this work.

At the conclusion of the operations, the drilling equipment was rigged down and stacked on the pad for moving; the pad was graded and cleaned up. Seven 14,193-L (3,750-gal) steel fuel tanks were placed in the fuel-containment berm, and approximately 79,000 L (21,000 gal) of JP-5 jet fuel was put in the tanks for summer helicopter use and for the rig move in the early fall. Operations at the site were terminated on May 16, 1976.

SOUTH HARRISON BAY TEST WELL NO. 1

When the AS/AG construction train left the East Teshekpuk site at the end of February for the South Harrison Bay No. 1 drilling site, they almost immediately encountered bad weather. However, the trip was completed in 2½ days, and construction of the South Harrison Bay reserve pit commenced the evening of March 3. Borrow material came from the sand dunes

FIGURE 2.12.—Seismic train waiting for supplies along cleared runway near Ikpikpuk River, spring 1975. Photograph by U.S. Navy.

FIGURE 2.13.—Seismic train crossing tundra just north of Umiat, January 1978.

along the edge of Harrison Bay at the mouth of the Kalikpik River, about 11 km (7 mi) west of the drill site. A road was cleared on the ice of the bay for the hauling. It was planned to deliver the rig piling and pile caps that summer by barge. To ensure that an early construction startup would be possible in the fall, a thin sand runway 600 m (2,000 ft) long was constructed to the west of the drill site. A few days were also spent unsuccessfully searching, within a 16-km (10-mi) radius of the site, for a suitable water supply. The South Harrison Bay drill site and runway were completed by March 26, and the construction camp and part of the equipment were demobilized to Service City. The remaining equipment was sent to Camp Lonely for use that summer.

**NAVY/HUSKY OPERATIONS:
SECOND SEASON—
JUNE 1976 TO MAY 1977**

SUMMER OPERATIONS

The plans for the 1976 summer cleanup program were made after a reconnaissance of sites was completed in mid-May. Arrangements were made with AS/AG to provide the labor and with Crowley All Terrain Vehicle Company (CATCO) to provide the rolligons. The helicopters and the Twin Otter aircraft that were under contract and based at Lonely were to be used for cleanup and the summer survey.

Two cleanup crews were used—one based at Lonely and one based at Barrow. Between June 15 and September 8, cleanup was completed at Iko Bay and the Barrow area, the Simpson area, POW A, Alaktak, West Topogaruk, the Lonely area, Pitt Point, POW B, and the East Teshekpuik drill site. A total of 23,500 drums were retrieved, and of these 10,650 were crushed and stockpiled. In addition,

approximately 340,000 kg (750,000 lb) of debris was collected, 160,000 kg (350,000 lb) of which was burned and the remainder left in stockpiles for later disposal.

The summer survey included staking the five proposed wellsites and the winter trails to each. Water sources were located, borrow sites defined, and soil samples collected. USGS topographic maps (1:63,360-

scale series) were used where available. In addition, the all-season road from NARL to the South Barrow Gas Field pressure-reducing station was staked.

At Camp Lonely, physical improvements included the installation of piling for two warehouses, camp extension, and a communications tower (fig. 2.14). Designs were finished for the airport terminal, the

FIGURE 2.14.—Communications tower at Camp Lonely, February 1978.

weather shacks for the wellsites, and the heat-recovery system for Lonely. In addition, the installation of motor-gasoline (Mogas) tanks was completed, making it much more efficient to operate the local transportation.

The 1976 barge delivery included 9,176,350 L (2,424,400 gal) of fuel and 9,282 t (10,233 tons) of supplies. This amount of fuel was far less than the anticipated annual need for the program, but it was the maximum it was possible to store until the storage capacity was increased.

The rest of the summer season was spent cleaning up the pad at Camp Lonely, increasing its size, stabilizing the gravel areas, and sorting out the materials received on the barge, so they would be easily accessible after the snow and the dark period began.

WINTER CLEANUP

A trial was made during the fall of 1976, to test the economic feasibility of a winter cleanup. Winter was defined as lasting from November 1 to January 31. For the winter work it was necessary to provide a self-sustaining camp for the 18-person crew. Skull Cliff, an abandoned LORAN navigational site about 38 km (24 mi) south-southwest of Barrow was selected for this operation. The site consisted of abandoned buildings and supplies, debris, and a collapsed 190-m (625-ft) tower, all scattered over an area of approximately 15 km² (6 mi²). Work was carried on from October 26 to December 15, and during this period 2,280 drums and 900 kg (2,000 lb) of debris were picked up. The subzero temperatures were not as much of a problem as the lack of daylight. Hard-packed snow and reduced light made much of the debris impossible to locate or difficult to retrieve. Furthermore, the contents of the

barrels were frozen, making them impossible to empty and very heavy. This problem, coupled with the long mobilization period, helped to increase the cost per unit of work accomplished to the point that it was decided to abandon winter cleanup.

SOUTH HARRISON BAY TEST WELL NO. 1

During the summer, the barges could not reach the South Harrison Bay site because the water was too shallow, and they had to return to Lonely to unload. As soon as the tundra conditions allowed, a small construction group left Lonely to install the piling and pile caps at the South Harrison Bay site. The rolligons began operating on the tundra on October 18. While the earth auger was working, the Twin Otter strip was cleared and was ready for operation by October 19. Work began immediately on clearing the ice of Harrison Bay just north of the drill site for a Hercules C-130 air-strip. The sand strip was used by the Twin Otter while the ice on the bay thickened sufficiently to support the Hercules C-130's.

Rig mobilization began on October 28. The rig (Parco No. 128) was stacked at East Teshekpuk and was moved by CATCO rolligons on the winter trail connecting the two locations. The rig move (129 loads) took 19 days. Weather conditions were generally good during this period; however, a brief period of warm temperatures (-12 to -9 °C, or +10 to +15 °F) and high winds (30-35 knots) at the end of the first week in November disrupted operations and broke up the ice strip on Harrison Bay. Because it was feared that the ice would not thicken fast enough to have the C-130 strip ready by spud date, it was decided to build the strip on the frozen mud flats near the mouth of the Kalikpik River about 10.4 km (6.5 mi) to the

west along the shore of the bay. An ice road was cleared near the shore to connect the strip to the wellsite.

Rig-up operations began on November 10 and were completed in 11 days. The well was spudded at 3:00 p.m. on November 21 and was drilled to a total depth of 3,440 m (11,290 ft). The primary objective of the well was to reach the Sadlerochit Group, with secondary interests focused on the Kuparuk Formation and the basal sand of the Torok Formation. At the conclusion of the drilling and evaluation operations the well was abandoned, leaving cement plugs at selected intervals.

Rig-down began on February 8, and the rig was moved to Deadhorse. The pad was cleaned and graded to serve for summer stack-out of the Parco No. 95 after drilling was finished at Atigaru Point.

SOUTH BARROW NO. 13

South Barrow Well No. 13 is located in the South Barrow Gas Field approximately 8 km (5 mi) southeast of the city of Barrow. The pad for the well had been constructed earlier by the Navy, and the Cardwell Model H rig, owned by the Navy, was stacked out on the pad.

Field operations began on November 16, 1976, camp units moving from the Naval Arctic Research Laboratory to the well location. Considerable time was then spent in overhauling and repairing the rig components. Actual rig-up began on December 1, and the well was spudded at 10:00 a.m. on December 17, 1976.

The well was drilled to a depth of 772 m (2,534 ft) into the Jurassic gas sands above the argillite basement. After evaluation, the well was judged to be only a marginal producer. On January 16, the rig was taken down and moved to the South Barrow Well No. 14. The drilling

pad was cleaned and leveled, and a shelter was placed over the wellhead.

SOUTH BARROW NO. 14

South Barrow Well No. 14 was located 19 km (12 mi) east-southeast of the city of Barrow and represented a step-out of approximately 11 km (7 mi) from the South Barrow Gas Field. Construction crews for the building of the pad were mobilized on November 20, 1976. Rig-up operations began on January 18, 1977, and the well was spudded at 1:30 a.m. on January 28. The rig used was the Navy-owned Cardwell Model H.

The well was drilled to a total depth of 688 m (2,257 ft). The primary objective of the well was to reach the Jurassic gas sands and the Triassic Sag River Sandstone. After evaluation, the well was completed as a gas well. It was cleaned up and lubricated with alcohol through the tubing and annulus to prevent freezing, and the wellhead tree was nippled up and tested. The rig was released on March 3, 1977, and moved to storage. The pad was cleaned and leveled, and a wellhead shelter was installed.

WT. FORAN TEST WELL NO. 1

Lt. W.T. Foran, a Naval Reserve officer and a geologist in civilian life, was a strong proponent of the petroleum possibilities of Pet-4. In 1924 he led a USGS field party across the western part of the reserve, up the Utokuk River, across the Brooks Range, and down the Noatak River to Kotzebue. It was his memorandum for the Bureau of the Budget written in March of 1943, outlining the reasons to explore the Pet-4, that was largely responsible for the early exploration program. Appropriately, he was named to head a reconnaissance party to the reserve in

1944 and was very active in the geologic exploration throughout the early part of the program.

On November 23, 1976, an AS/AG construction train left Camp Lonely for the W.T. Foran No. 1 drill site located at lat 70°49.5' N., long 152°18' W. The borrow sites for this pad were located 10, 11, and 14 km (6, 7, and 9 mi) from the site, to the west along the coast. The first two sites were quite small, and so, to minimize disturbance, all of the material was taken from the most distant site (near Cameron Point). Care was taken to avoid the Esook trading post nearby, and material was extracted only to within 30 cm (1 ft) of sea-ice level. The drill pad and the airstrip on the nearby lake to the west were constructed in a month, and the construction train moved back to Lonely for equipment repair. On January 1, 1977, this crew moved on to the South Simpson wellsite.

Rig move-in to W.T. Foran No. 1 began on January 31, 1977, by air. The rig, Nabors Drilling Company No. 23, had been stacked at Deadhorse.

In 20 days, 110 Hercules C-130 loads brought in the rig, cement, and other miscellaneous equipment. Rig-up began on February 12 and was completed in 21 days. Weather conditions during the move and rig-up were generally good, but intermittent winds of 25-35 knots with blowing snow hampered flying on three days. The well was spudded at 12:00 midnight on March 6, 1977.

The W.T. Foran well was drilled to a total depth of 2,702 m (8,864 ft). The primary objective was to reach the Sadlerochit Group and the Lisburne Group, the secondary objective being the Kuparuk Formation. After cement and mechanical plugs were set at selected intervals, the well was abandoned and finally terminated on April 24, and the rig was stacked out for the summer

at the W.T. Foran site. All personnel left the site on April 30, 1977.

ATIGARU TEST WELL NO. 1

A second construction train left Lonely on December 3, 1976, for the overland move to Atigaru Point. The Atigaru Point wellsite was located approximately at lat 70°33.3' N., long 151°43.0' W. The material to build the pad came from a number of small deposits along the beach to the west of the wellsite. All were within 10 km (6 mi) of the site, and all were of relatively poor quality—containing a large amount of organic material and clay. The poor quality caused no immediate trouble in the frozen state, but it caused numerous problems during rehabilitation and revegetation. The pad was designed to leave undisturbed a LORAN tower that was already on the site. An ice runway oriented northeast-southwest was cleared in the mud-flat areas of Harrison Bay, behind the protection of Atigaru Point and numerous exposed mud-sand bars. Construction was completed on January 1, 1977, and the next day the train moved on to the West Fish Creek site.

The first drilling personnel arrived at Atigaru Point on December 15, 1976, and rig move-in operations began on December 17 by Hercules C-130's. The rig (Parco 95) had previously been used by Mobil Oil Company in the vicinity of Prudhoe Bay. The rig move was completed in 11 days and 99 loads. Other drilling supplies arrived from Lonely via rolligon. Rig-up began on December 31 and was completed in 13 days. The well was spudded at 4:00 p.m. on January 12, 1977.

The Atigaru Point well was drilled to a depth of 3,515 m (11,535 ft). The primary objective of the well was to reach the Kuparuk Formation, the Sadlerochit Group, and the Lisburne Group, the secondary objective being the Sag River Sand-

stone and the basal sand of the Torok Formation. The well was abandoned, with mechanical and cement plugs left at selected intervals. Operations were terminated on March 29, 1977, and the rig was moved over the ice of Harrison Bay to be stacked out for the summer on the South Harrison Bay drilling pad.

SOUTH SIMPSON TEST WELL NO. 1

A construction train left Lonely on January 1, 1977, and moved overland to the South Simpson No. 1 location. The trail followed the edge of the ice of Smith Bay and then the Piasuk River. Deep snow along the banks of the river and frequent high winds and blowing

FIGURE 2.15.—Spraying water to build ice road at South Simpson, January 1977.

FIGURE 2.16.—Truck hauling gravel over ice road at South Simpson, February 1977.

snow slowed the operation. The site was located approximately at lat $70^{\circ}48.3' N.$, long $154^{\circ}58.9' W.$

The material for construction of the pad was taken from a high sand bank on the Piasuk River about 8 km (5 mi) east of the site. However, because the ice road for the haul followed the lakes and streams wherever possible, the haul distance was over 10.5 km (6.5 mi) (figs. 2.15 and 2.16). The construction material was a well-drained sand, and excavation was relatively easy. An ice strip was cleared on an unnamed lake about 1 km (0.6 mi) directly west of the wellsite. The road connecting the site to the airstrip followed a frozen streambed. Construction was finished on February 13, and the construction train retraced its trail back to Camp Lonely, where it remained for the summer season.

Rig move-in operations commenced on February 12, 1977. Portions of the rig (Nabors No. 1) had been moved to Lonely by barge during the summer of 1976, and other portions remained at Deadhorse. Those parts of the rig at Lonely were transported to South Simpson by rolligon (fig. 2.17), and the components at Deadhorse were flown in by Hercules C-130 aircraft. Fifty-seven Hercules loads and 15 rolligon loads were required to move the rig to the wellsite. Rig-up began on February 20 and required 17 days. The well was spudded at 8:00 a.m. on March 9, 1977.

The well was drilled to a total depth of 2,680 km (8,795 ft). The primary objective was to reach the sandstones of the Kingak Shale and the Sadlerochit Group, the secondary objective being sandstones in the Okpikruak Formation. The well was abandoned and left with cement and mechanical plugs. The abandonment marker was set, and the rig was released at 3:00 p.m. on April 30, 1977. The rig was taken

down and stacked out on location for the summer season.

WEST FISH CREEK TEST WELL NO. 1

On the second day of the new year (1977), a construction train left the Atigaru Point drill site to travel over the ice of Harrison Bay to the mouth of the Kalikpik River, then up the Kalikpik to the West Fish Creek drill site. The drill site was located at lat $70^{\circ}19.6'$ N., long $152^{\circ}03.6'$ W., approximately 7 km (4.5 mi) west-northwest of the Fish Creek Test Well drilled in 1949.

The weather was good for the overland move, but while traveling along the western shore of Harrison Bay, approximately 4 km (2.5 mi) from the mouth of the Kalikpik, a D-8 Cat fell through the ice. Fortunately the water was not deep, and the Cat went down, tipped to the right side, in about 1.5 m (5 ft) of water and mud. The operator was not hurt. The ice was evidently thin because of a strong current at that point. The surrounding ice was also quite thin, so the Cat was left for retrieval at a later time. The construction train finally arrived at the site on the afternoon of January 4. The Cat was extricated the first week of May with an auger and four flatbed trucks with gin poles rigged over their rear wheels.

Work began immediately on the excavation of the reserve pit. Borrow material for the pad was taken from a 6-m-high (20-ft) sand bank on an unnamed lake 3.5 km (2.2 mi) west-northwest of the site. The material was well-drained dune sand, so excavation was relatively easy. An ice runway was cleared on the unnamed lake 1.5 km (1 mi) east of the drill site. Construction was virtually complete by January 29, but another week was spent readying some of the equipment for summer stack-out on the site, so that it would be available for the North Kalikpik work the following season.

The construction personnel left the site on February 6 with that portion of the equipment that was to be taken overland to Camp Lonely.

Rig move-in operations were begun on January 20, 1977. The rig (Parco No. 96) had been used by Mobil Oil at the West Staines location and was at Deadhorse. It was moved from Deadhorse by Hercules C-130 aircraft in 105 loads in 14 days. Weather conditions during rig move and rig-up were good, only three days being lost because of blowing snow. The well was spudded at 9:00 a.m. on February 14, St. Valentine's Day.

The objective of the well was to reach the Kuparuk Formation, the Sadlerochit Group, and the basal sand of the Torok Formation. The well was drilled to a total depth of 3,483 m (11,427 ft). It was plugged and abandoned, and the rig released on April 27, 1977. The rig was taken down and prepared for moving but was stacked on the location for the summer. Operations ceased May 4, 1977.

SEISMIC PROGRAM—SPRING 1977

The goal for the spring seismic program was to acquire 4,530 km (2,830 line mi) of seismic data. To do this, five seismic trains were mobilized in January 1977; two trains (Nos. 1182 and 1186) started out from Icy Cape, and three trains (Nos. 1173, 1184, and 1195) started out from Umiat. Work was scheduled in the western sector and in the Colville, Utukok, and Ikpikpuk basins, and it included more than 2,400 km (1,500 line mi) of reconnaissance in the Foothills province. From the onset, poor weather with whiteout conditions, blowing snow, and cold temperatures hampered operations. At the end of March everyone concerned was guessing that they would be lucky to accomplish 4,000 km (2,500 mi). However, extremely careful planning and some deeper and longer lasting snow cover allowed later operations in some areas. Party 1182 finished up in Barrow on May 11. Party 1186 finished some experimental work

FIGURE 2.17.—Rolligon transporting outsize rig component over tundra south of Lake Teshekpuk, winter 1977.

and then stacked their equipment at Brady on May 25. Parties 1173, 1184, and 1195 all arrived at Umiat by May 20 and there stacked equipment for the summer. A total of 4,222 km (2,639 line mi) was obtained.

CLEANUP—SPRING 1977

During 1977, the cleanup program was concentrated at three sites: POW A, a former DEW Line site; Simpson Test Well, drilled during the 1947 program; and the Topogaruk Test Wells from the 1951 program. It was decided to pick up the debris from the Simpson and Topogaruk sites and take everything back to POW A. The final plans for the disposition of the debris had still not been decided, but locating the debris at POW A allowed the additional option of a backhaul to the lower 48 States via barge. A portable drum crusher was used to consolidate the bulk.

Operations were begun February 10, and were halted at the end of the first week of May, when the camp and rolligons were returned to Camp Lonely. A total of 159 t (175 tons) of debris was retrieved, 9,718 drums were collected, and 12,233 drums were crushed. Although drums were often found filled with snow, covered, and frozen as in the fall, the spring phase of cleanup was more productive because of the increased amount of daylight and the greater dependability and speed of the CATCO rolligons. In addition, many of the drums at these sites were on top of the frozen tundra and therefore more accessible.

CAMP LONELY

Early in 1977, the Navy, recognizing the great need for fuel and the difficulty of bringing it north by barge, let a contract to build storage tanks at Lonely. The design included two tanks, each with a 4,770,000-L

(30,000 bbl) capacity, and four tanks of 1,590,000-L (10,000 bbl) capacity, for a total capacity of 15,900,000 L (100,000 bbl or 4,200,000 gal). A fixed-price contract was issued by the Naval Facilities Engineering Command of San Bruno, California, to Arctic Slope/Alaska General (AS/AG), the successful bidder. Gravel placement began in late March. Construction of the tanks was started in early May, and final inspection and acceptance of the tanks was on July 20, 1977, just in time for fuel delivery on the 1977 barge.

NATIONAL PETROLEUM RESERVES PRODUCTION ACT OF 1976

The National Petroleum Reserves Production Act (Public Law 94-258) was passed by Congress as a result of the 1975 shortage of gasoline and heating oil. The act called for the production of petroleum, by the Navy, from Naval Petroleum Reserves 1 (Elk Hills, California), 2 (Buena Vista, California), and 3 (Teapot Dome, Wyoming). It called for the transfer of all of Petroleum Reserve 4, except for the Naval Arctic Research Laboratory, from the Navy to the Department of the Interior effective June 1, 1977. It charged the Secretary of the Interior with the continuation of the exploration program in Pet-4 and the continuation of the supply of natural gas to the community of Barrow. The act also changed the name of Pet-4 to the National Petroleum Reserve in Alaska (NPRA).

In addition, PL 94-258 charged the Secretary of the Interior with two studies that came to be known by their paragraph designations in the law. The 105b study was to investigate and recommend the best overall procedures to be followed in the development, production, transportation, and distribution of petroleum from the NPRA. Furthermore, the study was to include the eco-

nomic and environmental consequences of this development. The 105c study was to determine the value of the lands of the NPRA and make appropriate recommendations for their best use. The law also required that special attention be given to the environmental problems of Teshekpuk Lake for nesting wildfowl and of the Utukok Uplands for caribou calving. It further authorized the Secretary to designate other areas that might require special environmental protection.

The Navy had restricted its studies to Zone A when they were writing the overall environmental impact statement (EIS). Consequently, Zone A was the only area considered by the EIS produced in October 1975. The Navy, although now relieved of responsibility for the program, felt, because of their many years of involvement and the start they had made, that they were morally obligated to finish the overall final EIS. This work was given high priority in the spring of 1977.

The draft EIS was submitted to the Council on Environmental Quality in February, and notice of its availability was published in the Federal Register in March. Distribution of copies was made to State, Federal, and local Government offices throughout Alaska, and approximately 230 additional copies were distributed to private industry, organizations, and individuals. Public hearings were held in Barrow, Fairbanks, and Anchorage. The record was kept open to receive written comments until April 18, and then a concerted effort was made to respond to all questions, pertinent points, and objections. The final EIS was presented to the President's Council on Environmental Quality on May 27, 1977.

About this same time, the Navy, in cooperation with the USGS, drew up a set of stipulations concerning winter road and trail construction and use within the NPRA. These stipulations were included in

check and certification on the first of June.

Nabors Rig No. 25 was moved earlier via air from Drew Point, using the Inigok temporary ice runway, and was stacked at the site to await the completion of the gravel runway. Rig-up began on April 25, and was virtually complete by May 22 when the ice airstrip was closed. Final rig-up was delayed until the completion of the all-season gravel airstrip. The well was spudded on June 7, 1978.

BARROW GAS FIELDS

The construction and drilling operations in the Barrow area during 1977-78 were planned to center around two general locations. A lake for an ice strip and two small borrow sites were selected for South Barrow No. 16, and ice-strip locations and a larger borrow site were selected for South Barrow Nos. 17 and 19. However, at the last minute the local residents of Barrow objected to the two borrow sites located east of Tekegakrok Point, and they consented only to the larger borrow site north of South Barrow No. 19 on the condition that the gravel be replaced. The condition was extremely difficult to meet, but not impossible, and it was adhered to stringently. Some of the gravel from the South Barrow No. 16 pad was retrieved and used for South Barrow No. 17; part of the gravel from South Barrow No. 17 was retrieved and used again at South Barrow No. 19. This reuse of gravel reduced the amount taken from the borrow site. The ice strip for South Barrow No. 16 was constructed on an unnamed estuary known locally as Wohlschlag Slough. The ice strip for South Barrow Nos. 17 and 19 was constructed on the edge of Elson Lagoon immediately north of the drill sites. Because of the increased work planned for the Barrow area and

the need for better housing in the field, an ATCO Drilling Camp was purchased in October 1977 and flown from Fairbanks to Barrow in C-130 aircraft.

SOUTH BARROW NO. 16

South Barrow No. 16 was located 10 km (6 mi) east of Barrow, approximately 3 km (2 mi) east-northeast of the nearest producing wells in the South Barrow Gas Field. Pad construction started on December 15, 1977; rig-up began on January 8, 1978, and the well was spudded on January 28. South Barrow No. 16 was drilled to explore a structure similar to that into which Barrow No. 14 had been drilled, in an attempt to locate a new gas field to supplement the diminishing reserves of the South Barrow field. The rig used was a National T-20, Brinkerhoff Signal No. 31. The well drilled directly from Cretaceous sediments into the argillite basement. Small shows of gas were noted, but the primary objective, the Jurassic Barrow sandstone (informal term), appeared to have been removed by Early Cretaceous erosion. The Sag

River Sandstone, another potential oil reservoir, was also missing. The well reached a total depth of 730 m (2,400 ft), and after evaluation of the logs, South Barrow No. 16 was considered a dry hole and was plugged and abandoned. The rig was released on February 17 and partially rigged down for the move to the South Barrow No. 17 location.

SOUTH BARROW NO. 17

Barrow No. 17 was located approximately 20 km (13 mi) east-southeast of Barrow. The rig employed was Brinkerhoff-Signal No. 31. Installation of the piling for the rig began on January 8, 1978; rig move and rig-up began on February 19, and the well was spudded at 6:00 a.m. on March 3, 1978. South Barrow No. 17 was drilled in an attempt to learn more about the East Barrow field. The Barrow sandstone was the primary objective, but secondary objectives were the Sag River Sandstone and several thin but persistent sandstones in the pebble shale unit. The well was drilled to a total depth of 726 m

FIGURE 2.18.—Installing insulation on the Inigok runway, April 1978.

(2,382 ft), penetrated sediments of Holocene to Triassic age, and terminated in argillite of pre-Carboniferous age. After evaluation the well was suspended in the production mode because it produced considerable water with its gas. The rig was released on April 13, 1978, and partially rigged down for the move to the South Barrow No. 19 location.

SOUTH BARROW NO. 19

South Barrow No. 19 was another attempt to learn more about the East Barrow gas field; the well was located about 17.5 km (11 mi) east-southeast of Barrow and about 3 km (2 mi) west and north of South Barrow No. 17. Installation of the piling for the rig began on January 27, 1978; rig-up began on April 14, and the well was spudded at 5:00 a.m. on April 18, 1978.

The well was drilled to a total depth of 700 km (2,300 ft), the Barrow sandstone being the primary objective and the Sag River Sandstone a secondary objective. At the conclusion of testing, the well was completed as a gas well in the upper Barrow sandstone and left suspended in a production mode.

Production tests in the Barrow sandstone showed a calculated absolute open-flow potential of 7.2 million ft³/d of gas with no water. Tests for oil in the Sag River Sandstone were negative. The drill rig was released at midnight on May 16, 1978, and rig-down commenced immediately. The rig components were stacked on the South Barrow No. 6 well pad, and the camp and support units were moved to storage at the NARL facility.

TUNALIK TEST WELL NO. 1

The construction train from South Meade arrived at the Kuk River crossing, approximately 40 km (25 mi) south of Wainwright, on January 15, 1978. Thin ice coupled with blowing snow delayed the train until a timber-reinforced ice crossing could be constructed (fig. 2.19).

The first units of the train crossed the Kuk River on January 29, and the last units crossed on the 31st. The train arrived at Tunalik on February 2. The second construction train left Kugrua on January 29, arrived at the Kuk River on February 1, and crossed the same day.

This train arrived at Tunalik on February 4, 1978. Although many difficulties were encountered during the overland trip, once at the site, operations proceeded efficiently during a long period of relatively mild temperatures (about -23 °C or -10 °F) and little wind. Tunalik is located at lat 70°12' N., long 161°04' W.

Tunalik was the second deep well (target depth 6,090 m or 19,980 ft) scheduled for year-round drilling and therefore required an all-season runway. The borrow site selected was located approximately 7 km (4.5 mi) directly west of the wellsite. However, the ice road that connected the wellsite, the all-season runway construction site, the Twin Otter strip, the material site, and the Hercules ice strip totaled about 13 km (8 mi) in length.

The borrow site was located on a westward-facing knoll and contained an archeological site in a section of the area referred to as Aliquot A. Permission had been obtained from the State Archaeologist to excavate the archaeological materials, so that the site could be used. This excavation had been completed the previous summer under the supervision of a BLM archaeologist at the same time the topographic survey was made.

Material was removed from Aliquots A and B to build the runway, the gravel access road from the airstrip to the drill site, and the drill pad itself. Insulation was employed in the design of all three to reduce the amount of gravel needed. Construction was completed by May 1.

On April 9, a loader, generator, grader, and survival shack were flown from Tunalik to Betty Lake for the proposed Etivluk well. The original landings were made on an ice airstrip cleared by GSI. This airstrip was improved, and the remainder of the entire construction train was flown in to Betty Lake for summer stackout. The camp was to be used during the summer as a

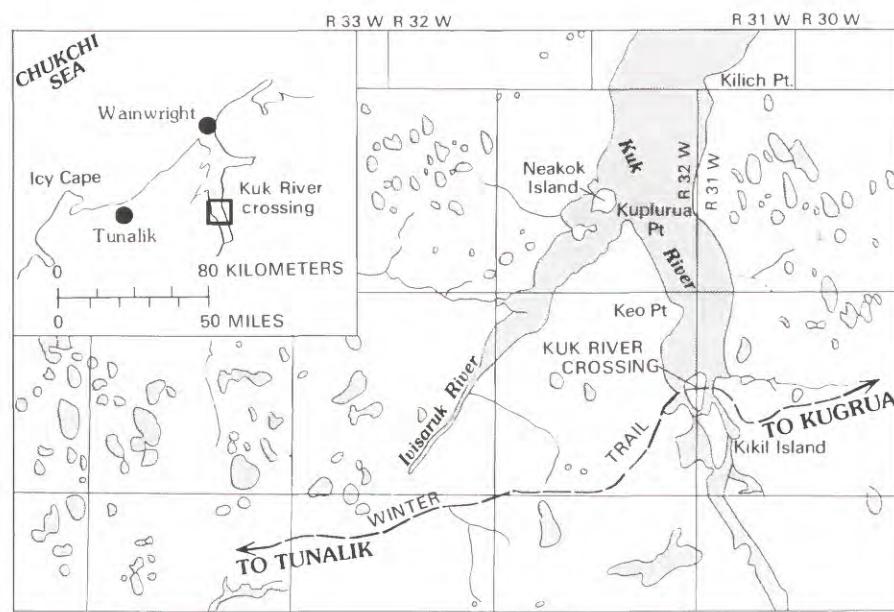


FIGURE 2.19.—Location and geography of Kuk River crossing.

petroleum residue, and the edges quickly thawed to assume an appearance difficult to distinguish from the many thousands of natural ponds of the tundra. Thus the thin-pad design was less expensive to build, less expensive to rehabilitate, and had less environmental impact. If oil or gas was discovered at a thin-pad exploratory well, the well could be suspended for the melt season and the pad rebuilt with a more permanent surface the following winter season.

INIGOK TEST WELL NO. 1

Drilling the deep well at Inigok continued throughout the summer and fall of 1978. Numerous cores were taken and the usual problems were encountered—such as “iron-in-the-hole” and “fishing”. In December, while the crew were circulating and conditioning the hole to run intermediate logs at 5,410 m (17,750 ft), the mud brought up high-pressure hydrogen sulfide gas and native sulfur. The sulfur and gas were controlled, and drilling

continued, but the hydrogen sulfide problem impeded the rest of the drilling operation.

On January 5, 1979, the Great Northern Airlines contract Electra N403GN was on route from Anchorage to Inigok. Weather was clear and cold, with visibility more than 11 km (7 mi). On approaching the runway, the left main landing gear of the aircraft contacted the ground about 2.5 m (8 ft) short of the runway and 20 cm (8 in.) below the runway’s face. The left wing assembly, with the attached gear,

FIGURE 2.21.—Camp Lonely, the exploration base camp, near Pitt Point on shore of Beaufort Sea, July 1979. Photograph by J. Haugh.

separated from the fuselage when the gear hit the runway threshold. The wing and gear continued down the runway about 320 m (1,050 ft), stopping on the left side, and immediately caught fire. The main fuselage continued straight down the runway for about 275 m (900 ft), then veered left, coming to rest, upside down, about 150 m (500 ft) off

the runway. Nine passengers and six crew were on board, all strapped in their seats and badly shaken. With help from ground personnel, they quickly released themselves and each other from their inverted dangling positions and evacuated the aircraft. The wreckage caught fire almost immediately. Attempts were made to put out the fire, but

no proper equipment was available at the site. Minor explosions began to occur from emergency survival ammunition and other materials on board the aircraft, forcing the fire-fighters to retreat. A medic flew down from Camp Lonely in case first aid was necessary, and all passengers and crew were evacuated to Lonely for further examination. Luckily, all injuries were minor.

The Inigok well (fig. 2.22) was drilled to a depth of 6,127 m (20,102 ft), reaching that depth on May 16, 1979. The true vertical depth was calculated at 6,097.45 m (20,004.76 ft). The well was drilled to test a deeply buried east-trending faulted anticline separating the Umiat and Ikpikpuk basins. The primary zones of interest included the Sadlerochit and Lisburne Groups and possibly the Kuparuk Formation. Minor shows of gas were encountered in several zones, but no good reservoirs were found. Although argillite was not penetrated, the drilling was terminated because of excessive drift of the borehole. However, the 6,127 m (20,102 ft) was a new depth record at that time for an Alaskan well. The well was plugged and abandoned at 1:10 a.m. on May 21, 1979. The rig was released at noon on May 22. On May 31, the ninth day of rig-down, preparations were underway to airlift the rig to the Seabee location.

TUNALIK TEST WELL NO. 1

The move of Parco Rig No. 95 from Husky Point to Tunalik began on October 11, 1978, when the crews arrived at Tunalik. The move took 97 rolligon loads and was completed in 10 days, finishing up on the evening of the 20th. Rig-up began on October 18, along with several major rig modifications that were accomplished concurrently. The mast was raised on November 4. Rig-up and winterization con-

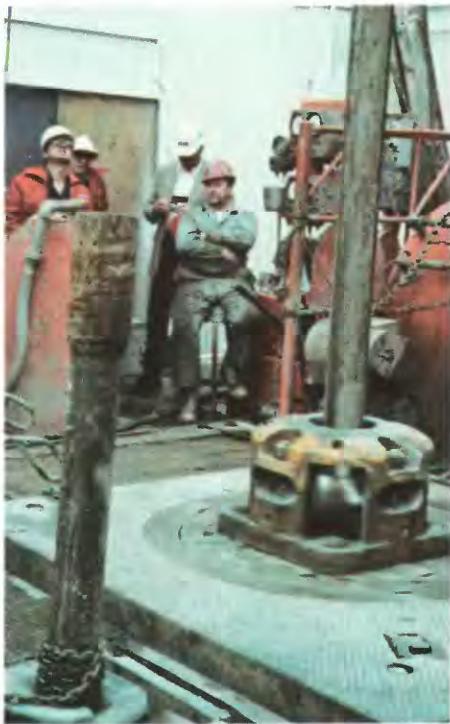


FIGURE 2.22.—Montage of scenes of drilling at Inigok No. 1 test well, 1978-1979.

pute arose between the drilling subcontractor and the labor union, forcing suspension of the drilling operations on August 21 at a depth of 1,997 m (6,551 ft). Reentry was made on October 16, after the labor dispute had been settled.

The Seabee test well (fig. 2.23) reached the Lower Cretaceous pebble shale unit, at a total depth of 4,758 m (15,611 ft), in early April 1980. The well was drilled on the flank of the Umiat anticline—the structure that contains the Umiat oil field discovered in 1950. The objective was to test for possible deeper hydrocarbon reservoirs in Lower Cretaceous (Fortress Mountain Formation) strata. Oil and gas shows were encountered in the shallow Umiat oil zone, but testing was not possible because of the large size of the borehole. Minor oil and gas shows were found at 1,655 m (5,430 ft) in the Tork Formation. Tests of this zone gave flows of 2 to 6 million ft^3/d but detailed analyses of the test data indicate a limited and depleting reservoir. Minor gas shows were found in deeper, thin, nonporous sandstones.

After testing and evaluation, the hole was plugged back with cement and the cement string pulled and reversed out. The mud was replaced with water, and the water with diesel, to a depth of 402 m (1,320 ft). The blowout preventers were nipped down, and the abandonment marker set. The rig was released on April 15, 1980, and rig-down and demobilization of the rig and drill camp began. The rig components themselves were stacked on the pad, because the rig was scheduled for use in the 1980-81 winter season.

LISBURNE TEST WELL NO. 1

The labor dispute that suspended drilling activities at Seabee also affected the operations at Lisburne. Drilling was suspended on August 23 at 2,064 m (6,773 ft). Reentry was

made two months later on October 24, 1979.

Lisburne Test Well No. 1 was completed on June 2, 1980, at 5,180 m (17,000 ft) in the fifth penetration of limestone of the Lisburne Group. The well was located on a seismic closure in the disturbed-belt play—a structure that borders the Brooks Range and is at least somewhat analogous to the overthrust play in the Western United States. The well drilled through about 2,100 m (7,000 ft) of highly deformed rocks before reaching the Jurassic to Mississippian section exposed at the surface immediately south of the wellsite. Ubiquitous dead-oil occurrences indicated the generation of hydrocarbons. Tests in two different Lisburne thrust plates recovered only small volumes of gas and some relatively fresh formation water. A test in the Shublik Formation flowed gas at a calculated rate of 213,000 ft^3/d but indicated a depleting reservoir. The rocks are porous locally to at least 3,660 m (12,000 ft), and maturation analyses indicate promising source rocks for the total depth. This well will provide fundamental information in future disturbed-belt exploration.

The well was plugged and abandoned; cement and mechanical plugs were set at selected intervals. The rig was released at midnight on June 2, 1980. The abandonment head was installed, and the derrick laid down. The rig was partially broken down and stacked to await use in 1980-81.

IKPIKPUK TEST WELL NO. 1

Personnel returned to the Ikpikpuk location on November 20, 1979, to open the camp. The crew had trouble starting the generator, so they returned to Camp Lonely for the night and tried again, this time successfully, on the 21st. They rigged up the camp, started the support equipment, set the sewer plant, worked on the ice road to the water source, laid out the Twin Otter strip, and began work on the C-130 ice-on-tundra airstrip. While the mast was being raised, the A-frame legs were damaged and required repair, but otherwise rig-up proceeded smoothly. Reentry was made on December 25, 1979.

The Ikpikpuk Test Well No. 1 reached a total depth of 4,719 m (15,481 ft) in the Kekiktuk Con-

FIGURE 2.23.—Drilling Seabee No. 1 test well near Umiat on the Colville River, July 1979.
Photograph by J. Haugh.

glomerate of Mississippian age. The well was drilled to test the Lisburne and pre-Lisburne plays at their wedgeout on the north flank of the Ikpikpuk basin. Nearly 1,200 m (4,000 ft) of tight, unpromising Lisburne and Endicott beds were drilled, producing only scattered minor gas shows. Two of the shallow sands, the basal pebble shale unit sand and a sand in the Torok Formation, were tested primarily for productive capacity and fluid content. Some gas was recovered on each test. The well was abandoned, and cement and mechanical plugs were set at selected intervals. The rig (Parco No. 96) was released at midnight on February 28, 1980. Rig-down began on March 1, and by March 10 all components had been demobilized from the reserve to Deadhorse by C-130 airlift.

WALAKPA TEST WELL NO. 1

The construction train left Barrow for Walakpa on November 25, 1979, arriving at the site, 24 km (15 mi) southwest of Barrow, the following day. Travel was very slow because the tundra along the coast was quite hummocky and the trail was frequently intersected by small streams draining to the ocean. Walakpa No. 1 is located at lat 71°06' N., long 156°53' W., about 9 km (5.5 mi) from the coast. The pad was built in a fairly flat, wet meadow of sedge. Construction of the thin pad, the associated ice road, and the Hercules strip on a nearby lake proceeded on schedule. Construction was completed in two weeks, and the train returned to Barrow on December 11, 1979.

The move of the Brinkerhoff-Signal Rig No. 31 from the South Barrow No. 6 site began on December 2 and was completed by December 17. Rig-up began immediately, and the well was spudded on Christmas Day. The well was drilled to a total depth of 1,117 m

(3,666 ft), bottoming in argillite of pre-Carboniferous age. The objective of the well was to explore a stratigraphic trap in the Jurassic Simpson sandstone (informal term). The Jurassic sandstone was not present, but gas was found in a basal Cretaceous sandstone. This gas discovery may have important implications as a future Barrow gas supply. At the conclusion of the drilling operations, casing and a cased-hole drill-stem test were run. The rig was released on February 7, 1980, and preparations were begun for moving the rig to the West Dease Test Well No. 1 site.

EAST SIMPSON TEST WELL NO. 2

The construction Cat train that was stacked at POW A the previous summer was activated the first week of December and set out for the East Simpson No. 2 site on the morning of the 18th, arriving late that afternoon. The site was located at lat 70°58' N., long 154°40' W. Travel was relatively easy because 8 km (5 mi) of the 10-km (6-mi) route was on the flat ice of shallow lakes and ponds. Snow cover was deep but was easy to clear from the flat ice. The drilling location was within one-half kilometer (one-quarter mile) of the edge of the lake upon which the C-130 airstrip was located. The water source, although 8 km (5 mi) distant, was so located that only about 1.5 km (1 mi) of ice road had to be constructed. Construction started immediately and was completed by January 11, 1980. The construction train was airlifted to Barrow on January 18 to help in the construction of the West Dease site. The rig to be used was Nabors Rig No. 1, which had been positioned by barge the previous summer at POW A. Rig move-in operations began on the 13th, rig-up commenced concurrently, and the well was spudded on January 29, 1980.

The East Simpson Test Well No. 2 was drilled into the argillite base-

ment at a depth of 2,288 m (7,505 ft) on March 15, 1980. The primary objective of the well was to test sandstone of the Ivishak Formation of Permian and Triassic age as it onlaps the pre-Devonian basement rock. This sandstone was believed to be present as a thickened section of the porous and oil-stained rocks of the Sadlerochit Group that were found in the East Simpson No. 1 well 6.5 km (4 mi) away. Minor oil and gas shows were found in the Torok Formation and Sag River Sandstone. A thin section of the Sadlerochit had a good oil show, but a test of the sand recovered 161 bbl of formation water with only a sheen of oil. Small-scale faulting was noted between the wells, and this may account for the thin Sadlerochit section. Sandstones of probable Endicott Group age had poor to fair porosity and dead-oil shows.

The crew pulled the drill out of the hole for the last time on the 15th of March, laid down the drill pipe, and began nipping down the blowout preventer. The rig was released on the 15th, and rig-down commenced on the 16th, in preparation for the demobilization of the rig to Lonely. The move was accomplished over the ice of Smith Bay and then over the trail from Drew Point to Lonely, the last units arriving in the camp on the evening of March 25, 1980.

WEST DEASE TEST WELL NO. 1

The construction train that was airlifted from East Simpson No. 2 to Barrow on January 18, 1980, left Barrow a few days later for the West Dease wellsite located at lat 71°09' N., long 155°37' W., approximately 45 km (28 mi) east-southeast of Barrow. Conditions allowed travel over the ice of Elson Lagoon, and the move was made uneventfully. Plans called for the construction of an ice airstrip on a lake about three-quarters of a kilometer (half

W.) and Grandstand (lat 68°58' N., long 152°05' W.)—both just off the reserve to the east and southeast of Umiat. The sites were on selected lands, so the plan was discussed with the BLM and the Arctic Slope Regional Corp. After they had agreed to this method of disposal, the permission of the Alaska Department of Environmental Conservation was obtained. A contract was let early in March 1980 for a Cat train to do the burying. The plan was to strip away the organic overburden and stockpile it to one side, then to excavate the hole, push in the debris, compact it, and cover it to a depth of at least 60 cm (2 ft) with the excavated dirt. The overburden would then be spread over the site and seed and fertilizer distributed. The operation went very smoothly.

After completing the Gubik site, the contractor proceeded north to Inigok to perform some minor work on the pad and reserve pit. Because native sulfur and hydrogen sulfide had been encountered during the drilling, the reserve pit contained some strange compounds in addition to the usual drilling muds and clays. Consequently, the pit was carefully monitored for possible environmental problems. The outlines of the flare and fuel pits were changed, and the edges of the pad were feathered out to the tundra to blend some of the straight lines into more natural configurations. However, the integrity of the reserve pit was maintained. The Cat train traveled east over the old Inigok ice road and left the reserve on April 24, 1980.

An attempt was also made at Ikpikpuk to utilize the KOH (Kodiak Cilfield Haulers) equipment that was on site during rig-down to contour the drilling pad. However, the pad was frozen too hard to be ripped by the available equipment (a D-7 Cat), so a D-8 Cat traveled overland from Camp Lonely to do the work. This work was

done in late March and early April, and, in spite of a long siege of blowing snow, it went smoothly.

In late April, after the Ikpikpuk rehabilitation work was completed, the Camp Lonely support crews began work on the gravel pad at J.W. Dalton. Much of this gravel was salvaged for use in the Lonely camp area and as cover for the sanitary land fill. The rest of the gravel was pushed into the reserve pit, and the pad area was leveled out.

SEISMIC PROGRAM—SPRING 1980

A total of 1,570 km (980 line miles) of common-depth-point seismic surveys was scheduled to be completed in the spring of 1980. The surveys were to be run in the Icy Cape area, the northern foothills area from the western border to just off the reserve east of Umiat, and in some isolated areas of the Brooks Range. Most of the surveys were for additional fill-in reconnaissance information, but some closely spaced detailed surveys were run near Tunalik, Meat Mountain, and the Lisburne wellsite. Only two crews were in the field that season, one working in the coastal area and the other in the foothills and the Brooks Range. Both parties used dynamite as an energy source. Snow conditions and weather were better than usual, and the parties finished up in April. A total of 1,754 km (1,096 mi) of seismic lines was run that season, including 214 km (134 mi) of a supplementary program.

USGS/HUSKY OPERATIONS: SIXTH SEASON— JUNE 1980 TO MAY 1981

SUMMER OPERATIONS

The summer survey for the 1980-81 season required the investigation of seven wellsites, three of which were alternates. These sites were the following:

Site	N. latitude	W. longitude
Kuyanak	70°55'	156°03'
Walakpa No. 2	71°03'	156°57'
Avgunum (alternate)	70°40'	159°16'
North Inigok	70°15'	152°45'
East Kealok (alternate)	70°22'	152°29'
Carbon (second alternate)	69°31'	160°18'
Tulageak	70°11'	155°44'

Because of the uncertainties resulting from the somewhat different positions taken by the Department of the Interior and the Congress, all seven sites were surveyed. The stated position of the Department of the Interior was to close out the NPRA exploration program in an orderly manner and to continue the exploration under a private leasing arrangement. However, Congressional hearings on the program indicated that Congress wished to continue the Government's exploration program until such time as a private leasing program was in effect. These uncertainties led to delays in the selection of potential wellsites and the refinement of the geophysical data. In preparation for possibly drilling four wells, seven sites were investigated—four primary and three alternates—and archaeological, environmental, and engineering studies were conducted at all sites. The completion work at Awuna and Koluktak scheduled for 1980-81 did not require additional field work.

