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Introduction
A high-quality water supply is central to the overall 

health of the High Plains agricultural economy, the viability 
of its cities and rural communities, and the environmental 
well-being of the landscape. Ground water is the primary 
source of water used in the High Plains, thus knowledge about 
its availability and sustainability are essential for the suc-
cessful management and future development of this limited 
resource. In the context of this discussion, the concept of 
ground-water availability is used when considering the current 
water resource, whereas ground-water sustainability is used 
when considering future water resources. Ground-water avail-
ability and sustainability are influenced by many factors, one 
of which is water quality. Water quality generally has been 
overlooked in the High Plains because the primary focus has 
been on obtaining a sufficient water supply. In some cases, 
however, water quality may be a limiting factor for some 
intended uses such as drinking- or irrigation-water supply. For 
example, shallow ground water beneath irrigated cropland may 
not be suitable for human consumption because of elevated 
concentrations of salt, nitrate, and (or) pesticides (see Chapter 
1). Ground water influenced by mixing with brackish surface 
water or deep formation water may not be suitable for irriga-
tion because of elevated concentrations of dissolved solids 
(see Chapters 2 and 3). Having a clear understanding of the 
status and trends in water-quality conditions and the natural 
and anthropogenic processes that control them facilitates more 
robust assessments of water availability and sustainability of 
this aquifer. This chapter summarizes many of the important 
natural and anthropogenic processes affecting water availabil-
ity in the High Plains aquifer from a water-quality standpoint 
and considers some challenges and opportunities for sustain-
ing the water supply in the future. 

Assessing Ground-Water Availability 
and Sustainability

Assessing ground-water availability in the High Plains 
entails more than just determining the volume of water within 
the aquifer. The availability of ground water may be limited 
because not all the water is recoverable or of good quality. 
Complicating any assessment of ground-water availability is 
the realization that ground water is only one component of 
the regional hydrologic budget. For example, small volume 
changes in the ground-water system can adversely impact 
ecosystems that develop along riparian corridors by reducing 
the amount of water discharging to streams and springs (Alley, 
2006). In the western CHP and northern SHP, where declines 
in water levels have been the largest, the volume of water in 
storage in the aquifer decreased by an average of about 34 
percent from predevelopment to 2000 (McGuire and others, 
2003). Superimposed on those factors is the realization that 
water quality can change over time (fig. 55) in response to 
land-use/land-cover change (see Chapter 1), climate change 
(see Chapter 1), and pumping stresses (see Chapter 2), among 
other factors. Scientific assessments of ground-water availabil-
ity consider all of the interrelated factors outlined above, but 
society is the ultimate arbitrator and will determine which uses 
of the ground-water resource have priority. The HPGW study 
provides insights related to water quality that can inform that 
decision-making process. 

Ground-water resources also are often discussed in 
terms of their sustainability. As defined by Alley and others 
(1999), ground-water sustainability is the “development and 
use of ground water in a manner that can be maintained for an 
indefinite time without causing unacceptable environmental, 
economic, or social consequences.” Thus, the amount of water 
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allocated to different uses, how those uses may change in the 
future, and the resulting effects of those uses are all part of 
assessing the sustainability of an aquifer. For example, with-
drawals for irrigation in the High Plains have helped to support 
a large agricultural economy in the region, but they also have 
resulted in declining water levels (McGuire, 2007), reduced 
stream flow (Luckey and Becker, 1998), and even dry chan-
nels in some areas. In these instances, agriculture has taken 
precedence over in-stream flows. This outcome apparently is 
consistent with societal values at this time and in this place. 
As time and conditions change, however, the consequences of 
these choices may no longer be acceptable. 

Water-Quality Issues that Influence Ground-Water 
Availability

To better evaluate ground-water availability, it is nec-
essary to improve understanding of ground-water quality 
because it has a direct affect on how water can be used. The 
results presented in Chapters 1 through 3 demonstrate that the 
interpretation of ground-water quality data in the context of 
the entire ground-water flow system leads to a more compre-
hensive understanding than would be obtained by focusing 
exclusively on a single aspect of the flow system such as the 
recharge area. As shown in Chapters 1 through 3, water-qual-
ity issues that influence ground-water availability can be asso-
ciated with all parts of the flow system. In this section, some 
of the most important water-quality issues are summarized that 
influence water availability in the High Plains aquifer. 

The quality of water recharging the High Plains aqui-
fer is controlled by many factors, including land use/land 
cover, water use, climate, and unsaturated-zone thickness and 
composition (see Chapter 1). Changes in land use and land 
cover from natural conditions to agriculture and urbaniza-
tion are perhaps the most important anthropogenic factors 
affecting recharge water quality. Agriculture is the more 
dominant land use/land cover in the High Plains compared to 
urbanization (38 versus 3 percent of total land area, respec-
tively). Agriculture has a major influence on water quality 
through the introduction of salts, nitrate, pesticides, and other 
chemicals in recharge. Processes that promote recharge of 
agricultural chemicals, such as irrigation and certain other 
farming practices, can increase the potential for ground-water 
contamination by increasing chemical fluxes and decreasing 
chemical transit times to the water table. Other ways recharge 
water quality has been degraded include infiltration of water 
from multiple irrigation applications in which concentrations 
of dissolved solids have increased because of evaporative 
concentration. These concentrated solutions can drain directly 
to the aquifer or can drain to streams and subsequently enter 
the aquifer where ground-water gradients near those streams 
have been reversed because of irrigation pumping (Whitte-
more and others, 2001). Furthermore, conversion of rangeland 
to irrigated cropland has the potential to mobilize natural salt 
deposits in the unsaturated zone that contain chloride, nitrate, 

and possibly perchlorate (Rao and others, 2007), which may 
eventually reach the water table. Mobilization of natural 
salt deposits has already occurred in some areas of the High 
Plains, but slow chemical transit times indicate that those salts 
will continue to migrate to the water table. Thus, the amount 
of chemical mass entering the aquifer could increase with time 
as chemicals that still reside in the unsaturated zone reach