The Cool Barge arrived at Lonely on August 15, 1980, and unloading of the piling, timber, dry cargo, drum stock, and bulk fuel continued around the clock until August 20. A total of 3,243,113 kg (7,134,848 lb) of dry cargo and 17,056,414 L (4,506,318 gal) of fuel was delivered. Lateral movements to Deadhorse, Cape Simpson, and Peard Bay included 479,769 kg (1,055,493 lb) of dry cargo and 108,312 L (28,616 gal) of fuel. In addition, 83,545 kg (183,800 lb) of miscellaneous items was retrograded to Seattle. The barges left Camp Lonely the evening of August 21 to pro-

ceed to Barrow and then on to Seattle.

The 1980 summer cleanup of old Navy sites and the cleanup and revegetation of the drill sites of the current exploration program were combined under one contractor. The operations got underway when equipment and personnel arrived at Camp Lonely during the last week of May. An 18-man tent camp was set up at Oumalik and, utilizing a Bell 205 helicopter for lifting power (fig. 2.24), began the cleanup of Oumalik, East Oumalik, Brady, Mona Lisa, Lisburne (the current drill site), and a number of new finds and explosive caches. The term "new finds" was used to designate any considerable amount of debris encountered locally within 8 km (5 mi) or so of the site—debris that was not originally scheduled in the work plan. The disposal of the explosives was coordinated with the Alaska Department of Environmental Conservation, the USGS, and other Government authorities. By July 24, the tent camp was moved to the Old Meade site; the

crews helped with the pickup at Tunalik during the move.

Demobilization of the cleanup camp at Old Meade began on August 20, and the operation was out of the field by August 25. Although this was early, according to the schedule maintained in previous years, during the last days of operation the camp was plagued by freezing water pipes and condensation of moisture in the tents. This season a total of 1,203,463 kg (2,647,620 lb) of debris was stockpiled for burial; 826,045 kg (1,817,300 lb) consolidated at Oumalik; and 377,418 kg (830,320 lb) consolidated at Old Meade. New finds at Oumalik (figs. 2.25-2.27) totaled an estimated 177,000 kg (389,000 lb), and at Old Meade approximately 23,000 kg (51,000 lb).

REVEGETATION OPERATIONS

The revegetation crew of 10 was based at Camp Lonely and used a Bell 205 helicopter for transportation. The plan was to seed and fertilize as many pads as possible

before July 4, then go back and begin the cleanup at each site. Research and experience had shown that any seed planted after the beginning of July did not have sufficient time to germinate and establish adequate roots to survive the winter. Those sites not seeded in the spring were sown with dormant seeds in late August after the first frosts.

The following sites were worked over during the 1980 season:

1. Drew Point—policed pad, cut piling, applied seed and fertilizer; seeded in spring.
2. J.W. Dalton—policed pad, cut piling, applied seed and fertilizer; seeded in spring.
3. W.T. Foran—reseeded and fertilized; seeded in spring.
4. Atigaru Point—reseeded and fertilized; seeded in spring.
5. East Simpson No. 1—reseeded and fertilized; seeded in spring.
6. South Simpson—cut piling, policed pad; last season's seed had germinated successfully.
7. South Harrison Bay—reseeded and fertilized; seeded in spring.
8. North Kalikpik—policed pad, cut piling, applied seed and fertilizer; seeded in spring.
9. East Simpson No. 2—policed pad, cut piling, and applied seed and fertilizer; seeded in spring.
10. Ikpikpuk—policed pad and airstrip, cut piling, applied seed and fertilizer; seeded in spring.
11. Irigok—applied seed and fertilizer to pad and runway edges; seeded in spring.
12. Grandstand and Gubik—applied seed and fertilizer; seeded in spring.
13. Seabee—applied seed and fertilizer to the borrow site and the construction camp site; seeded in spring.
14. West Dease—policed pad, cut piling, applied seed and fertilizer to pad; seeded in spring.
15. POW A (Cape Simpson)—picked up debris where construc-

FIGURE 2.24.—Helicopter transporting debris to the burial location, Grandstand site, July 1979.

tion train and drilling rig had been stacked the previous season.

16. Walakpa No. 1—policed pad, cut piling, applied seed and fertilizer; seeded in spring.

17. Peard—policed pad, cut piling, applied seed and fertilizer; seeded in fall.

18. Kugrua—policed pad, cut piling, applied seed and fertilizer; seeded in fall.

19. Tunalik—policed pad and air-strip, applied seed and fertilizer to pad and edges of runway; seeded in fall.

20. South Meade—policed pad, cut piling, applied seed and fertilizer; seeded in fall.

The East Teshekpu and West Fish Creek sites were inspected during the summer. Germination of the seed spread the previous season was deemed successful, and no further work was done. On days when the helicopter was restricted from flying, the revegetation crews collected about 13,500 kg (30,000 lb) of miscellaneous debris from the gravel and tundra areas around Camp Lonely. In addition, the Lisburne site was visited and cleared of loose debris.

The 1980 summer season was not a good one for grass germination, because it was exceptionally wet and foggy, and almost all grasses had fungus and mold. Although the fungus infestation of the native species used in the revegetation did not appear to be fatal to the stand, the so-called Alyeska mixture did not fare as well. This raises the questions of winter survival and of how many seasons of followup will be necessary to insure adequate stands of grasses.

CAMP LONELY

Upgrading of the facilities continued at Camp Lonely, largely to bring the camp into compliance with the safety standards of OSHA (Occupational Safety and Health

Administration) and the Alaska Department of Labor. Climbing cages were added to the ladders on the sides of the Mogas tanks. An exhaust-vent hose system was installed in the mechanic's shop to remove fumes from the immediate vicinity of the welder. In addition, the old incinerator was removed and a new one installed that could handle all the garbage, sewer-plant

sludge, and waste oil generated by the program.

BARROW GAS FIELDS

The work to upgrade the Barrow gas facility continued during the summer of 1980. The Barrow Gas Field Power Generation Facility was built; the new road to the field was bladed and compacted during the

FIGURE 2.25.—Drum pile at Oumalik site before cleanup, June 1980.

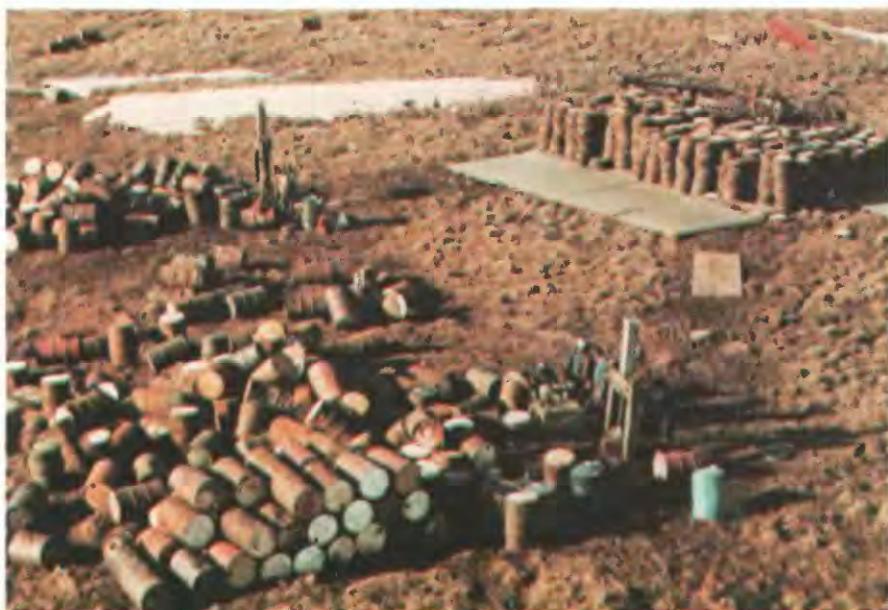


FIGURE 2.26.—Drum-crushing operation at Oumalik site, June 1980.

entire month of June and most of July; and a culvert that had washed out during the spring breakup was replaced by one with larger capacity.

SOUTH BARROW NO. 15

The pad for South Barrow No. 15 had been constructed the previous March, but the rig (Brinkerhoff-Signal No. 31) was still at South Barrow No. 20. The rig move and rig-up for South Barrow No. 15 began on August 12 and was completed in 11 days. The well was spudded on August 23, 1980.

The sandstone that was the objective of the well was found much lower than expected, indicating either a very steep north flank of the structure or faulting. Total depth of the well was 694 m (2,278 ft) in Jurassic sedimentary rocks. The upper Barrow sandstone was cored, and an open-hole drill-stem test recovered gas. A test in the lower Barrow sandstone recovered water. Minor oil and gas shows were found in the Torok Formation and the pebble shale unit of Cretaceous age. Casing was set through the upper Barrow sandstone and

perforated from 626 to 629 m (2,054-2,064 ft) and from 643 to 656 m (2,110-2,151 ft). On a production test, the well flowed gas at a rate of 1 million ft³/d. The well was completed on September 18, 1980.

SOUTH BARROW NO. 18

The pad for South Barrow No. 18, like that for South Barrow No. 15, was constructed in March of 1980. When the Brinkerhoff-Signal rig finished drilling at South Barrow No. 15 in early September, it was moved over the gravel roads to the new location. Rig-up began on September 19, and the well was spudded on September 22, 1980.

South Barrow No. 18 was drilled on the east flank of the east Barrow structure, reaching a total depth of 651 m (2,135 ft), about 15 m (50 ft) below the Barrow sandstone—the objective of the well. Minor oil and gas shows were found in thin sand stringers in the Torok Formation and the pebble shale unit. The upper and lower Barrow sandstones were cored, and casing was set through the sandstones. The entire lower Barrow sandstone was perforated and tested; the maximum

flow rate was 1.4 million ft³/d. The well was completed and the rig released on October 14, 1980. The rig was stacked out temporarily on the pad.

AWUNA TEST WELL NO. 1

The drilling camp at Awuna was reopened in mid-October of 1980. It was discovered that the camp had sustained much water damage over the summer. Floors, ceilings, and insulation had to be repaired, delaying construction by about one week. By the end of the month the construction crew was on the site, assembling the insulated pipe necessary to build a Hercules ice airstrip on the tundra and servicing the equipment needed to enlarge the reserve pit.

During the month of November, more than 22,700,000 L (6,000,000 gal) of water was frozen to form the Awuna airstrip, the reserve pit was enlarged, and the connecting ice roads from the pad to the airstrip and the water source were constructed. Operations were hindered by high winds, blowing snow, and warm temperatures, but the airstrip was operational on December 5. Mobilization of drilling equipment had begun, and the well was re-entered immediately.

The Awuna Test Well No. 1 was drilled to test for possible oil and gas accumulations on one of the highest structural positions along the Carbon Creek-Awuna anticline—a structure that extends across much of the reserve. The well was drilled to test sandstones of the Torok and Fortress Mountain Formations of Cretaceous age. Its total depth was 3,414 m (11,200 ft). The well was spudded in the Torok and reached the top of the Fortress Mountain at 2,404 m (7,886 ft). The Torok was mainly shale with some thin nonporous sandstones, many of which had gas shows. The upper part of the Fortress Mountain

FIGURE 2.27.—Site of drum pile at Oumalik after cleanup, July 1980.

work was easier to do before the summer thaw had melted the frozen pads.

High winds and fog in the western part of the reserve slowed down the establishment of the cleanup tent camp at Icy Cape, but the operation was finally begun on July 2. A second period of winds as high as 25 m/s (50 knots) hampered work for another week. Icy Cape was finished by July 28, and the camp was moved to the Kaolik site. The old sites cleaned that season were Icy Cape (LIZ B), Peard Bay (LIZ C), Kaolik, and numerous smaller finds.

REVEGETATION OPERATIONS

The following recent drill sites were cleaned up and seeded with native grasses: Walakpa No. 2, Tulageak, North Inigok, Koluktak, Kuyanak, and Awuna.

Further cleanup work was also completed at Seabee (Umiat) and Lisburne (Ivotuk).

The decision was made to use fixed-wing planes to spread fertilizer on trails and pads, because the distances to be covered were great and aerial application was much less costly. Consequently, two Cessna AgWagons were procured by contract; the first arrived at Lonely on July 10 and the second on July 23. Fertilizer was applied aerially to the following trails:

Lonely to Drew Point—29 km (18 mi)
 Drew Point to Ikpikpuk—58 km (36 mi)
 Ikpikpuk to Inigok—93 km (58 mi)
 Inigok to North Kalikpik—80 km (50 mi)
 North Kalikpik to West Fish Creek—27 km (17 mi)
 North Kalikpik to South Harrison Bay—14 km (9 mi)
 North Kalikpik to Atigaru Point—24 km (15 mi)
 North Kalikpik to W.T. Foran—38 km (24 mi)
 W.T. Foran to Lonely—51 km (32 mi)
 North Kalikpik to Lonely—67 km (42 mi)
 Drew Point to South Simpson—40 km (25 mi)

South Simpson to East Simpson No. 2—53 km (33 mi)
 Barrow to Walakpa No. 1—22 km (14 mi)

Many trails were rather wide and required two or three passes of the aircraft to ensure complete coverage.

The following abandoned drill pads were fertilized:

Drew Point	Kugrua
Ikpikpuk (plus on tundra ice-runway area)	East Teshekpuk
Inigok (plus road and air strip edges)	Peard
North Kalikpik	Tunalik (plus road and airstrip edges)
West Fish Creek	Walakpa No. 1
South Harrison Bay	West Dease
Atigaru Point	Koluktak
W.T. Foran	Tulageak
Cape Halkett	Walakpa No. 2
South Simpson	Awuna
East Simpson No. 1	Lisburne (plus road and airstrip edges)
East Simpson No. 2	Kuyanak
South Meade	North Inigok

Personnel at the Camp Lonely Control Center provided communications for all the cleanup and re-vegetation operations as well as for the USGS field parties.

Although the level of field activity for the summer of 1981 was less than half that of previous summers, Camp Lonely was a busy place. The Skyvan aircraft and four helicopters were flying in support of the Barrow gas-field work, the cleanup, and the Technical Services Contractor, and the Hercules aircraft made lateral shuttles, moving material between Lonely and Barrow. The operations at NARL were greatly reduced because of the decreased Navy interest and the planned closure of that facility. To fulfill the Secretary of the Interior's requirements to operate and maintain the Barrow gas fields, the USGS moved the Camp Lonely exploration equipment to Barrow because the exploration program was over.

All of the sorting, crating, and transfer of equipment for an orderly closure of Camp Lonely consumed much time and effort. USGS and Husky property-management personnel inventoried all the materials and equipment, particularly the communications gear, and identified items for lateral barge movement to Barrow. The Nabors Rig No. 1 was readied for shipment to Seattle.

In late July, the construction of the heater buildings in the East Barrow gas field was begun, and the radiographic inspection of the gasline gathering system got underway. A telephone line between the East and South Barrow gas fields was installed on the gasline itself. In Camp Lonely, work was started to add urethane to the roofs of the camp units to seal and insulate them before closing them up. Generators were overhauled, some on site and others at Fairbanks and Anchorage. The 87,000-L (23,000-gal) double-walled fuel tanks were drained and cleaned in preparation for painting and shipping to Barrow.

In August, the barges arrived (figs. 2.28-2.30), and fuel deliveries and lateral movements immediately got underway. At Lonely, 3,036,775 L (801,500 gal) of Arctic diesel was offloaded, and another 1,133,600 L (299,500 gal) was received at Barrow. Three barge loads of equipment were shipped from Lonely to Barrow in August and two more in September. Also in September, Lonely received 18,170 L (4,800 gal) of MoGas and 242,250 L (64,000 gal) of Arctic diesel for the DEW Line and stored it in the USGS tanks.

INIGOK RESERVE PIT

After Inigok Test Well No. 1 was abandoned in May of 1979, the spring runoff added considerable fluid to the reserve pit. The resulting increased head pressure allowed

some of the fluid in the reserve pit to seep through the sands of the retaining berm. During the growing season, an area of dead vegetation developed around the toe of the berm along the western edge. Samples were collected to evaluate potential toxicity. Chemical analysis was extremely difficult because of the complex nature of the fluids. Tests indicated that the material

had high-oxygen-demand characteristics but was only mildly toxic. Containment within the existing berm was believed to be the best way to solve the problem. The reserve pit was again tested during the summer of 1980, but this examination was only cursory and indicated only limited change. In the early summer of 1981 a full analysis was made to update the record. It

was discovered that a number of significant chemical changes had occurred. A radical downward shift in pH was noted, as well as a substantial decrease in organic strength.

When first examined in June of 1979, the reserve-pit material was found to have a pH of 9.0. During that summer, the pH dropped slowly into the 8.2-8.3 range. The cursory examination in 1980 indicated that the pH remained relatively unchanged. In September of 1981, the pH was found to be 3.3. At that time a program was begun to neutralize the material. Laboratory tests indicated that it was possible to neutralize the fluids with sodium hydroxide (NaOH). Consequently, approximately 2,300 kg (5,000 lb) of solid NaOH was added to the reserve-pit fluid through the ice cover on October 2 and 3, 1981. Plans were made to test the pit during the 1982 season.

CLOSURE OF CAMP LONELY

After the barges had departed from Lonely, the materials to be stored on the camp pad were rearranged and restacked to make the best use of space and minimize the snow-drifting problems. All of the equipment and supplies that had been stored along the road to the summer water-supply lake were brought in and stored either in the warehouse or on the pad. Vehicles and other equipment were shipped to Barrow by C-130 Hercules aircraft. The 87,000-L (23,000-gal) double-walled steel tanks were also moved to Barrow, where the sanding and painting would be completed. Industrial gases, the man-lift, and miscellaneous files were backhauled to Anchorage. A new hookup of the runway lights and beacon to the DEW Line electrical system was completed to keep them operational after the Camp

FIGURE 2.28.—Sealift in Elson Lagoon, off Point Barrow, waiting for ice to clear for trip eastward, August 1976.

FIGURE 2.29.—Barge being towed in sealift operation off Cape Simpson, August 1980. Photograph by S. Krogstad.

Lonely power plant was closed down.

Camp Lonely was completely shut down on December 5, 1981. The camp was left in excellent condition and well secured. All windows were boarded up, locks secured on all doors and fuel valves, and no-trespassing signs were placed on all doors and on the drill pipe, mud products, and other items stored on the pad. The USGS made arrangements with the DEW Line personnel for periodic surveillance of the camp.

CONSTRUCTION IN THE BARROW GAS FIELDS—WINTER 1981-1982

Modernization and modifications of the gas-field structures continued throughout the winter, although progress was frequently hampered by blowing snow in the period from October through February. Electric power for the East Field was supplied, as of November 1981, by the new generating facility in the South Field. The East Field was started up and was turned over to the gas-field operator in December. Construction continued throughout the spring and included a building over the metering and regulation bypass facility, the installation of instrument panels in both fields, of ratio control valves, and of emergency fuel tanks and generators (on piling) in the East Field.

BURIAL PROGRAM—SPRING 1982

The last major cleanup and burial program was scheduled for the spring of 1982. The contractor used two Cat trains of equipment—the larger one doing the work at Skull Cliff and Peard Bay, and the smaller, more mobile train working briefly at Skull Cliff and then at Brady, Kaolik, and Icy Cape. The Skull Cliff operation was a major one, because the estimated 1,977,000 kg (4,350,000 lb) of debris that had

been stockpiled on the beach in hopes of marine removal had to be moved about 1.5 km (1 mi) inland to the burial site. However, despite the size of the task, the work proceeded on schedule.

After the second train departed Skull Cliff for Brady, it encountered some deep snow, but the snow did not nearly reach the depths that had thwarted the efforts to reach Brady a year earlier.

The contractor was in the field, working with both crews at the Skull Cliff site, on March 15. The program was completed and all equipment began moving off the reserve on April 17. Seed and fertilizer were spread before the work crews left the sites.

CAMP LONELY—SPRING 1982

On June 2 the DEW Line personnel, acting as caretakers and watchmen for Camp Lonely, reported that the center section of roof over the recreation area had collapsed. Apparently, a 2-m (6-ft) snow drift had formed on the roof, downwind of the weather observation tower, and the weight of this densely packed snow collapsed the roof.

Cleanup of the debris and repair of the roof were completed late that summer to keep the camp weather-tight.

SUMMER OPERATIONS—1982

The revegetation and cleanup crews finished the final cleanup of miscellaneous debris at the recent drill sites during the summer of 1982. During the summer, many abandoned drums, both full and empty, were found along the old Navy trails throughout the reserve. The cleanup crews had concentrated on abandoned wellsites and their immediate vicinity, and the trails had not been surveyed until this year. The number of drums found was a surprise even to those people who had often flown over the reserve; therefore, after the drill sites were given a final policing, attention was turned to cleaning up as many drums as possible. In addition, considerable time was spent in the Barrow and Lonely areas, where work had been going on after freeze-up in the fall of 1981. As usual, the snow had concealed a considerable amount of debris. Cleanup ceased on September 28,

FIGURE 2.30.—Anchoring the sealift barge with a Caterpillar tractor at Camp Lonely, September 1981. Photograph by S. Krogstad.

1982. No one claimed that the NPRA was completely clean, but more than 6,350 t (7,000 tons) of debris had been picked up, burned or consolidated, and buried. The entire area was in much better environmental condition than it was before 1975.

Samples of fluid were again taken from the Inigok reserve pit on June 29, 1982, and the results indicated that the pit had nearly attained stabilization and neutralization. Samples taken around the inside perimeter of the pit yielded pH values of 6.4 and 6.5. Color was pronounced because of the fulvic and humic acids that are naturally occurring polymers—the products of biological degradation. More samples for analysis were taken on September 23, 1982. The pH values measured in three samples were 7.4, 7.6, and 7.6. These compared favorably with the 7.4 and 7.5 measured in the natural lake waters nearby. The conductivity of the pit was still somewhat high (7,600 $\mu\Omega/cm$), but the alkalinity, measured as calcium carbonate, was quite low (120 mg/L). All these measurements were taken when there was a few centimeters (about an inch) of ice on the surface. The differences in the measurements were somewhat surprising, because it was expected that the spring values would decrease as they had the previous season. However, the earlier values represented the pit under well-mixed conditions after a summer of wind, and the June 25 samples were obtained when the fluids were probably still winter stratified.

SUMMARY

The modern exploration program of the National Petroleum Reserve in Alaska was initiated in the spring of 1975 with the drilling of Cape Halkett No. 1 well and continued in the spring of 1976 with the drilling

of East Teshekpuk No. 1. The program reached full operational status in the winter of 1976-1977 when five exploratory wells were drilled (South Harrison Bay, Atigaru Point, West Fish Creek, South Simpson, and W.T. Foran), Camp Lonely was enlarged, construction trains were assembled, and overland trails were established. During the program, a total of 28 exploratory wells were drilled—7 under the direction of the U.S. Navy and 21 under the direction of the U.S. Department of the Interior, Geological Survey. In addition, as an adjunct to the exploration program, 10 test wells were drilled in the Barrow gas district, 4 by the Navy and 6 by the USGS. Over the seven-year life of the program, a total of 23,632 km (14,770 line mi) of seismic survey was completed and interpreted.

GEOLOGIC FINDINGS

The NPRA program discovered a natural gas field (Walakpa) about 24 km (15 mi) south of Barrow. The gas found in the Walakpa Test Well No. 1 is in a Lower Cretaceous sandstone reservoir with a gross thickness of about 5.5 m (18 ft) at a depth of about 630 m (2,070 ft). Original gas in place was calculated to be 428,000 $ft^3/acre\cdot ft$ of reservoir, on the basis of an engineering study of drill-stem tests and core-analysis data. The areal extent of this field was not determined, but it may be fairly large. Gas was found in a correlative sandstone in Walakpa Test Well No. 2, located about 6.5 km (4 mi) to the south-southwest of the discovery well. In Well No. 2, the gas-bearing sandstone has a gross thickness of 10 m (32 ft) and is 159 m (523 ft) structurally lower than in Well No. 1. A cased-hole drill-stem test of the sandstone in Well No. 2 gave a maximum flow rate of 2.293 million ft^3/d . However, the test-flow rates were not considered stable because

there was evidence that gas hydrates formed in the wellbore during all the flow periods.

Most other exploratory wells drilled during the program found gas shows, and several wells had oil shows. These shows were generally evaluated as they were encountered on the basis of sample analysis, mudlogger gas shows, and cores. When feasible, the better shows were further evaluated with drill-stem tests after electric-log interpretations, if available, had indicated possible reservoir conditions.

The Seabee Test Well No. 1, located near Umiat in the southeastern part of the reserve, tested gas from a thin (net thickness 4.3 m, or 14 ft) Cretaceous sandstone at a depth of 1,636 m (5,366 ft). According to an analysis of the test data by H.J. Gray and Associates, Inc., the gas reservoir is small and closed, and the total gas originally in place is estimated to be only about 330 million ft^3 .

Several gas shows were encountered in Cretaceous rocks in the Tunalik Test Well No. 1, which was drilled in the northwest part of the reserve about 65 km (40 mi) southwest of Wainwright. The most significant show was from an overpressured sequence of interbedded sandstone and shale at depths between 3,825 and 3,840 m (12,550-12,600 ft). This zone required prolonged well-control procedures, which caused barite to plug much of the porosity of the sandstone. Because of the formation damage, a conventional drill-stem test was not attempted; wireline tests to obtain pressures and fluid samples were unsuccessful.

Many gas shows were noted in drilling the Awuna Test Well No. 1, located in the south-central part of the reserve about 243 km (152 mi) south of Barrow. This test of Cretaceous rocks had severe drilling problems, and it did not reach the

*Lisburne No. 1 well, 1979-1980.
Photograph by Charles Mayfield.*

*View up the tower, Lisburne drilling rig.
Photograph by Charles Mayfield.*

*Drilling at Inigok No. 1 well, 1978-1979.
Photograph by Jeep Johnson.*

*Lisburne well site.
Photograph by John Schindler.*

*Fish Creek No. 1 well site, summer 1949.
Photograph by George Gryc.*

*Pumping oil at Umiat No. 5 well, 1951.
Photograph by George Gryc.*

*Barrow well site.
Photograph by Jeep Johnson.*

*Computer room, Inigok No. 1 well.
Photograph by Jeep Johnson.*

Lisburne No. 1 well, with Otuk Creek in foreground. Overturned anticline in background exposes Lisburne Formation and forms Iyatuk Ridge. Photograph by Irvin Tailleur.

Thin-bedded turbidites of the Fortress Mountain Formation intertongue northward with shale of the Torok Formation in the northern part of the southern foothills. Locally, thick-bedded, coarser grained turbidites occur in rocks mapped as Torok Formation, such as near the junction of Torok Creek and the Chandler River (Patton and Tailleur, 1964) and near the mouth of the Etivluk River (Chapman and others, 1964). These beds are interpreted as being northerly extending midfan deposits. The rocks exposed near the mouth of Etivluk River are here included in the Fortress Mountain Formation (fig. 12.2). The contact between the Fortress Mountain and Torok Formations has been placed arbitrarily, because of poor exposures and structural complications (fig. 12.2). If the contact were traceable, it undoubtedly would be found to range in stratigraphic position.

PENECONTEMPORANEOUS DEFORMATION

Folding during Fortress Mountain time has been suggested to account for numerous local unconformities within the Fortress Mountain Formation and for the overall decrease in deformation upward in the formation (Patton and Tailleur, 1964, p. 456). Some of this apparent decrease may result from differences in competence between the more shaly basal parts and the massive conglomeratic parts in the upper part of the formation (Tailleur and Kent, 1951, p. 23). There are indications, however, of penecontemporaneous deformation. One indication is along the East Fork of the Etivluk River in sec. 25, T. 9 S., R. 17 W., where Chapman and others (1964, p. 355) reported a local unconformity. This unconformity is interpreted here as being at the base of a deep-water, conglomerate-filled channel that truncates a thin-bedded turbidite facies

with an angular difference of about 20° over the outcrop width of about 150 m (see fig. 12.9).

An angular unconformity has also been reported by Tailleur and Kent (1951, p. 23; the rocks were referred to as units of the Torok Formation at that time) and Tailleur and others (1966) between units of the Fortress Mountain Formation on the south side of Ekakevik Mountain. We believe the strata above the unconformity to be nonmarine, thus indicating that subaerial erosion was involved. Facies relationships are discussed in more detail in the following section.

As was noted earlier, active tectonism was apparently taking place along the southern margin of the basin during the time that the Fortress Mountain Formation was being deposited. This explanation would help to account for the apparent variations in thickness and some of the complex structural relations.

DEPOSITIONAL ENVIRONMENTS

The interpretation of depositional environments is especially important when analyzing the depositional history and facies patterns of the Fortress Mountain Formation, because structural complications and discontinuous outcrops severely limit direct tracing of units within the sequence. Correct interpretation of the depositional environments and associations enables us to position a rock unit paleogeographically within the basin and hence be able to project facies trends or patterns more accurately.

For purposes of discussion and analysis, we are herein subdividing depositional environments into three major categories: nonmarine, shallow-water marine, and deep-water marine. The division between shallow water and deep water is based on the depth to which wave and surface currents are active, that

is, usually about 50 or 100 m. Except for submarine-canyon deposits, most deep-water sandstone and conglomerate were probably deposited at depths much greater than 50-100 m. Deep-water deposits are further subdivided in terms of the turbidite-fan facies model of Mutti and Ricci Lucchi (1972), with a fair degree of confidence, although there are probably significant differences between that model, derived from the northern Apennines of Italy, and the Fortress Mountain Formation.

It should be emphasized that determinations of depositional environments using the analog approach are highly inferential and may be subject to other interpretations. For this reason, some of the evidence will be discussed in more detail, especially that from the better known or previously studied sections or areas. Also, nonmarine and shallow-water marine deposits are discussed together because they are closely related and constitute a smaller part of the Fortress Mountain Formation than the deep-water facies.

Outcrops representative of different inferred depositional environments or facies typical of the Fortress Mountain Formation are shown in figures 12.6 through 12.19.

NONMARINE AND SHALLOW-MARINE DEPOSITS

Deposits believed to be nonmarine and shallow marine were noted in two areas along the outcrop belt between the Chandler and Nuka Rivers. These deposits are in the upper 150 m of Castle Mountain (fig. 12.6) and constitute at least 180 m of the section on the southwest side of Ekakevik Mountain. In addition, part of the thick conglomerate at Fortress Mountain may be partly nonmarine to shallow marine, a fan delta. The upper part of the Castle Mountain section is interpreted as representing a rapid up-

ward gradation from marine shale through a poorly developed shoreface facies (a fan delta) to a braided-stream or alluvial-fan sequence of conglomerate and sandstone. This interpretation is based on the following evidence. (1) A 30- to 50-m-

thick upward-coarsening transition zone, from silty marine shale below to thick-bedded conglomerate above, occurs at the base of the massive resistant conglomerate. This zone consists of interbedded and intermixed shale, sandstone, and peb-



FIGURE 12.6.—Resistant conglomeratic sandstone beds in upper part of the Fortress Mountain Formation, north side of Castle Mountain (SW $\frac{1}{4}$ sec. 15, T. 10 S., R. 3 W.). The beds are interpreted as being a shallow-marine transitional facies between marine beds below and nonmarine conglomerates above (background). Low-angle accretion bedding dipping from left to right is faintly visible in lower resistant bed, about 7 m thick.

FIGURE 12.7.—Lower part of the Fortress Mountain Formation, southeast side of Fortress Mountain (secs. 18, 19, T. 10 S., R. 4 W.). Lower massive resistant unit in center of photo is 200-m-thick conglomerate believed to be a submarine-canyon facies. Above it are sandstone and conglomerate units of either submarine-canyon or inner-fan-channel facies.

bly sandstone, some of which contains medium-scale crossbeds. (2) Low-angle northerly dipping accretion planes occur in the lower part of the conglomerate and sandstone on the north side of the mountain (fig. 12.6). These planes may represent foreshore accretion surfaces. Symmetrical ripple marks trending north-northeast occur on one bed that was correlated across the ridge a distance of about 600 m. (3) On the southwest side of the mountain, foreset beds more than 8 m thick and having depositional dips of 18° NNW. occur near the base of the massive conglomerate. These beds are interpreted to be Gilbert-type deltaic deposits that may have been deposited in a protected embayment or abandoned channel. (4) The absence of channels and the even and regular bedding of the thick-bedded conglomerate units above the transition zone are indicative of a rapidly aggrading fluvial sequence.

Inasmuch as the vertical transition from marine to nonmarine deposits is abrupt, it is probable that the lateral gradation is also abrupt and that the shelf, if present, was narrow. Two conglomerate beds 6 to 12 m thick occur interbedded in the shale about 60 m below the transitional base of the massive conglomerate on the northwest side of the mountain. These two conglomerate beds are interpreted as having been deposited in submarine channels cutting into the upper slope or shelf.

Nonmarine deposits are also present on the southwest side of Ekakevik Mountain, as reported by Hunter and Fox (1976, p. 30). In addition to their evidence, we found coal beds a few centimeters thick, delicate fern-leaf impressions, root casts, and possible paleosols in one soft, weathered shaly and sandy interval within the conglomerate. This interval, which is at least 50 m thick, can be traced for at least 5 km along the southwest side of the mountain. About 50 to 100 m above

the nonmarine zone are beds of sandstone with low-angle crossbedding, and of conglomerate, some of which contain strata of well-sorted, well-rounded chert pebbles and granules. These deposits are believed to represent a shallow-marine or beach environment. The sandstone unit capping Ekakevik Mountain was not examined in great detail, but pelecypods were collected from that unit and are listed in the section below entitled "Age." Hunter and Fox (1976, p. 30), who also found pelecypods in this unit, believed these rocks to be of shallow-marine origin. Thus, the middle and upper parts of Ekakevik Mountain form a transgressive or deepening-upward sequence.

DEEP-WATER DEPOSITS

Most of the Fortress Mountain Formation is believed to be of deep-water origin. These deposits range from some of the thick massive conglomerate units on the south, which are thought to be submarine-canyon facies (figs. 12.7, 12.8) to thinly interbedded very fine grained sandstone and shale exposed along cutbanks as far north as the Colville River that are thought to be outer-fan or basin-plain deposits (fig. 12.14). Chapman and others (1964) included rocks of this character along the lower part of the Etivluk River in the Tork Formation, but following Tailleur and others (1966), we include them in the Fortress Mountain Formation (fig. 12.2).

The thick conglomerate units at Swayback Mountain, and possibly those at Fortress Mountain and in the lower part of the Ekakevik Mountain section are believed to have been deposited in or at the heads of submarine canyons at or near local entry points for coarse clastic sediment entering the basin. At Fortress Mountain the conglomerate unit is about 300 m thick and occurs near the base of the formation, if the contact with older rocks is a depositional rather than a fault

contact. The conglomerate is largely unstratified and consists of ungraded pebbles and cobbles with a few boulders. The unit can be traced northward across a syncline for about 2.5 km, where it grades into sandstone of probable inner- or

mid-fan facies. To the east across an inferred large fault that parallels the Ayiyak River, the unit is believed to correlate with the lower part of the type section in the Kiruktagiak River-Castle Mountain areas, as shown in figure 12.4.

FIGURE 12.8.—Exposures of the Fortress Mountain Formation, south side of Swayback Mountain (sec. 30, T. 8 S., R. 25 W.). Thick conglomerate is interpreted as being a submarine-canyon facies. Height of exposure is about 25 m.

FIGURE 12.9.—Local unconformity within the Fortress Mountain Formation on East Fork of Etivluk River (NE 1/4 sec. 25, T. 9 S., R. 17 W.). Inner-fan-channel or submarine-canyon facies cutting into thin-bedded turbidite facies. Angular discordance is believed to be due to penecontemporaneous folding. Scale indicated by parked helicopter at right.

The 50-m-thick conglomerate unit exposed on the northwest and northeast sides of Ekakevik Mountain is interpreted as being either a submarine-canyon or inner-fan-

channel facies. The clasts range in size from pebbles to small boulders and are unstratified and ungraded, but many of the clasts are imbricated, indicating a northward

current. This unit underlies the previously mentioned nonmarine section that is exposed on the southwest side of the mountain—an anomalous relation. An angular unconformity, however, is indicated between these two units at one exposure on the south side of the mountain. This unconformity is shown by Tailleur and Kent (1951—mapped as within Torok Formation at that time) and Tailleur and others (1966) and is apparent in a small area (NW $\frac{1}{4}$ sec. 23, T. 10 S., R. 22 W.) on aerial photographs. We believe that a fault cuts out the lower unit along Taffy Creek on the southwest side of the mountain. In other areas around the mountain, the lower unit is assumed to underlie the nonmarine unit unconformably with no apparent angular discordance.

Other conglomerate units within the outcrop belt are interpreted as submarine-channel deposits of an inner- or mid-fan facies. These conglomerate units are commonly associated with thinly interbedded sandstone and shale intervals of interchannel deposits (fig. 12.10). The sequences are well exposed along the upper part of the Kiligwa River. Another notable exposure is along the East Fork of the Etivluk River (sec. 25, T. 9 S., R. 17 W.) where a channel sequence unconformably overlies a thin-bedded outer-fan turbidite facies (fig. 12.9).

Thick sandstone units make up many of the isolated hills and mountains such as Pingaluligit Mountain, Smith Mountain, and much of Liberator Ridge (fig. 12.11). Outcrops are commonly rubbly or fractured, and few diagnostic features are apparent. The sandstone is generally fine to coarse grained, poorly sorted, and poorly bedded. Curved fracture planes that could be mistaken for crossbedding may follow water-escapement paths (fig. 12.12). These sandstone units are believed to be inner- or possibly mid-fan

FIGURE 12.10.—Inner-fan-channel rock association in the Fortress Mountain Formation along East Fork of Etivluk River (NE $\frac{1}{4}$ sec. 25, T. 9 S., R. 17 W.). Thinly bedded interchannel overbank deposits overlie massive channel deposits. Scale indicated by men at lower left.

FIGURE 12.11.—Steeply dipping, thick-bedded or massive sandstone of inner- to mid-fan facies of the Fortress Mountain Formation exposed on Liberator Ridge (sec. 15, T. 7 S., R. 27 W.). Relief between peak and saddle at lower right is about 150 m.

grain-flow deposits (facies B of Mutti and Ricci Lucchi, 1972).

More classical thin-bedded turbidites are common in cutbanks in the more topographically subdued areas of the northern part of the southern foothills (fig. 12.14). The sandstone is usually fine to very fine grained and occurs as graded beds as much as 2 m thick, though most are less than 20 cm thick. Partial Bouma bedding sequences (Bouma, 1962, p. 49) are easily recognized; most are Tb-e, with the a interval missing and the c interval (the small-scale crossbedded or ripple-bedded division) the most prevalent. Climbing ripples and contorted bedding are common features. Flute casts and other sole markings are abundant. Tracks and trails are also common on the base of sandstone beds (figs. 12.16-12.19). The sand-to-shale ratio of the more resistant outcrops in this part of the area ranges from 1:2 to 3:1. Thickening-upward (lobe) sequences are thin where recognized; commonly, a cycle is only 1-2 m thick (fig. 12.15).

Most of the turbidites in the northern part of the southern foothills are considered to be outer-fan deposits, and the more subdued outcrops are outer-fan or basin-plain deposits.

PALEOCURRENT DIRECTIONS

Paleocurrent features are numerous in the Fortress Mountain Formation in the study area, especially in the thin-bedded, more distal facies in the northern part of the outcrop belt. Observations were made wherever possible, and although the number of data points is limited, a pattern does emerge (fig. 12.2). In the outcrops of non-marine or shallow-marine facies, current-direction data are based on a limited number of medium-scale crossbeds, which show a wide scatter of directions, and parallel ripple

marks. Clast imbrication is common in some of the submarine-channel conglomerates. In most of these, the preferred direction of the long axes of the clasts is parallel to the

current direction as indicated by the imbrication. Interbedded sandstone and shale, believed in part to be interchannel deposits, contain minor groove or flute casts on the bases of

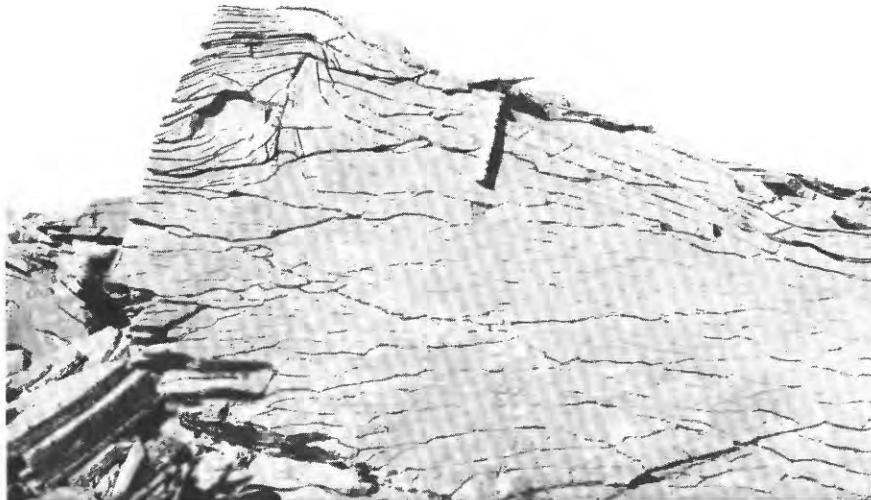


FIGURE 12.12.—Fractured outcrop of thick-bedded or massive sandstone (facies B) of inner- or mid-fan facies association of the Mount Kelly Graywacke Tongue of the Fortress Mountain Formation in westernmost part of area (NW $\frac{1}{4}$ sec. 1, T. 9 S., R. 46 W.). Fracture pattern, which is probably influenced by dish structure and larger water-escape features, gives outcrop a false crossbedded appearance. Geologic hammer is 33 cm long.

FIGURE 12.13.—Mid- or inner-fan association in the Fortress Mountain Formation northeast of Liberator Ridge (NW $\frac{1}{4}$ sec. 7, T. 7 S., R. 25 W.). Turbidites on left are overlain by channel deposits of conglomeratic sandstone in center, showing channel-bank accretion bedding, overlain in turn by 10 m of pebbly mudstone and then another channel on right.

the sandstone beds. Some of these current directions are divergent, which would be expected in inter-channel deposits. By far the most numerous and consistent directional features occur in the more distal facies to the north. These features

consist of groove and flute casts and also small-scale ripple bedding and climbing ripples (figs. 12.17, 12.18). Paleocurrent directions in that part of the area are predominantly to the east-northeast after correcting for structural deformation.

DEPOSITIONAL PATTERNS

The Fortress Mountain Formation appears to have been deposited rapidly into an asymmetric steep-sided basin from many point sources along the ancestral Brooks Range (fig. 12.3). The many point sources are indicated by changes in the composition of the conglomerate clasts of the Fortress Mountain in different areas and by abrupt lateral facies changes along the depositional strike. Such changes are exemplified by the inferred relation between the sections at Fortress Mountain (T. 10 S., R. 5 W.) and at Castle Mountain, two conglomerate-capped mountains about 16 km apart along an east-west line (fig. 12.4). The 300-m-thick conglomerate unit at Fortress Mountain grades into a predominantly sandstone unit 2.5 km north across a syncline. To the east, this unit thins and apparently grades into a predominantly shale section in the lower part of the 3,000-m-thick type section of the Fortress Mountain Formation near Castle Mountain (fig. 12.5). These relations and the many thick but apparently discontinuous lenses of coarse clastic materials support the interpretation that the Fortress Mountain Formation is composed of a number of deep-sea-fan complexes, overlapping in part and each one of limited lateral extent.

Rapid facies changes downdip into the basin are also apparent, even though direct correlations are usually not possible because of the presence of complex folds and faults. However, turbidites of the Fortress Mountain Formation are finer grained and more thinly bedded to the north, and the thick conglomerate sections are always on the south side of the outcrop belt. The rapid change from conglomerate to sandstone noted at Fortress Mountain is also exemplified in the almost continuous ex-

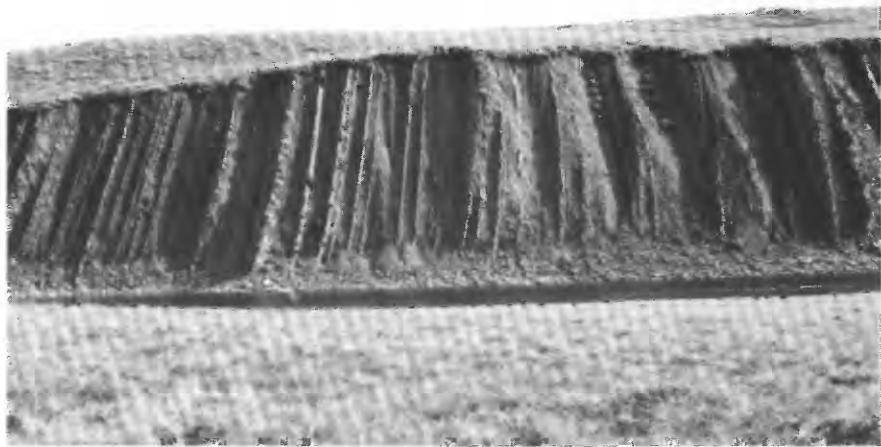


FIGURE 12.14.—Riverbank exposure of outer-fan facies of the Fortress Mountain Formation along upper Colville River (E½ sec. 20, T. 5 S., R. 29 W.). Stratigraphic top is to left. Cliff is about 25 m high.

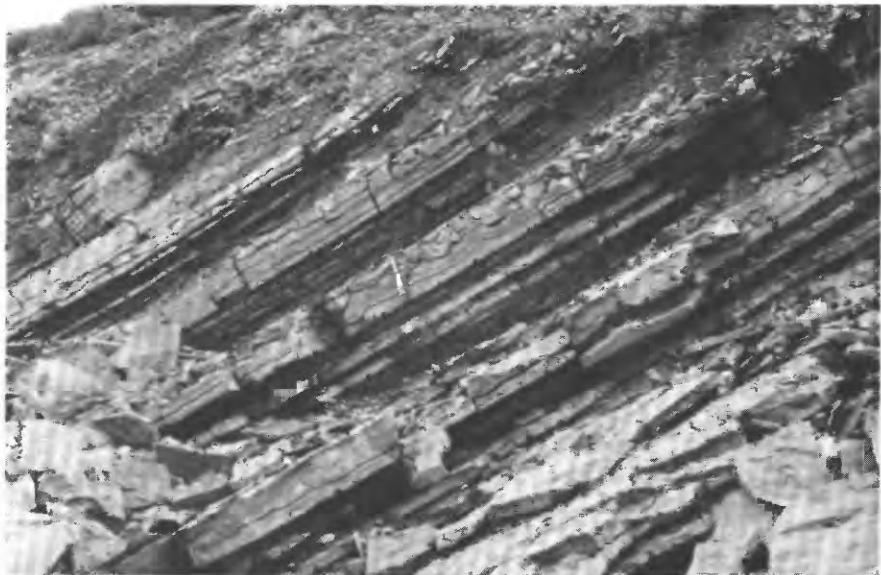


FIGURE 12.15.—Thin lobe sequences of outer-fan facies of the Fortress Mountain Formation along lower Kiligwa River (NW¼ sec. 29, T. 5 S., R. 27 W.). Interbedded sandstone (light beds, some showing convolute bedding) and mudstone (dark beds). Geologic hammer indicates scale.

posures along the Kiligwa River, which transects about 27 km of the outcrop belt (Tps. 5-8 S., R. 2 W.). Although the strata are tightly folded and faulted, and stratigraphic correlation across the belt cannot be established, there is a marked gradation of proximal to distal facies from south to north. In the southern part of the outcrop belt, many conglomerate units are interpreted as representing inner-fan channel deposits. About 16-20 km to the north, the Fortress Mountain Formation consists of thin-bedded fine-grained turbidites of an outer-fan or basin-plain facies. This section must include the basal part of the Fortress Mountain Formation inasmuch as pre-Fortress Mountain Valanginian (Early Cretaceous) fossils were found nearby in shales in the exposed core of the anticline in sec. 36, T. 5 S., R. 28 W., near Brady, about 9 km from the mouth of the river (Tailleur and Kent, 1953, p. 12).

Deformation occurring during deposition of the Fortress Mountain is indicated by unconformities within the formation and apparent variations in thickness of the unit along the southern part of the basin.

Paleocurrent directions from the outer-fan or basin-plain facies associations indicate a current flow to the east-northeast (fig. 12.2). The sediments were probably derived from the south, but the turbid flow directions were influenced also by an easterly slope of the depositional basin. In the northern foothills, seismic data indicate a gentle south-dipping basin slope during the time of deposition of the lower part of the Torok Formation and (or) Fortress Mountain Formation (Molenaar, chapter 25). Thus it appears that the northern part of the southern foothills area may coincide with the depositional axis of the Colville basin during at least a part of Fortress Mountain time (fig. 12.3).

AGE

Megafoossils are rare in the Fortress Mountain Formation, and only two collections of pelecypods were made during this study. Patton and Tailleur (1964, p. 456) and Chap-

man and others (1964, p. 357) list and discuss previously collected megafoossils and microfossils, many of which are long ranging or non-diagnostic. The diagnostic species include the ammonites *Colvillia crassicostata* Imlay, *C. Kenti* Imlay,

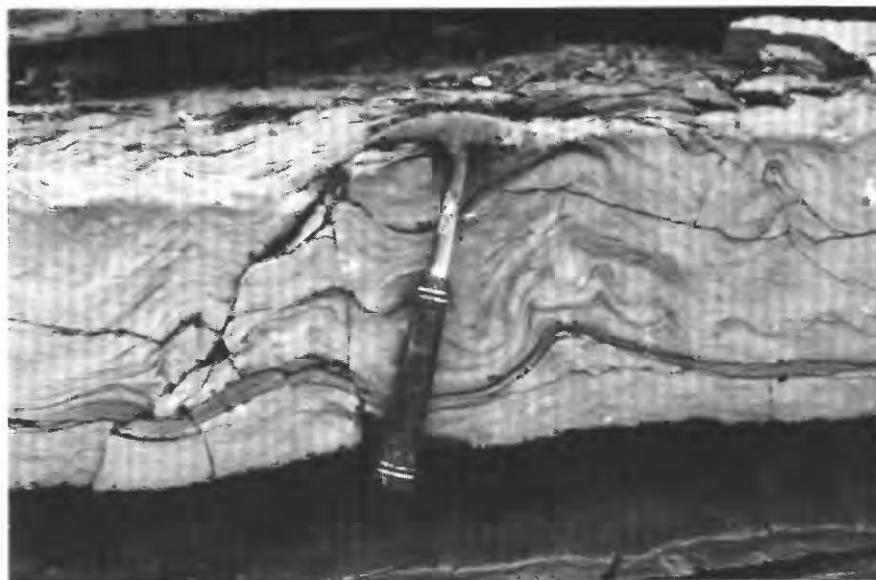


FIGURE 12.16.—Convolute bedding in a turbidite bed of the Fortress Mountain Formation along upper Colville River (NW $\frac{1}{4}$ sec. 29, T. 5 S., R. 27 W.).

FIGURE 12.17.—Climbing ripples in small-scale crossbedded interval (Bouma interval Tc) in sandstone bed of outer-fan facies of the Fortress Mountain Formation along upper Colville River (E $\frac{1}{2}$ sec. 20, T. 5 S., R. 29 W.). Stratigraphic top is toward top of photograph.

and *Beudanticeras* (*Grantziceras*) aff. (Whiteaves), and the pelecypods *Aucellina dowlingi* McLearn, *Thracia kissoumi* McLearn, *Pleuromya kelleri* Imlay, *Placunopsis nuka* Imlay, and *Inoceramus* cf. *I. altifluminis* McLearn. On the basis of the occurrence of *Colvillia crassicostata* and *Aucellina*

dowlingi, Imlay (1961, p. 8) assigned a probable early Albian (late Early Cretaceous) age to the Fortress Mountain Formation. These fossil collections, mostly from along the Kiruktagiak River, were considered to be from the lower 1,000 m of the formation (Patton and Tailleur,



FIGURE 12.18.—Flute casts on base of turbidite sandstone bed in outer-fan facies of the Fortress Mountain Formation along upper Colville River (E½ sec. 20, T. 5 S., R. 29 W.). Current moved from left to right (N. 80° E.).

FIGURE 12.19.—Trace fossil (possible worm burrows) along base of turbidite sandstone bed in outer-fan facies of the Fortress Mountain Formation along upper Colville River (W½ sec. 33, T. 5 S., R. 26 W.). Note small, uniformly oriented groove casts or other sole marks.

1964, p. 457). *Colvillia crassicostata* was also collected from a turbidite zone about 1,250 m below the top of the Torok Formation at its type section along the Chandler River (Patton and Tailleur, 1964, p. 461). This turbidite zone is the stratigraphically highest significant turbidite deposit in the type section of the Torok, although the lithology is obscured in large parts of the section. On the basis of this occurrence of *C. crassicostata* and of *Beudanticeras* collected elsewhere in this part of the Torok Formation, Imlay (1961, p. 4) correlates the lower part of the Torok with the lower part of the Fortress Mountain Formation. We suggest that the lower part of the Torok at its type section is fairly high in the total Torok-Fortress Mountain interval. Seismic data indicate that this interval may be as much as 6,000 m thick in the southern part of the northern foothills; however, the interval probably has been tectonically thickened (Molenaar, chapter 25).

From the faunal evidence, it seems that the time span represented by the Fortress Mountain Formation was relatively short despite the great thickness of the unit. However, it is possible that the lower part of the Fortress Mountain, for which there is no faunal evidence, could extend down into the Aptian in the axial part of the deep Colville basin.

The two fossil collections from the Fortress Mountain Formation made during this study were identified by D.L. Jones and J.W. Miller of the U.S. Geological Survey and are listed as follows:

80AMK-176, USGS locality M7413, from north bank of Colville River, NW¼ sec. 31, T. 6 S., R. 19 W., lat 68°53'03" N., long 156°31'03" W.

Inoceramus cf. *I. altifluminis* McLearn. Early Cretaceous (early middle Albian).

80AMK-189, USGS locality M7414, from high on southwest side of

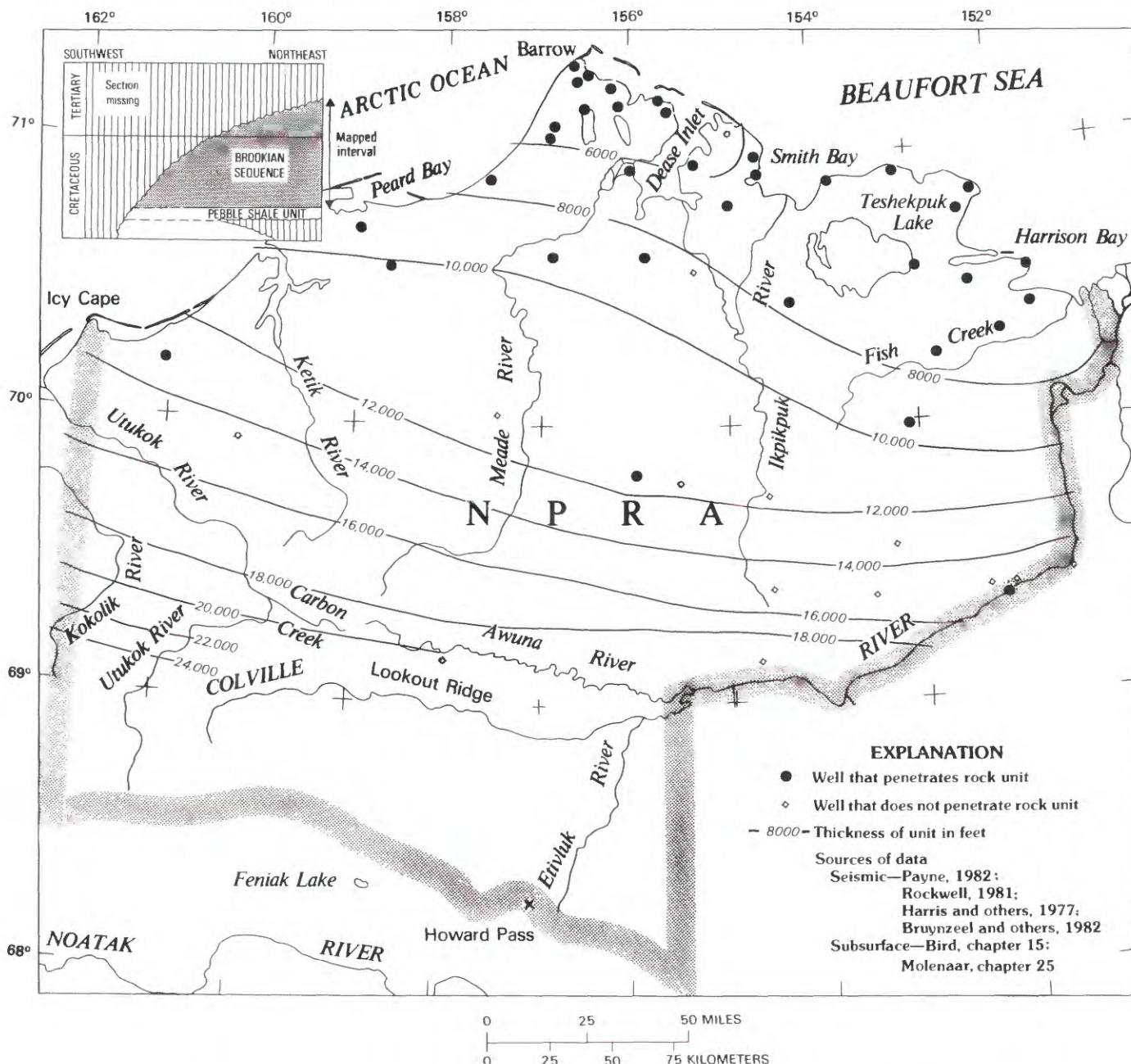
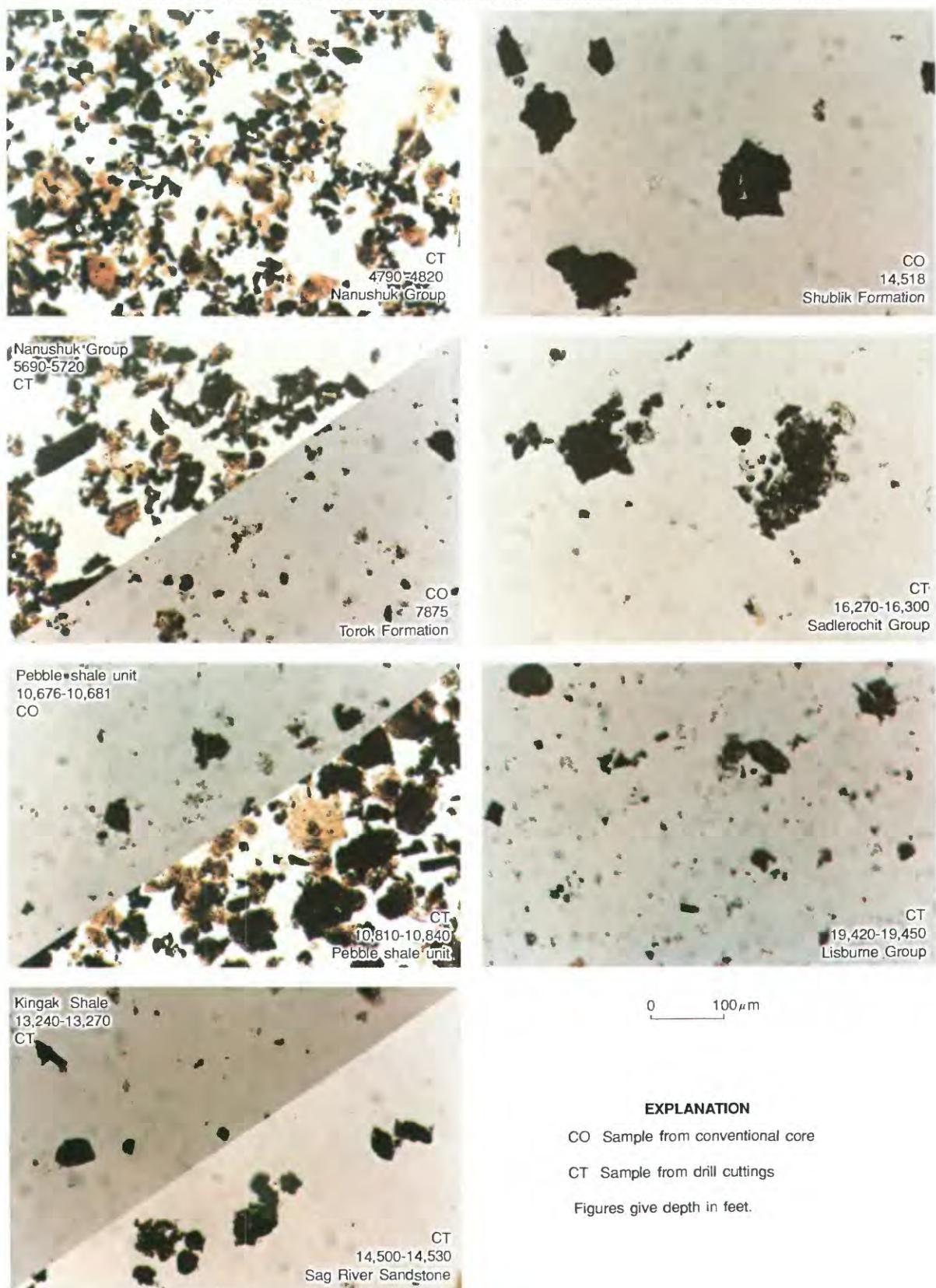


FIGURE 16.22.—Isopach map for Brookian sequence (Cretaceous and Tertiary) in NPRA.

Crude-oil seepages near Cape Simpson. Residual tars were used by the Inupiat (Eskimos) for fuel long before seepages were reported by whalers and early explorers. These seepages were the first indication that northern Alaska might be a future petroleum province. Photograph by George Gryc.



EXPLANATION

CO Sample from conventional core

CT Sample from drill cuttings

Figures give depth in feet.

FIGURE 20.2.—Transmitted-light photographs of representative kerogen facies of rock units penetrated in the Tunalik No. 1 well.

trates the relation between vitrinite reflectance (percent R_o) and TAI derived from the data of this study.

TUNALIK NO. 1 WELL

The 116 kerogen analyses available for the Tunalik No. 1 well made possible a comparison of visual-kerogen and vitrinite-reflectance data from both drill cuttings (79 samples) and conventional and sidewall cores (37 samples) (fig.

20.6; table 20.3). Values of the TAI plotted on a linear scale from both types of sample show similar changes with increasing depth, ranging from 2.0 (moderately immature) at 300 m (1,000 ft) to 4.2 (very mature to severely altered) at the total depth. Although some scatter is shown in the TAI data, particularly for the cutting samples, both data sets are consistent with a sharp change in the apparent rate of increase in TAI with depth. This

change in slope occurs at a depth of approximately 3,650 m (12,000 ft) in the Kingak Shale.

A similar linear plot of the mean values of vitrinite reflectance (percent R_o) for the indigenous vitrinite population is shown for both the drill cuttings (53 samples) and the cores (21 samples) analyzed (fig. 20.6). Again, two different slopes of apparent thermal alteration are evident. The trend of reflectance values (percent R_o) is from 0.5 at

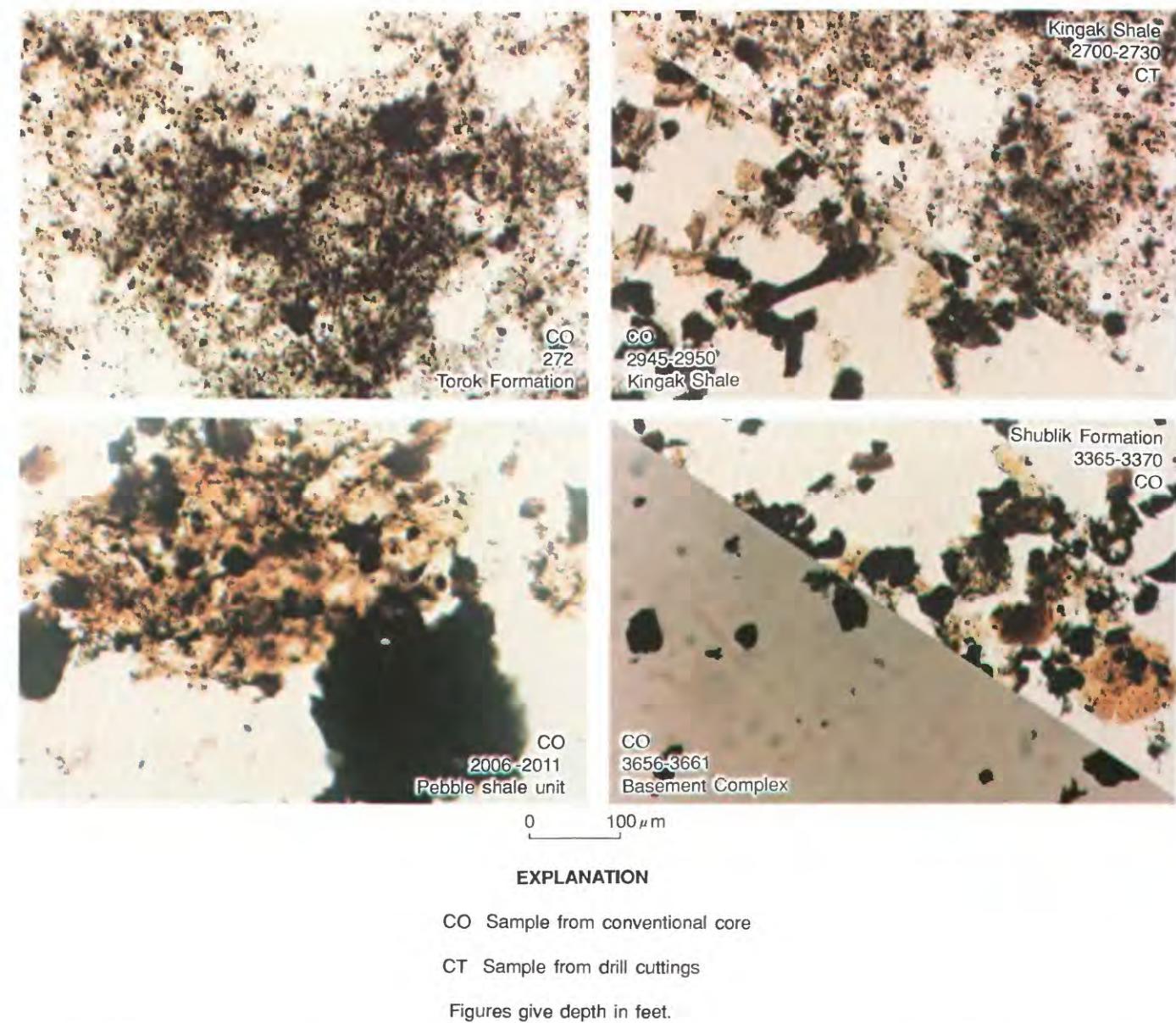


FIGURE 20.3.—Transmitted-light photographs of representative kerogen facies of rock units penetrated in the Walakpa No. 1 well.

300 m (1,000 ft) to 0.8 at 2,900 m (9,500 ft) and from 1.5 at 3,000 m (10,000 ft) to 5.0 at the total depth. The break in slope of vitrinite reflectance occurs in the Torok Formation. The slope of the reflectance profile in the deeper part of this well, in comparison with the slope of the TAI curve over the same depth range, indicates that the process responsible for increasing vitrinite reflectance is proceeding at approximately twice the rate of the coloration changes in kerogen. In contrast, the reverse is true for the shallower data, in which vitrinite reflectance increases much more slowly than TAI. The geologic significance (if any) of these observations is not known. Because a

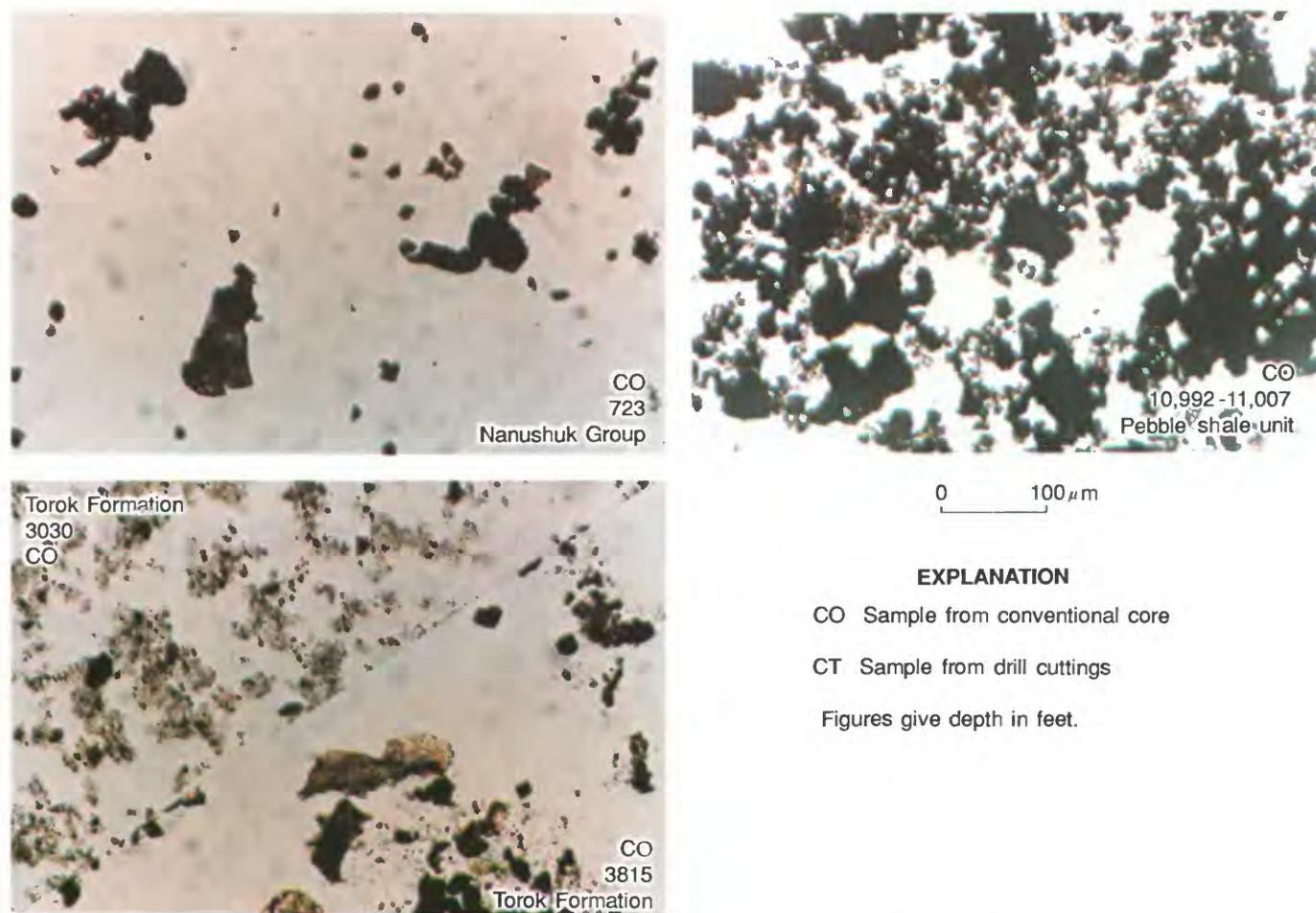
casing point in this well is at 3,744 m (12,283 ft), caved materials might account for the difference in TAI, although a similar effect would be expected for the vitrinite-reflectance data.

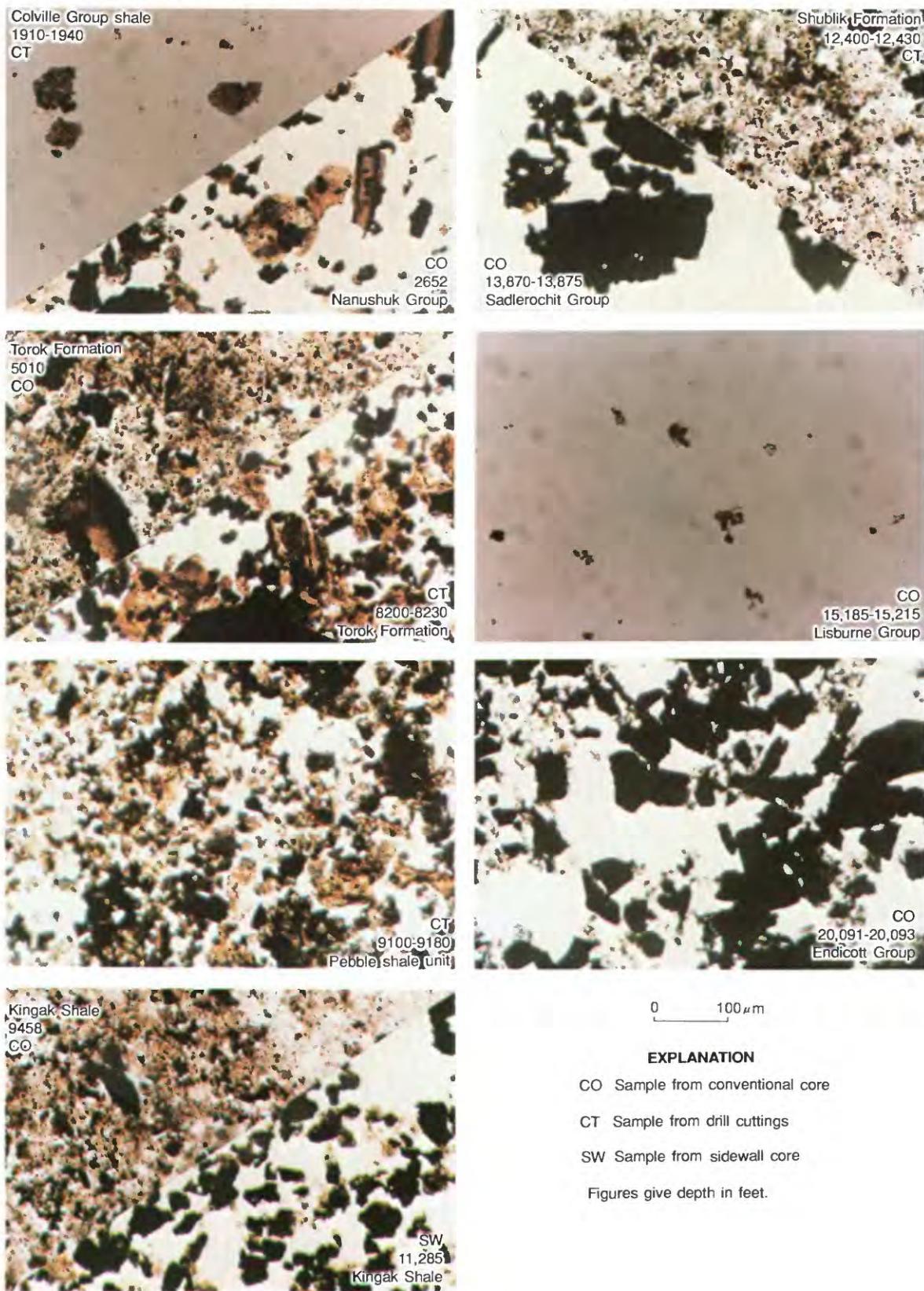
WALAKPA NO. 1 WELL

The thermal-maturation profiles determined for the Walakpa No. 1 well indicate primarily that the sedimentary rocks have undergone very low geothermal conditions; both cuttings (11 samples) and cores (11 samples) yield TAI values generally ranging from 1.8 to 2.3 (fig. 20.7; table 20.4). Four cutting samples from the Torok Formation were rated with TAI values of 2.8, much higher than expected on the

basis of the other data for this well. We have no explanation for this difference, but the much darker kerogen color can be readily observed in the photograph of one of these samples in figure 20.3.

The vitrinite-reflectance values (percent R_o) measured on the cuttings (7 samples) and cores (12 samples) from the Walakpa No. 1 well agree excellently with each other (fig. 20.7) and, except for the Torok samples, also with the TAI values. The beginning of hydrocarbon generation appears at this location only in the small interval represented by the Shublik Formation from 975 m (3,200 ft) to the basement complex at 1,105 m (3,630 ft).




FIGURE 20.4.—Transmitted-light photographs of representative kerogen facies of rock units penetrated in the Oumalik No. 1 well.

EXPLANATION

CO Sample from conventional core

CT Sample from drill cuttings

Figures give depth in feet.

EXPLANATION

CO Sample from conventional core

CT Sample from drill cuttings

SW Sample from sidewall core

Figures give depth in feet.

FIGURE 20.5.—Transmitted-light photographs of representative kerogen facies of rock units penetrated in the Inigok No. 1 well.

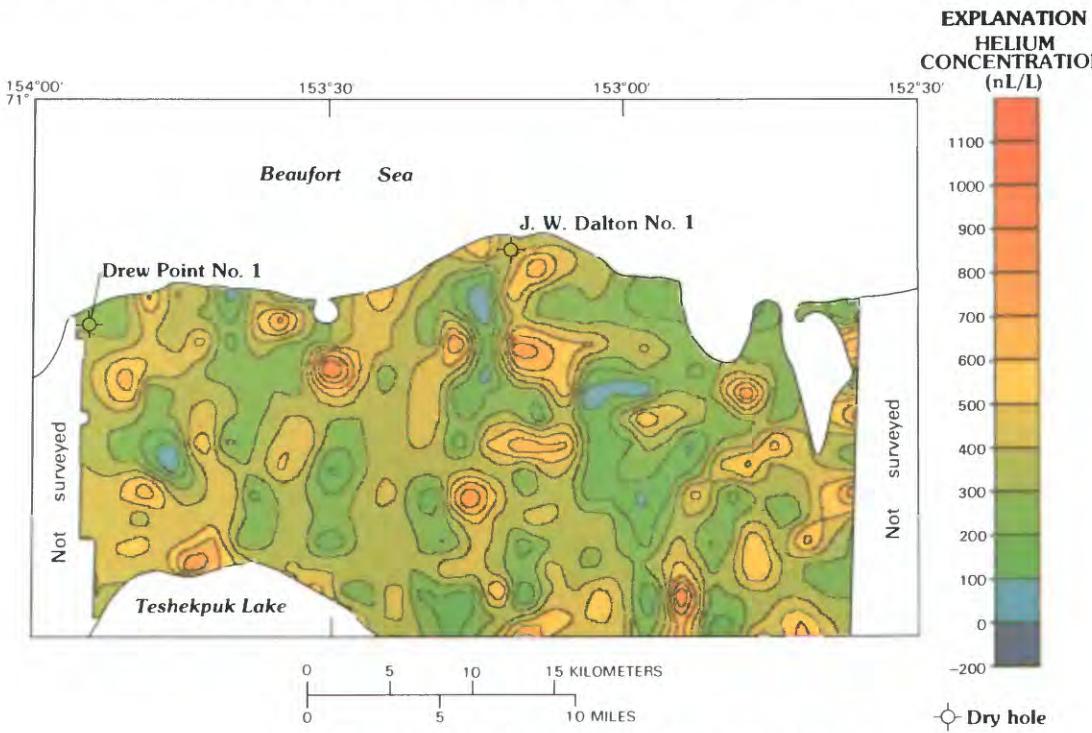


FIGURE 24.2.—Results of helium survey in Camp Lonely area.

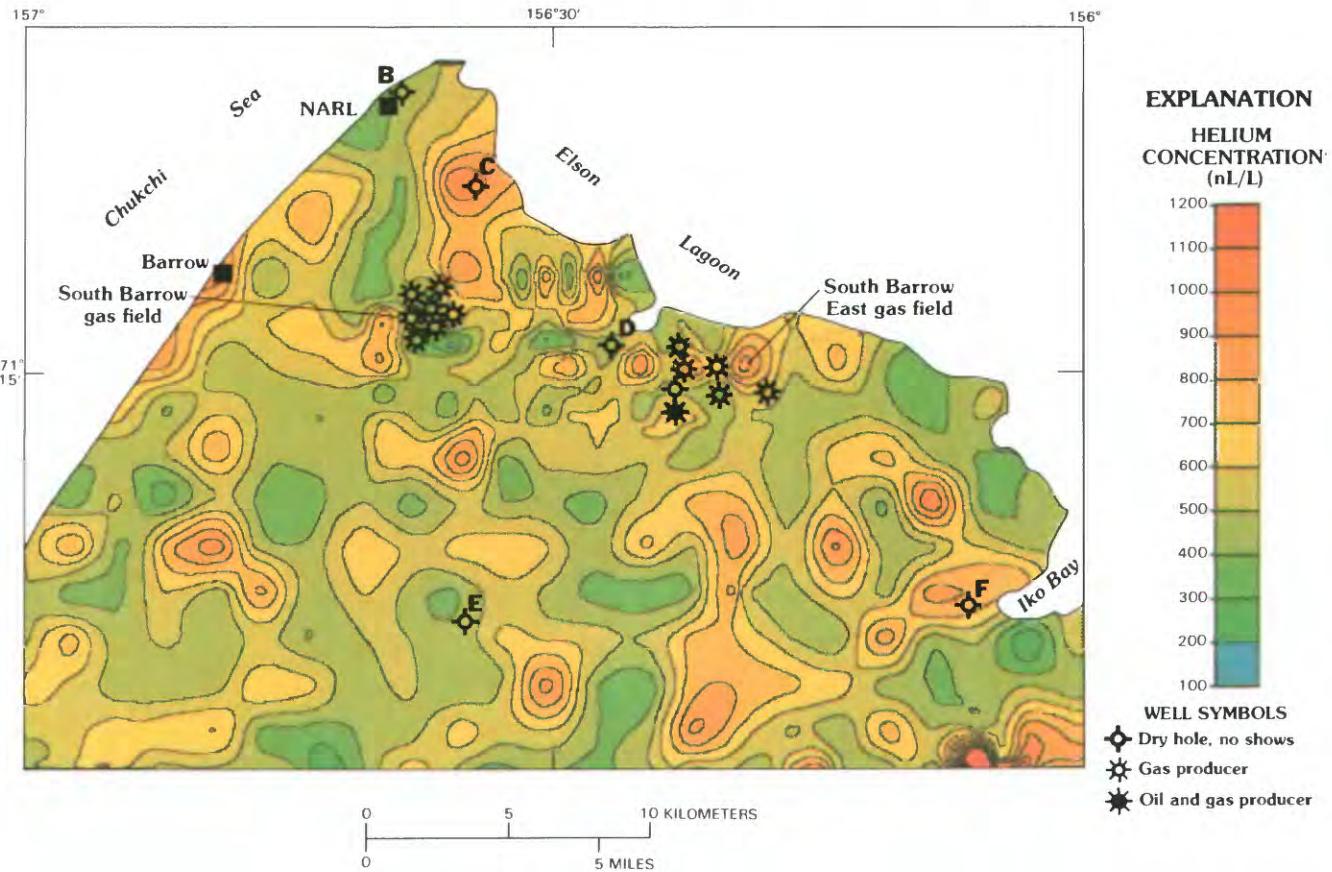


FIGURE 24.3.—Results of helium survey, South Barrow gas field and vicinity. NARL, Naval Arctic Research Laboratory; B, South Barrow No. 1; C, South Barrow No. 16; D, Avak No. 1; E, South Barrow No. 3; F, Iko Bay No. 1.

reflections, from which faults appeared to radiate in several directions" (Collins, 1961, p. 629). The U.S. Navy Avak No. 1 test well was drilled into this disturbed zone and was dry.

The initial helium survey was run in the Barrow area in 1978, and results were somewhat ambiguous. At the time, it seemed that "no clear picture emerges from the dis-

tribution of these high-helium samples" (Roberts, 1981, p. 146). In an attempt to clear up these ambiguities, a second survey was run in 1980 on a somewhat closer grid spacing (approx 0.4 km). The results of the combined surveys are shown in figure 24.3. There does not appear to be a good correlation between the pattern of the helium values and the location of the

known gas reservoirs. The average helium concentration from the 1978 survey was 450 nL/L, and the average from the 1980 survey was 425 nL/L. Thus there was good consistency between the measurements taken in the two completely independent surveys. Many values were observed to be in the range 700-950 nL/L. These values are higher than what we consider to be

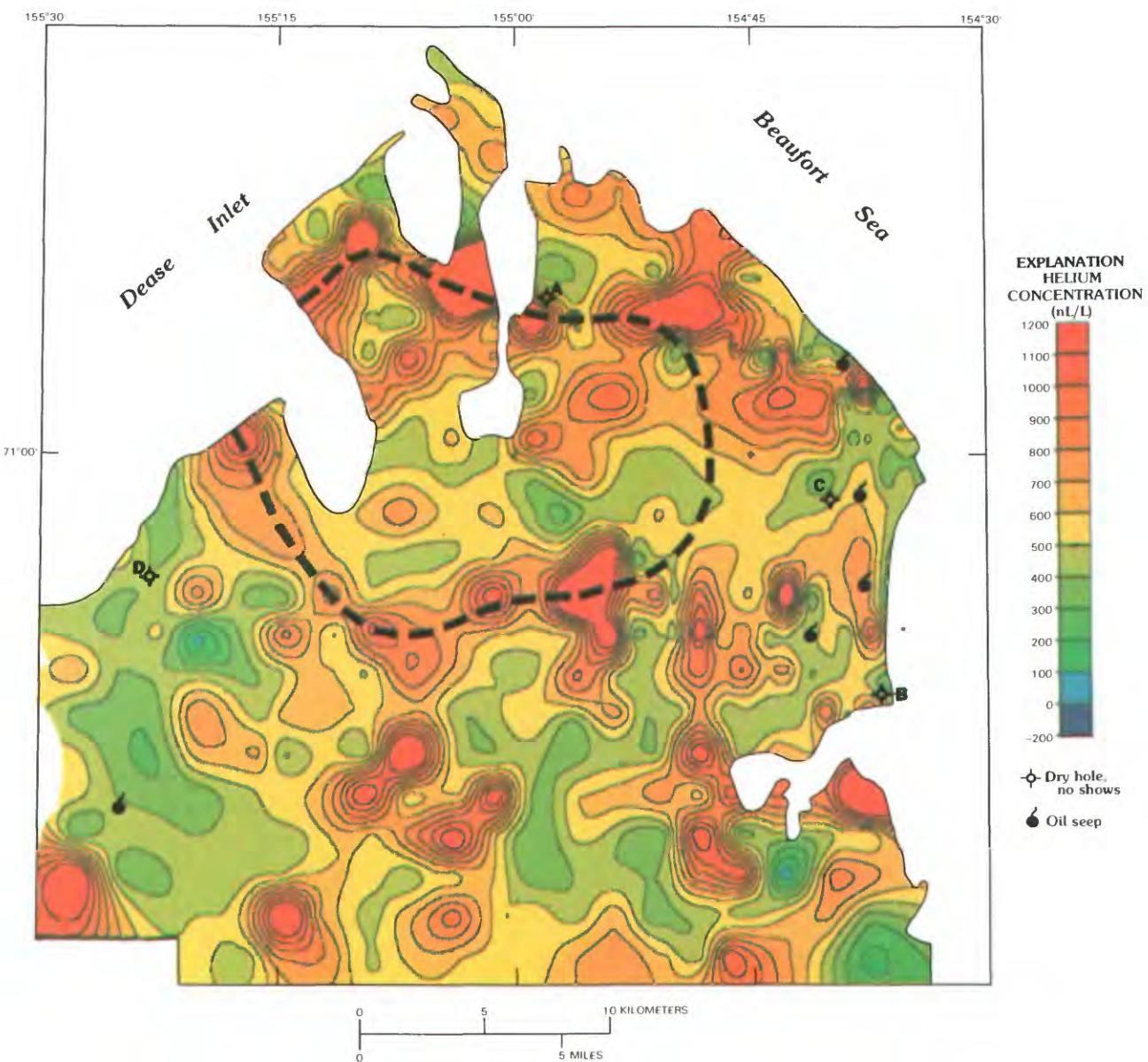


FIGURE 24.4.—Results of helium survey, Simpson Peninsula. Dashed line marks zone of high helium concentration. A, North Simpson No. 1; B, East Simpson No. 1; C, East Simpson No. 2; D, South Simpson No. 1.

the normal background concentration of helium in permafrost. We suggest that these high values are probably related to the proximity here of the argillite basement, which is encountered at a depth of about 750 m in the South Barrow field and drops off rapidly to the south.

An isopleth map of the helium concentration in permafrost on the Simpson Peninsula is shown in figure 24.4. The values observed in this area are much higher (average 640 nL/L) than in other permafrost areas studied and well above what we consider to be a normal background (350-450 nL/L). Five oil seeps have been observed on the Simpson Peninsula and have sparked great interest in its petroleum potential. Numerous shallow wells

were drilled in the vicinity of the four seeps on the east side of the peninsula. Subsurface data from these wells, together with seismic data, have identified an unconformity within the Seabee Formation of the Upper Cretaceous Colville Group (Robinson, 1964). West of the area of this unconformity is the deep Simpson paleocanyon, filled with as much as 350 m of Cretaceous (Seabee Formation) clay shale. East of the area of the unconformity are alternating sandstone and claystone of the Seabee. These porous sandstones dip gently to the east and are truncated on the west by the paleocanyon just west of the seeps. Wells drilled near the seeps recovered oil at depths of about 100 m in the basal part of the Seabee and Ninuluk Formations (un-

divided) or in the upper part of the Lower Cretaceous Grandstand Formation. This oil may be in a small stratigraphic trap (or traps), and the seeps may represent leakage at the truncation zone.

The most obvious feature of the helium survey of the Simpson Peninsula is an arcuate pattern of exceptionally high helium values indicated in figure 24.4 by the heavy dashed line. The northern, eastern, and western portions of this anomaly are generally located over what is believed to be the Simpson paleocanyon. This same area is strikingly delineated in a low-level aeromagnetic survey (Donovan and others, chapter 26) as an area characterized by high-wave-number peaks. These peaks are believed to be related to near-surface diagenetic

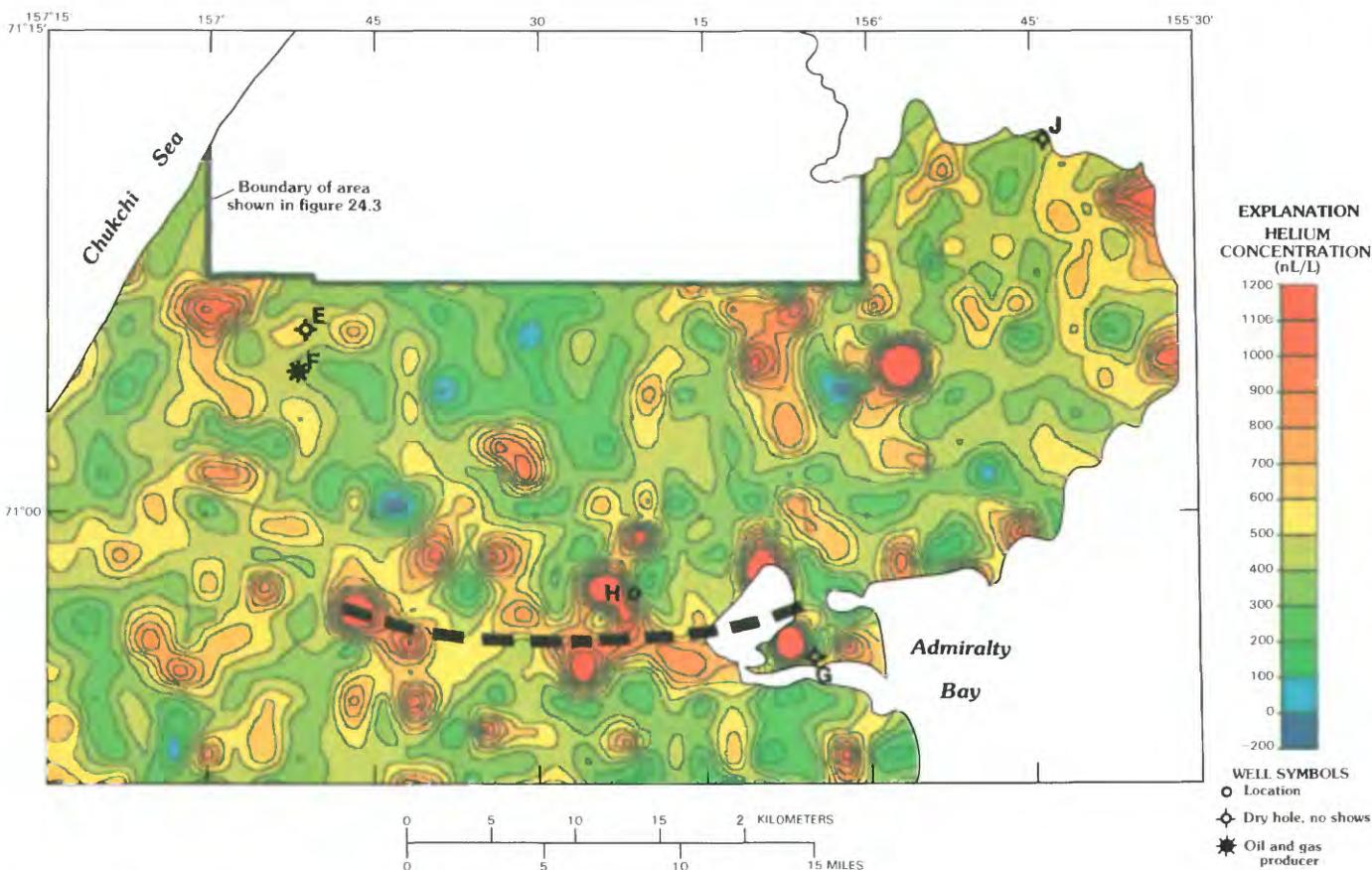


FIGURE 24.5.—Results of helium survey in area south of Barrow, site of possible tests of Jurassic sandstone in upper part of Kingak Shale. Heavy dashed line marks band of high helium concentration. Letters denote older wells: E, Walakpa No. 1; F, Walakpa No. 2; G, Kuyanak No. 1; H, Ekalgruak No. 1; J, Tulageak No. 1.

magnetic minerals, which are formed through reduction of oxidized iron minerals in areas where seepage of hydrocarbons has occurred (Donovan and others, 1979). Possibly these features represent seepage of hydrocarbons and helium from a petroleum source underlying the area within the anomaly indicated by the dashed line in figure 24.4. The petroleum may be in a stratigraphic trap formed where the Simpson paleocanyon truncates the southeastward-dipping strata. The high helium values and the inferred diagenetic magnetic minerals would be the results of microseepage along this truncation zone (Roberts, 1981).

Four deep wells (deeper than 1,000 m) have been drilled within the survey area, but none was within this particular area. None of these wells encountered producible oil or gas.

An isopleth map of the helium concentration in permafrost in an area south of Barrow is shown in figure 24.5. Several possible drill sites have been identified here. These all have the Jurassic sandstone that is seen in the South Simpson No. 1 well at a depth of 1,988 m (6,521 ft) in the upper part of the Kingak Shale as their target. The seismic data have been interpreted to indicate a lithologic change within this sandstone in this area and a shale-out to the west. This interpretation is supported by the fact that this sandstone was absent because of shale-out at the Walakpa No. 1 test well. Truncation by the basal Cretaceous unconformity to the north coupled with this permeability barrier to the west indicate the possibility of a significant structural-stratigraphic trap creating a reservoir in this sandstone (Guldenzopf and others, 1980; Miller and others, 1979). The Ekalgruak and Kuyanak drill sites were proposed to test this hypothesis.

The most striking feature of the map shown in figure 24.5 is a linear band of helium highs indicated by the dashed line. The average helium concentration measured in the 94 samples collected in this area was 630 nL/L, about 50 percent higher than is expected of background samples. Many of the samples contained more than 1,000 nL/L of helium. This zone of high helium values is believed to represent leakage of gas along the truncation zone. The helium data together with the seismic interpretation and the subsurface geology indicate that Ekalgruak would be an excellent place to test this prospect. Kuyanak, on the southern edge of the zone of anomalous helium values, would not provide as good a test of this geochemical prospect. However, a well here may encounter a petroleum reservoir in the Jurassic sandstone. The helium survey gives no support, however, to the belief that petroleum reservoirs exist at either the Walakpa No. 2 or the Tulageak site.

Another zone of anomalously high helium values is shown in the northeastern section of the map in figure 24.5. It does not appear to be associated with any possible petroleum reservoirs identified by seismic investigations. Whether or not these high values are related to a reservoir can be determined only when more is known about the subsurface geology.

CONCLUSIONS

Studies in the conterminous United States have demonstrated that concentrations of helium in near-surface soils may indicate the presence of oil and gas reservoirs. In 8 out of 10 surveys, anomalously high concentrations of helium were found to be associated with reservoirs. Analogous surveys in areas where no source of high helium concentration was thought

to exist revealed no helium anomalies. Such surveys must be used in conjunction with geophysical and geologic studies because there are several other possible sources of anomalously high helium concentration. This exploration technique is especially applicable to the remote and fragile Arctic environment because it is relatively inexpensive and environmentally nondestructive.

In this chapter we have presented the results of such helium studies in the National Petroleum Reserve in Alaska. No pattern of high helium values was found around any of the dry holes that have been drilled within the area. The survey around the South Barrow gas fields yielded somewhat ambiguous results, probably because the very shallow basement rocks in the area may in themselves be a source of higher concentrations of helium in the permafrost. Two areas have been identified as good prospective drill sites by using a combination of this geochemical exploration technique and geophysical and geologic information.

REFERENCES CITED

- Ball, N.L., and Snowdon, L.R., 1973, A preliminary evaluation of the applicability of the helium survey technique to prospecting for petroleum, in Report of activities, part B; November 1972 to March 1973: Geological Survey of Canada Paper 73-1B, p. 199-202.
- Bulashhevich, Yu.P., and Bashorin, V.N., 1973, On the detection of faults along the Sverdlovsk DSS profile from high concentrations of helium in underground water: Physics of the Solid Earth, Academy of Sciences, USSR-Izvestiya, no. 3, p. 185-189.
- Clarke, W.B., Top, Z., Beavan, A.P., and Chandi, S.S., 1977, Dissolved helium in lakes; Uranium prospecting in the Precambrian terrain of central Labrador: Economic Geology, v. 72, no. 2, p. 233-242.
- Collins, F.R., 1961, Core tests and test wells, Barrow area, Alaska: U.S. Geological Survey Professional Paper 305-K, p. 569-644.

- Debnam, A.H., 1969, Geochemical prospecting for petroleum and natural gas in Canada: Geological Survey of Canada Bulletin, v. 177, p. 1-26.
- Donovan, T.J., Forney, R.L., and Roberts, A.A., 1979, Aeromagnetic detection of diagenetic magnetite over oil fields: American Association of Petroleum Geologists Bulletin, v. 63, no. 2, p. 245-248.
- Dyck, Willy, 1976, The use of helium in mineral exploration: *Journal of Geochemical Exploration*, v. 5, p. 3-20.
- Guldenzopf, E.C., Orlovsky, M.B., Higgs, D.A., Freytag, C.G., and Ovalle, E.R., 1980, National Petroleum Reserve in Alaska; summary geologic report, FY-1980: Tetra Tech, Inc., 149 p. [Available from National Geophysical Data Center, 325 Broadway, E/GC, Dept. CNP, Boulder, CO 80303]
- Horvitz, Leo, 1972, Vegetation and geochemical prospecting for petroleum: American Association of Petroleum Geologists Bulletin, v. 56, no. 5, p. 925-940.
- Hunt, J.M., 1979, Seeps and surface prospecting, in *Petroleum Geochemistry and Geology*: San Francisco, W.H. Freeman and Co., 615 p.
- Miller, C.C., Pickard, J.E., Taber, E.C., and Rogers, R.B., 1979, National Petroleum Reserve in Alaska; Summary geophysical report, FY-1979: Tetra Tech, Inc., 37 p. [Available from National Geophysical Data Center, 325 Broadway, E/GC, Dept.
- CNP, Boulder, CO 80303]
- Moore, B.J., 1976, Analyses of natural gases: U.S. Bureau of Mines Computer Printout 1-76.
- Palacas, J.G., and Roberts, A.A., 1980, Helium anomaly in surficial deposits of South Florida; possible indicator of deep subsurface petroleum or shallow uranium-associated phosphate deposits: U.S. Geological Survey Open-File Report 80-91, 16 p.
- Plyusnin, G.S., Volkova, N.V., Godumskiy, G.P., Smirnov, V.N., Papolitov, E.I., and Brandt, S.B., 1972, Trends in the distribution of argon and helium in contact regions and fault zones: *Geokhimiya*, no. 10, p. 1189-1196 [in Russian, with English abstract].
- Pogorski, L.A., and Quirt, G.S., 1981, Helium emanometry in exploring for hydrocarbons, pt. 1 of Gottlieb, B.M., ed., *Unconventional methods in exploration for petroleum and natural gas II*: Dallas, Southern Methodist University Press, p. 124-135.
- Reimer, G.M., Denton, E.H., Friedman, Irving, and Otton, J.K., 1979, Recent developments in uranium exploration using the U.S. Geological Survey mobile helium detector: *Journal of Geochemical Exploration*, v. 11, p. 1-12.
- Reimer, G.M., and Otton, J.K., 1976, Helium in soil gas and well water in the vicinity of a uranium deposit, Weld County, Colorado: U.S. Geological Survey Open-File Report 76-699, 10 p.
- Roberts, A.A., 1975, Helium surveys over known geothermal resource areas in the Imperial Valley, California: U.S. Geological Survey Open-File Report 75-427, 6 p.
- 1981, Helium emanometry in exploring for hydrocarbons, part II, in Gottlieb, B.M., ed., *Unconventional Methods in exploration for petroleum and natural gas II*: Dallas, Southern Methodist University Press, p. 136-149.
- Roberts, A.A., Dalziel, Mary, Pogorski, L.A., and Quirt, S.G., 1976, A possible petroleum related helium anomaly in the soil gas, Boulder and Weld Counties, Colorado: U.S. Geological Survey Open-File Report 76-544, 7 p.
- Roberts, A.A., Friedman, Irving, Donovan, T.J., and Denton, E.H., 1975, Helium survey, a possible technique for locating geothermal reservoirs: *Geophysical Research Letters*, v. 2, p. 209-210.
- Robinson, F.M., 1964, Core tests, Simpson area, Alaska: U.S. Geological Survey Professional Paper 305-L, p. 645-730.
- Smith, G.H., and Ellis, M.M., 1963, Chromatographic analysis of gases from soils and vegetation, related to geochemical prospecting for petroleum: American Association of Petroleum Geologists Bulletin, v. 47, no. 11, p. 1897-1903.
- Torgerson, Thomas, and Clarke, W.B., 1978, Excess helium-4 in Teggan Lake; possibilities for a uranium ore body: *Science*, v. 199, p. 769-771.

Seismic train parked to form temporary camp.

Drill holes for shot emplacement to create sonic waves.

Inside the seismic recording trailers, where the sonic waves are recorded and plotted.

Drill rigs mounted on tracked vehicle.

Seismic train moving to next work station.

Scenes of seismic crews at work in winter in the NPRA. Photographs by George Gryc and Jeep Johnson.

TABLE 26.1.—Isotopic composition of carbon and oxygen in carbonate cement from sandstone cores, Simpson area, Alaska

[Delta values derived by subtracting ratio in standard from ratio in sample, dividing by former, and multiplying by 1000. Standard for carbon, Pee Dee Belemnite; standard for oxygen, SMOW (Standard Mean Ocean Water)]

Depth (m)	Depth (ft)	$\delta^{13}\text{C}$ (permil)	$\delta^{18}\text{O}$ (permil)
Simpson Test Well 1			
43.9	144	-1.67	17.14
46.0	151	-1.62	16.00
49.1	161	-.24	21.30
54.3	178	-1.78	14.05
Simpson Core Test 31			
71.6	235	-5.06	8.21
75.0	246	-22.17	23.47
78.4	257	-20.25	22.45
88.4	290	-1.93	12.76
91.8	301	3.42	31.65
95.1	312	1.08	20.89
98.5	323	1.31	17.23

with altitude and to illustrate the complex nature of the individual anomalies. Results of this experiment are shown as figure 26.13, and calculations by the method described by Vacquier and others (1951) indicate that the maximum depth to the top of the source (or iron accumulations) is less than about 70 m.

SUMMARY

Low-level aeromagnetic surveying may be an effective method of defining oil and gas prospects in remote areas. High-wave-number magnetic anomalies are associated with known occurrences of petroleum or natural gas in northern Alaska and are readily detected by low-altitude (90-m) surveying. The magnetic signature in these areas is complex and indicates a variable, near-surface (<300-m depth) source. The suggested cause of these anomalies is diagenetic magnetic mineralization caused by reduction of iron

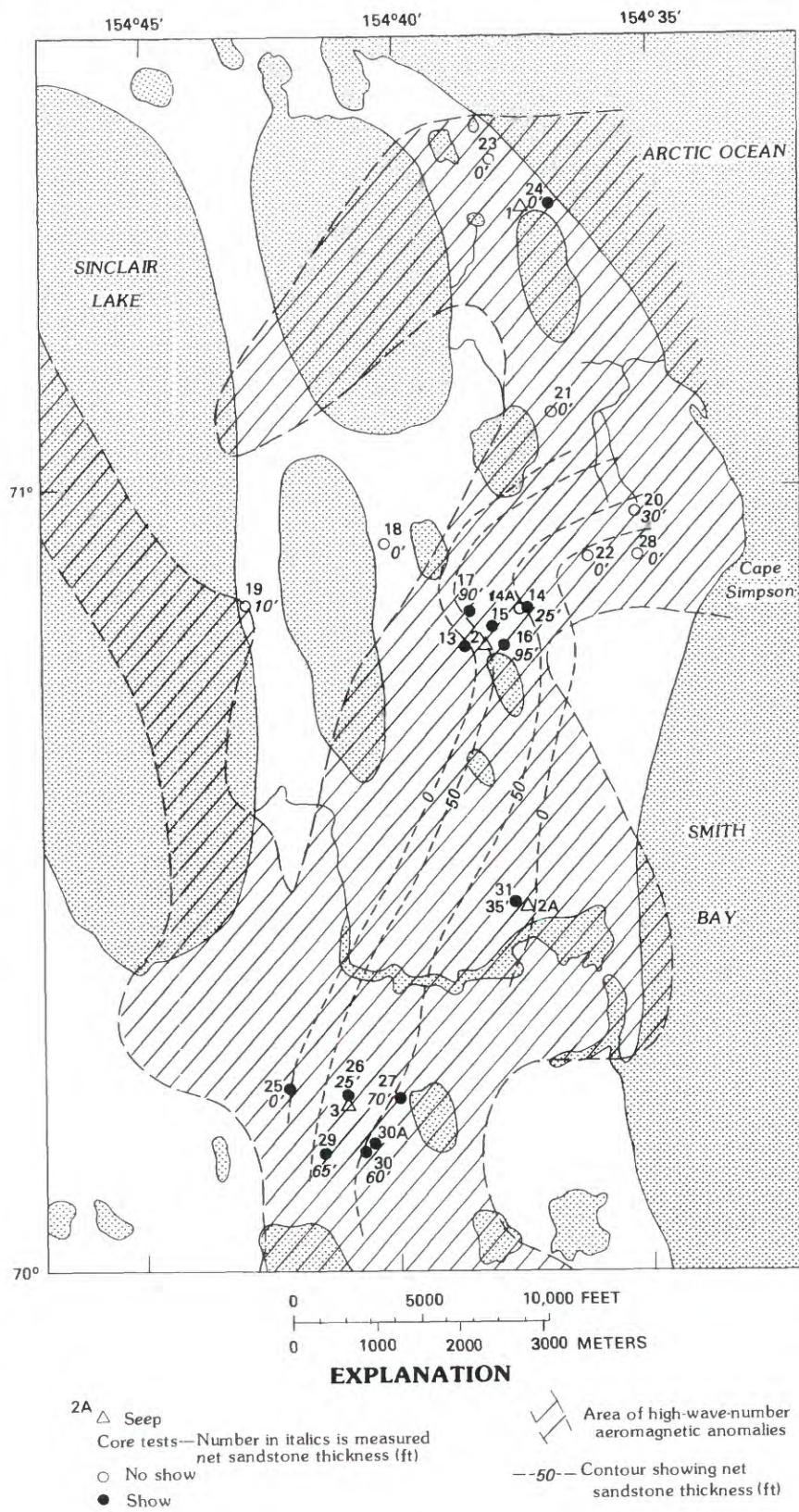


FIGURE 26.6.—Detailed map of Simpson oil field region showing areas of high-wave-number aeromagnetic anomalies, core holes, test wells, seeps, and net sandstone thickness of oil-bearing interval.

oxides in the presence of seeping hydrocarbons. The magnetically anomalous signatures appear to result from hydrocarbons seeping from imperfect traps or along sub-regional zones of improved subsurface-to-surface fluid communication, such as unconformities, truncation zones, and faults.

REFERENCES CITED

- Bird, K.J., and Jordan, C.F., 1977, Lisburne Group (Mississippian and Pennsylvanian), potential major hydrocarbon objective of Arctic Slope, Alaska: American Association of Petroleum Geologists Bulletin, v. 61, no. 9, p. 1493-1512.
- Bushnell, Hugh, 1981, Unconformities; key to N. slope oil: Oil and Gas Journal, v. 79, no. 2, (January 12), p. 114-118.
- Donovan, T.J., 1974, Petroleum microseepage at Cement, Oklahoma; evidence and mechanism: American Association of Petroleum Geologists Bulletin, v. 58, no. 3, p. 429-446.
- Donovan, T.J., and Dalziel, M.C., 1977, Late diagenetic indicators of buried oil and gas: U.S. Geological Survey Open-File Report 77-817, 44 p.
- Donovan, T.J., Forney, R.L., and Roberts, A.A., 1979, Aeromagnetic detection of diagenetic magnetite over oil fields: American Association of Petroleum Geologists Bulletin, v. 63, no. 2, p. 245-248.
- Donovan, T.J., Friedman, Irving, and Gleason, J.D., 1974, Recognition of petroleum-bearing traps by unusual isotopic compositions of carbonate-cemented surface rocks: Geology, v. 2, no. 7, p. 351-354.
- Eliason, P.T., Donovan, T.J., and Chavez, P.S., Jr., 1983, Integration of geologic, geochemical, and geophysical data of the Cement oil field, Oklahoma, using spatial array processing: Geophysics, v. 48, no. 10, p. 1305-1317.
- Jones, H.P., and Speers, R.G., 1976, Perm-Triassic reservoirs of Prudhoe Bay field, North Slope, Alaska, in North American oil and gas fields: American Association of Petroleum Geologists Memoir 24, p. 23-50.
- Magoon, L.B., and Claypool, G.E., 1979, Two oil types on the North Slope of Alaska; implications for future exploration: U.S. Geological Survey Open-File Report 79-1649, 21 p.
- Morgridge, D.L., and Smith, W.B., Jr., 1972, Geology and discovery of Prudhoe Bay field, eastern Arctic Slope, Alaska, in King, R.E., ed., Stratigraphic oil and gas fields; classification, exploration methods, and case histories: American Association of Petroleum Geologists Memoir 16, p. 489-501.
- Rickwood, F.K., 1970, The Prudhoe Bay field, in Adkison, W.L., and Brosé, M.M., eds., Proceedings of the Geologic seminar on the North Slope of Alaska: Los Angeles, American Association of Petroleum Geologists Pacific Section, p. L1-L11.
- Robinson, F.M., 1959, Test wells, Simpson area, Alaska: U.S. Geological Survey Professional Paper 305-J, p. 523-568.
- 1964, Core tests, Simpson area, Alaska: U.S. Geological Survey Professional Paper 305-L, p. 645-730.
- Vaquier, Victor, Steenland, N.C., Henderson, R.G., and Zietz, Isidore, 1951, Interpretation of aeromagnetic maps: Geological Society of America Memoir 47, 151 p.
- Wescott, E.M., 1960, Magnetic and telluric current disturbances in Alaska: Geophysics, v. 25, no. 6, p. 1242-1250.
- Woolson, J.R., and others, 1962, Seismic and gravity surveys of Naval Petroleum Reserve No. 4 and adjoining areas, Alaska: U.S. Geological Survey Professional Paper 304-A, 25 p.

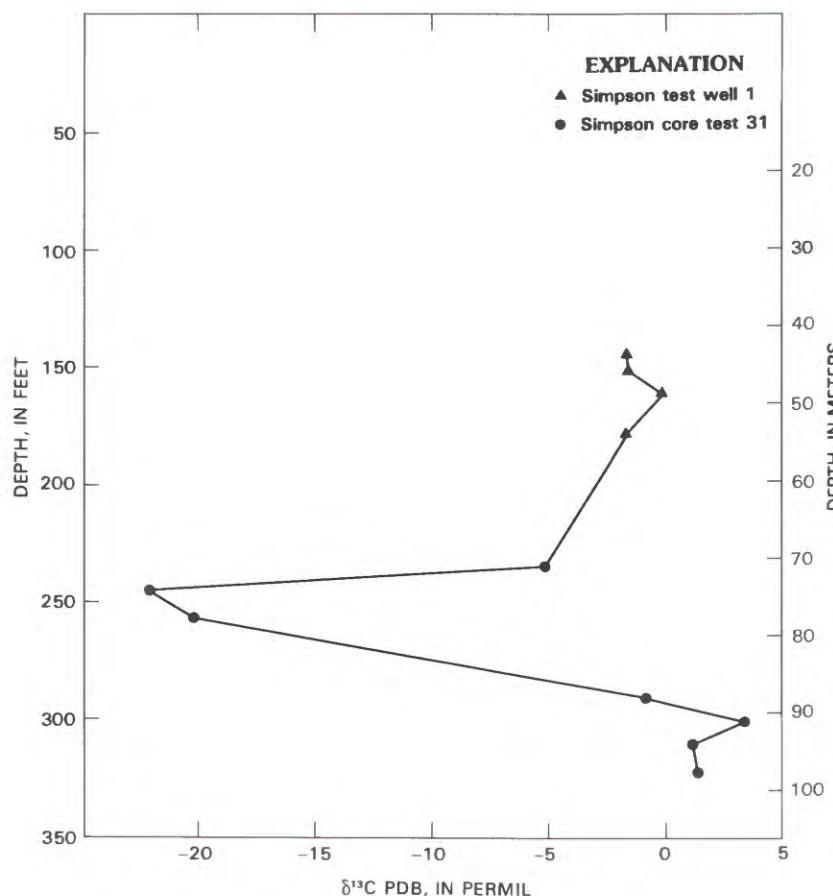


FIGURE 26.7.—Plot of $\delta^{13}\text{C}$ versus depth for carbonate cement in sandstone cores from Simpson Test Well 1 and Simpson Core Test 31. Data from table 26.1. Isotope values relative to Pee Dee belemnite (PDB) standard.

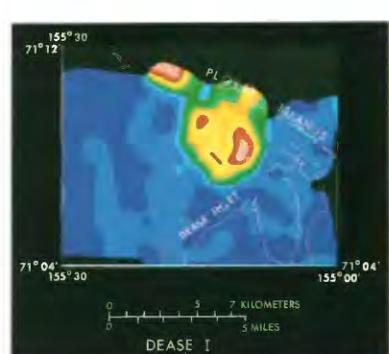


FIGURE 26.8.—Computer-generated image of aeromagnetic gradient in Upper Dease Inlet. Dark blue represents zero gradient, yellow intermediate, and red maximum gradient (60 nT/km).



FIGURE 26.9.—Aeromagnetic profile through upper Dease Inlet showing high-wave-number anomalies superposed on regional magnetic high.

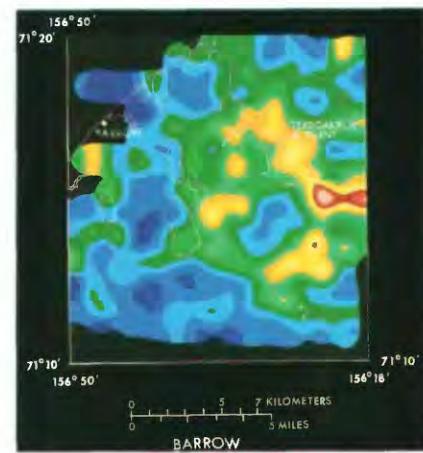


FIGURE 26.10.—Computer-generated image of magnetic gradient in Barrow region. Dark blue represents zero gradient, yellow intermediate, and red maximum gradient. Black, no data.

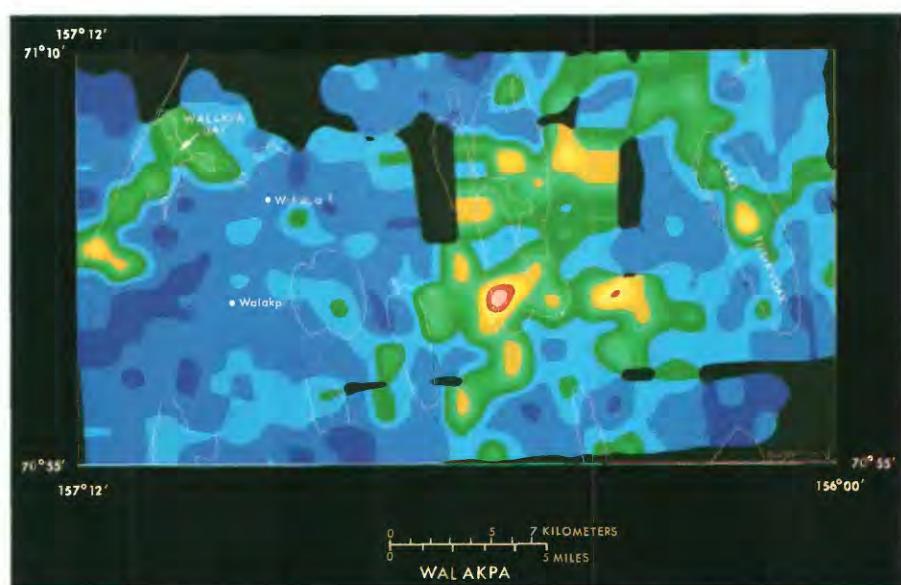


FIGURE 26.11.—Computer-generated image of magnetic gradient in Walakpa region. Dark blue represents zero gradient, yellow intermediate, and red maximum gradient. Black, no data.

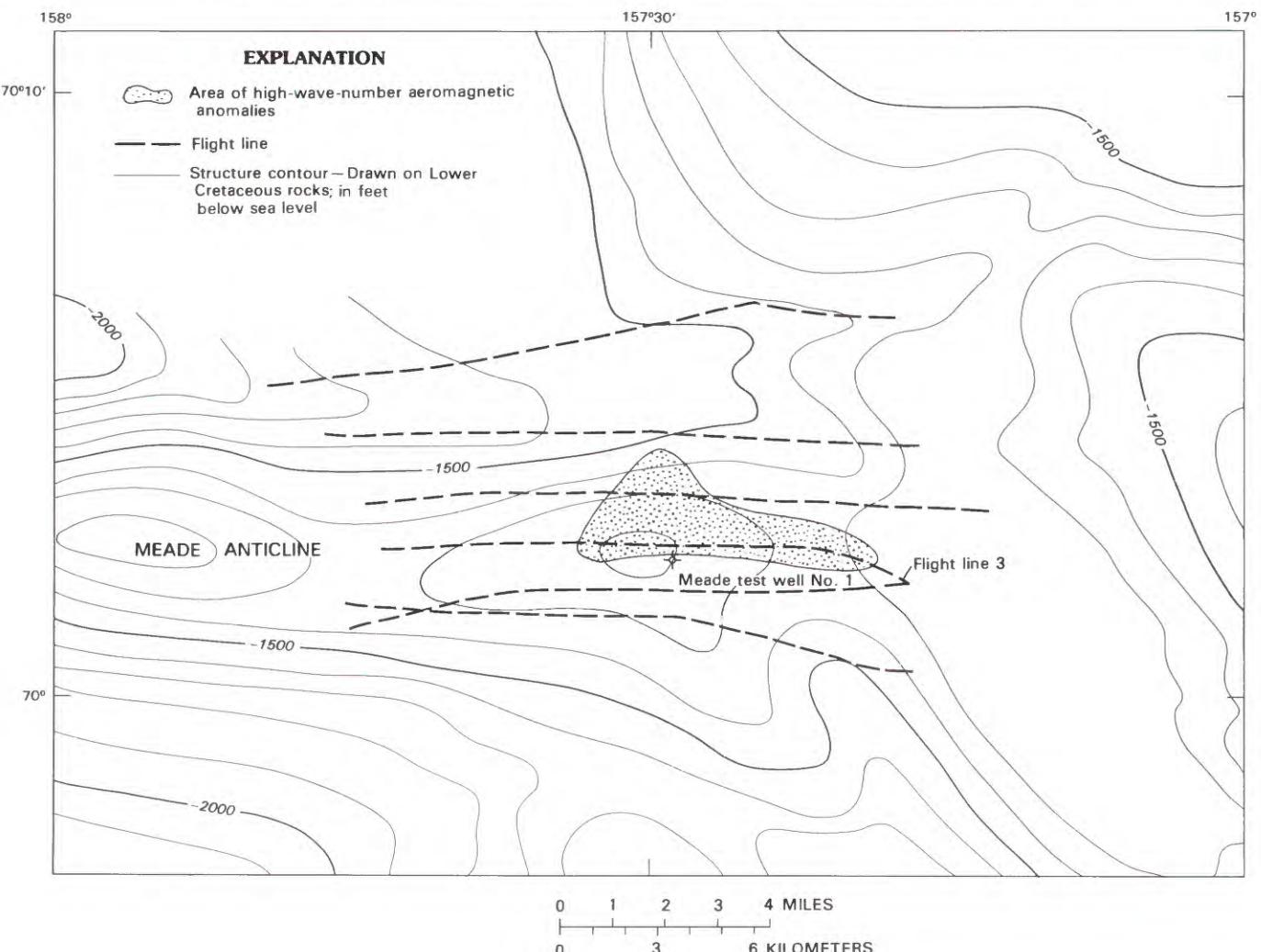


FIGURE 26.12.—Structure contour map of Meade anticline (from Woolson and others, 1962) showing east-west flight lines and hand-picked area of high-wave-number anomalies.

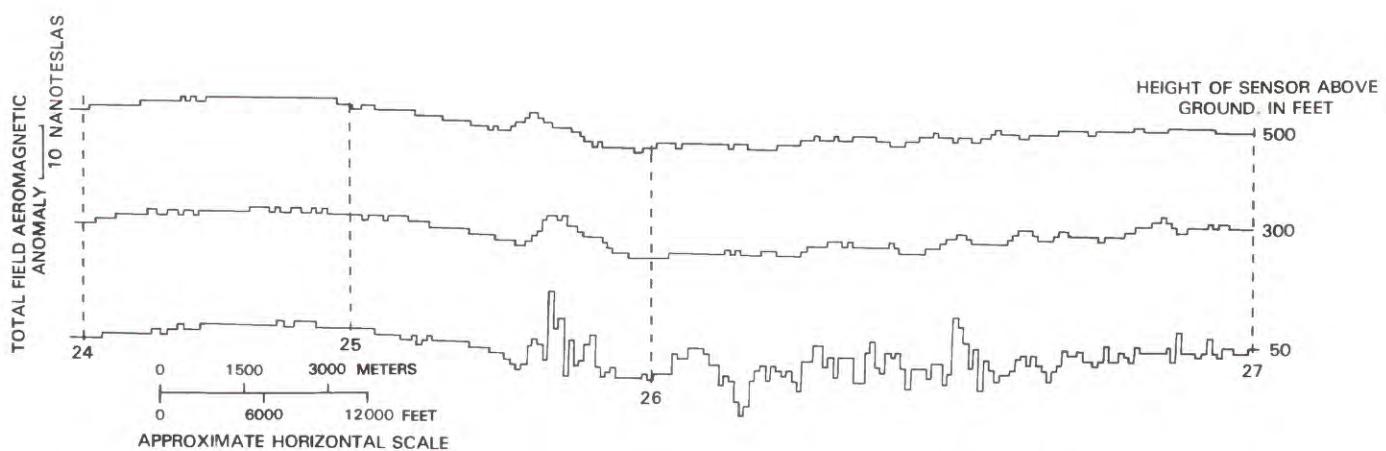


FIGURE 26.13.—Example of repeat aeromagnetic profiles (flight line 3) in Meade area flown at different altitudes. High-wave-number anomaly occurs between fiducials 25 (east) and 26 (west). On the basis of this kind of data, 90 m (300 ft) was selected as optimum altitude for signal response and aircraft safety.

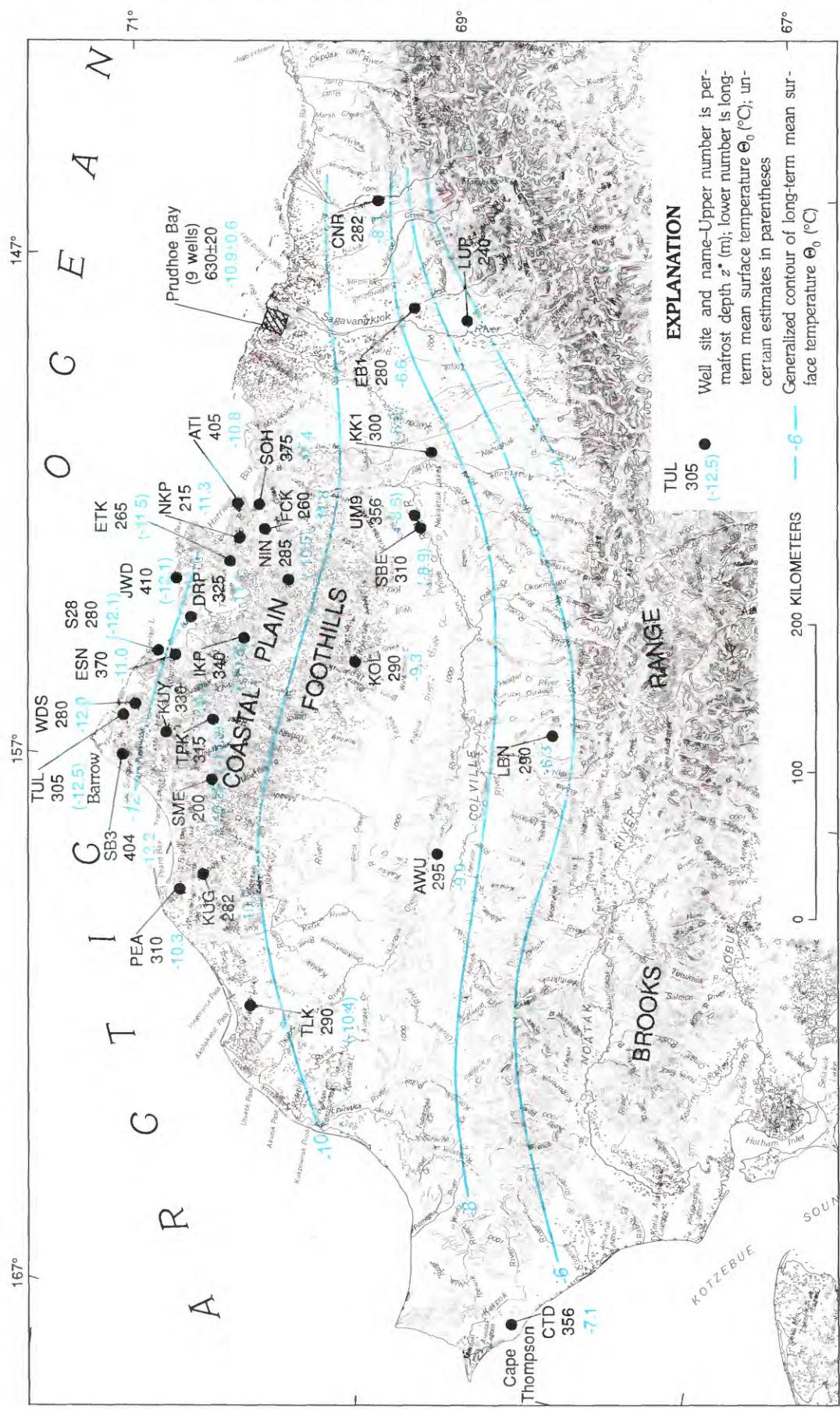


FIGURE 28.1.—Northern Alaska showing well locations, permafrost depth z^* (m) and estimated long-term mean surface temperature θ_0 ($^{\circ}$ C) for each well, and generalized contours of θ_0 . For names of wells and other data see table 28.1.

foothills of the Brooks Range to the east. All of the holes were completed without a surface plug and with the portion of the casing in permafrost filled with diesel oil to prevent refreezing. This made it possible for us to relog them at convenient intervals to trace the dissipation of the drilling disturbance and the reestablishment of natural formation temperatures. Temperature measurements were made at depth intervals of 0.3-3.0 m with a multiconductor cable and thermistor thermometer having a preci-

sion better than 0.01°C (the "portable mode" described by Sass and others, 1971). Owing largely to convective fluid motion in the borehole, the reproducibility is generally considerably worse ($\pm 0.05^{\circ}\text{C}$). The number of logs made in each hole to date is shown in column 2 of table 28.1.

A sample of the data is shown in figure 28.2 for the site at Awuna (AWU) in the southern foothills (fig. 28.1). The duration of the drilling disturbance (that is, the period between the start of drilling and the

final cessation of circulation) is denoted by s and given in column 1 of table 28.1; for the example in figure 28.2, s was 415 d.

The dissipation of the drilling disturbance depends on the ratio of the time elapsed since completion of the disturbance, t , to the duration of the disturbance, s . This ratio or dimensionless time we denote by τ :

$$\tau = t/s \quad (1)$$

For the three successive logs illustrated in figure 28.2, τ ranged

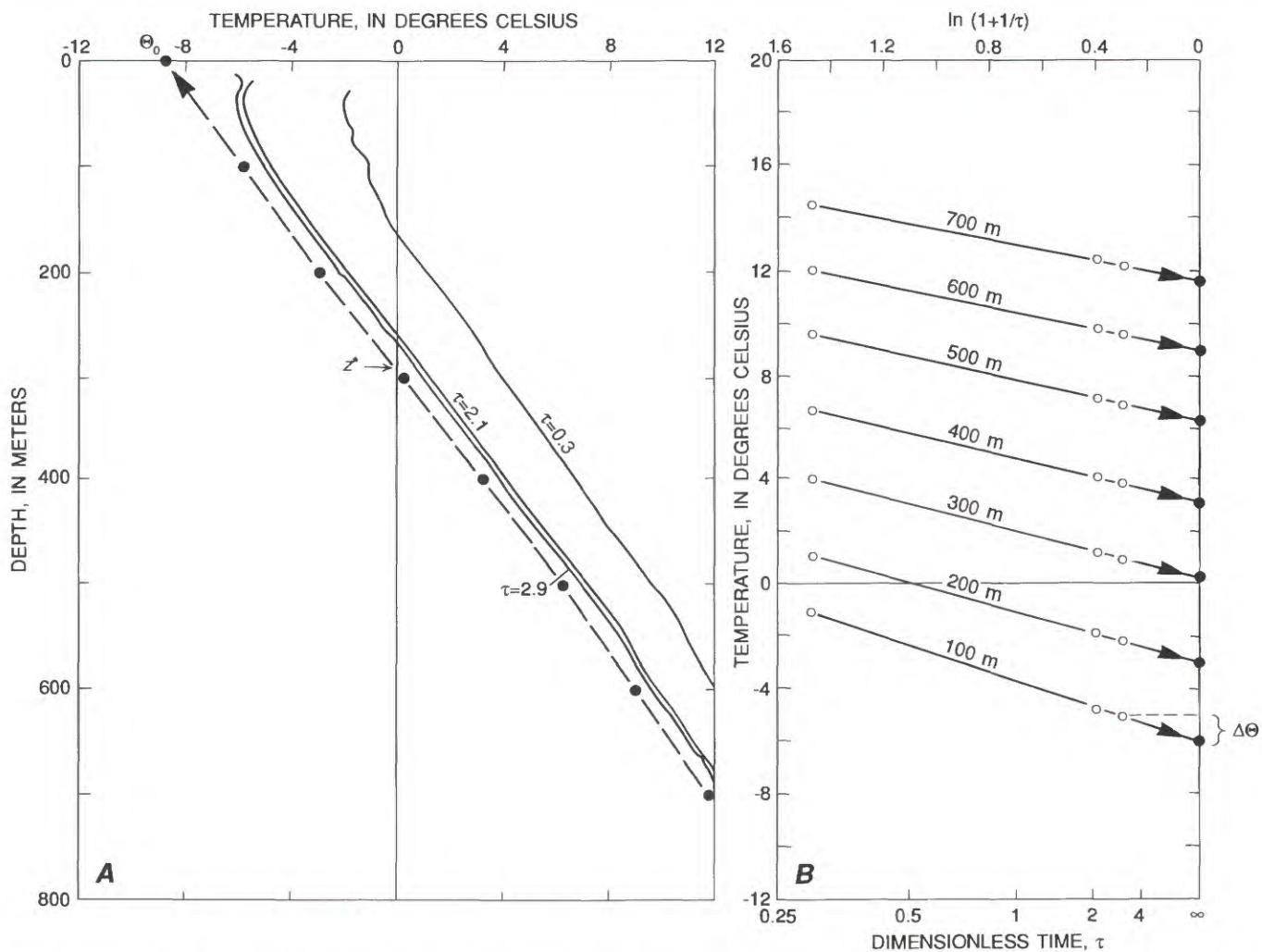
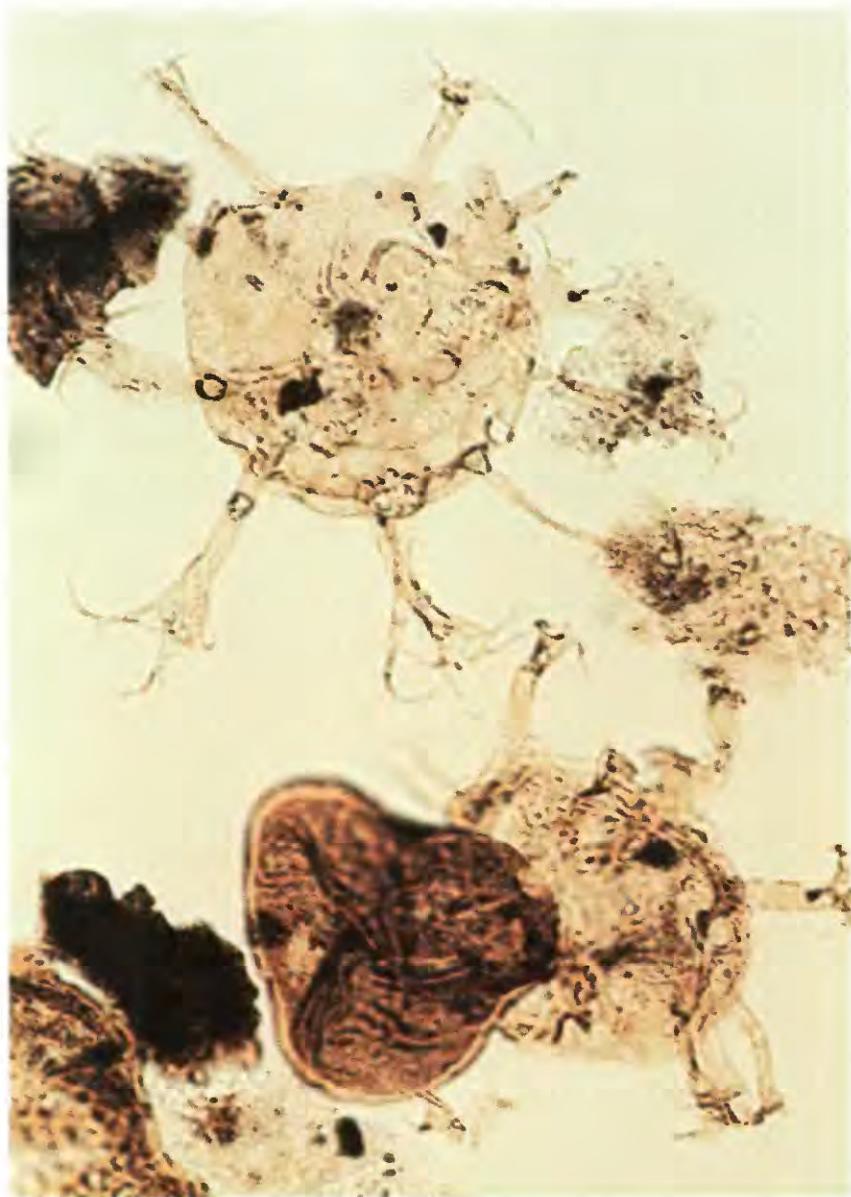
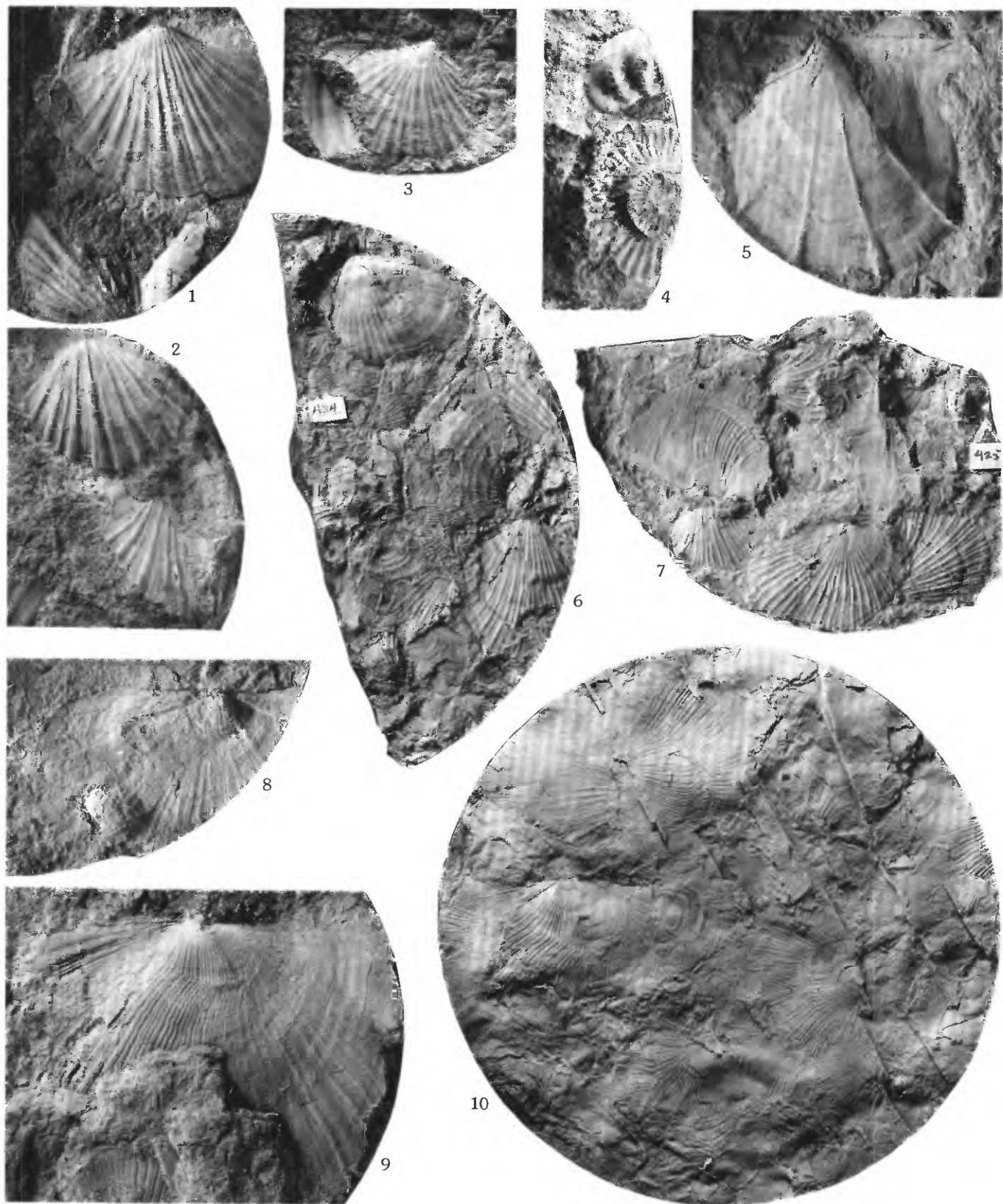
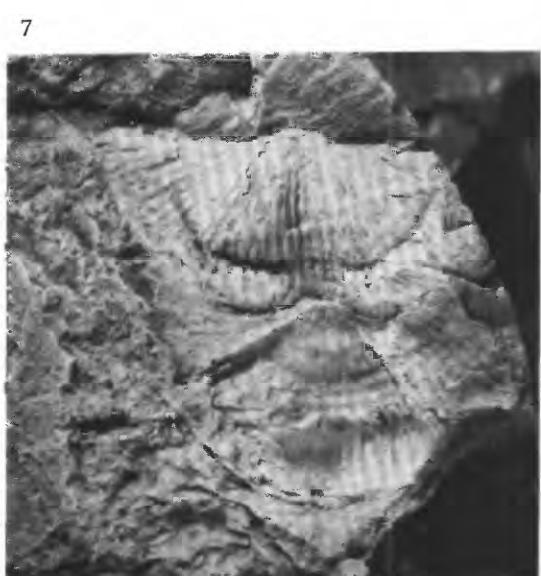
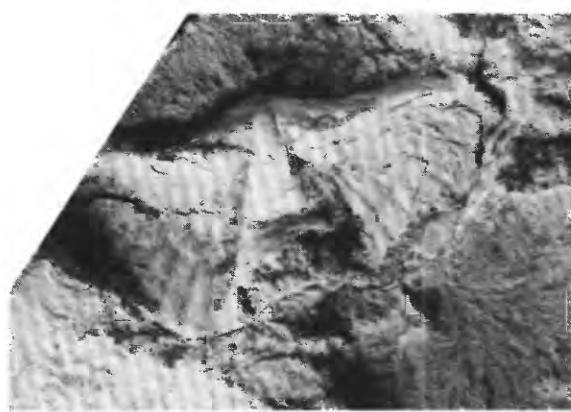
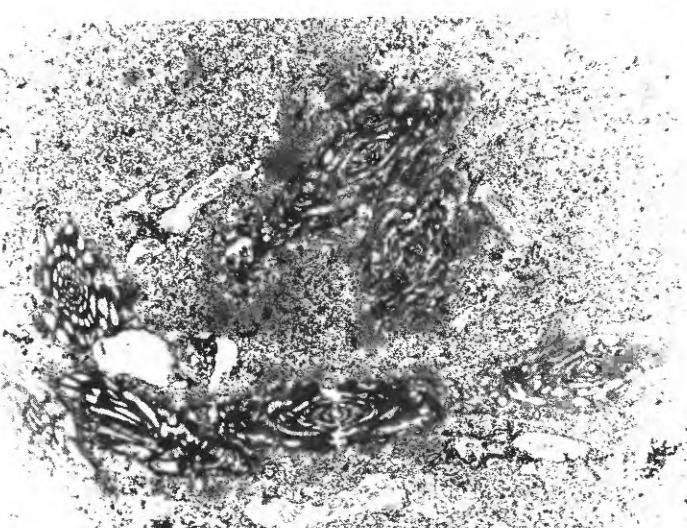
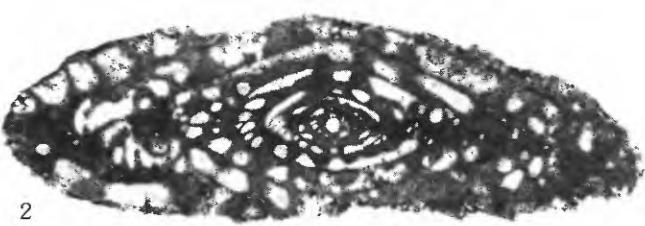


FIGURE 28.2.—Dissipation of temperature disturbance from drilling at Awuna well. A, Successive temperature profiles observed 125 days ($\tau=0.3$), 876 days ($\tau=2.1$), and 1,200 days ($\tau=2.9$) after completion of drilling. Dots, estimates of undisturbed temperature, θ_∞ , determined from B; z^* , estimated permafrost depth; θ_0 , long-term mean surface temperature. B, Dissipation of drilling disturbance (equation 2) for selected depths indicated. τ , ratio of time elapsed since completion of drilling (t) to drilling period (s , in this case 415 d). Extrapolated intercept at right-hand margin is equilibrium temperature θ_∞ . Drilling disturbance remaining at time of last observation is $\Delta\theta$.



Paleontologists determine the age of the rock layers penetrated by the drill by identifying the contained microscopic fossils. Pictured above are ancient marine planktonic forms, dinoflagellates, and plant spores from the pebble shale unit of Early Cretaceous age. Photograph by Roger Witmer.



MONOTIS, CALOCERAS?, OXYTOMA, EOMONOTIS, HALOBIA, NEOHIMAVATITES

PLATE 30.2

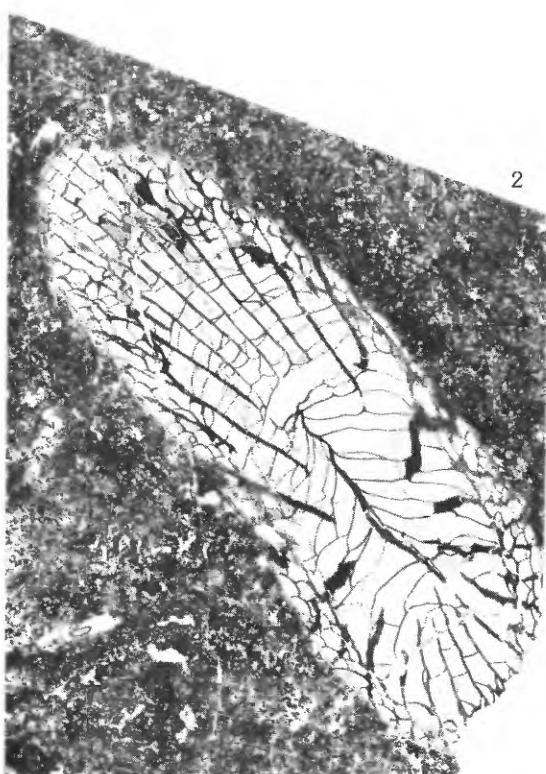
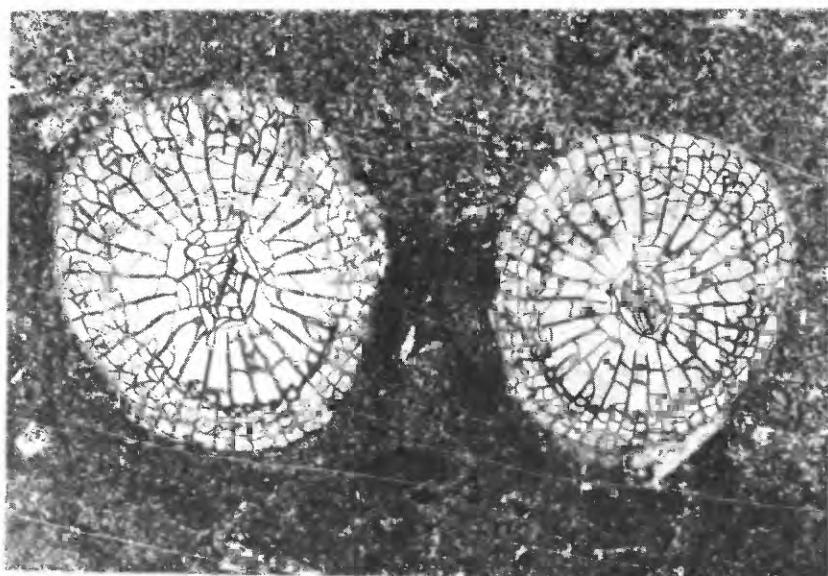
Early Permian fusulinids and brachiopods from test wells in the National Petroleum Reserve in Alaska

- FIGURES 1-3. *Pseudofusulinella* sp. aff. *P. valkenburghae* Petocz, 1970. Axial sections of three specimens, $\times 20$; Inigok No. 1 well, depth 4,279 m (14,040 ft); probably Wolfcampian Zone B of Petocz, 1970.
1. USGS f14035-2, USNM 316137.
 2. USGS f14035-4, USNM 316138.
 3. USGS f14035-7, USNM 316139.
 4. Surface of piece of core, same depth as figures 1-3, showing several randomly oriented specimens of *Pseudofusulinella* sp. aff. *P. valkenburghae* Petocz, 1970. USGS f14035-3, USNM 316140.
 5. *Licharevia* sp. Brachial valve, $\times 2$; USNM 316141; Inigok No. 1 well, depth 4,275 m (14,025.4 ft). Early Permian.
 6. *Waagenconcha* sp. Pedicle valve, $\times 2$; USNM 316142; Inigok No. 1 well, depth 4,282 m (14,047.4 ft). Early Permian.
 7. *Paucispinifera* sp. Pedicle valve above, brachial valve below, partly crushed, $\times 2$; USNM 316143; Inigok No. 1 well, depth 4,277 m (14,033.3 ft). Early Permian.

PSEUDOFUSULINELLA, LICHAREWIA, WAAGENOCONCHA, PAUCISPINIFERA

PLATE 30.3

Early Permian bryozoans, brachiopod, and gastropod from test wells in the National Petroleum Reserve in Alaska

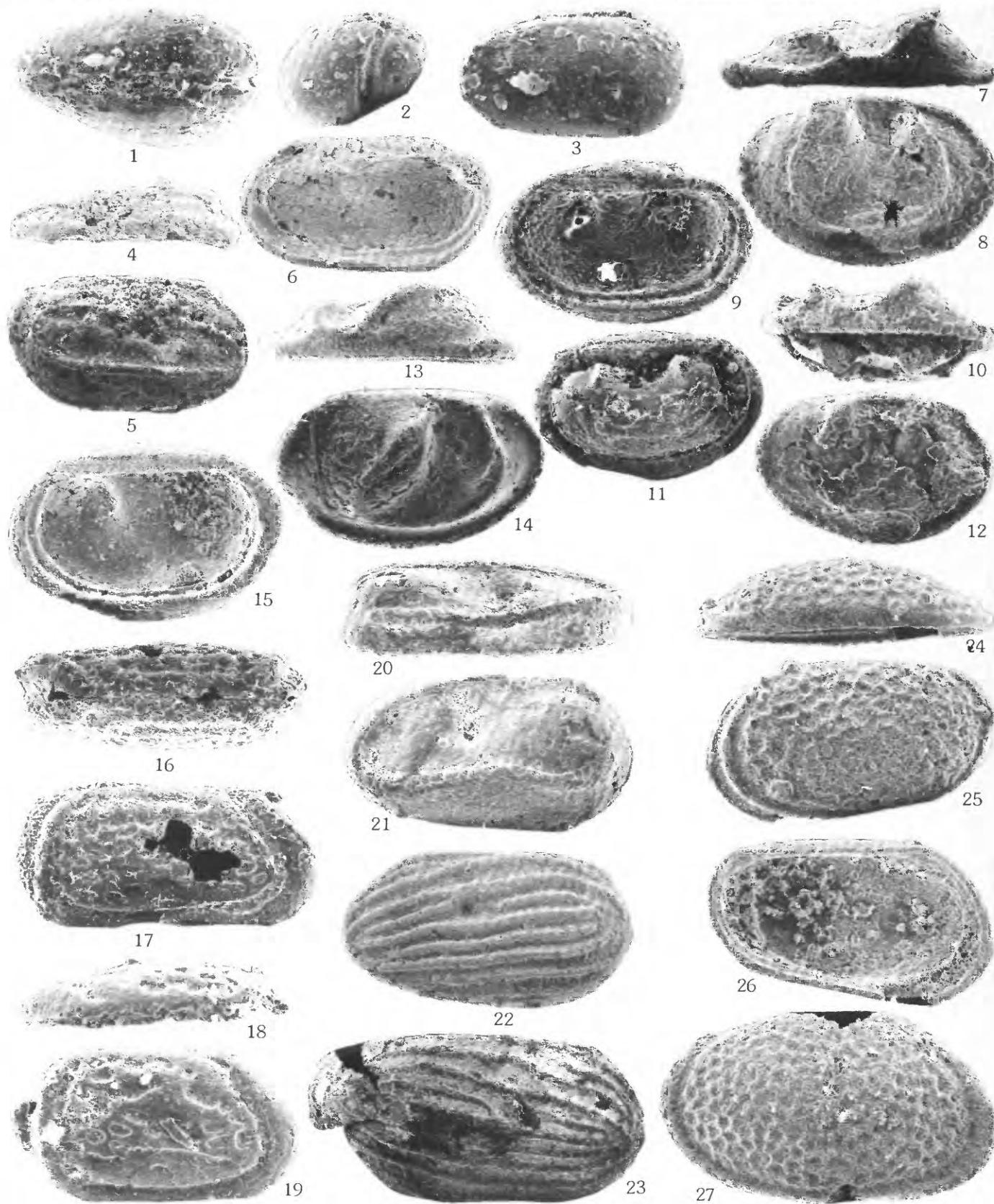


FIGURE 1. Surface of part of core from Ikpikpuk No. 1 well, depth 3,573 m (11,723.5 ft). $\times 2$; USGS loc. 27664-PC, USNM 316144; A, *Archimedes* sp.; B, *Polypora* sp.; C, *Fenestella* sp.; D, fistuliporoid, indet.; E, *Rhynchopora* sp.; F, possible euomphalacean gastropod, indet.; Early Permian.

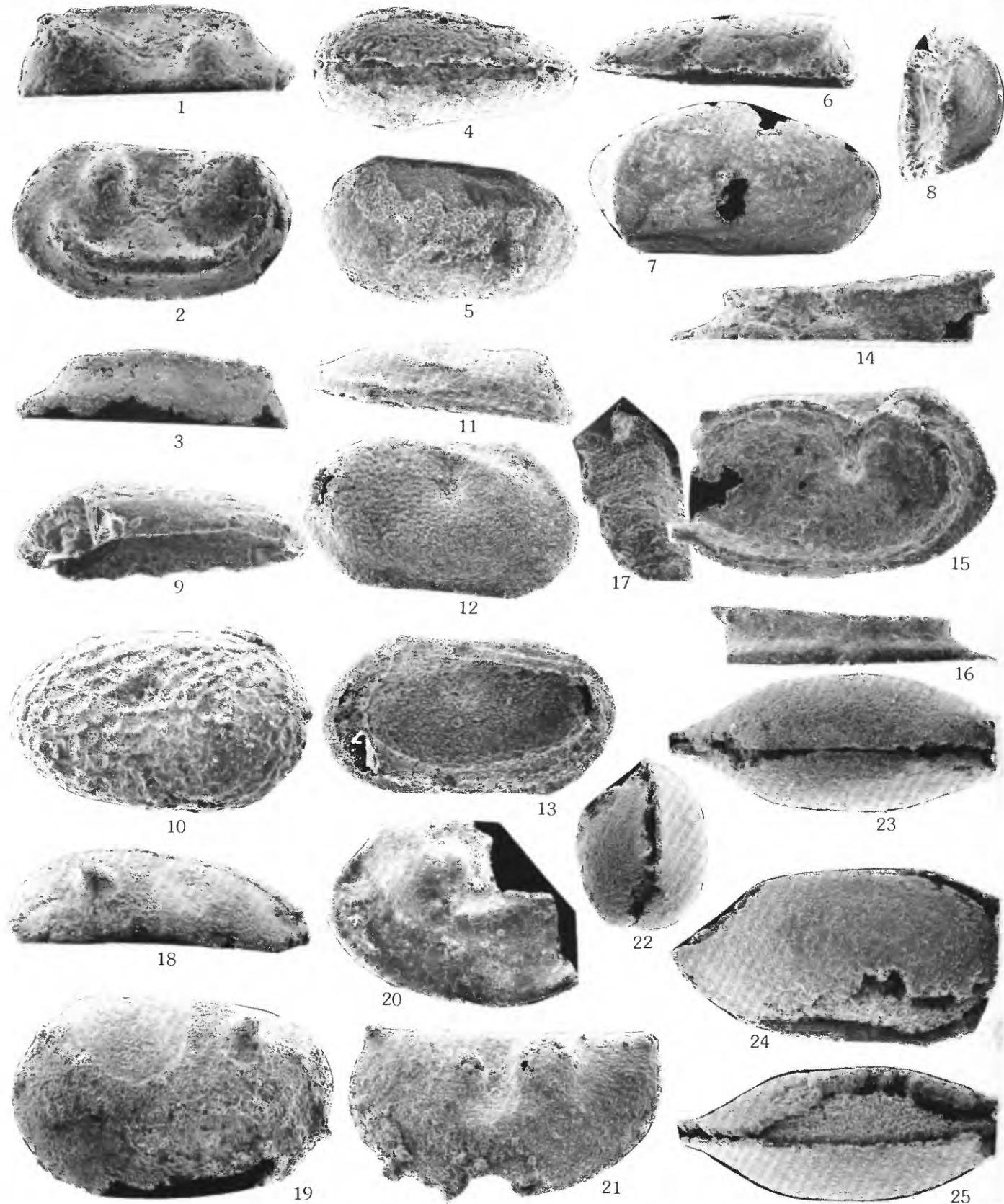
ARCHIMEDES, POLYPORA, FENESTELLA, RHYNCHOPORA

PLATE 30.4
Pennsylvanian coral and Early Permian brachiopods from test wells in the National Petroleum Reserve in Alaska

- FIGURE 1-3. *Heintzella jagoensis* (Armstrong); Inigok No. 1 well, depth 4,635 m (15,205.5 ft); Pennsylvanian, Zone 21 of Mamet (Atokan).
1. Oblique transverse section of a corallite, $\times 3$, USNM 316145.
 2. Oblique transverse section of another corallite, $\times 3$, USNM 316146.
 3. Axial sections of two corallites, $\times 3$, USNM 316147.
 4. *Attenuatella* sp. Pedicle valve and several other partly crushed specimens, $\times 2$; USNM 316148; Inigok No. 1 well, depth 4,273 m (14,020.0 ft). Early Permian.

HEINTZELLA, ATTENUATELLA





MICROCHEILINELLA, BEYRICHOPSIS, N. GEN. A, N. GEN. B,
GLYPTOPLEUROIDES, GLYPTOPLEURA, SAVAGELLITES

PLATE 31.2

Early Mississippian ostracodes from the Lisburne test well, Alaska

- FIGURES 1-3. *Geffenina* sp., left valve, USNM 307524, approx. $\times 60$.
1. Dorsal view (anterior to right).
 2. Outside view.
 3. Ventral view (anterior to left).
- 4, 5. *Cavellina?* sp., specimen with left valve removed, USNM 307525, approx. $\times 63$.
4. Ventral view (anterior to right).
 5. Right view.
- 6-8. Genus and species indeterminate, right valve, USNM 307526, approx. $\times 40$.
6. Dorsal view (anterior to left).
 7. Outside view.
 8. Posterior view.
- 9, 10. *?Knoxiella archedensis* (Tschigova, 1958) sensu Robinson, 1978, left valve, USNM 307527, approx. $\times 60$.
9. Dorsal view (anterior to right).
 10. Outside view.
- 11-13. *Glyptolichvinella* cf. *G. simplex* Gurevich, 1966, right valve, USNM 307528, approx. $\times 63$.
11. Dorsal view (anterior to left).
 12. Outside view.
 13. Inside view.
- 14-17. *Lichvinella* ex gr. *Glyptopleura plicata* (Jones and Kirkby, 1867) Chizhova, 1977, USNM 307529.
14. Dorsal view (anterior to left) of right valve, approx. $\times 80$.
 15. Outside view of right valve, approx. $\times 80$.
 16. Ventral view (anterior to right) of right valve, approx. $\times 80$.
 17. Posterior oblique detail of posteroventral spine, approx. $\times 110$.
- 18, 19. *Shivaella* aff. *S. armstrongiana* (Jones and Kirkby, 1886), left valve, USNM 307530, approx. $\times 40$.
18. Dorsal view (anterior to right).
 19. Outside view.
20. *Hollinella* sp., outside view of anterior part of broken left valve, USNM 307531, approx. $\times 33$.
21. *Hollinella* ex gr. *H. longispina* (Jones and Kirkby, 1886), outside view of left valve, USNM 307532, approx. $\times 40$.
- 22-25. *Rectobairdia* cf. *R. confragosa* Green, 1963, poorly preserved carapace with anterior missing, USNM 307533, approx. $\times 60$.
22. Posterior view.
 23. Dorsal view (anterior to right).
 24. Right view.
 25. Ventral view (anterior to right).

GEFFENINA, CAVELLINA? ?KNOXIELLA, GLYPTOLICHVINELLA,
LICHVINELLA SHIVAEILLA, HOLLINELLA, RECTOBAIRDIA

N.R.D. Albert picked many samples, particularly those from the Punupkahkroak section. B.L. Reed provided invaluable help with data collection on the Lisburne Peninsula in 1982. Diedra Bohn assisted in the field during examinations of Otuk sections in 1984.

GEOLOGIC SETTING

Mull and others (1982) revised the stratigraphy of the upper Paleozoic

and Mesozoic formations in northern Alaska (fig. 33.3). They assigned all the Triassic strata in the western Brooks Range to the Etivluk Group, which contains the Siksikpuk and Otuk Formations. Both these formations include siliceous units that are exposed in the allochthons of the western half of the Brooks Range (Mayfield and others, chapter 7). Few localities expose complete sections of the Etivluk Group because in most places it is structurally deformed and cut by faults.

The Siksikpuk Formation is composed of cherty siltstone, shale, and bedded chert. The formation is characterized in many places by maroon, red, and green siliceous siltstone and by beds that weather orange yellow. This unit is more siliceous in its western exposures and has not been mapped along the mountain front east of the Itkillik River. In some places the Siksikpuk grades downward into the black cherts of the Kuna Formation (Mull and others, 1982; see also Mull and

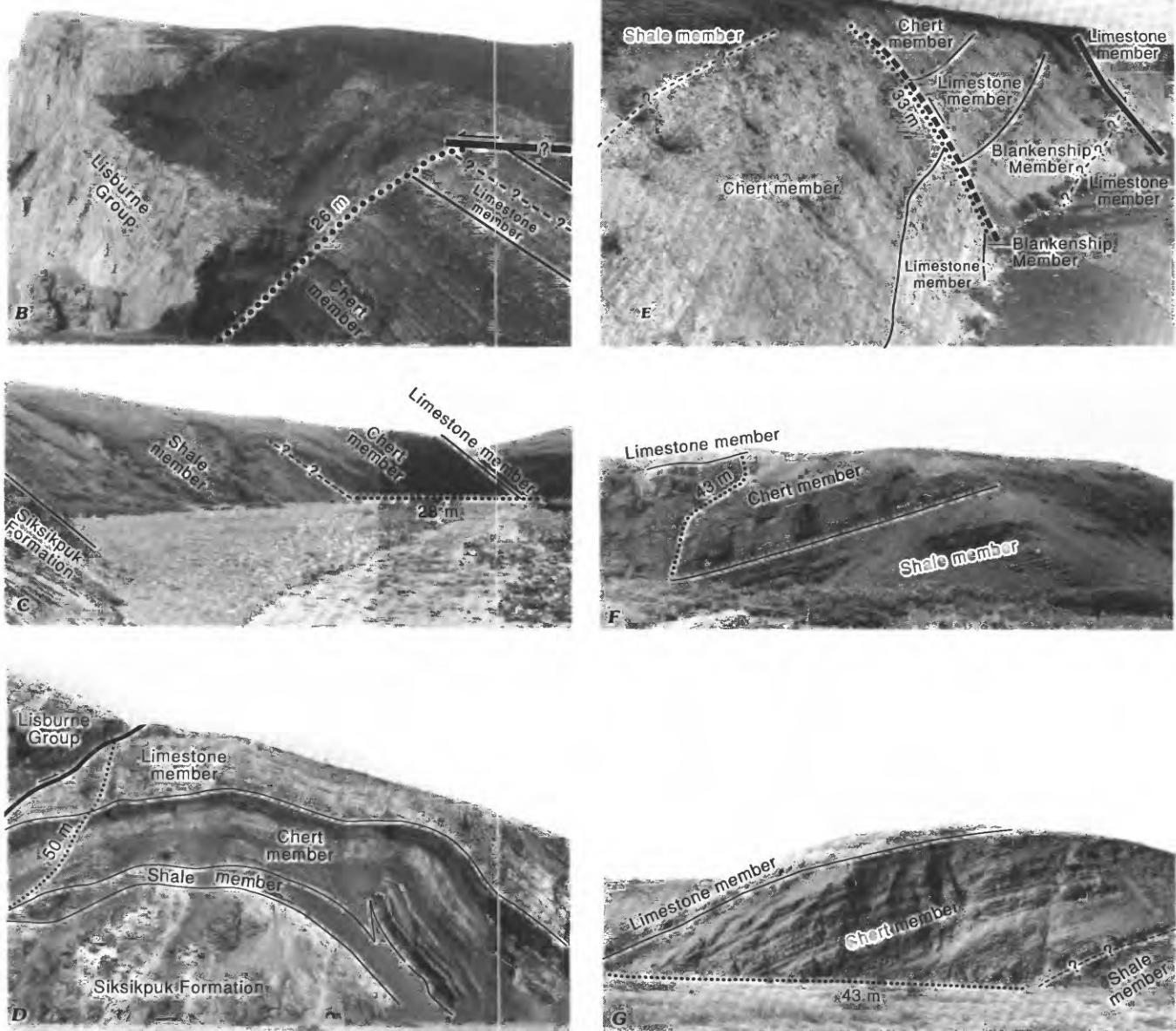


FIGURE 33.1.—Continued

others, 1987), the Siksikpuk being distinguished by its orange-weathering beds. Elsewhere, its contact with older units may be disconformable.

Paleontologic studies have shown that radiolarians from strata questionably assigned to the Siksikpuk Formation may be as old as Late Mississippian (Murchey and others,

1981). Mull and others (1982) extended the age of the Siksikpuk Formation into the Early Triassic. However, the sample on which this Triassic age was based is now

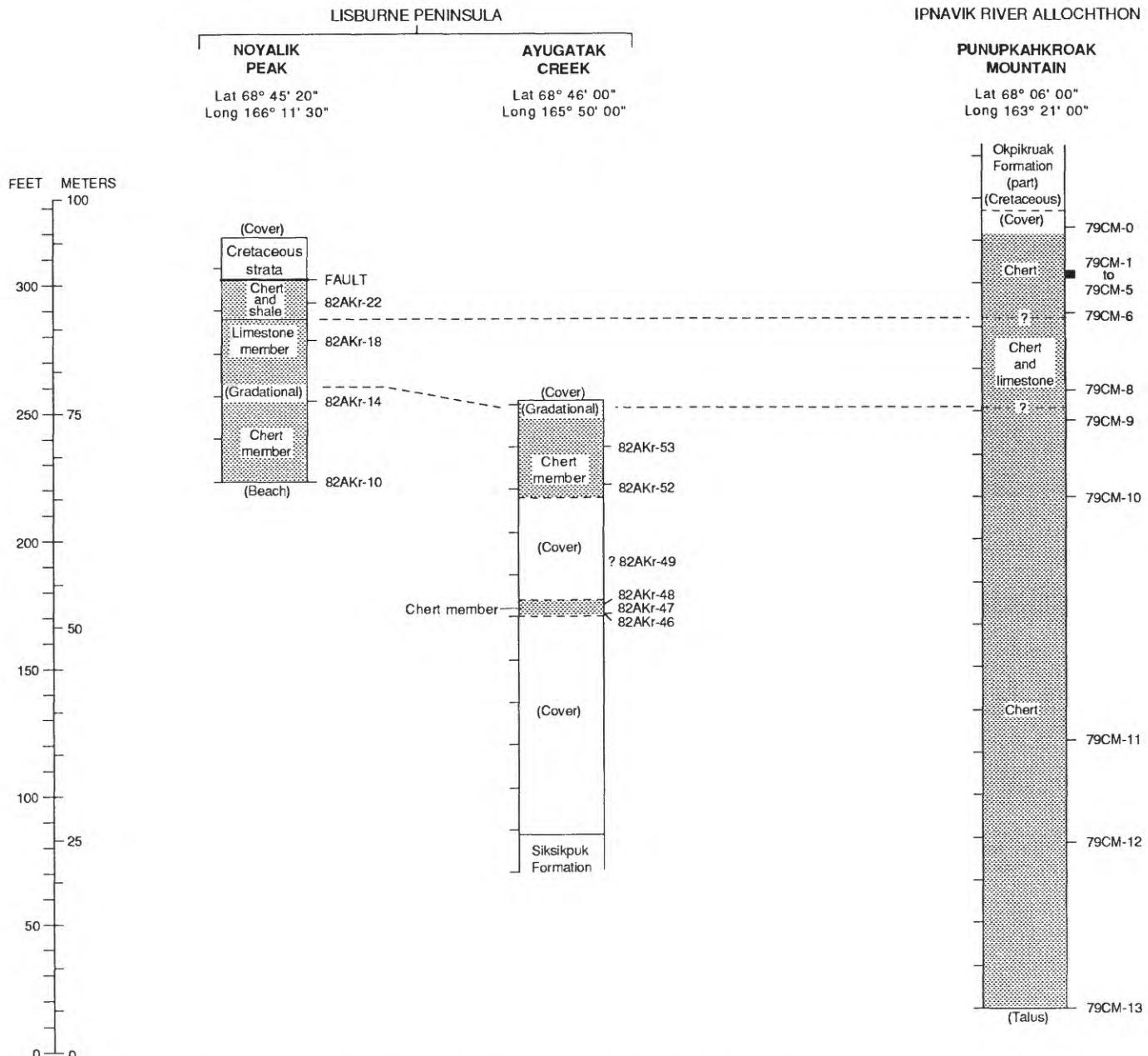
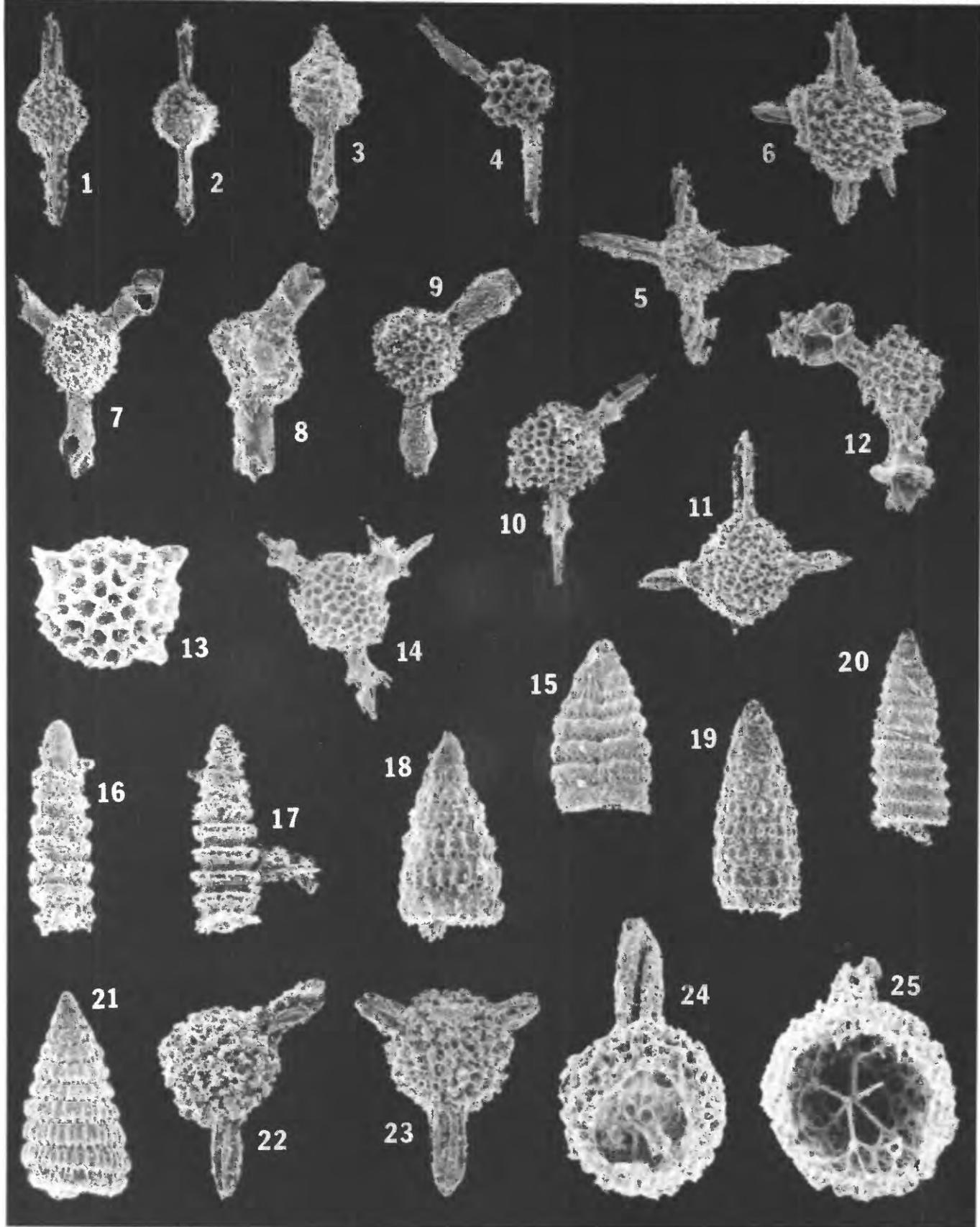
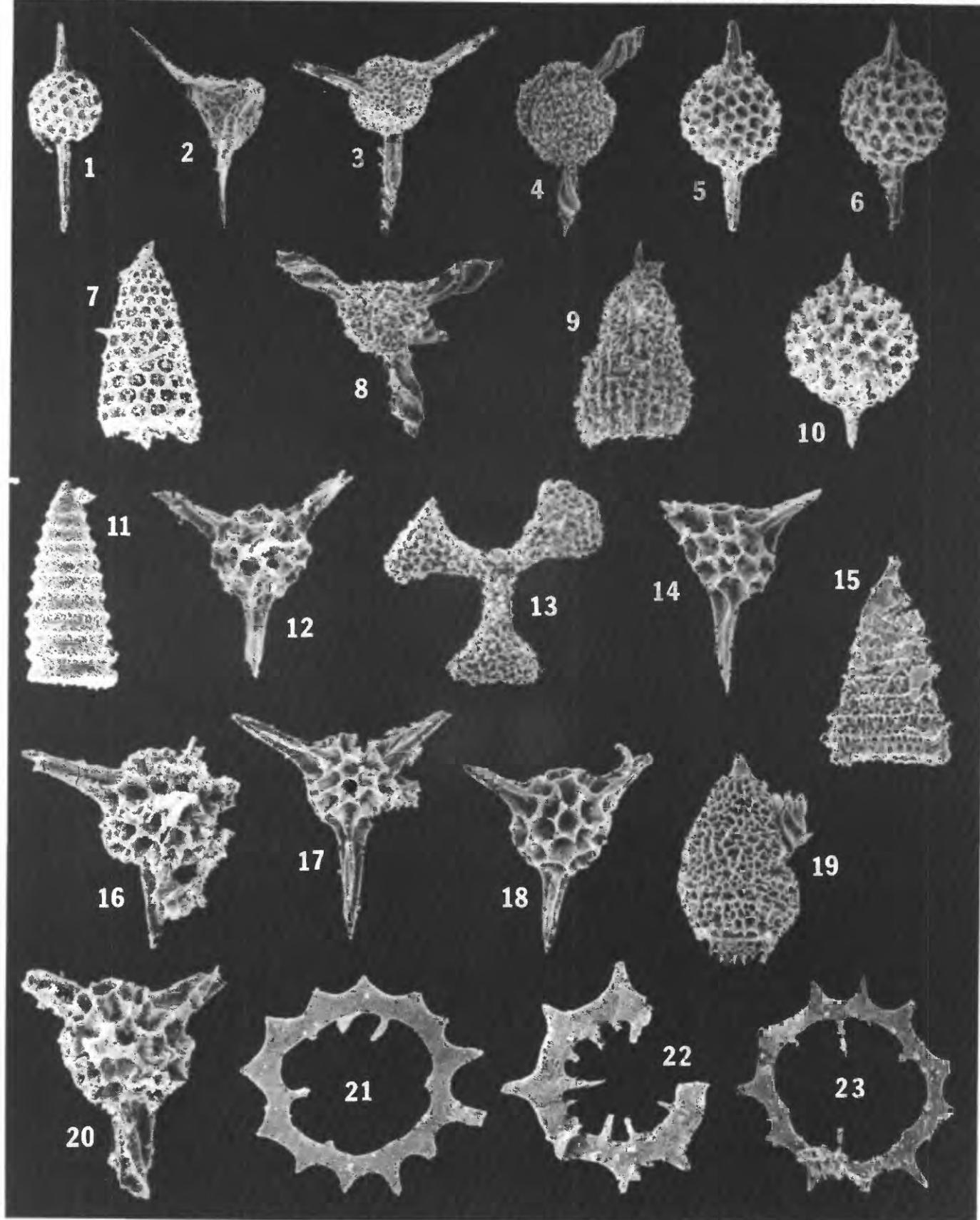


FIGURE 33.2.—Generalized lithologic correlation of members of the Otuk Formation (shaded) in the sections studied. The Blankenship Member and its unnamed equivalent(s) are predominantly shale. Positions of radiolarian samples are indicated by numbers and letters to right of each column; both megafossil and radiolarian sample numbers are shown on Bodnar's sections. See table 33.1 for lists of radiolarians and megafossils at each section. Contacts of members in Noyalik Peak, Ayugatak Creek, Akmalik Creek, and Monotis Creek sections are not shown because they are gradational. Members are not distinguishable

at Punupkahroak Mountain section, because that section contains more siliceous rock and less shale than other sections discussed. Thicknesses of Otuk members recorded by various workers at Otuk Creek and Tiglukpuk Creek sections differ; therefore, two sections are shown for each for comparison. Note also positions of member contacts at these sections. Bodnar's Tiglukpuk Creek section is a composite of exposures on east and west sides of the creek, which may account for his not indicating the fault shown by Murchey.





*PSEUDOSTYLOSPHAERA, CAPNODOCE, EMILUVIA(?), STAURODORAS(?), CAPNUCHOSPHAERA, STAURODORAS,
BETRACCIIUM(?), CORUM, TRIASSOCAMPE, LATIUM, CANOPTUM, EPTINGIUM*

PLATE 33.2

Scanning electron photomicrographs of Late Triassic (late Norian) to Early Jurassic (Pliensbachian) radiolarians from the Otuk Formation, northern Alaska. All magnifications are approximate. For data on samples, see table 33.1.

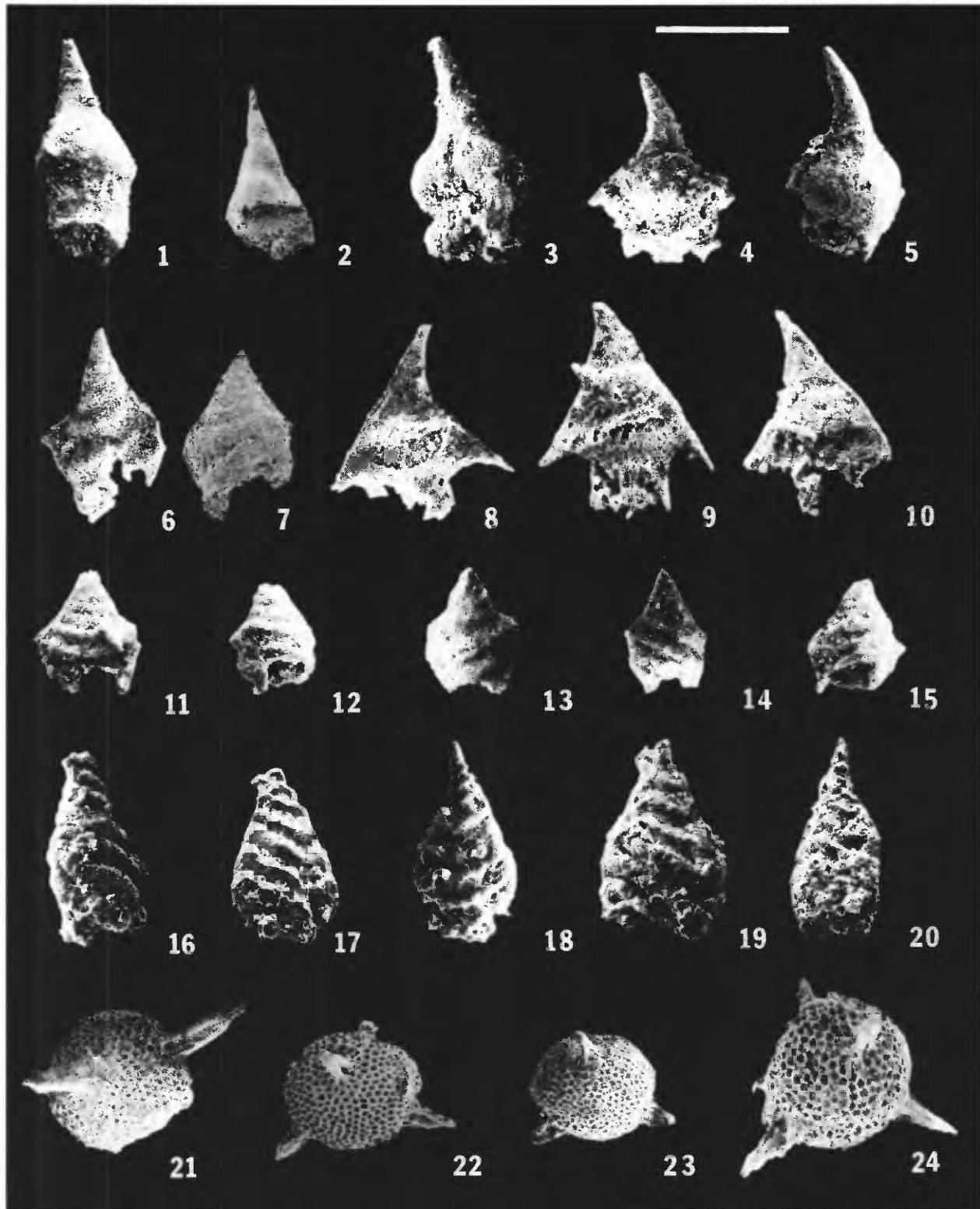
- FIGURE 1. *Pantanellium talunkwanense* Pessagno and Blome, 1980. 79CM-1, $\times 100$.
2. Undescribed nassellarian. 79CM-5, $\times 90$. Although undescribed, this form is common in the upper Norian of western North America and Japan.
3. *?Tripocyclia* sp. 79CM-1, $\times 82$.
4. *Ferresium laseekense* Blome, 1984. 79CM-5, $\times 62$.
5, 6. *Pantanellium kluense* Pessagno and Blome, 1980. 79CM-4, $\times 130$ and $\times 150$, respectively.
7. Undescribed nassellarian 79CM-1, $\times 110$.
8. Undescribed *Ferresium* sp. 79CM-6, $\times 175$.
9. *Droltus* sp. aff. *D. hecatensis* Pessagno and Whalen, 1982. 79CM-4, $\times 162$.
10. *Pantanellium tanuense* Pessagno and Blome, 1980. 79CM-1, $\times 165$.
11. *Canoptium dixoni* Pessagno and Whalen, 1982. 79CM-1, $\times 112$.
12. *Cantalum* sp. cf. *C. alium* Blome, 1984. 79CM-6, $\times 200$.
13. *?Paronaella* sp. 79CM-4, $\times 120$.
14. *Betraccium inornatum* Blome, 1984. 79CM-5, $\times 200$.
15. *Laxtorum hindei* Blome, 1984. 79CM-6, $\times 125$.
16. *Cantalum globosum* Blome, 1984. 79CM-5, $\times 250$.
17, 18. Undescribed *Betraccium* sp. 79CM-5 and 79CM-6, $\times 180$ and $\times 125$, respectively.
19. *Droltus laseekensis* Pessagno and Whalen, 1982. 79CM-2, $\times 120$.
20. *Cantalum* sp. 79CM-6, $\times 212$.
21. *Pseudoheliodiscus sandspitensis* Blome, 1984. 79CM-6, $\times 137$.
22. *Pseudoheliodiscus* sp. aff. *P. yaoi* Pessagno and Poisson, 1979 [1981]. 79CM-3, $\times 100$.
23. Undescribed *Pseudoheliodiscus* sp. 79CM-6, $\times 112$.

*PANTANELLIUM, ?TRIPOCYCLIA, FERRESIUM, DROLTUS, CANOPTUM, CANTALUM, ?PARONAELLA,
BETRACCIIUM, LAXTORUM, PSEUDOHELIODISCUS*

TABLE 33.1.—Radiolarians and megafossils from seven measured sections of the Otuk Formation, northern Alaska

[Faunas for each section are listed from oldest to youngest regardless of the order of the field numbers. Collectors: AKr, K. Reed; Aky, J. Kelley; AMy, B. Murchey; CM, W. Chamberlain; D, Mull and others; UA, D. Bodnar; Wr, R. Witmer and P. Swain. PPR, radiolarian fauna too poorly preserved for even generic assignment. See figure 33.4 for updated megafossil taxonomy and ranges. Refer to table 3 in Blome and Reed (1986) for the stratigraphic position of taxa in the various members of the Otuk Formation]

Sample	Radiolarian fauna	Megafossils	Age based on radiolarians (* megafossil age only)
Noyalik Peak, lat 68°45'20" N., long 166°11'30" W. (Megafossil data from N.J. Silberling, written commun., 1964, 1968)			
---		<i>Halobia superba</i>	*Late Karnian
82AKr-10	<i>Capnuchosphaera contorta</i> ? Kozur and Mostler, 1979 <i>Capnuchosphaera</i> sp. <i>Pachus</i> sp. <i>Sarla plena</i> Blome, 1983 <i>Sarla</i> sp.		Late Karnian to middle Norian
82AKr-14	<i>Capnuchosphaera</i> sp.		Late Karnian to early late Norian
---		<i>Halobia</i> cf. <i>H. fallax</i> <i>Monotis</i> <i>scutiformis</i>	*Middle Norian
---		<i>Monotis</i> cf. <i>M. subcircularis</i> <i>M.</i> cf. <i>M. ochotica</i>	*Early late Norian
82AKr-18	? <i>Laxtorum</i> sp. <i>Pseudoheliодiscus</i> sp.		*Late middle to late Norian
---		<i>Monotis</i> cf. <i>M. ochotica</i>	*Early late Norian
82AKr-22	<i>Ferresium</i> sp. <i>Laxtorum atliense</i> Blome, 1984 <i>Laxtorum(?) kulense</i> Blome, 1984 <i>Livarella densiporata</i> Kozur and Mostler, 1981 <i>Pseudoheliодiscus</i> sp.		Late Norian
(Eleven additional samples yielded nothing useful.)			
Ayugatak Creek, lat 68°46' N., long 165°48' W. (Megafossil data from I.L. Tailleur, written commun. 1982)			
---		<i>Daonella</i>	*Early to mid-Ladinian



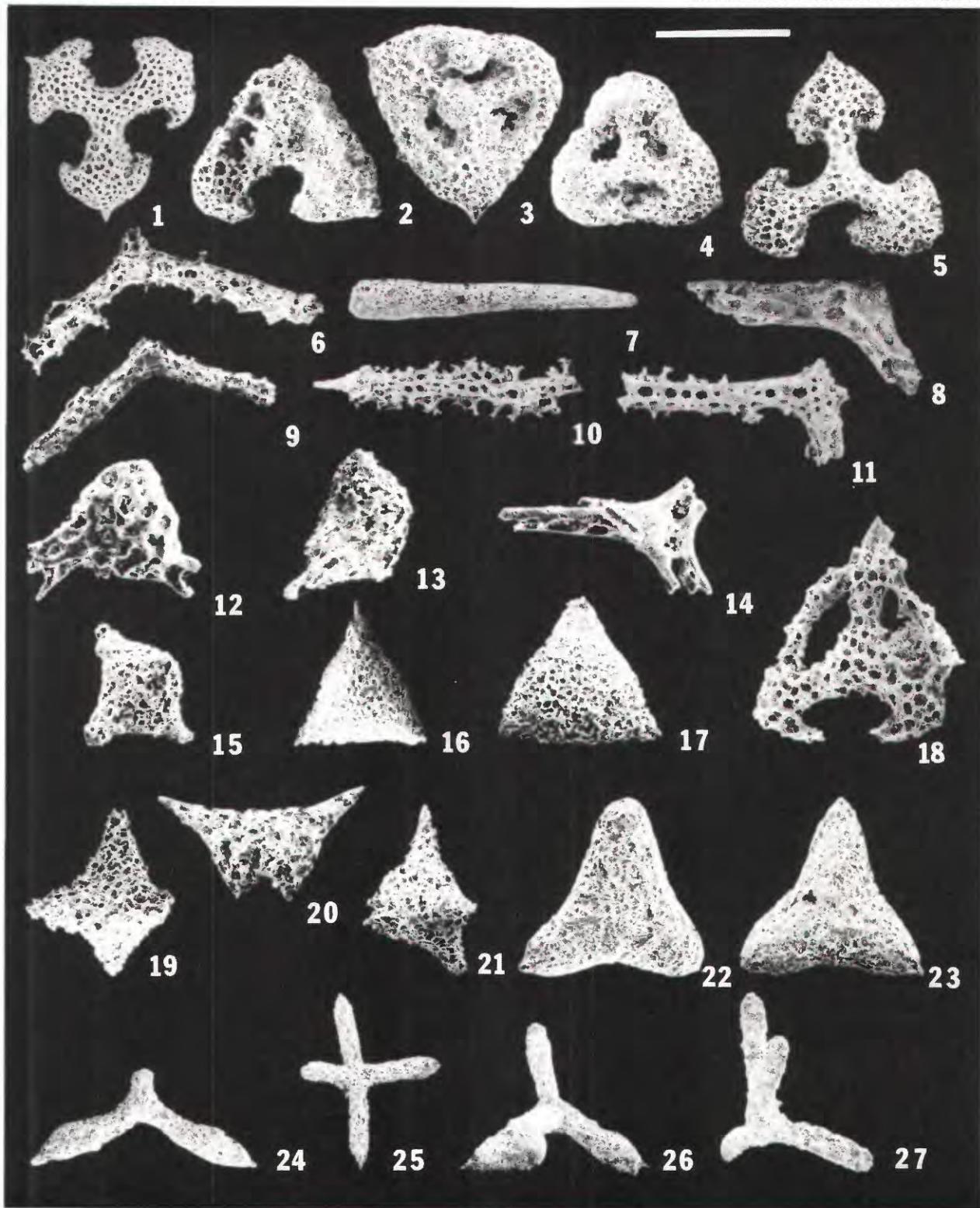
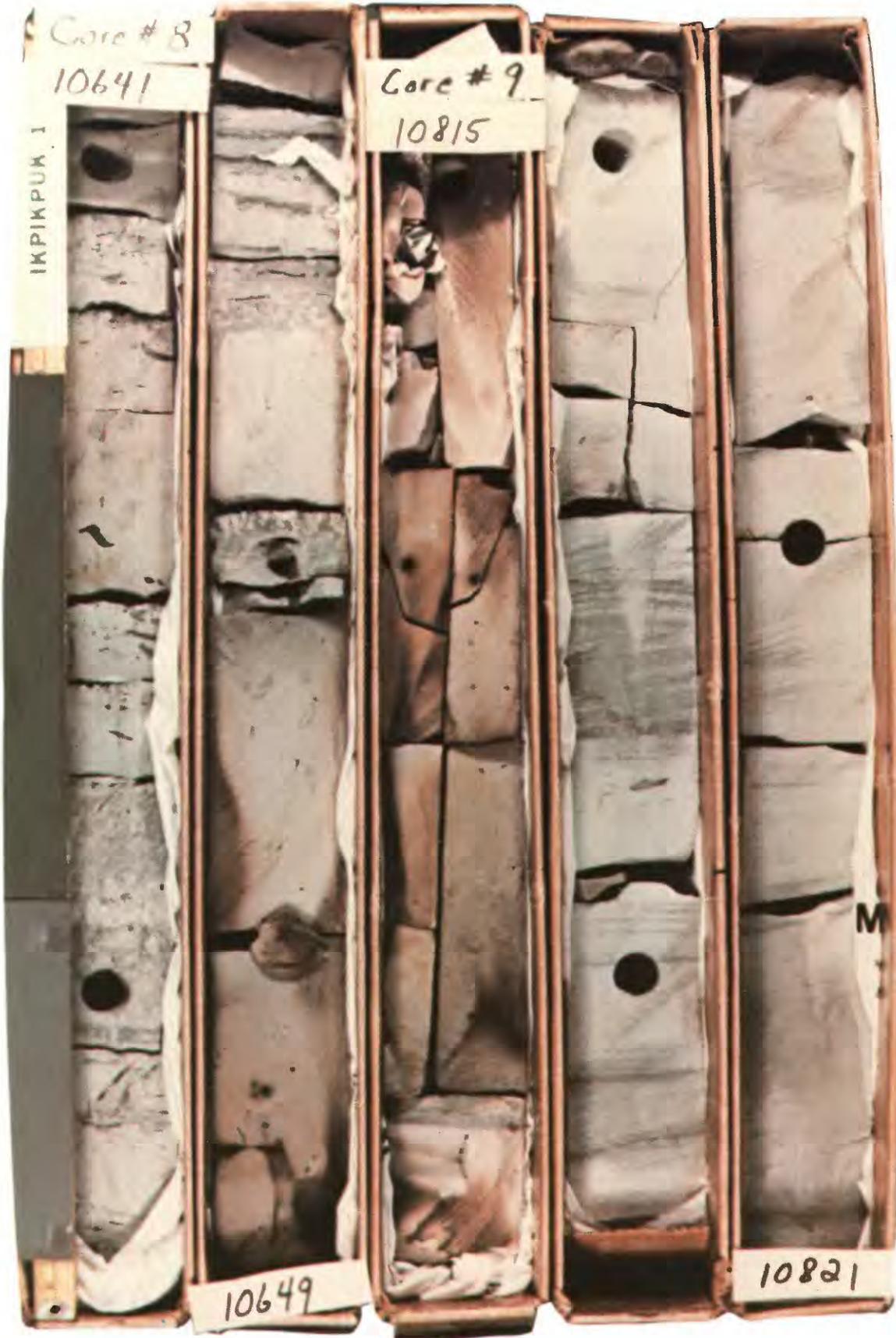

PSEUDOALBAILLELLA, ALBAILLELLA, SPHEROIDS

PLATE 34.2


[Paleozoic radiolarians from the northern Brooks Range, Alaska]

FIGURES 1-5, 18. *Paronaella triporosa* n.sp.

1. Specimen USNM 391819 from USGS sample MR 6535 (Nigu-26). Bar, 390 μ m.
2. Specimen USNM 391819 from USGS sample MR 6538 (Nigu-29). Bar, 290 μ m.
3. Holotype. Specimen USNM 391821 from USGS sample MR 6537 (Nigu-28). Bar, 330 μ m.
4. Specimen USNM 391822 from USGS sample MR 6538 (Nigu-29). Bar, 280 μ m.
5. Paratype. Specimen USNM 391823 from USGS sample MR 6537 (Nigu-28). Bar, 330 μ m.
18. Specimen USNM 391836 from USGS sample MR 0813 (78 MD-75E). Bar, 230 μ m.
- 6, 9-12. *?Scharfenbergia* sp. (late species).
 6. Specimen USNM 391824 from USGS sample MR 0813 (78 MD-75E). Bar, 330 μ m.
 9. Specimen USNM 391827 from USGS sample MR 6538 (Nigu-29). Bar, 360 μ m.
 10. Specimen USNM 391828 from USGS sample MR 6538 (Nigu-29). Bar, 570 μ m.
 11. Specimen USNM 391829 from USGS sample MR 6536 (Nigu-26). Bar, 210 μ m.
 12. Specimen USNM 391830 from USGS sample MR 6538 (Nigu-29). Bar, 150 μ m.
7. *Latentifistula?* sp. Specimen USNM 391825 from USGS sample MR 6538 (Nigu-29). Bar, 570 μ m.
- 8, 14. *Latentifistula* sp.
 8. Specimen USNM 391826 from USGS sample MR 6535 (Nigu-26). Bar, 210 μ m.
 14. Specimen USNM 391825 from USGS sample MR 6538 (Nigu-29). Bar, 570 μ m.
- 13, 15, 19-21. *Scharfenbergia tailleurensis* n.sp. All specimens from USGS sample MR 0813 (78 MD-75E); bar, 290 μ m for all specimens except figure 20 where bar is 250 μ m.
 13. Paratype. Specimen USNM 391831.
 15. Paratype. Specimen USNM 391833.
 19. Paratype. Specimen USNM 391837.
 20. Holotype. Specimen USNM 391838.
 21. Paratype. Specimen USNM 391839.
- 16, 17. *?Scharfenbergia ruestae*. Specimens from USGS sample 0813 (78 MD-75E); bar, 290 μ m.
 16. Specimen USNM 391834.
 17. Specimen USNM 391835.
- 22, 23. *?Scharfenbergia ruestae*. Specimens from USGS sample MR 6533 (Nigu-24): bar, 290 μ m.
 22. Specimen USNM 391840. Note slightly concave outline between corners.
 23. Specimen USNM 391841. Note slightly concave outline between corners.
24. *Scharfenbergia impella*. Specimen USNM 391842 from USGS sample MR 6527 (Nigu-18). Bar, 500 μ m.
- 25-27. *Scharfenbergia?* sp. A (four-armed form). All specimens from USGS sample MR 6527 (Nigu-18); bar, 500 μ m.
 25. Specimen USNM 391843.
 26. Specimen USNM 391844.
 27. Specimen USNM 391845.

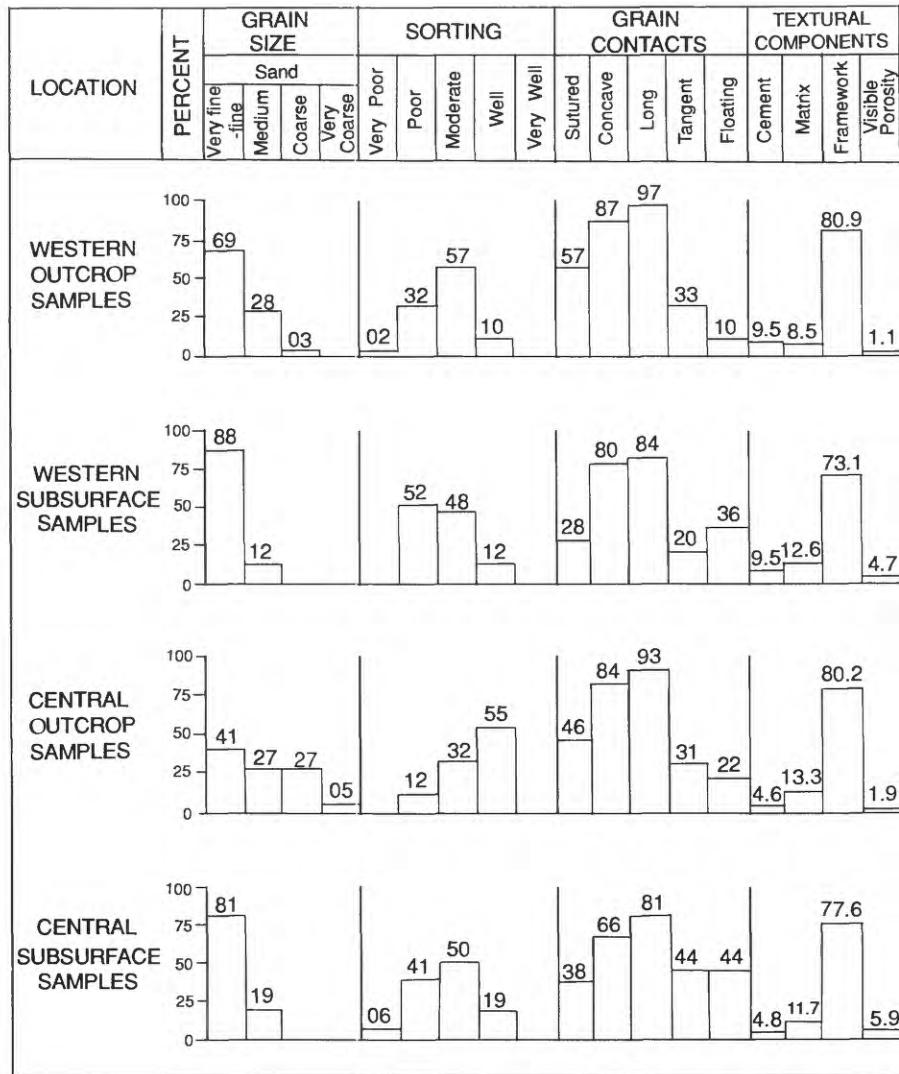
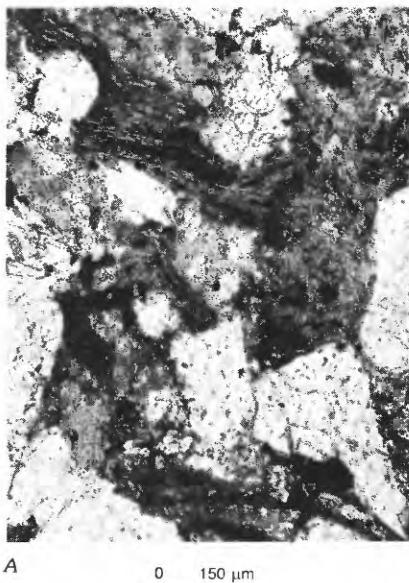
PARONAELLA, SCHARFENBERGIA, LATENTIFISTULA

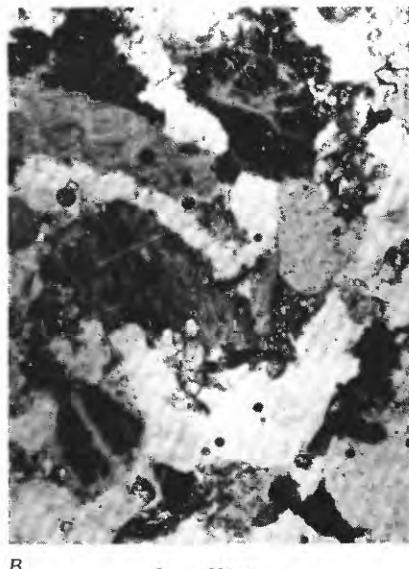
Typical cores of potential reservoir rocks from the Ipkikpuk No. 1 well, at depths of 3243 to 3246 m (10,641-10,649 ft) and 3296 to 3299 m (10,815-10,821 ft) in the Ivishak Formation. Holes are where plugs were drilled to determine porosity and permeability. The Ivishak Formation is the main producing horizon at the Prudhoe Bay oil field.

TEXTURAL ANALYSIS

Primary factors thought by Fothergill (1955) and Fuchtbauer (1974) to contribute to the type and amount of interstitial matter in clastic rocks are (1) grain size, (2) thickness of beds, (3) amount of mixing of sediment layers by syndepositional processes such as burrowing by organisms, (4) proximity to shale beds, and (5) composition of framework grains. Secondary processes mainly responsible for the loss of

porosities in these sandstones are (1) weathering and (2) diagenetic alteration. Combinations of these primary and secondary factors are responsible for the low porosity and permeability in sandstone of the Nanushuk Group and Torok Formation. In this study, cement and matrix material have been distinguished and tabulated according to the categories defined by Dickinson (1970); the results of the textural observations are shown on figure 35.5 and table 35.1.


FIGURE 35.5.—Results of petrographic observations of textural properties in sandstones of the Nanushuk Group and Torok Formation. In general, the most favorable characteristics for high porosity and permeability are shown to the right in each histogram.

MATRIX MATERIALS

The principal matrix material in the sandstone samples of the Nanushuk Group and Torok Formation

A 0 150 μm

B 0 600 μm

FIGURE 35.6.—Evidence of compaction in tightly appressed sandstone from the Nanushuk Group. Less competent micaeous and lithic grains are squeezed and bent around more resistant quartzose grains. Quartz grains show evidence of suturing as a result of silica dissolution under high pressure. Plane polarized light. A, Sample 77AAh21, Tuktu Bluff. B, Sample 78ACh27, Arc Mountain.

that are not well cemented is a pseudomatrix (Dickinson, 1970) probably resulting from the destruction of softer clastic grains. Significant quantities of this material, which is composed of unsorted and randomly oriented silt- and clay-size particles of quartz, chlorite, sericite, and much unidentifiable material, are found in the intergranular spaces in many of the sandstones. Commonly, less competent but still recognizable (lithic?) grains are molded around adjacent grains (usually quartzose grains) that are more competent (fig. 35.6).

CEMENTING MATERIALS

Authigenic cements and alteration products from diagenesis and weathering are common constituents in Nanushuk and Torok sandstone samples. Common cementing materials in the samples are calcite, silica, kaolinite, and chlorite; more rarely present are feldspar, sericite, illite-montmorillonite, and chalcedony. X-ray studies of the outcrop samples and of samples from the early (pre-1975) wells indicate that montmorillonite is present in only trace amounts (table 35.2). No

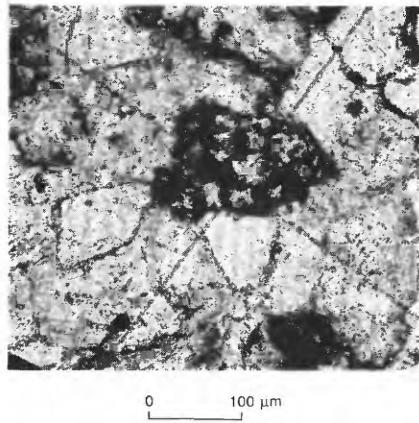


FIGURE 35.7.—Reworked calcite grain (under crossbars), outlined by opaque, brownish, ferruginous(?) coating, in a Nanushuk Group sandstone sample. Reworked grain is surrounded by secondary sparry calcite cement. Sample F3675, on the Utukok River. Plane polarized light.

zeolite minerals were observed petrographically or detected by X-ray analysis.

The most common and volumetrically most abundant cement is calcite, which constitutes as much as 45 percent and averages almost 8 percent in the thin sections from the Barabara syncline. All stages of cementation and replacement by calcite are observed, from only minor occurrences in some samples to pervasive recrystallization in others. Calcite cementation, which is more common in the western outcrop belt, is probably related to weathering and diagenesis of the sandstone. The amount of cementation appears to vary directly with the detrital calcite-clast content, and cementing calcite commonly is observed growing out of these clasts (fig. 35.7). The calcite clasts, for the most part, were derived from crystalline limestone sources. After

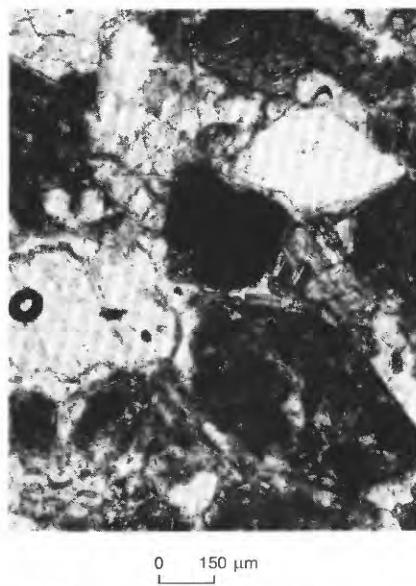


FIGURE 35.8.—Replacement of clastic grains in Nanushuk Group sandstone by sparry calcite cement, leaving relict "ghost" outlines of the original grains (for example, left center, probably a reworked calcite grain). Cement also fills interstices between grains, eliminating any primary porosity that may have existed and causing embayment of remaining grains. Sample 78ACh35, Kurupa anticline. Plane polarized light.

Nanushuk deposition, the clasts served as foci of calcareous cementation, obliterating original Nanushuk sandstone porosity and permeability. In some samples, ghosts of clastic calcite grains can be detected as relict outlines of clay material (fig. 35.8). When observed under cathodoluminescent light, the calcite grains luminesce red and orange and often show internal crystal-growth outlines, whereas the surrounding calcite cement luminesces bright yellow and is homogeneous, probably indicating an earlier origin for the calcite in the grains. In the most extreme examples, the sparry calcite cement completely replaces other detrital grains in the sandstone as well as the detrital calcite grains, except for a few remaining isolated and deeply embayed (partially replaced) quartz grains. Also present in many of the samples are small rhombohedrons of colorless dolomite.

Silica for cementation is probably mobilized by the compaction pressures and temperatures in the sandstone. Mobile silica is thought to be produced as a result of pressure solution of framework grains (especially quartz), clay-mineral alteration during burial, kaolinization of feldspar, dissolution of grains in adjacent shale beds, and replacement of quartz and silicate grains by carbonate (Jonas and McBride, 1977). The higher pressure produced by compaction along resistant quartz-grain surfaces causes silica to dissolve on projecting surfaces that are under higher pressure. This silica may be redeposited as quartz overgrowths; these are observed petrographically as sutured, concave-convex, and long or straight grain boundaries. Silica cementation is widespread in sandstone of the Nanushuk Group, especially in the central outcrop belt. Siliceous cement is more readily observable in sandstone having visible porosity and lesser amounts of calcite

TABLE 35.2.—Clay-mineral analyses of the clay-size fractions from sandstone samples from the Nanushuk Group and Tork Formation

(Analyses by X-ray diffraction of clay-fraction separates of samples from scattered outcrops and the subsurface. Oriented mounts were made to aid in identification of the clay minerals; glycolation, potassium-acetate intercalation, and various heating techniques were incorporated. Amount of each mineral present was estimated from X-ray diffraction traces and is listed below as parts in ten; trace = less than 5 percent; <1 = 5-9 percent; + or - after number indicates that actual amount is slightly higher or lower than value reported. ---, not detected. p = test plug made to determine permeability parallel to bedding; n = test plug made to determine permeability perpendicular to bedding. Numbers in parentheses indicate sample depth in well. Paul D. Blackmon and Harry C. Starkey, analysts)

Sample	Clay types								
	Illite	Illite-mica or mica	Illite- montmorillonite, mixed	Montmoril- lonite	Chlorite- montmorillonite, mixed	Chlorite Chlorite	Mica- chlorite	Kaolinite	Serpentine
Surface samples									
1075-----	---	4	---	---	---	5	---	---	---
1175-----	---	4+	---	---	---	4+	---	---	---
1275-----	---	3+	---	---	---	2+	---	2+	---
1475-----	---	5	---	---	---	1	---	1	---
1575-----	---	5	---	---	---	2	---	1+	---
1875-----	---	3+	---	Trace	---	2+	---	2+	---
2075-----	---	2+	---	1	---	2+	---	2+	---
2175-----	---	3+	---	1-	---	2+	---	1+	---
2675-----	---	1+	---	---	---	1+	---	4+	---
3075-----	---	3+	---	---	2	2+	---	---	---
3275-----	---	2	---	---	---	2	---	3+	---
3375-----	---	1+	---	Trace	---	1+	1	1-	---
3675-----	---	1+	---	1-	---	1-	---	1+	---
3875-----	---	1+	---	Trace	---	1	---	---	3+
4275-----	---	1+	---	---	---	1-	---	5	---
4375-----	---	2	1	---	---	Trace	---	4+	---
4575-----	---	2+	---	---	---	1-	---	3+	---
4875-----	---	1	1-	---	---	Trace	---	5+	---
5175-----	---	1+	Trace	---	---	Trace	---	4	---
5375-----	---	1+	1+	---	---	Trace	---	3+	---
5475-----	---	1-	1-	---	---	Trace	---	5+	---
Subsurface sampling									
Kaolak 1 (937)-----	<1	---	---	Trace	---	Trace	---	Trace	---
(2453)-----	1+	---	---	---	---	Trace	---	<1	---
(3187)-----	1	---	Trace	---	---	Trace	---	<1	---
(4078)-----	<1	---	Trace	---	---	Trace	---	1	---
(6739)-----	<1	---	Trace	---	---	Trace	---	Trace	---
Topagoruk 1 (304-p)-----	<1	---	Trace	---	---	Trace	---	Trace	---
(603-p)-----	<1	---	Trace	---	---	Trace	---	Trace	---
(1204-p)-----	1	---	---	---	---	Trace	---	Trace	---
(1790-p)-----	---	<1	Trace	---	---	Trace	---	Trace	---
(5972)-----	---	<1	---	---	---	Trace	---	Trace	---
(6498)-----	1+	---	Trace	---	---	Trace	---	---	---
Simpson (454)-----	---	1	Trace	---	---	<1	---	Trace	---
(829)-----	---	1	Trace	---	---	<1	---	Trace	---
(979)-----	---	1	---	---	---	<1	---	Trace	---
Meade 1 (2953)-----	<1	---	Trace	---	---	Trace	---	Trace	---
(4133)-----	<1	---	Trace	---	---	Trace	---	<1	---
Dumalik 1 (979-p)-----	<1	---	---	---	---	Trace	---	Trace	---
(1606-p)-----	<1	---	---	---	---	Trace	---	<1	---
(3260-p)-----	<1	---	Trace	---	---	Trace	---	Trace	---
(3752-p)-----	1	---	---	Trace	---	Trace	---	Trace	---
Titaluk 1 (539-p)-----	---	1+	---	---	---	<1	---	<1	---
(2675-p)-----	Trace	---	---	---	---	Trace	---	Trace	---
(3004-p)-----	<1	---	---	---	---	Trace	---	<1	---
(3306)-----	<1	---	---	---	---	Trace	---	Trace	---
(3431-p)-----	Trace	---	---	---	---	<1	---	---	---
Wolf Creek 1 (867)-----	---	1	---	---	---	Trace	---	<1	---
Wolf Creek 3 (1553)-----	Trace	---	---	---	---	Trace	---	Trace	---
(2050)-----	<1	---	---	---	---	Trace	---	Trace	---
(2532)-----	---	1+	---	---	---	1	---	---	---
(3109)-----	1	---	Trace	---	---	<1	---	Trace	---
(3509)-----	1	---	---	---	---	<1	---	---	---
Grandstand (364-69)-----	---	<1	---	---	---	Trace	---	Trace	---
(862-82)-----	---	<1	---	---	---	Trace	---	Trace	---
(2484)-----	---	1	---	---	---	Trace	---	---	---
Knifeblade 2A (172-p)-----	Trace	---	---	---	---	Trace	---	<1	---
(792-p)-----	<1	---	---	---	1	<1	---	---	---
(1557-n)-----	<1	---	---	---	---	<1	---	---	---
Square Lake (1685)-----	1+	---	---	Trace	---	Trace	---	Trace	---
(1854)-----	1	---	Trace	---	---	Trace	---	Trace	---
(1916)-----	1	---	---	---	---	Trace	---	Trace	---
(3056)-----	<1	---	---	---	---	Trace	---	Trace	---
(3480)-----	<1	---	---	---	---	Trace	---	Trace	---
(3856)-----	<1	---	---	---	---	Trace	---	Trace	---
Gubik 2 (3112)-----	---	1+	Trace	---	---	<1	---	---	---
(3529)-----	1+	---	Trace	---	---	<1	---	---	---
(3645)-----	1	---	Trace	---	---	Trace	---	Trace	---
(3822)-----	<1	---	---	---	---	Trace	---	Trace	---
(4243)-----	1+	---	---	---	---	Trace	---	Trace	---

cement and (or) pseudomatrix. Petrographic observations show a large number of quartz overgrowths that could be misinterpreted as being the result of an earlier cycle of deposition of the quartzose grains. However, the scanning-electron-microscope photographs reveal that many, if not all, the overgrowths have grown in place (fig. 35.9). Where detrital grains do not have dust rims of clay, or where siliceous cementation is widespread, overgrowths and areas with significant siliceous cement may be difficult to distinguish from the angular detrital grains; petrographic techniques using cathodoluminescent light were unsuccessful in reliably determining the extent of quartz-overgrowth development. Therefore, the amount of siliceous cementation in these sandstone samples may

have been underestimated in the microscopic modal analyses.

Authigenic clays, such as sericite, chlorite, and kaolinite, are present as alteration products of detrital feldspar and also as secondary pore-filling masses of intergrown crystals (figs. 35.10-35.12). Kaolinite is the most abundant authigenic clay, followed by chlorite and then sericite. The clays were deposited after formation of quartz overgrowths resulting from compaction and dissolution of quartzose grains. Kaolinite commonly fills primary intergranular pores as well as secondary pores created by dissolution of framework grains. These platy minerals, because of their morphology, may produce abundant connected micropores and thus unexpectedly high values of porosity and permeability in laboratory tests (Sarkisyan, 1971).

TEXTURAL OBSERVATIONS AND CONCLUSIONS

Maximum and modal grain sizes were measured using the petrographic microscope and estimated in the field using the American Stratigraphic Company (Amstrat) grain-size chart. Sorting was estimated petrographically by referring to sorting images illustrated by Pettijohn and others (1972, p. 585); field estimations of sorting (using the Amstrat chart) indicate better sorting than the petrographic estimates. Types of grain contacts (Taylor, 1950) observed include (1) sutured grains, mutual stylolitic interpenetration of two or more grains (which must be carefully distinguished from grains of polycrystalline quartz); (2) concave-convex grain contacts; (3) long or straight contacts; (4) point or tangential contacts; and (5) floating grains that are not in contact with

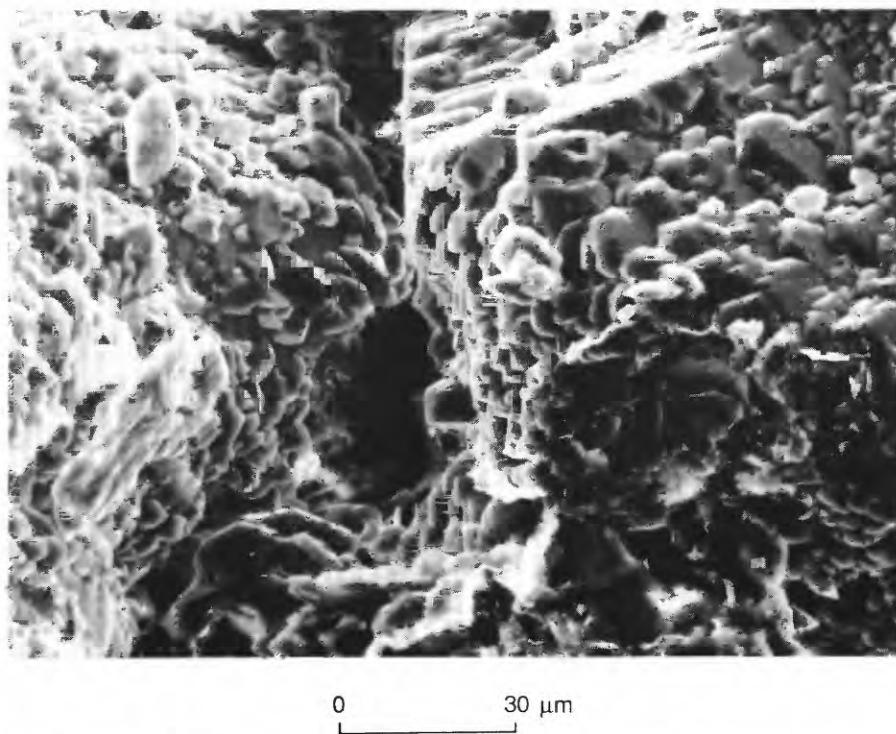


FIGURE 35.9.—Scanning-electron-microscope photograph showing microcrystalline quartz overgrowth filling interstices between detrital grains in sandstone of the Nanushuk Group. Note lack of kaolinite clay and retention of intergranular porosity. Sample 78ACh76, Kurupa anticline section.

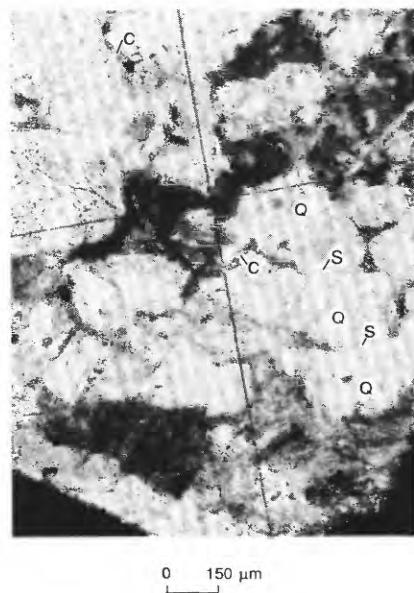


FIGURE 35.10.—Photomicrograph of Nanushuk Group sandstone showing diagenetic chlorite cement. Cement has grown around detrital grains but is notably absent where grains have been previously welded by compaction and dissolution of silica. C, chlorite; Q, quartz, S, sutured contact. Sample 77AAh25, Tuktu Bluff. Plane polarized light.

other framework constituents. Most samples exhibit more than one type of grain contact. Textural components of cement, matrix, pores, and framework grains were determined from the modal analysis of each thin section.

Histograms of these observations (fig. 35.5) show that the sandstone samples are typically composed of fine to very fine sand and are moderately to poorly sorted. Samples have grain contacts that reveal a history of compaction, dissolution, and cementation. Sutured, concave, and long grain boundaries typify samples from the Nanushuk; samples from the subsurface, which are finer grained, have higher percentages of grain boundaries that are tangent or floating. Quartz grains are typically strained and cracked (fig. 35.6), and many feldspar twins are offset or bent.

Most mica grains are bent, and many have been altered to chlorite or expanded and disrupted by calcite or silica cement.

POROSITY AND RESERVOIR POTENTIAL

Surface samples average 1 to 2 percent of visible porosity (measured petrographically), whereas those from the subsurface are more favorable from a reservoir standpoint, averaging 5 percent in the western belt and 6 percent in the central belt. The percentage of framework grains is highest in the outcrop samples (80 percent). The relation of visible porosity (measured petrographically) to measured effective porosity (measured in the laboratory) is shown in table 35.3: A large discrepancy exists between visible and effective porosities. This

discrepancy may be due to the large amounts of platy or fine-grained matrix materials, which provide submicroscopic pores that are too tiny to detect petrographically but still of importance from a reservoir standpoint.

From the petrographic evidence, the Nanushuk Group is apparently least favorable as a potential hydrocarbon reservoir in the Corwin delta (western) outcrop belt, slightly better in the Umiat delta (central) outcrop belt, and most favorable to the north in the subsurface. In the Corwin delta outcrop belt, average visible porosity totals 1.4 percent, average effective porosity totals 8.4 percent, and air permeability measurements average 14.0 mD (table 35.3; fig. 35.5). Petrographically, the sandstone samples from Corwin delta reveal higher percentages of matrix and cement than those from the Umiat delta outcrop belt. The Corwin samples are rich in sedimentary lithic grains, which are conducive to alteration and pore-plugging during compaction, thus reducing permeability. Nevertheless, an occasional sandstone bed may have excellent porosity and permeability and reduced amounts of matrix and

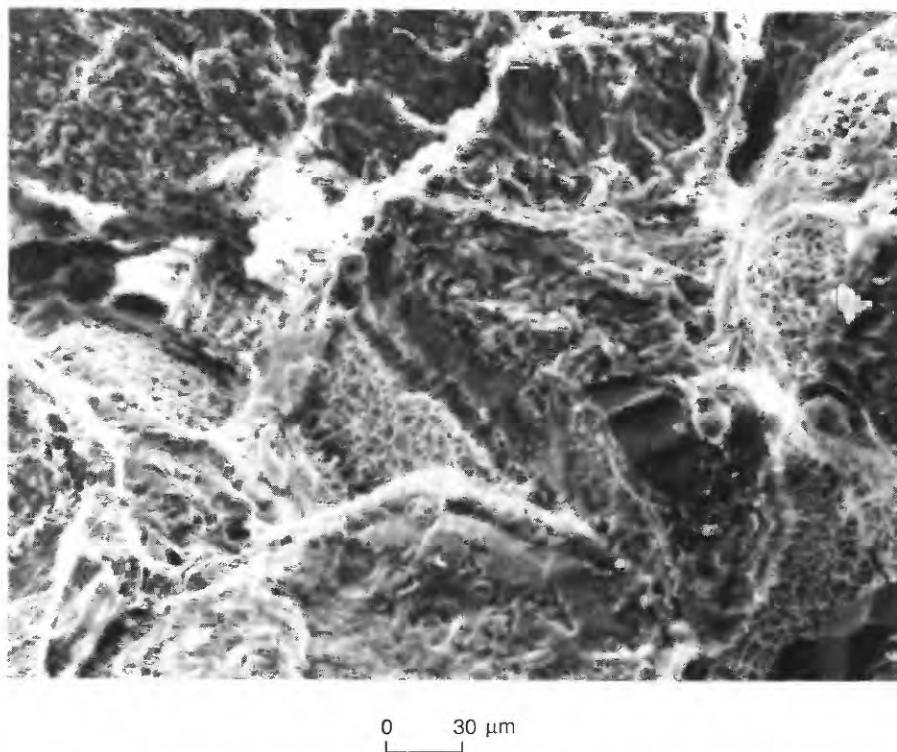


FIGURE 35.11.—Scanning-electron-microscope photograph showing extensive development of chlorite cement in sandstone sample from Kurupa anticline section. The chlorite bridges intergranular spaces, completely obliterating any pores that may have previously existed. Sample 78ACh32.

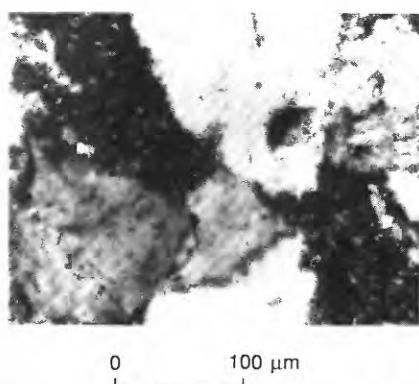


FIGURE 35.12.—Photomicrograph of Nanushuk Group sandstone sample showing pressolved quartz grains that have been replaced by kaolinite cement. Carbonate is the final alteration mineral in this sandstone. Sample 78ACh76, Kurupa anticline section. Crossed nicks.

TABLE 35.3.—*Modal grain size, visible porosity, effective porosity, and air permeability for selected sandstone samples from the Nanushuk Group and Tork Formation*

[n, number of samples; ---, no testing done; *, sample from Tork Formation. Averages take into account only those samples tested]

Sample	Modal grain size, estimated (mm)	Visible porosity (percent)	Effective porosity, \emptyset (percent)	Air permeability (mD)
Tupikchak Mountain syncline (n = 16)				
77AJF23-----	0.15	0.3	7.3	---
77AJF28-----	.30	.0	8.6	1.17
77AJF30-----	.18	.3	8.0	.16
77AJF32-u-----	.23	0	4.1	---
77AJF36-u-----	.23	0	4.6	---
77AJF37-i-----	.25	0	6.2	---
77AJF37-u-----	.30	0	7.3	---
77AJF39-i-----	.25	.7	6.8	---
77AJF39-u-----	.30	.7	5.6	---
77AJF42-i-----	.34	1.3	4.2	---
77AJF42-u-----	.30	0	6.1	---
77AJF44-----	.18	.3	6.6	---
77AJF47-i-----	.18	0	5.2	---
77AJF47-u-----	.45	1	5.3	---
77AJF52-i-----	.25	0	5.5	---
77AJF52-u-----	.25	0	6.4	---
Range-----	.15-.45	0-1.3	4.1-8.6	0-1.17
Average-----	.26	.29	6.1	.67
Carbon Creek (n = 6)				
77AAh4cc-----	.15	0	7.6	.12
78AAh5cc-----	.23	4.3	12.6	.43
78AAh6cc-----	.23	8	14.5	1.20
78AAh8cc-----	.50	0	4.5	.15
78AAh9cc-----	.30	6	13.6	2.20
78AAh12cc-----	.60	0	4.3	.07
Range-----	.15-.60	0-8	4.3-14.5	.07-2.20
Average-----	.34	3.1	9.5	.70
Corwin Bluff (n = 13)				
77AAh31b-----	.23	3.7	8.3	.45
77AAh39-----	.30	1.3	10.3	.35
77AAh40-----	.23	0	---	---
77AAh42-----	.46	.3	7.2	---
77AAh46-----	.18	0	1.4	---
77AAh48a-----	.30	0	4.8	---
77AAh100a-----	.30	3.3	10.1	3.9
77AAh101-----	.30	0	3.3	---
77AAh103-----	.23	0	3.9	---
77AAh104-----	.25	.7	8.8	1.44
77AAh105-----	.18	1	5.4	---
77AAh106-----	.30	1.7	9.2	0.84
77AAh110-----	.18	.3	3.4	---
Range-----	.18-.46	0-3.7	1.4-10.3	.35-3.9
Average-----	.26	.9	6.3	1.40
Barabara syncline (n = 25)				
77ACh82-----	.25	2	12.6	1.45
77ACh85-----	.20	.6	11.7	1.65
77ACh87-i-----	.25	.6	11.4	1.31
77ACh87-u-----	.15	1	11	0.27
77ACh89-i-----	.25	0	7.2	---
77ACh89-u-----	.30	.3	9.5	.61
77ACh90-i-----	.25	1.3	11.2	1.48
77ACh90-u-----	.25	.6	11.7	1.25
77ACh92-----	.25	2.3	11.3	1.25
77ACh93-i-----	.15	0	10.3	1.47
77ACh93-m-----	.20	0	10.7	.68
77ACh93-u-----	.15	0	10.5	.47

TABLE 35.3.—*Modal grain size, visible porosity, effective porosity, and air permeability for selected sandstone samples from the Nanushuk Group and Torok Formation—Continued*

Sample	Modal grain size, estimated (mm)	Visible porosity (percent)	Effective porosity, \emptyset (percent)	Air permeability (mD)
Subsurface Samples—Continued				
Central: n = 22				
Knifeblade 2A (172)-----	.30	9.3	16	41
(792)-----	.40	3.3	14.2	1.3
(552)-----	.15	4.7	11.6	Less than 1
Titaluk 1 (539)-----	.15	4.7	12	Imperm.
(2675)-----	.15	7.3	12.5	17.0
(3004)-----	.27	1.7	8.3	Imperm.
(3306)-----	.23	2.7	9.0	Imperm.
(3431)-----	.17	1.7	10.5	Imperm.
Wolf Creek 1 (867)-----	.30	0	5.3	Imperm.
Wolf Creek 3 (1553)-----	.30	10.3	18.9	305
(2050)-----	.17	2	10.6	Less than 1
(2532)-----	.20	0	4.7	Imperm.
Sq. Lake (1916)-----	.17	5.3	17.5	---
(3036)-----	.23	6.3	13.3	17.6
(3480)-----	.14	8.7	12.7	Imperm.
Grandstand (364-69)-----	.46	2.3	10.6	---
(862-82)-----	.17	2.3	11.2	Less than 1
Gubik 2 (3529)-----	.17	3.7	13.5	2.3
(3822)-----	.18	8	14.1	22
Simpson (829)-----	.13	12.3	28.8	---
Topagoruk 1 (603)-----	.15	13	27.2	316.2
(1204)-----	.23	11.4	26	200.4
Range-----	.13-.46	0-13	4.7-28.8	
Average-----	.22	5.5	14	

cement, resulting in a favorable reservoir rock (for example, sample 77AAh184 from the Barabara syncline; see table 35.1). Pores typically are lined with a reddish-brown, probably iron-rich coating. The overall paucity of sand bodies and the lack of continuous stacked beds in the whole western area are negative factors for hydrocarbon potential in the Corwin delta (Huffman, 1979).

As in the Corwin delta, sandstone bodies in the Umiat delta are lenticular and have extensive shale interbeds, and many of them are shaly or muddy. Samples from the central outcrop belt record nearly the same values of porosity and permeability as those from the western belt. Visible porosity in the Umiat delta samples averages 1.6 percent, effective porosity averages 6.6 percent, and air permeability measurements average 12.2 mD (table 35.3; fig. 35.5). However, as in the Corwin delta, sporadic occurrences of significant porosity and

permeability (for example, sample 77AAh49-1 from Tuktu Bluff; see table 35.1) indicate that isolated sand bodies in the central Umiat delta may have excellent reservoir potential. In general, the sandstone bodies are slightly coarser in the central outcrop belt (fig. 35.5) and have slightly lesser amounts of matrix and cementing material and higher percentages of quartzose grains (fig. 35.3), which resist squeezing and compaction.

SECONDARY POROSITY

Higher values of effective porosity, air permeability, and visible porosities were recorded and observed in sandstone samples from the Nanushuk Group and Torok Formation in the subsurface (table 35.3). These values may result from the lack of alteration by surface weathering; the mode of transport of the sand during deposition (a higher energy environment of deposition); or an increase in

dissolution of framework grains and (or) cement combined with the lack of later stages of calcite cementation. Grains most often dissolved include the unstable types, such as lithic and feldspar grains, as well as quartzose grains and clays (figs. 35.13-35.17). Extensive interbedded shale sequences can provide large quantities of fluids, through compaction and expulsion of water, that are easily transported through the interbedded fine-grained sandstone.

Secondary porosity was recognized in these rocks by using the techniques and criteria described by Scholle (1979, p. 171). Such features as partial dissolution and corrosion of grains and cements, inhomogeneity of packing, oversized pore spaces, floating grains, and fractured or cracked grains were observed. Secondary porosity may subsequently be totally or partially destroyed by recementation and (or) infilling by diagenetic clays, especially kaolinite. In at least one

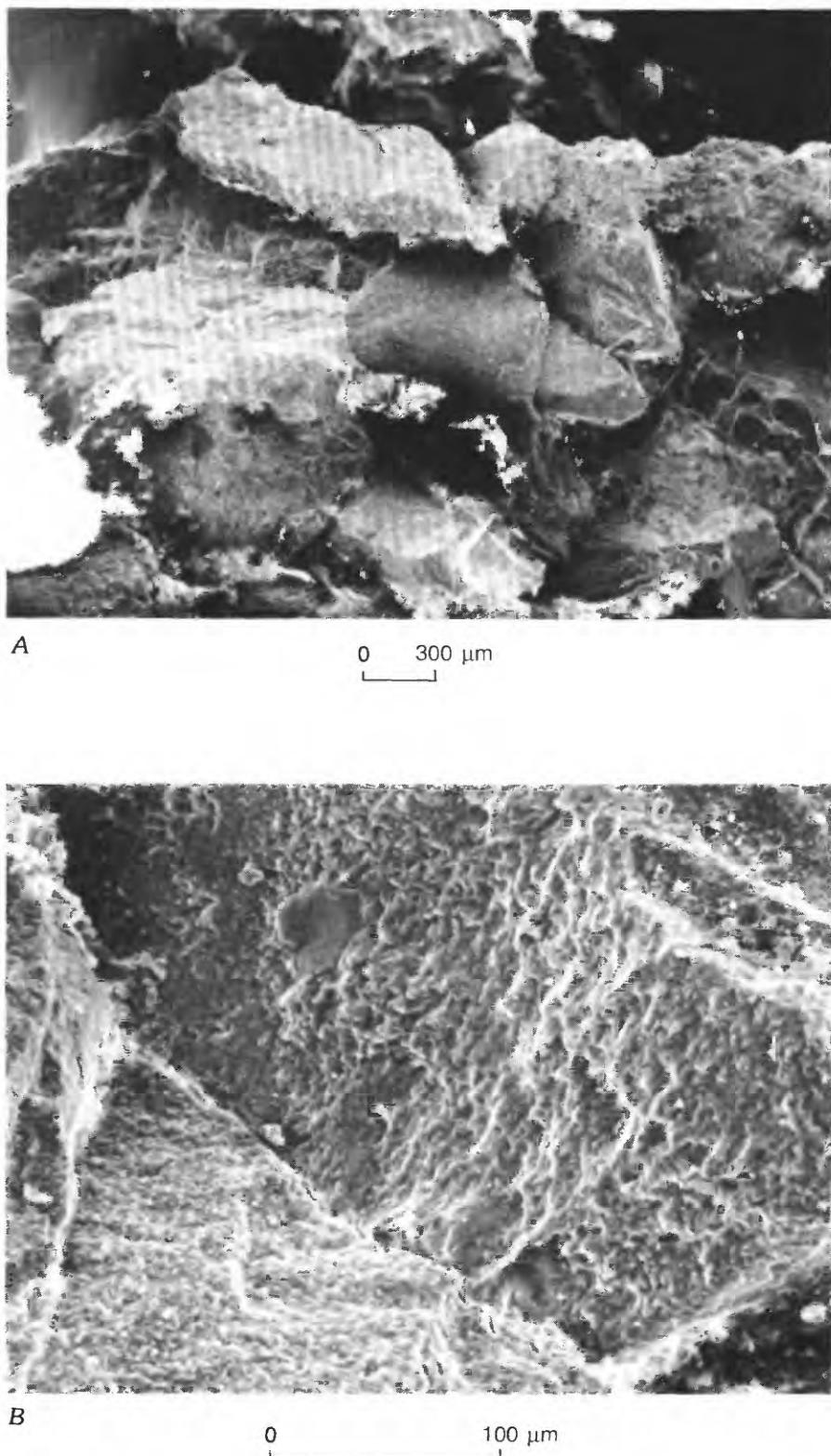


FIGURE 35.13.—Scanning-electron-microscope photographs showing Nanushuk Group sandstone sample having good porosity, probably a result of leaching and corrosion of detrital grains. Sample 78ACh41, Marmot syncline. *A*, Note development of quartz overgrowths, lower right corner. *B*, Note pitted surfaces of grains.

sample (and suspected in others), kaolinite has been dissolved to create secondary porosity (fig. 35.14). A sandstone sample from the Inigok well has developed abundant secondary porosity because some of the potassium feldspars have been dissolved and others have not (fig. 35.15). In some samples, quartz grains have been dissolved (fig. 35.16). This evidence indicates that secondary porosity in these rocks may have been created in several stages and may have involved complex and diverse dissolving fluids resulting possibly from changing pressure and temperature conditions in the host rocks.

Very small quantities of dark-brown to black, slightly translucent material was often observed; this was suspected to be oil, though no hydrocarbon tests were employed. Fragments of coal are also present in these rocks; the microscopic distinction between the two organic components is often difficult.

SUMMARY

Matrix and cementing materials found in the interstices between detrital grains in most samples of Nanushuk Group sandstone reduce their reservoir potential. The most promising sandstone bodies in the Nanushuk Group are those in the northern and eastern subsurface sections because it is in samples from those sections that preliminary tests of porosity and permeability show the highest values. Much of the porosity may be secondary and thus may improve the reservoir potential of these sandstones. At least three factors may be responsible for the northeastward increase in porosity and permeability. (1) Complex and diverse fluids capable of distributing dissolving agents may, at least in part, be derived by compac-

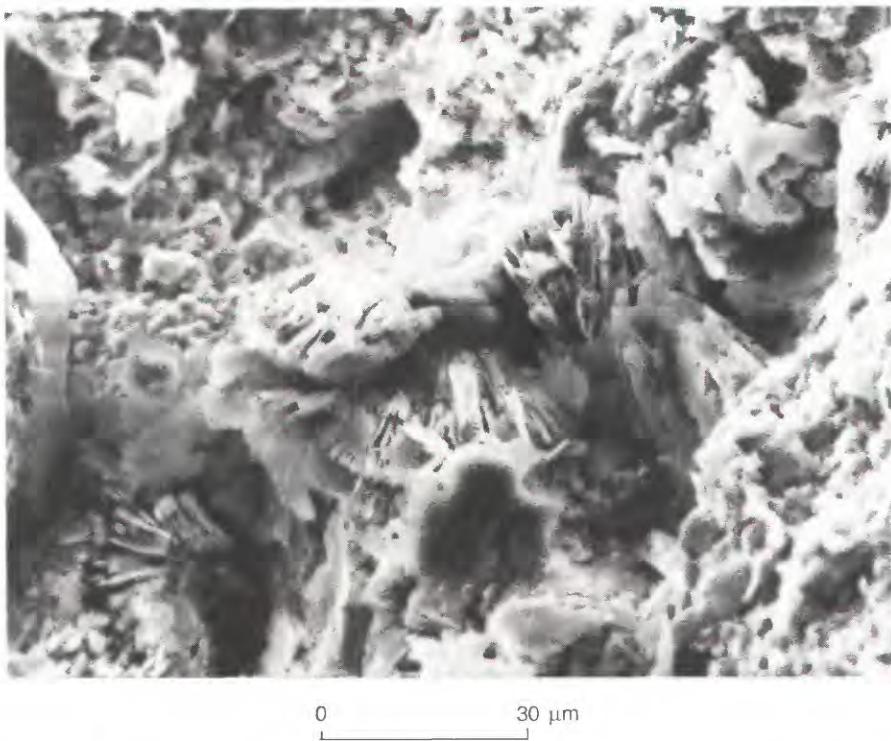


FIGURE 35.14.—Scanning-electron-microscope photograph of vermicular clay (probably kaolinite) and quartz overgrowths (left edge of photograph) in a sandstone sample from the Torok Formation. View shows kaolinite(?) crystals that have lost their hexagonal shape and have ragged edges, indicating that they may have been etched or dissolved by throughgoing fluids. Sample from depth of 581 to 584 m (1,906-1,916 ft), South Barrow No. 1 well.

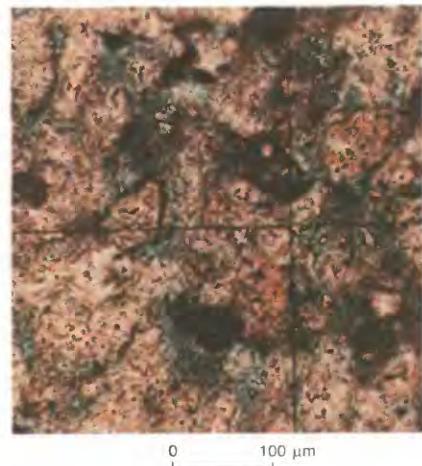


FIGURE 35.16.—Abundant development of leached-grain porosity in a Nanushuk Group sandstone sample from the 733-m (2,406-ft) depth in the East Simpson No. 1 well. Secondary porosity (shown by blue dye) has been created by dissolution of lithic volcanic grains and embayment of monocrystalline quartz grains. Potassium feldspar, plagioclase, and calcite grains remain intact. Plane polarized light.

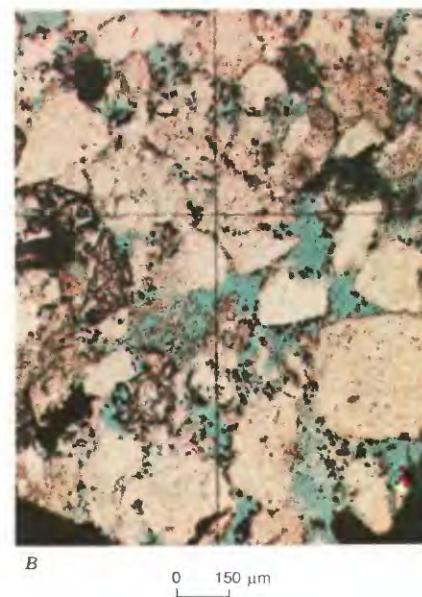
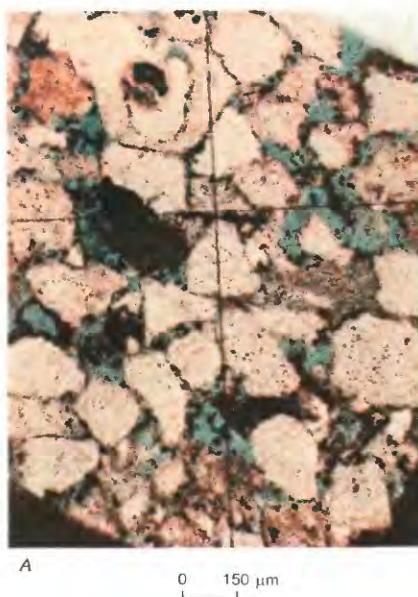



FIGURE 35.15.—Sandstone sample from the Nanushuk Group from 811-m (2,662-ft) depth in the Inigok No. 1 well. Sample contains abundant heavy minerals (opaque) and secondary porosity (shown by blue plastic dye injected into sandstone before grinding of thin section). Original grain boundaries are visible as opaque heavy-mineral outlines, but the grains have been dissolved. Remnants of original texture show framework grains having tangential, long, and concave boundaries, indicating that the original sandstone had undergone considerable compaction. Plane polarized light. A, View showing potassium feldspars (yellow) not dissolved. B, View showing potassium feldspars almost completely gone. Only remnants of lithic grains remain in the sandstone.

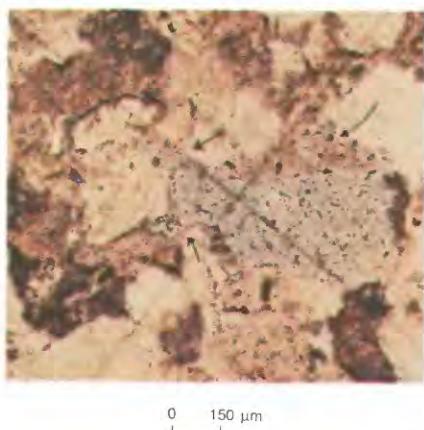


FIGURE 35.17.—Oversized pore (blue area in center), diagnostic of leached-grain porosity, in a sandstone sample from the Nanushuk Group along the Colville River north of Siksikpuk Ridge. Note dissolution of grains adjacent to the pore (arrows). Sample F2075. Plane polarized light.

tion and fluid expulsion from interbedded and downdip shale beds, which are more abundant to the north. (2) The detrital calcite grains, which came from the Brooks Range to the south and west and which are the source for much of the calcite cement, may decrease in numbers northeastward. (3) The style of Nanushuk deposition changes from low- to moderate-energy deltaic environments in the south and west to higher energy barrier-coastline environments in the subsurface to the north, resulting in a probable increase in the lateral extent and improvement of the sorting coefficient of the sandstone bodies.

REFERENCES CITED

- Ahlbrandt, T.S., Huffman, A.C., Jr., Fox, J.E., and Pasternak, Ira, 1979, Depositional framework and reservoir-quality studies of selected Nanushuk Group outcrops, North Slope, Alaska, in Ahlbrandt, T.S., ed., Preliminary geologic, petrologic, and paleontologic results of the study of the Nanushuk Group rocks, North Slope, Alaska: U.S. Geological Survey Circular 794, p. 14-25.
- Bartsch-Winkler, Susan, 1979, Textural and mineralogical study of some surface and subsurface sandstones from the Nanushuk Group, western North Slope, Alaska, in Ahlbrandt, T.S., ed., Preliminary geologic, petrologic, and paleontologic results of the study of the Nanushuk Group rocks, North Slope, Alaska: U.S. Geological Survey Circular 794, p. 61-76.
- 1985, Petrography of sandstones of the Nanushuk Group from four measured sections, central North Slope, Alaska, in Huffman, A.C., Jr., ed., Geology of the Nanushuk Group and related rocks, North Slope, Alaska: U.S. Geological Survey Bulletin 1614, p. 75-95.
- Bartsch-Winkler, Susan, and Huffman, A.C., 1981, Compositional variation in sandstones of the Nanushuk Group, Arctic North Slope, in Albert, N.R.D., and Hudson, Travis, eds., The United States Geological Survey in Alaska: accomplishments during 1979: U.S. Geological Survey Circular 823-B, p. B6-B8.
- Bird, K.J., and Andrews, Jack, 1979, Subsurface studies of the Nanushuk Group, North Slope, Alaska, in Ahlbrandt, T.S., ed., Preliminary geologic, petrologic, and paleontologic results of the study of the Nanushuk Group rocks, North Slope, Alaska: U.S. Geological Survey Circular 794, p. 32-41.
- Brosqué, W.P., and Tailleur, I.L., Northern Alaska petroleum province, in Cram, I.H., ed., Future petroleum provinces of the United States—their geology and potential: American Association of Petroleum Geologists Memoir 15, p. 68-99.
- Collins, F.R., 1958a, Test wells, Topogoruk area, Alaska, with a section on Micropaleontologic study of the Topogoruk test wells, northern Alaska, by H.R. Bergquist: U.S. Geological Survey Professional Paper 305-D, p. 265-316.
- 1958b, Test wells, Meade and Kaolak areas, Alaska, with a section on Micropaleontology of Meade test well 1 and Kaolak test well 1, northern Alaska, by H.R. Bergquist: U.S. Geological Survey Professional Paper 305-F, p. 341-376.
- 1959, Test wells, Square Lake and Wolf Creek areas, Alaska, with a section on Micropaleontology of Square Lake test well 1 and the Wolf Creek test wells, northern Alaska, by H.R. Bergquist: U.S. Geological Survey Professional Paper 305-H, p. 423-484.
- Dickinson, W.R., 1970, Interpreting detrital modes of graywacke and arkose: Journal of Sedimentary Petrology, v. 40, no. 2, p. 695-707.
- Dickinson, W.R., and Suczek, C.A., 1979, Plate tectonics and sandstone compositions: American Association of Petroleum Geologists Bulletin, v. 63, no. 12, p. 2164-2182.
- Folk, R.L., 1968, Petrology of Sedimentary Rocks: Austin, Tex., Hemphill's Book Store, 170 p.
- Fothergill, C.A., 1955, The cementation of oil reservoir sands and its origin: World Petroleum Congress, 4th, Rome, 1955, Proceedings, Section 1, p. 301-314.
- Fox, J.E., 1979, A summary of reservoir characteristics of the Nanushuk Group, Umiat Test Well 11, National Petroleum Reserve in Alaska, in Ahlbrandt, T.S., ed., Preliminary geologic, petrologic, and paleontologic results of the study of Nanushuk Group rocks, North Slope, Alaska: U.S. Geological Survey Circular 794, p. 42-53.
- Fox, J.E., Lambert, P.W., Pitman, J.K., and Wu, C.H., 1979, A study of reservoir characteristics of the Nanushuk and Colville Groups, Umiat Test Well 11, National Petroleum Reserve in Alaska: U.S. Geological Survey Circular 820, 47 p.
- Fuchtbauer, Hans, 1974, Sediments and sedimentary rocks, 1, Part II: New York, Halsted Press, 464 p.
- Grantz, Arthur, Holmes, M.L., and Kososki, B.A., 1976, Geologic framework of the Alaskan continental terrace in the Chukchi and Beaufort Seas, in Canadian continental margins: Canadian Society of Petroleum Geologists Memoir 4, p. 669-700.
- Huffman, A.C., Jr., 1979, Stratigraphy and petrography of a measured section on the south limb of Barabara syncline, North Slope, Alaska, in Ahlbrandt, T.S., ed., Preliminary geologic, petrologic, and paleontologic results of the study of Nanushuk Group rocks, North Slope, Alaska: U.S. Geological Survey Circular 794, p. 77-88.
- Jonas, E.C., and McBride, E.F., 1977, Diagenesis of sandstone and shale—application to exploration for hydrocarbons: American Association of Petroleum Geologists Continuing Education Program Publication 1, 120 p.
- Krynine, P.D., 1947, Reservoir characteristics indicated by thin-section analyses of sand cores from Umiat Test Well No. 1: U.S. Geological Survey Geological Investigations, Naval Petroleum Reserve No. 4 and adjacent areas, Alaska, Regular Report 9, 11 p., [Available from Technical Data Unit, Branch of Alaskan Geology, U.S. Geological Survey]
- 1948, Petrography and reservoir characteristics of selected Tertiary and Cretaceous sandstone cores from Naval Petroleum Reserve No. 4: U.S. Geo-

ing may have occurred in the Late Jurassic and Early Cretaceous, before transgression of the pebble shale unit, when the Barrow arch was high and meteoric water flushed the truncated Ellesmerian sedimentary rocks, dissolving unstable grains. When the leaching occurred, the rocks involved were at a very low value of R_o , probably <0.3 . Today the same rocks are 2,100 to 2,700 m (7,000-9,000 ft) deep and have R_o at 0.3 to 0.6; the present R_o values were attained after leaching took place by heating upon deeper burial. In these deeply buried rocks, evidence of recementation following leaching was not observed, perhaps because of the presence of hydrocarbon saturation and (or) low-salinity pore waters.

Secondary porosity is recognized in Ellesmerian sandstone by the criteria outlined below:

The sandstone framework grains are quartz and subordinate amounts of chert. Quartz overgrowths provide a rigid framework of grains in which the less stable chert may be altered and removed by solution. The chert grains are generally the same size as the quartz grains in a given sandstone; therefore, when relics of altered chert appear in pores as large or larger than framework sand grains, it is interpreted that such pores resulted from the removal of chert grains (figs. 36.12, 36.19, 36.20). In some cases, kaolinite occurs as an apparent alteration product of chert (figs. 36.15, 36.16). Kaolinite is common in Ellesmerian sandstone with secondary porosity. It is a secondary mineral apparently formed at the time of leaching. Kaolinite commonly occurs in undeformed clusters (fig. 36.19). Sommer (1978) described similar relations for the Brent Sand Formation in the North Sea. Secondary porosity also results from the removal of carbonate in Ellesmerian sandstone.

Areas where carbonate has been removed are recognized by corroded

TABLE 36.3.—Summary of petrographic observations on Ellesmerian sandstone samples from wells in the NPRA and the Prudhoe Bay area

[Grain size classes: silt; sand (vf, very fine; f, fine; m, medium; c, coarse; vc, very coarse). Sorting classes: p, poorly sorted; m, moderately sorted; w, well sorted]

Well	Grain size	Sorting	Feldspar	Glauconite ¹	Cements		Kaolinite	Porosity		Oil stain
					SiO ₂	CO ₃		Primary	Secondary	
Kuparuk River Formation										
Kugrua No. 1	vf	m-w	x		x		x	x		x
W.T. Foran No. 1	f	m	x		x			x	x	
Gwydyr Bay South No. 1	vf-c	m-w	x	x	x			x	x	
Toolik Federal No. 1				x						
Barrow gas sand ²										
Iko Bay No. 1	silt-vf	p-m		x	x				x	
South Barrow No. 2	vf-f	m-w	x	x	x				x	
South Barrow No. 4	vf-f	m-w		x	x		x			
South Barrow No. 9	silt-vf	m-w		x	x				x	
South Barrow No. 12	vf-f	m-w	x	x	x				x	
South Barrow No. 13	vf	p-w	x	x	x				x	
Kingak Shale ³										
Kugrua No. 1	vf-f	m-w	x		x			x		x
South Meade No. 1	vf-m	m-w	x	x	x		x	x		
Topagoruk No. 1	vf-m	m-w	x	x	x		x	x		
Simpson No. 1	vf	m	x	x	x		x	x		
South Simpson No. 1	vf-f	p-m	x		x		x	x		
East Teshepuk No. 1	vf-f	m-w		x	x		x	x		
West Fish Creek No. 1	silt			x	x		x	x		
Kalubik Creek No. 1	silt		x	x	x		x	x		
Norian sandstone ²										
South Barrow No. 12	vf-f	m-w	x		x		x			x
Simpson sandstone ²										
Kugrua No. 1	vf-f	m-w	x		x			x		
South Meade No. 1				x						
Topagoruk No. 1	vf-m	m-w	x	x	x		x	x		
South Simpson No. 1	vf-f	p-m	x	x	x		x	x		
Sag River Sandstone										
Kugrua No. 1	vf-c	m-w		x	x		x	x		x
South Meade No. 1	silt-vf	m		x	x		x	x		
Topagoruk No. 1	silt	p-m		x	x			x		
Simpson No. 1	silt-vf	p-m	x	x	x		x	x		
South Simpson No. 1	vf	m-w	x	x	x		x	x		
Drew Point No. 1	vf-f	w	x	x	x		x	x		
East Teshepuk No. 1	vf	m-w	x	x	x		x	x		
West Fish Creek No. 1	silt-vf			x	x		x	x		
South Harrison Bay No. 1	vf	m-w	x	x	x		x	x		
Atigaru Point No. 1	vf	m	x	x	x		x	x		
Ivishak Formation										
Kugrua No. 1	vf	m	x		x			x		x
Topagoruk No. 1	vf-vc	m-w	x		x			x		x
South Simpson No. 1	f-c	m-w			x			x		
Drew Point No. 1	vf-c	m-w	x		x		x	x		x
East Teshepuk No. 1	vf	m-w	x	x	x		x	x		x
Cape Hackett No. 1	vf-f	m-w	x	x	x		x	x		x
W.T. Foran No. 1	vf	m-w	x	x	x		x	x		x
West Fish Creek No. 1	vf	m-w			x		x	x		x
South Harrison Bay No. 1	vf	m-w	x	x	x		x	x		x
Atigaru Point No. 1	vf-m	m-w			x		x	x		x
Kalubik Creek No. 1	f-vc	m-w			x		x	x		x
Gwydyr Bay South No. 1	vf-vc	m-w	x		x		x	x		x
Put River J-1	f-c	m-w	x		x		x	x		x
Put River	vf-vc	m-w	x		x		x	x		x
Sag Delta	f-c	m-w			x		x	x		x
Sag River State No. 1	f-c	m-w			x		x	x		x
Put River State No. 1	f-c	m-w			x		x	x		x
DS 2-4	f-vc	m-w			x		x	x		x
Toolik Federal No. 1	vf-m	w			x		x	x		?
Echooka Formation										
Atigaru Point No. 1	vf-f	m-p		x	x	x				

¹Glauconite common in upper 100 ft of Ivishak.

²Denotes unit of local usage.

³Kingak Shale—refers to various thin sandstone interbeds in the Kingak Shale.

quartz-grain boundaries on pore margins where carbonate originally replaced quartz but is now absent (fig. 36.19). In some cases, relics of carbonate occur in large pores ap-

parently once filled with carbonate. Generally the quartz grains have few or no quartz overgrowths, implying that they may have been enclosed by carbonate precipitated

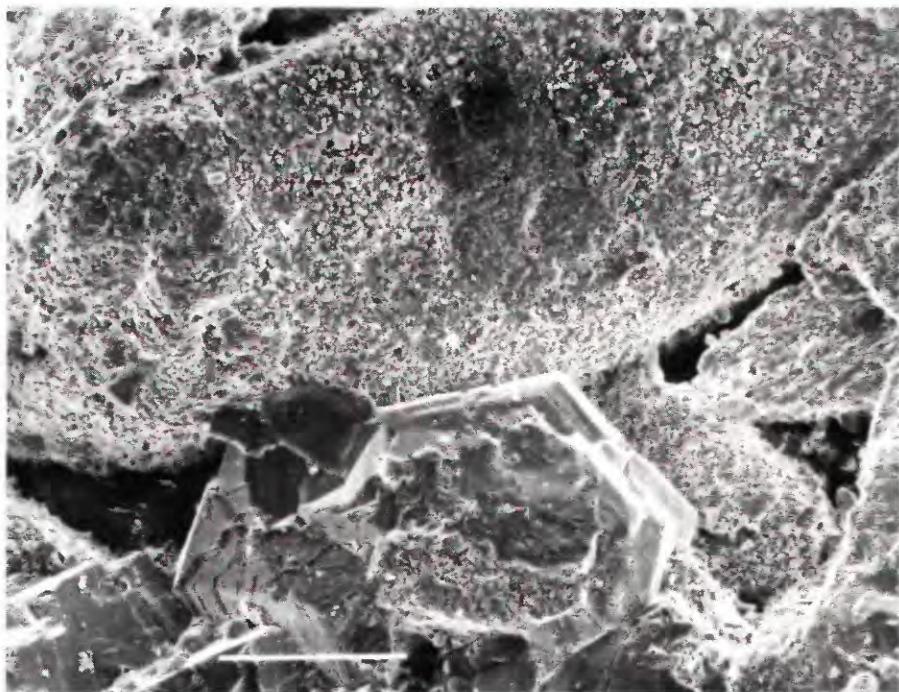


FIGURE 36.11.—Scanning electron micrograph of sandstone sample from the Ivishak Formation in Drew Point No. 1 well at 2,353 m (7,721 ft). View shows large chert grain at top (area of rough texture) and in lower center a quartz grain with extensive overgrowths (large crystal faces). In pores to right of center some small authigenic quartz crystals are visible. View about 0.5 mm across.



FIGURE 36.12.—Photomicrograph (plane-polarized light) of sandstone sample of the Ivishak Formation, Gwydyr Bay South No. 1 well, 3,093 m (10,147 ft). View is 0.9 mm across. Blue, epoxy impregnating medium filling pore spaces; light-colored material, quartz cemented with quartz overgrowths. In center of view and to upper left are skeletal remains (small irregular patches) of chert partially altered to kaolinite.

at an earlier time. These criteria are similar to those outlined by Schmidt and McDonald (1979).

Secondary porosity in oil-bearing sandstone is recognized in the Ivishak Formation in the Prudhoe Bay field wells, in oil-stained sandstone in the nonproducing wells outside the field (Toolik and Kalubik Creek), and in the NPRA wells at Topagoruk, Drew Point, Atigaru Point, and W.T. Foran. The Barrow sandstone and the underlying oil-stained Norian sandstone of local usage in South Barrow No. 13 have retained primary porosity; no secondary porosity was recognized in these sandstone units.

DISTRIBUTION AND PREDICTION OF SECONDARY POROSITY

In general, productive reservoir rocks outside the Barrow area have had their porosity enhanced by solution (secondary porosity). Thus it is important to know the distribution of secondary porosity so that the location of potential reservoirs can be predicted.

The criteria outlined above have been used to recognize secondary porosity in Ellesmerian sandstone bodies of the North Slope. Secondary porosity is recognized in all of the Prudhoe Bay area wells studied (fig. 36.21), in sandstone of the Ivishak Formation, Sag River Sandstone, and Kuparuk River Formation, in both productive and non-productive wells. In the NPRA, secondary porosity has been identified in oil-bearing sandstone in the Ivishak Formation in the Simpson, Drew Point, Cape Halkett, W.T. Foran, and Atigaru Point wells and in the Sag River Sandstone in the Kugrua well (table 36.3; fig. 36.21).

The secondary porosity is believed to have developed beneath the pebble shale unconformity in Early Cretaceous time, before deposition of the pebble shale unit, when

meteoric water circulated in the truncated sandstone bodies and dissolved unstable minerals. Isopach maps of intervals below the Lower Cretaceous unconformity in the study area (pl. 36.1) show the truncated Ellesmerian sandstone in the Prudhoe Bay area and the Ellesmerian sequence onlapping basement in the NPRA. It is important to note that where onlapping occurred, secondary porosity development is minimal because access of meteoric water was restricted. This condition also holds for the Ivishak, which was covered by the shale and carbonate rocks of the Shublik Formation, which acted as a barrier to freshwater influx to the Ivishak from Smith Bay westward. Where the Ellesmerian rocks are erosionally truncated, secondary porosity is well developed because of freshwater access to the sandstone. Thus in the NPRA, only minor development of secondary porosity has occurred at Simpson, Drew Point, W.T. Foran, Cape Halkett, and Atigaru Point. In the Prudhoe Bay area, leaching and the development of secondary porosity have been extensive, and a major petroleum reservoir resulted (fig. 36.21).

The distribution of rocks influenced by leaching and the development of secondary porosity is outlined in figure 36.21 and on plate 36.1. Secondary porosity is most extensively developed in the 600 m (2,000 ft) vertically below the unconformity in the Prudhoe Bay area. Farther below the unconformity, porosity diminishes because of the absence of leaching and the increased cementation at higher levels of thermal alteration, where $R_o > 0.6$.

The moderate amount of secondary porosity in the Smith Bay-Harrison Bay area is puzzling. Despite the apparent exposure of the truncated Ivishak Formation to leaching, only minor to moderate

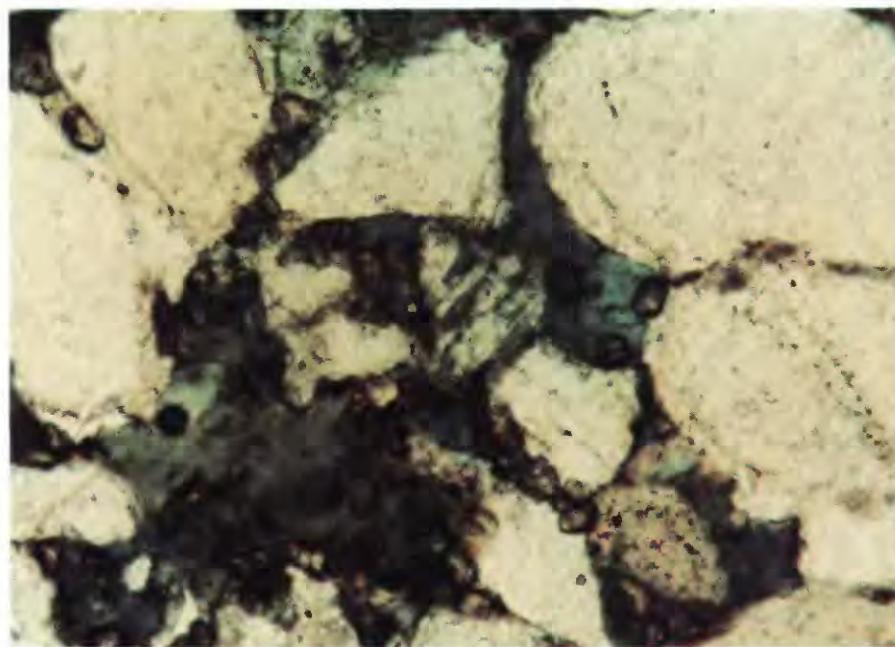


FIGURE 36.13.—Photomicrograph (plane-polarized light) of sandstone sample of the Kuparuk River Formation (Jones and Speers, 1976), showing partially dissolved plagioclase grain in center of view. White grains, quartz cemented with quartz; small grains with high relief, carbonate, probably siderite or dolomite; blue epoxy fills pores. View is 0.9 mm across. Gwydyr Bay South No. 1 well, 2,525 m (8,285 ft).

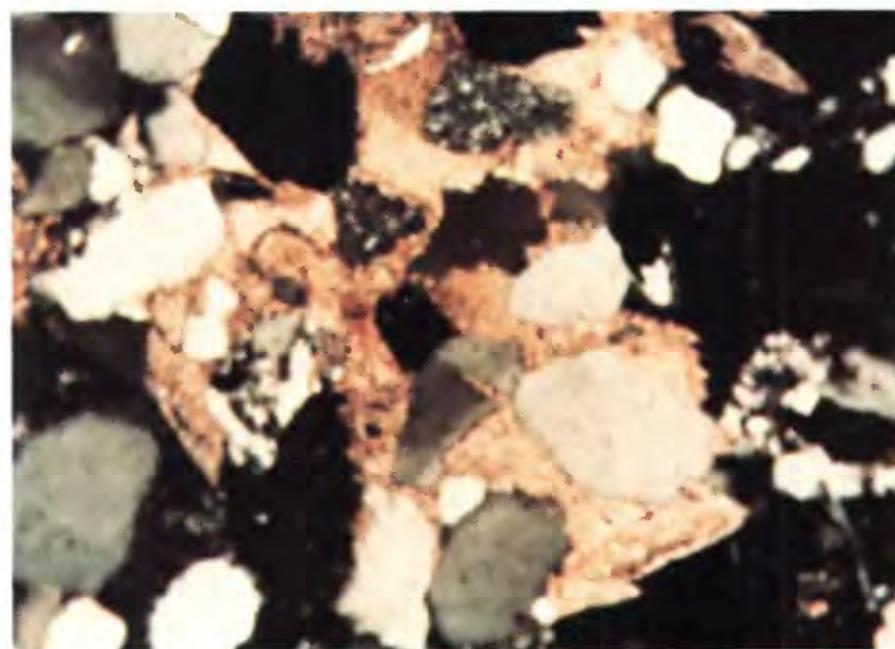


FIGURE 36.14.—Photomicrograph (crossed nicols) of sandstone sample of the Ivishak Formation, showing quartz and chert grains cemented by siderite (golden areas). Several grains show ragged edges due to replacement of quartz by carbonate. View is 2 mm across. Put River J-1 well, 2,744 m (9,003 ft).

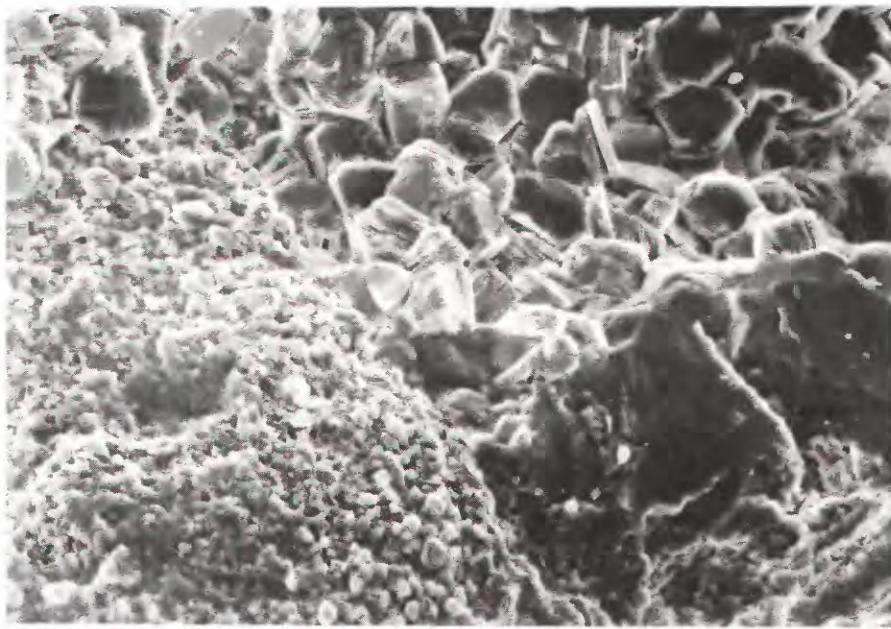


FIGURE 36.15.—Scanning electron micrograph of chert (lower left) and kaolinite (upper) in sandstone sample of the Ivishak Formation. The kaolinite is very well formed and shows no effects of compaction, implying that it was formed after most of the compaction that has affected the rock. It is probably an alteration product of chert and feldspar. View is 0.2 mm across. Drew Point No. 1 well, 2,353 m (7,721 ft).

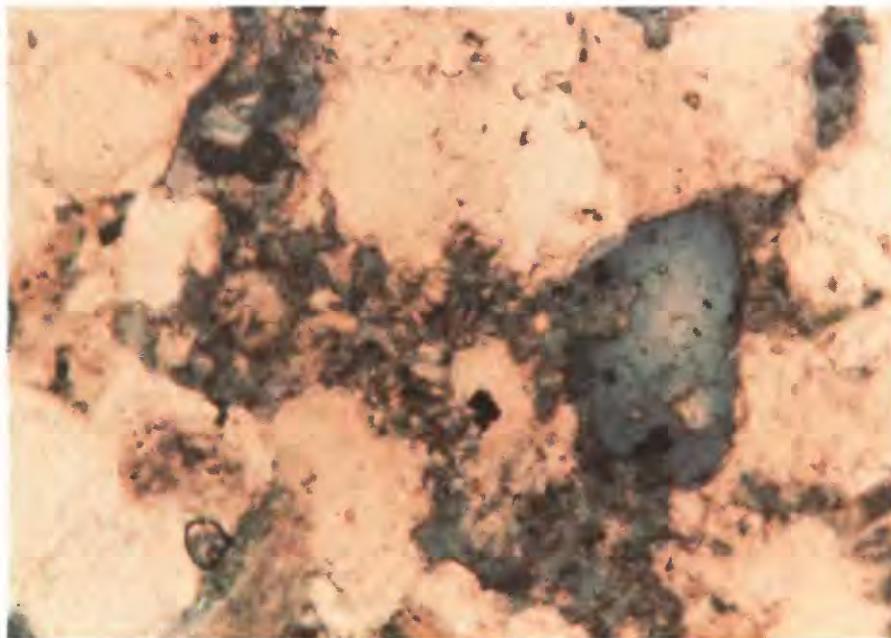


FIGURE 36.16.—Photomicrograph (plane-polarized light) showing books of undeformed kaolinite (center) associated with altered chert. The kaolinite was probably derived from alteration of the chert. View is 0.9 mm across. Gwydyr Bay South No. 1 well, 3,093 m (10,147 ft).

amounts of secondary porosity developed. Apparently the topographic and hydrologic regimes were different from those in the Prudhoe Bay area, such that less solution occurred. The vastly greater amount of truncation at Prudhoe Bay relative to that in the northern NPRA implies more uplift and probably greater elevation of the land mass at Prudhoe Bay (to a mountain range) than at Barrow (to low hills). Assuming that the amount of secondary porosity may be directly related to the amount of flushing, it is logical that the greater area and greater elevation at Prudhoe Bay would yield a greater volume and head of meteoric water for deep flushing.

Development of secondary porosity at burial depths of 1,500 to 3,000+ m (5,000-10,000+ ft) through leaching by water charged with HCO_3^- derived from organic matter in shale, as suggested by Schmidt and McDonald (1979), has generally not been recognized in the Ellesmerian rocks. An exception to this may be the 10-20 percent porosities at R_o values of 1.6 to 2.0 in the Kugrua well (fig. 36.18). Samples from this well have not been investigated in detail.

The amount of secondary porosity may be predicted by analyzing its known distribution. As indicated above, the best development of secondary porosity is within 600 m (2,000 ft), vertically, of the pebble shale unconformity, where the Ellesmerian sandstone bodies are truncated against the unconformity. This information suggests that high-porosity reservoirs in the Ivishak Formation of the Prudhoe Bay type are not likely to be present in the NPRA. They may, however, be present north and west of the Prudhoe Bay field and north of the NPRA east of Smith Bay in the offshore Beaufort Sea (fig. 36.21), where Ellesmerian sandstone bodies may have been truncated.

BULK MINERALOGY

The relative abundance of each nonclay mineral is determined from the peak height for the strongest diffraction maxima of each mineral. In addition, total clay content is determined from the strongest nonbasal reflection.

Quartz.— SiO_2 . Strongest peak position at $26.6^\circ 2\theta$.

Total clay.—Strongest nonbasal reflection at $19.9^\circ 2\theta$. This nonbasal reflection is used because it is not affected significantly by any accidental preferred orientation produced during sample preparation. The clay minerals are classified as kaolinite, mica, chlorite, and a mixed-layer clay that is a smectite/illite mixture. Each of these clay types will be discussed in the later section on "Clay mineralogy."

Plagioclase.— $\text{NaAlSi}_3\text{O}_8$. Strongest peak position at $28.0^\circ 2\theta$. The presence of the $18.9^\circ 2\theta$ feldspar peak eliminates albite as the plagioclase variety; oligoclase would be a reasonable choice.

Microcline.— KAISi_3O_8 . Strongest peak position at $27.5^\circ 2\theta$.

Calcite.— CaCO_3 . Strongest peak position $29.4^\circ 2\theta$.

Ankerite.— $\text{CaFe}(\text{CO}_3)_2$. Strongest peak position at $30.8^\circ 2\theta$. Actually, this peak may also represent either dolomite, $\text{CaMg}(\text{CO}_3)_2$, or rhodochrosite, MnCO_3 . Ankerite has been chosen because of the presence of siderite and pyrite in an assemblage of diagenetic minerals characteristic of a reducing environment.

Siderite.— FeCO_3 . Strongest peak position at $32.0^\circ 2\theta$.

Pyrite.— FeS_2 . Strongest peak position at $33.1^\circ 2\theta$.

Pyrophyllite.— $\text{Al}_2\text{Si}_4\text{O}_{10}(\text{OH})_2$. Useful peak position at $29.1^\circ 2\theta$. Pyrophyllite is identified on the basis of a shoulder on the mica peak at about $9.6^\circ 2\theta$ and a distinct reflection at $29.1^\circ 2\theta$.

Hematite.— Fe_2O_3 . Strongest peak position at $33.2^\circ 2\theta$.

CALCULATION OF CLAY COMPONENTS

The clay components can be divided into two groups: (1) kaolinite and chlorite; (2) mica and mixed-layer clay. The contribution to the total clay content provided by both kaolinite and chlorite, called "(total K+C)," is determined by

measuring the area of the $12.3^\circ 2\theta$ peak for the less-than-2- μm sample. The contribution to the total clay content provided by both mica and mixed-layer clay is determined by measuring the area of the $8.9^\circ 2\theta$ peak for the sample heated at 55°C . This peak is used because the

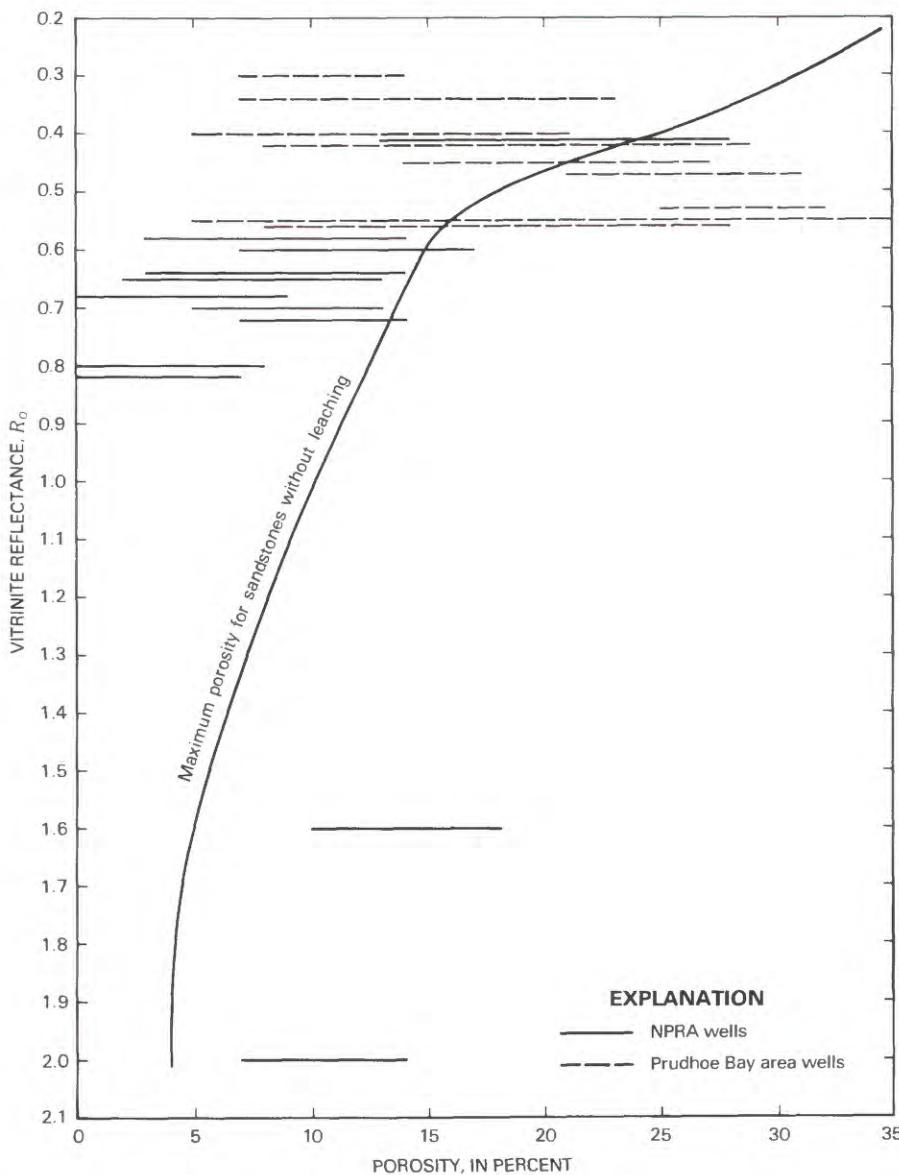


FIGURE 36.18.—Porosity in sandstone of the Ellesmerian sequence versus vitrinite reflectance (R_o), showing decrease in porosity due to increasing diagenetic alterations with increasing temperature. Solid lines, NPRA wells; broken lines, Prudhoe Bay wells. Curve shows approximate upper limit of porosity for sandstone in which no secondary porosity is developed. Sandstones to right of curve between R_o values of 0.4 and 0.8 have secondary porosity. Sag River Sandstone and sandstone of the Ivishak Formation in the Kugrua No. 1 well have also apparently developed secondary porosity (lower part of diagram). Porosity values derived from sonic velocities.

mica is unaffected by the heating and the mixed-layer clay structure collapses to the mica structure at this temperature. The sum of the

areas for these two peaks is called "(total clay content)." Note that this value contains a contribution from each clay component.

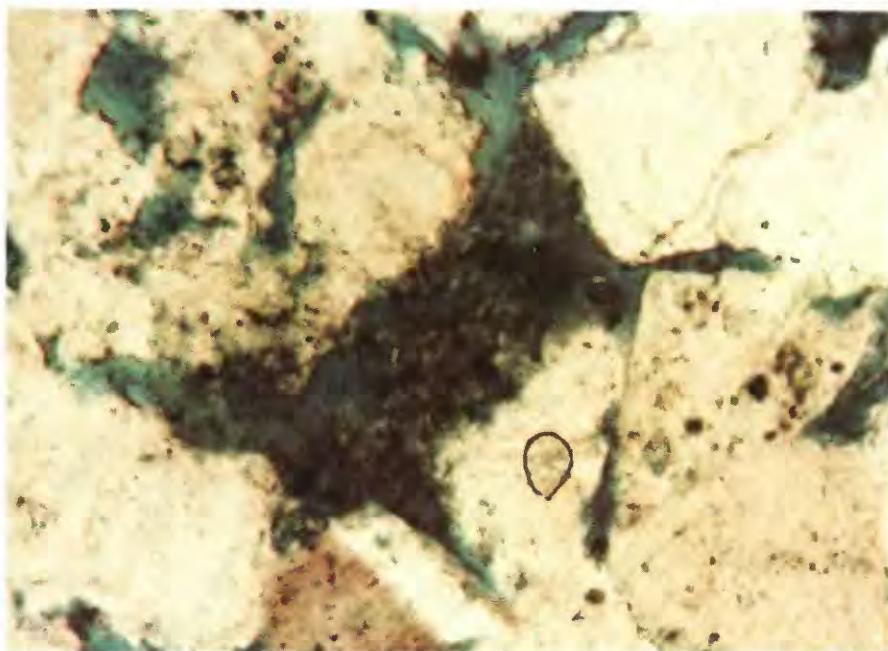


FIGURE 36.19.—Photomicrograph (plane-polarized light) of sandstone sample from the Ivishak Formation, Gwydry Bay South No. 1 well, from a depth of 3,081 m (10,107 ft), showing degraded chert in porous sandstone. Much of the porosity in this rock formed by solution of cement and detrital grains. View is 0.9 mm across.

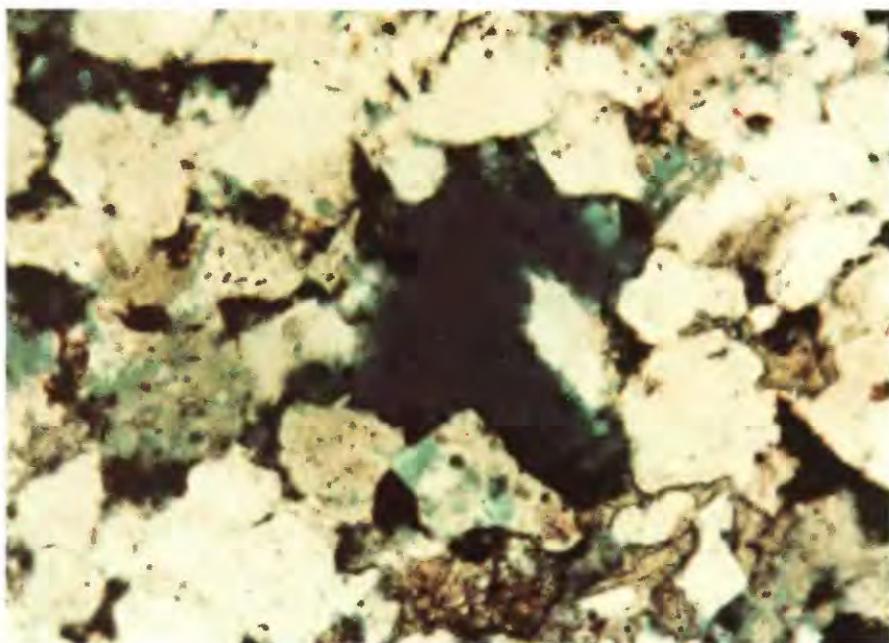


FIGURE 36.20.—Photomicrograph (plane-polarized light) of sandstone sample from the Ivishak Formation, Drew Point No. 1 well, from a depth of 2,375 m (7,793 ft), showing large secondary pore. Pore is larger than adjacent framework grains, implying that one or more grains have been dissolved. View is 0.9 mm across.

The contribution from mica alone is determined by measuring the $8.9^\circ 2\theta$ peak area for the glycolated sample. The glycolation treatment removes any contribution to this peak from swelling clay. The following relation gives the mica component:

$$\text{mica} = \frac{\text{area of } 8.9^\circ 2\theta \text{ glycol peak}}{\text{(total clay content)}}$$

Chlorite and kaolinite both have a peak at $12.3^\circ 2\theta$. Their contribution to the total clay content is calculated as follows:

$$(\text{total K+C}) = \frac{\text{area of } 12.3^\circ 2\theta \text{ peak}}{\text{(total clay content)}}$$

At 550°C the kaolinite structure is destroyed, and only chlorite is present at the $12.3^\circ 2\theta$ position. Thus chlorite content alone is calculated as follows:

$$\text{chlorite} =$$

$$\frac{\text{area of } 12.3^\circ 2\theta \text{ peak at } 550^\circ \text{C}}{\text{(total clay content)}}$$

Kaolinite content is now derived simply:

$$\text{kaolinite} = (\text{total K+C}) - \text{chlorite}$$

The mixed-layer clay component is now obtained by subtracting the mica, chlorite, and kaolinite components from unity:

$$\text{mixed-layer clay} =$$

$$(1.0) - \text{mica} - \text{chlorite} - \text{kaolinite}$$

It should be noted that swelling clay, smectite, is found only in the mixed-layer clay phase. No evidence of independent swelling clay material was noted on any of the diffractograms.

Aerial view of 59-km (37-mi) ice road from Kikiakrorak River delta to Inigok No. 1 well site, used to transport 70,000 m³ (90,000 yd³ or about 6,000 truckloads) of gravel to build the drill pad and airstrip. A total of 135,000 m³ (35 million gallons) of water was required to form the ice road. Photograph by Jeep Johnson.

S. Meade	Lat: 70°36'53.92" N. Long: 156°53'23.60" W.	Site is an old terrace of Meade River and is underlain by fine-grained sand containing permafrost; permafrost within 2 ft of surface.	From terrace deposits at site containing fine-grained sand.	No major geotechnical problems encountered; drilled during winter.
Tulageak	Lat: 71°01'11.26.62" N. Long: 155°44'00.82" W.	Site in flat-lying area with less than 2 ft of relief underlain by marine silt containing ice-rich permafrost; permafrost within 1 ft of surface.	From reserve pit containing ice-rich silt.	Do.
Tunaliik	Lat: 70°12'12.45" N. Long: 161°04'09.15" W.	Site on relatively high area underlain by marine silts with some sand; permafrost within 1 ft of surface. See text.	From reserve pit containing silt.	See text.
W. Dease	Lat: 71°09'32.65" N. Long: 155°37.15.19" W.	Site on old drained lake in low-lying swampy areas; underlain by frozen silt that, in turn, is underlain by marine silt; permafrost within 9 in. of surface and locally ice rich	From reserve pit containing silt.	No major geotechnical problems encountered; drilled during winter.
Walakpa No. 1	Lat: 71°05'57.63" N. Long: 156°53'03.79" W.	Site on flat-lying terrain underlain by marine site containing permafrost, locally ice rich; permafrost within 10 in. of surface.	Do.	Do.
Walakpa No. 2	Lat: 71°03'00" N. Long: 156°57'11.0" W.	Site in low-lying swampy area containing polygons and underlain by frozen marine silt, locally sandy; permafrost within 10 in. of surface and locally ice rich.	Do.	Do.
Avgumun	N 1/2 sec. 12, T. 15 N., R. 29 N., Umiat Meridian	Site on flat-lying area with polygons. Site underlain by locally ice-rich marine silt. Permafrost within 1 ft of surface.	Do.	Well not drilled.
Carbon	NW 1/4 NE 1/4, sec. 31, T. 2 N., R. 34 W., Umiat Meridian	Site on relatively high dry slope underlain by colluvium of unknown thickness overlying sandstone.	From borrow site about 0.25 mi. N. SE. of site containing colluvium and friable sandstone.	Do.
E. Kealok	NW 1/4 sec. 19, T. 12 N., R. 2 W., Umiat Meridian	Site on 10 to 20° sloping surface, generally dry and underlain by marine fine-grained sand and silt. Permafrost within 1.5 ft surface.	From reserve pit containing fine-grained sand and silt.	Do.
Ekalgruak	Sec. 34, T. 19 N., R. 11 W., Umiat Meridian	Site is low-lying swampy area underlain by frozen marine silt; permafrost within 1 ft of surface and locally ice rich.	From reserve pit containing silt.	Do.
Etiuvik	NW 1/4 SE 1/4, sec. 20, T. 12 S., R. 21 W., Umiat Meridian	Site on relatively high dry area underlain by windblown silt and sand that, in turn, is underlain by colluvium of unknown thickness. Depth to permafrost unknown but estimated to be about 3 ft below the surface.	From four borrow sites 0.5 mi. N. and E. of well site in cherty or quartzitic sandstone and from site about 4.75 mi. SE. of well site containing terrace gravels.	Do.
Kigalik	SE 1/4, sec. 6, T. 1 N., R. 22 W., Umiat Meridian	Site on relatively high dry area underlain by colluvium of unknown thickness overlying sandstone; depth to permafrost unknown but probably within 3 ft of surface.	From borrow site about 0.3 mi. N. of site containing arkosic sandstone, locally friable.	Do.
Maguriak	NE 1/4, sec. 15, T. 12 N., R. 8 W., Umiat Meridian	Site on swampy area of drained lake. Underlain by lake sediments that, in turn, are underlain by marine silt; permafrost, locally ice rich, within 1.5 ft of surface.	From borrow site, about 1.5 mi. N. of well site, containing medium-to coarse-grained sand.	Do.
Nuuvik	Sec. 32, T. 24 N., R. 17 W., Umiat Meridian	Site on beach gravel about 10 ft above sea level; permafrost at unknown depth but estimated to be 10 ft below surface.	From reserve pit containing gravel.	Well not drilled; locally gravel beach has ice scars caused by overriding of winter ice from Arctic Ocean.
Tapkaluk	On largest of Tapkaluk islands between Elson Lagoon and Beaufort Sea; about 13-1/2 mi. E. of Barrow	Site on gravel island about 3 ft above sea level; depth of permafrost unknown.	From reserve pit containing peatized gravel.	Well not drilled.

be actually used in the construction of the Tunalik and Inigok airstrips.

LANDING MAT AND GRAVEL OVER INSULATION

The objective of this test section was to evaluate the performance of a runway using Styrofoam insulation over frozen material, with a prefabricated landing mat or gravel surfacing over the insulation. The test section was 24 m long by 8 m wide (80 ft by 25 ft) and divided into two test items, each 12 m (40 ft) long. The subgrade of both test items consisted of a lean clay, well compacted to produce a relatively high-strength soil representing frozen material, and was overlaid

with two layers of HI-60 (414 MPa or 60 psi compressive strength) Styrofoam insulation material 4 cm (1.5 in) thick. One of the test items was surfaced by an XM 19 aluminum landing mat and the other by 50 cm (20 in.) of gravelly sand.

The test items were then subjected to 1,250 passes, equivalent to about 850 C-130 operations, with a 155,000-N (35-kip) single-wheel C-130 load. No damage to the insulation was evident at the conclusion of the testing. Since there had been no damage to the insulation under the 50 cm (20 in.) of gravel, it was decided to remove the top 25 cm (10 in.) to determine if the lesser thickness of gravel would still protect the insulation. About 240

passes of the 35-kip single-wheel load were then made on the gravel-covered test section. An examination of the insulation at the conclusion of this test indicated that the Styrofoam boards had been compressed.

As a result of these tests, it was concluded that (1) an XM 19 aluminum mat placed over HI-60 Styrofoam insulation would provide a satisfactory runway for C-130 aircraft, provided the insulation kept the subbase frozen, (2) a good-quality gravel base course 50 cm (20 in.) thick over HI-60 Styrofoam insulation would protect the insulation from compressing under the C-130 aircraft loading, but it might require some surface maintenance during repeated aircraft operations, especially during the spring thaw, and (3) a gravel base course 25 cm (10 in.) thick over the insulation was insufficient to protect the HI-60 Styrofoam. If the insulation were crushed or cracked it was assumed that the insulating value would degrade and that the subbase would thaw and subside, rendering the airfield inoperable.

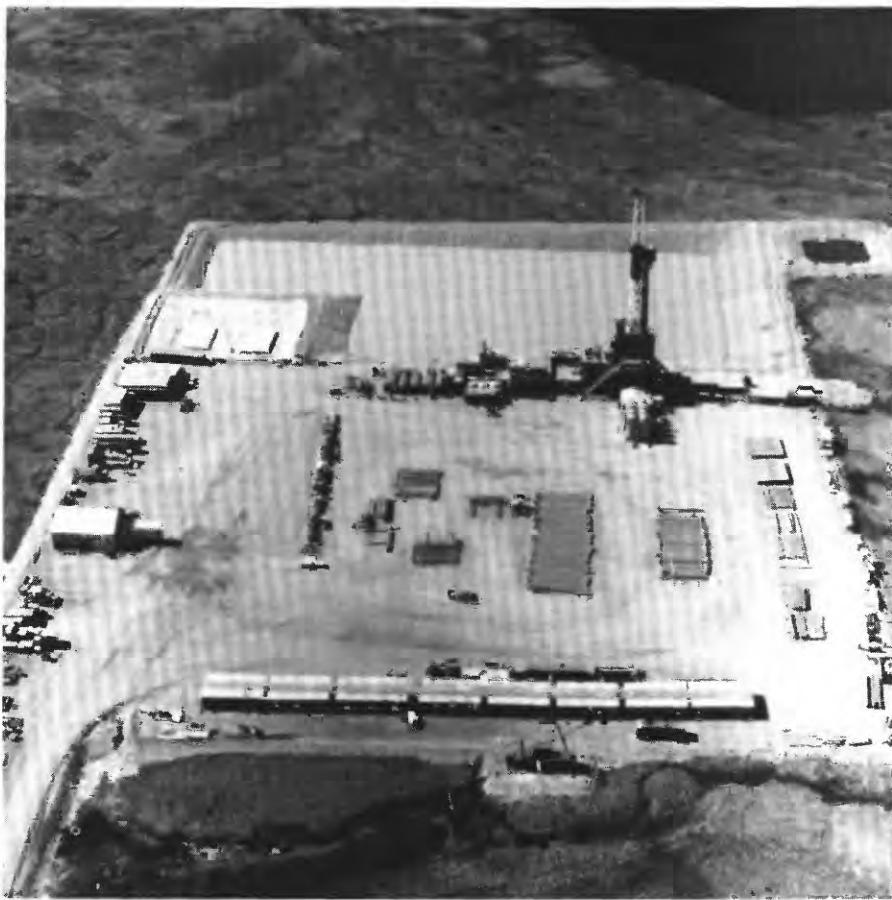


FIGURE 38.3.—Seabee well site with drill camp in foreground and reserve pit in background. Note polygonal ground features. Photograph taken in July 1979, looking west.

GRAVEL OVER SATURATED SAND

The objective of this investigation was to determine if a fill initially consisting of frozen sand and overlain by 50 cm (20 in.) of gravel would sustain C-130 aircraft traffic after the sand thawed and was in a saturated condition.

The section in which gravel overlying saturated sand was tested was 43 m long by 8 m wide (140 ft by 25 ft) and consisted of three test items, each 12 m (40 ft) long, with 3-m (10-ft) transitions between them. Surfacing of item 1 consisted of 50 cm (20 in.) of gravel overlying 15 cm (6 in.) of saturated sand; on item 2 it consisted of 50 cm (20 in.) of gravel overlying 90 cm (36 in.) of saturated sand; on item 3 it was the same as on item 2 except that filter-

then be covered with gravel to complete the temporary runway. A typical cross section of the airstrip is shown in figure 38.5.

Construction of the Inigok airstrip and drill pad began in February 1978. The major portion of the construction and camp equipment had

been brought overland on snow trails, and additional supplies and personnel were flown to an ice airstrip on the large lake just north

FIGURE 38.4.—Inigok well site, road, and airstrip. Area on runway centerline darker because sprinkled with water. Large lake on right used as airstrip in winter. View looking westward in July 1978.

of the well site. This temporary airstrip on the lake was also used for the airlift of the drill rig and camp. The ice runway was used until May 22, when spring melting rendered it unusable.

Construction began at the knoll at the south end of the runway. First, all organic material was stripped off and later placed on the shoulders of the runway and along the north edge of the parking apron. The drier and cleaner sand from the top of the knoll was then easily ripped and stockpiled for later use. Construction by late February had settled into conventional cut-and-fill operations. The frozen sand in the borrow area was mined by repeated passes of large ripper-equipped tractors. After ripping, the frozen sand was crushed by repeated passes of heavily loaded segregated wheels and sheepfoot rollers. When the sand had been broken down so that it contained only small frozen lumps in a matrix of loose sand, it was removed and pushed into stockpiles. While the rippers proceeded to loosen the next layer, the stockpiled material was loaded and trucked to the fill sections.

The snow cover was removed just before placing the fill, but no stripping of the original vegetative cover was permitted. The fill was constructed in lifts, each lift being compacted by rollers. The special sand previously scraped from the surface of the knoll was placed last and the subbase brought up to grade by careful grading and rolling, producing a hard, smooth surface upon which the insulation was placed.

Insulation boards 60 by 240 cm (2 by 8 ft) were placed with their long dimension parallel to the runway centerline, care being taken to keep the joints tight and the rows straight. Placement of both layers commenced at the south end of the runway and proceeded northward. No wooden stakes or other types of tiedowns were used to secure the insulation. Immediately following placement of the two layers of insulation, a plastic membrane was laid on top of the insulation. The membrane⁶, a cross-laminated, 4-mill plastic having a tensile

strength of 55 GPa (8,000 psi), was used to keep water from seeping down into the joints between the insulation. The membrane, supplied in rolls 6 m (20 ft) wide, was shingle lapped 60 cm (2 ft) and sealed. Gravel was placed, by end dumping, immediately after the placement of the membrane.

The gravel was carefully placed in a single lift of 30 cm (1 ft) or more; the end-dumped gravel was advanced with a bulldozer. Rolling the gravel off the raised dozer blade was essential, because any substantial horizontal push could have displaced the insulation. The thick initial 3 cm (1 ft) or more lift of gravel also served to protect the insulation from being crushed under the direct loading of the gravel trucks or other heavy equipment. Compaction of the gravel by sheepfoot rollers was forbidden. Only smooth-wheel rollers were used in compacting the gravel above the insulation. The second and final lift, generally 23-30 cm (9-12 in.) thick, was a screened gravel with a maximum diameter of about 4 cm (1.5 in.). The screened gravel was unfortunately poorly graded, lacking fines. To remedy this deficiency, sand from the borrow pit was added after the screened gravel had been placed. This procedure was only partially successful, however, because the stockpiled sand was still frozen and difficult to spread uniformly. At first the sand was blended into the surface gravel by using a disc harrow, but this proved to be ineffective; in the end the blending was primarily accomplished by windrowing and spreading with road graders. Finally, the runway surface was compacted by using both rubber-tired rollers and vibratory smooth-wheel rollers. Plans and specifications called for a minimum of 85 percent (modified AASHO) of maximum density of the finished gravel surface when first placed,

⁶TU-TUF 4, a product of Sto-Cote Products, Inc., Richmond, Va.

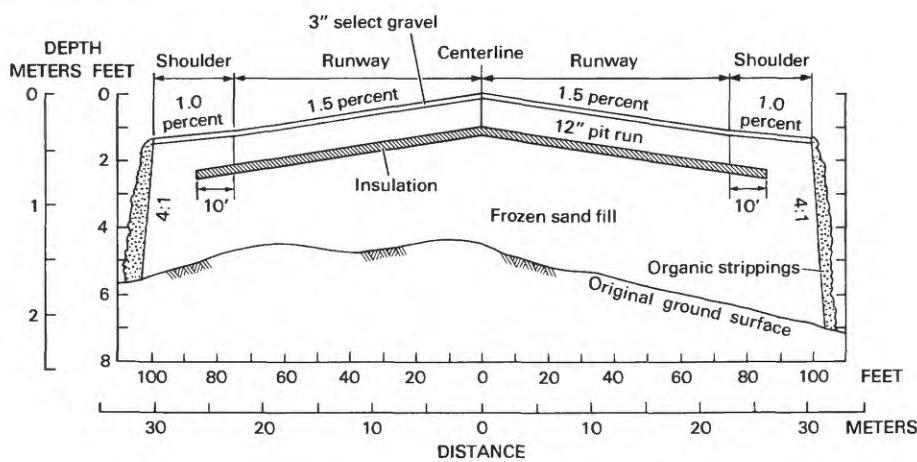


FIGURE 38.5.—Typical section through insulated airfield at Inigok. Depth of fill, thickness of gravel over insulation, and lateral width of shoulder insulation are different from those at Tunalik and Iyatuk.

and then recompaction to 95 percent as thawing of the gravel progressed.

The runway, taxiway, parking apron, road, and drill pad at Inigok used a total of only 67,000 m³ (88,000 yd³) of gravel, obtained from the confluence of the Kikia-krorak and Colville Rivers. The gravel was hauled in 7.5-m³ (10-yd³) dump trucks with pup trailers at normal highway speeds over a 58-km (36-mi) snow/ice road. The road was routed across a series of lakes in order to reduce the amount of roadway to be constructed. The route avoided the high banks along some lakeshores, which would have created steep grades and necessitated the building of snow ramps. The roadway across the tundra was constructed by first compacting the existing snow cover and then building up the thickness and strength of the roadway by multiple applications of snow and water. In some sectors, ice aggregate was used to build up the roadway; the ice was obtained by ripping in the shallow lakes that freeze to the bottom each winter. Such work does not pose a threat to the dozer, whereas it might break through the ice in deep lakes. The steepest grade on the snow/ice road was from the bluff into the Kikia-krorak River bed, near the gravel borrow pit. This section of the road, after being ramped to an acceptable grade with snow, which in places was more than 6 m (20 ft) high, was covered with gravel for better traction. The gravel was removed at the conclusion of the work, leaving the slope virtually undisturbed after the snow and ice melted.

Construction of the Inigok facilities was nearly finished when the spring breakup occurred during the last week of May 1978. Forced to abandon the airstrip on the lake, all light aircraft (Twin Otter) operations were shifted to the new run-

way. After several days in which the runway froze at night but was soft and wet during the day, the runway suddenly began to dry out and respond to compaction efforts. The first C-130 aircraft landed on June 6, 1978, and the airstrip continued in service for more than a year without interruption. A view of the completed airfield is shown in figure 38.6.

Grading and rerolling were continued on a daily basis during the

first half of summer 1978. Considerable watering was required for compaction and to limit the loss of fines caused by the operation of large aircraft. Only one section of the runway had to be dug up and replaced. Apparently, a truckload of sand and organic material, originally destined for the runway shoulder, had been inadvertently dumped and spread as part of the pit-run gravel. Upon thawing, this small area turned wet and soft and

FIGURE 38.6.—The all-season airstrip at Inigok, showing insulated runway, taxiway, parking apron, and road to drill site. Darker area along road was result of tundra fire in 1977. View looking northeast taken in July 1978.

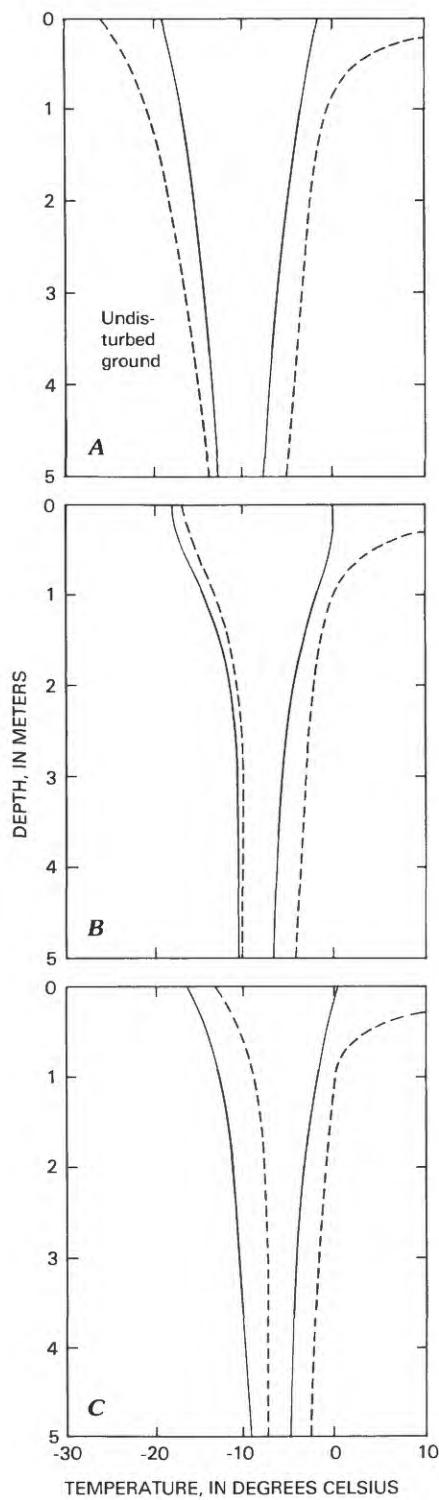


FIGURE 38.7.—Maximum and minimum ground temperatures and depths beneath centerline of insulated runways and adjacent undisturbed tundra at Inigok (A), Tunaliik (B), and Ivvotuk (C) during their periods of active use in 1978 and 1979. Solid lines represent temperatures below insulation; dashed lines, temperatures in tundra.

had to be removed. Only minor maintenance was required to regrade and recompact the gravel on the parking apron and at the ends of the runway where large aircraft made locked-wheel turns. Throughout the year of active operations the Inigok runway was acclaimed by pilots as one of the smoothest and best runways in Alaska.

In June 1979, after completing the well to a depth of 6,127 m (20,102 ft), the drill rig and camp were airlifted in C-130's to Umiat for the Seabee well. Several inspections of the Inigok airstrip made during the summers of 1980, 1981, and 1982 revealed no change in the excellent condition of the runway, taxiway, and parking apron; no rutting, differential displacement, or erosion was evident. Vertical-movement observations taken at 60-m (200-ft) intervals along the centerline of the runway immediately following construction and several times during the summers of 1978, 1979, and 1980 confirmed the stability of the runway.

During construction, ground-temperature sensors (thermocouples) were installed in 6-m-deep (20-ft) drill holes at stations 14+00 (cut section) and 34+00 (fill section) beneath the centerline of the runway. Similar assemblies were placed beneath the shoulder of the runway and in the undisturbed tundra, south and east of station 14+00. Four test sections were also incorporated into the southeast corner of the parking apron, to determine the effect of different thicknesses of insulation. These and other special thermocouples, installed later above and below the insulation, were observed twice weekly during the summer of 1978, and monthly during the following winter and spring, to monitor the effectiveness of the insulation. The extreme maximum and minimum temperatures beneath the runway,

for the period of active use, are shown in figure 38.7A. The maximum recorded temperature immediately beneath the insulation was -2°C . The penetration of cold temperatures through the insulation during the winter was increased by snow removal while the runway was in active use. Temperature observations have been continued in order to define the long-term thermal regime of this insulated runway, particularly the effect of the snow cover on the abandoned runway.

Another problem in drilling deep wells through permafrost is finding the best foundation design for the drill rig. Mud temperatures in such deep wells increase with time, and the heat is dissipated radially during the year or more of drilling. Although extremely high temperatures on the wall of the 107-cm (42-in.) surface conductor pipe could be reduced by insulating the upper section of the pipe and controlling the mud temperatures, the influence of this long-term heating on the nearby frozen piling is still a major concern.

The foundation design for the rig placed the timber foundation piles no closer than 3.7 m (12 ft) from the center of the well, the area around the well being spanned by steel girders. The rest of the foundation consisted of timber piles, laid out in five rows, about 2 m (6.5 ft) apart, with piles 0.9-1.8 m (3-6 ft) apart in each row. The locations of the piles and the timber-pile caps were specifically designed for the actual drill rig to be used. A total of 207 timber piles were used at Inigok for the rig and for the auxiliary buildings, mud tanks, pipe racks, and other facilities. All piles were set tip down and to a depth of 7.5 m (25 ft), with the exception of the 10 piles closest to the well and the rat hole, which were 13.7 m (45 ft) long. The piles were installed in dry

a large lake, capable of accommodating the C-130 aircraft when frozen. A smaller lake, 1.5 km (1 mi) northwest of the runway, was used only for the Twin Otters and smaller aircraft during construction.

The design options at Tunalik, as at Inigok, were limited by the amount of gravel available. Because of winter construction, the only viable option was to prepare a subgrade using the local sand, maintaining the sand in a frozen state with insulation, and using the limited gravel for the wearing course. The runway had a downhill grade of about 0.3 percent from west to east and required fill depths ranging from only 0.6 to 1 m (2-3.5 ft); no cuts were required. The thickness of insulation required to maintain the sand in a frozen state was calculated to be only 5 cm (2 in.) because of the cooler and fogger weather at such a coastal location (Crory and others, 1978). The high-density (HI-60) insulation was used on the runway, taxiway, and parking apron, while the lower density (HI-35) insulation was used on the road and drill pad, as at Inigok.

The building of a snow/ice road to the borrow pits commenced in January 1978. This haul road made good use of the local snow cover but utilized ice as the major construction material. The ice was readily available from the shallow ponds on both sides of the road and required much less water than compacted snow to build up a 45-75-cm (1.5-2.5-ft) roadway. The road surface was periodically scarified with a road grader, producing a rough surface, so that the rubber-tired dump trucks could travel at close to normal highway speeds.

Borrow pits were developed by first removing all snow and stockpiling the drier surface gravel. This gravel was later used as the surface wearing course for the runway and road. The borrow pits were worked

in the same manner as the Inigok borrow site. Since the two borrow pits were relatively small, the borrow material was quickly loaded into the 7.5-m³ (10-yd³) trucks with pup trailers for the short haul to the runway, road, and drill pad. An ice road just north of the runway, and west of the 0.8-km (0.5-mi) road connecting the runway to the well, kept traffic flowing smoothly.

Placement of the gravelly sand fill began on the higher west end of the runway and proceeded eastward. The snow cover was removed just before placing of the gravelly sand. No stripping of the surface vegetation was permitted. As soon as the subbase had been brought to final grade (fig. 38.8), the insulation placement began, also working from west to east. The insulation was placed as a single layer, 5 cm (2 in.) thick, with the long dimension parallel to the runway centerline. Care was taken to ensure that all joints between the 60- by 240-cm (2- by 8-ft) boards were tight and the rows were kept straight. The

boards were staggered in each row and covered with the same kind of plastic membrane as was used at Inigok. No pins or other fasteners were used to secure the insulation to the frozen subgrade.

The pit-run gravelly sand was placed atop the insulation by end-dumping and spreading of the gravel with a bulldozer, care being taken not to displace the insulation. The initial lift was 30 cm (1 ft) or more in thickness and compacted to 85 percent of maximum density, using the segregated and smooth-wheel rollers. The 15-cm (6-in.) wearing course of the stockpiled, select pit-run sandy gravel was similarly placed and compacted. No sheepfoot rollers were permitted to operate above the insulation. The completed runway is shown in figure 38.9.

The roadway between the parking apron and the well site at Tunalik was to be constructed in the same manner as the insulated workpad at Inigok, where a single layer of 5-cm (2-in.) insulation

FIGURE 38.8.—Placing final lift of sand on subbase before placing insulation at Tunalik runway. Photograph taken in March 1978.

boards was placed directly on the carefully prepared tundra surface. To maintain a smooth grade for the insulation, a thin leveling coarse of sand was used. In some sections, however, the 30-cm (12-in.) nominal depth of sand used at Inigok was not placed at Tunalik. No membrane was used above the insulation on the Tunalik road. The 7.3-m-wide (24-ft) roadway was completed by using a 30-cm (1-ft) layer of pit-run gravelly sand and then a 15-cm (6-in.) layer of the select sandy gravel for the wearing

surface, both layers being compacted to 85 percent of maximum density. The entire road was constructed as a fill section.

As at Inigok, the drill pad was constructed at the same time as the runway. The 45- by 177-m (150- by 580-ft) area surrounding the drill rig was underlain with 5 cm (2 in.) of insulation, as was the area beneath the drill camp and a rectangle 30 by 84 m (100 by 275 ft) between the drill rig and the camp. HI-35 insulation was used and was placed in the same manner as in the roadway.

Fifteen centimeters (6 in.) of insulation was used under the drill rig. The membrane above the insulation was tightly sealed around all the timber foundation piles. Although the original intent was to use the sand or silty sand from the excavation of the reserve pit for the initial subbase fill at the Tunalik drill pad, this plan was changed when massive ice was encountered in the excavation of the pit. The spoil from the reserve pit, which included organic material and silt, was stockpiled and later spread as topsoil for

FIGURE 38.9.—All-season airstrip at Tunalik, showing ponding by taxiway and parking apron. Dark line shows location of winter snow/ice road to borrow sites. Note polygonal ground patterns. Cleanup of construction camp is underway on lower portion of parking area. View looking west taken in 1979.

reseeding. Material from the borrow sites was used for the initial subbase and surface at the drill-pad site.

Because of the shorter haul distance and the use of only fill sections, the Tunalik facilities were completed before those at Inigok. The first C-130 landed at Tunalik on May 1, 1978, and made several more trips that day. The pilot reported that the still-frozen runway surface was in excellent shape. However, the drill rig was delayed at Kugrua because the spring breakup occurred before the rig could be moved to Tunalik by land or by air. Accordingly, the start of drilling at Tunalik was delayed until the winter of 1978, and construction and maintenance activities at Tunalik were drastically reduced throughout the summer of 1978.

During the first week of June 1978, active thawing of all gravel surfaces began with little or no overnight refreezing. Compaction of the gravel surfaces, particularly the runway and parking apron, were hampered by both excessive moisture and the mechanical failure of the rubber-tired roller. The gravel was dried primarily by windrowing with a grader, although the foggy weather hampered the operation. Because of the soft condition, the airfield facilities were closed to all but light aircraft during June. Earlier, during the spring breakup, a culvert beneath the road had washed out. This washout, together with the soft condition, rendered the road unusable. Because there was no activity at the drill pad, the small maintenance crew was able to concentrate on the runway, taxiway, and parking apron.

With improving weather in late June and July 1978, the maintenance crew was able to regrade and compact the runway, road, and other facilities to their prescribed 95-percent compaction. Except for the drill pad, all facilities at Tunalik

performed well from midsummer of 1978 until the well was completed in late January 1980. No problems were reported during the spring breakup of 1979, but during the summers of 1978 and 1979 the drill pad was consistently a problem. Although additional gravel had been placed there in the late summer of 1978, the pad was still soft and wet throughout the major portion of the summer of 1979. The lack of sufficient slope for drainage and the poor quality of the material above the insulation were considered the major factors responsible for the poor performance in those areas underlain by insulation, and the lack of insulation was the major factor in other areas.

In mid-March 1978, before the placing of the insulation, two thermocouple assemblies were installed to a depth of 6 m (20 ft) along the centerline of the Tunalik runway. The thermocouples were installed at stations 16+10 and 32+40, the stationing beginning on the east end of the 1,500-m (5,000-ft) runway. A similar thermocouple assembly was installed about 15 m (50 ft) south of the runway shoulder at station 32+40 to monitor the normal thermal regime of the undisturbed tundra. The maximum and minimum temperatures beneath the tundra and insulated runway are shown in fig. 38.7B. The temperatures directly beneath the insulation reached 0 °C in the mid-summer of 1978 and were very close to 0 °C during 1979 and 1980. Two test pits along the centerline of the runway, dug in mid-August 1978, confirmed that the subbase was indeed still frozen. Another test pit, to examine the condition of the insulation, was dug in early September 1980 beneath the taxiway. The subbase was again found to be frozen, with ice in the joints between the boards. Level surveys and careful inspection of the runway did not reveal any low spots or

depressions that would indicate localized thawing beneath the insulation. The grass, planted in early June 1978, in the overrun section on the east end of the Tunalik runway continued to show good growth through the summer of 1980.

During the abrupt breakup in the spring of 1980, a section of the taxiway 1.2-1.8 m wide (4-6 ft) was washed out. A pond had been formed at the junction of the parking apron, taxiway, and runway since the original construction (fig. 38.9). The breach through the 50 cm (20 in.) or more of gravel and gravelly sand above the insulation was at the location of a buried fiberglass pipe used to pump water into and out of the small pond. The washout across the taxiway had not been repaired as of our last visit in July 1982.

Eight foundation pilings at Tunalik were equipped with ground-temperature sensors to evaluate the thermal regime immediately surrounding the well, as at Inigok. Installation of the foundation piles at Tunalik is shown in fig. 38.10. Two additional thermocouple assemblies were installed on June 21, 1979, near the southeast corner of the drill rig, where a cavity formed by thawing of ground ice in permafrost was noted. The temperature observations indicated that thawing was occurring only near the ground surface and that the pilings were not in jeopardy. After the rig was removed in the early spring of 1980, these cavities had enlarged to form several depressions 1.2-1.5 m (4-5 ft) deep. The fill beneath the rig had originally been graded level with the top of the pile caps.

LISBURNE (IVOTUK) WELL SITE

Because the insulated runways at Inigok and Tunalik worked well during the summer of 1978, a similar runway was constructed in early 1979 at Iivotuk to service the

deep exploration well at Lisburne. The Lisburne well was only a few kilometers west of the north-south boundary of the NPRA in the northwest corner of the rolling Ivotuk Hills north of the Brooks Range (fig. 38.1). The Lisburne well site is connected by a 3 km (2-mi) gravel road running west across Otuk Creek to the Ivotuk runway. The gravel-surfaced runway, 45 m wide and 1,500 m long (150 by 5,000 ft), is oriented north-south (magnetically) at about lat $68^{\circ}29'$ N., long $155^{\circ}45'$ W.

The well site is in an east-west valley between two ridges at lat $68^{\circ}29'05.44''$ N., long $155^{\circ}41'35.51''$ W. The ridges have extensive exposures of bedrock, but the valley

is underlain by organic material, silt, and gravel chiefly of glacial origin. Because the well site was located on a steep grade, the drill pad was constructed at three different elevations: the upper level for the camp and rolling stock; the middle level for the drill rig, service buildings, and pipe storage; and the third level for the reserve pit. The fill for the camp and drill pads was obtained from the excavation of the reserve pit.

The runway was oriented parallel to the major drainage, its profile on a 1- to 1.5-percent grade sloping to the north. The original site was covered with low tussock grasses and sedges grown on a brown to black organic surface layer. The soil

at shallow depths varied from organic silt to silty colluvium, overlying weathered bedrock that was 1.5-4.5 m (5-15 ft) deep. The bedrock beneath the airfield consisted of sandstone and shale, with occasional layers of limestone. Frost-riven boulders were exposed along the ridge just west of the runway. Gravel was found along virtually every stream in this area, although only limited quantities were available for the construction of the all-season airstrip, road, and drill pad within 1.5 km (1 mi) of the Otuk Creek crossing (fig. 38.11).

Two main considerations influenced the design and construction sequences for the facilities at the Lisburne well: (1) To meet drilling schedules and avoid any trafficking over bare tundra, all work had to be done in the winter, and (2) the only frozen lake large enough to accommodate C-130 aircraft was Lake Betty, about 30 km (20 mi) to the west. Thus the plan was to construct quickly a thin frozen-gravel mobilization airstrip, which could later be used as the subbase for the all-season airfield. This subbase, of pit-run gravel from Otuk Creek, was leveled and iced to provide a smooth, rock-free surface. Runway construction was then halted, providing a limited time interval during which the drill rig, drill camp, and other supplies, including the insulation for the airfield, could be brought in by C-130 and other aircraft. The mobilization strip was then closed to all but short-takeoff-and-landing (STOL) aircraft while the insulation and gravel overlay were placed to complete the all-season airstrip. The major design problem for this airfield was the layer of ice on the surface of the mobilization strip, 2.5-7.5 cm (1-3 in.) thick, and the thickness of insulation required to prevent this ice and the underlying gravel from thawing during the summer. As a result of the experience gained at

FIGURE 38.10.—Installing piling for drill rig at Tunalik. Rig in background is drilling conductor hole for well. View looking east taken in March 1978.

Inigok and Tunalik, 6 cm (2.5 in.) of insulation was recommended for Ivotuk. The insulation was placed in two 3-cm (1.25-in.) layers and was covered with a plastic membrane like that used at Inigok and Tunalik.

After a winter trail had been constructed from Lake Betty, a temporary construction camp was set up just north of the proposed road to the west of Otuk Creek. The screening and crushing plant was set up on the east side of Otuk Creek just south of the newly constructed road leading to the well site. The gravel borrow pits along Otuk Creek (fig. 38.11) both upstream and downstream of the bridge were developed by first stripping off the snow and the organic cover, which was later used to restore the pits. The size and depth of each borrow pit were carefully controlled to avoid any possibility of changing the channel of the creek.

While there was some anxiety about completing the mobilization strip in time for the planned shutdown period, it was completed without difficulty. During this initial construction period and while the airlift was still underway, the screened and crushed gravel for the airfield was being processed and stockpiled. The insulation for the runway, in plastic covered bundles, was temporarily stored along both shoulders of the runway, making it readily available for placement after the mobilization strip was closed to the larger aircraft. After that closure, the Twin Otters and other small aircraft continued to use sections of the airfield during placement of the insulation and the overlying gravel. The completed all-season airstrip is shown in figure 38.12. Although no problems had been experienced with wind during the placement of insulation at Inigok and Tunalik, the strong winds at Ivotuk, particularly during the

FIGURE 38.11.—Otuk Creek bridge on access road between Ivotuk airfield and Lisburne well. Disturbed areas are former borrow pits. View looking north taken in July 1979.

FIGURE 38.12.—Insulated all-season airstrip at Ivotuk, with parking apron and equipment storage area at left. Note wet overrun section at end of runway. View looking south taken in July 1979.

third week of April 1979, made it necessary to stop work for several days.

Although the shorter access roads at Irigok and Tunalik were built with insulation, the longer road between the Ivotuk airstrip and the Lisburne well was constructed using gravel without insulation. This construction made it possible to place the oversize gravel from the screening and crushing operation in the lower sections of the roadway embankment. That embankment at the centerline was normally 1.2-1.8 m (4-6 ft) thick, although several sections on abrupt grades were even thicker. To minimize both the construction cost and the amount of gravel used, the design road width was only 3.6 m (12 ft) with 1.2-m (4-ft) shoulders. This width tended to increase with time as the traveled way was regraded. The narrow road was used without serious traffic delays by building turnouts at intervals of 300-450 m (1,000-1,500 ft).

Otuk Creek was bridged with a double-span, laminated timber bridge supported by timber piling (fig. 38.11). The abutments of the bridge were protected by rock-filled gabions upstream and downstream of the bridge. The single-pile bent in midstream was protected by a steel raker extending from the pile cap into the streambed at a 45° angle on the upstream side. This protection against ice during the spring breakup was later found to be unnecessary.

The Lisburne drill pad was a difficult construction undertaking compared to other pads in the NPRA that were built on relatively flat ground. Because of the limited working area and steep slopes, excavation was by blasting rather than ripping. The blasted material from the reserve pit was used to form the two sidehill benches for the drill pad and camp. Insulation was used beneath and adjacent to the drill rig, under the camp, and on the

high slope of the reserve pit adjacent to the drill. All slopes and pad surfaces were blanketed with pit-run gravel, as were the reserve-pit dikes. These dikes had to be quite steep to avoid the small creek that drains the valley.

During construction, the runway, road, bridge, and drill pads were instrumented with temperature sensors. Initial elevations were taken, the level observations being referenced to frost-free bench marks near the taxiway, the southwest end of the bridge, and the south end of the drill pad. Thermocouples were installed beneath the centerline of the airstrip at stations 29+00 and 52+00; station 12+50 is the north end of the airstrip and station 64+00 is south end. Station 29+00 was selected as being representative of the thinner cross sections; station 52+00 had the greatest depth of subbase because this location had originally been a low swale. Temperature assemblies were also installed in the undisturbed tundra at stations 29+00 and 64+00 to the west of the runway. Station 64+00 was selected rather than station 52+00 for this tundra assembly because the original plan was to incorporate several test sections in the 60-m (200-ft) overrun on the south end. Unfortunately, the incorporation of these test sections, using several thicknesses of two different types of insulation, could not be coordinated with the airfield construction schedule, so they were switched to the drill pad. Two additional thermocouple assemblies were installed, however, in the uninsulated north overrun, to determine the thermal regime of a thin gravel overlying undisturbed tundra. An additional, deep thermocouple assembly, to a depth of 30 m (100 ft), was installed near the tundra assembly at station 29+00 in mid-June 1979 to determine the permafrost temperatures at depth. The

envelope of maximum and minimum temperatures beneath the insulated runway and the undisturbed tundra at Ivotuk is shown in figure 38.7C. Although the temperatures just beneath the insulation approached the melting point, no apparent thawing or subsidence of the runway was noted during the summers of 1979 and 1980. The only operational problems at Ivotuk were those encountered during the initial thaw in May 1979, when soft spots and rutting under the C-130 traffic occurred in isolated areas. The remedy was to excavate the affected areas and refill them with select compacted gravel. The wet spots were directly related to what appeared to be about a truckload of silty sand and organic material that had been placed directly on the insulation. The wet, soft conditions lasted about 10 days, during which time dozens of such soft areas were replaced by select gravel. After the repairs were completed and the gravel overlying the insulation had become thawed and recompacted, according to specifications, the runway was easily maintained by periodic blading and rolling. No recurrences of the soft spots were noted during the spring of 1980.

Ground-temperature assemblies were also installed at three locations to a depth of 4.5 m (15 ft) beneath the centerline of the road. The temperature observations, taken weekly during the thawing period and monthly in the winter, measure the thermal regime beneath the uninsulated road. Six temperature assemblies were installed on the abutments and center pier of the Otuk Creek bridge were designed to define the temperatures beneath the streambed and to confirm the design temperatures for the frozen-in piles. The data indicated that no deep thawing occurred around the frozen piles. There was, however, about 2.5 cm (1 in.) of heave of the upstream side of the bridge pier cap

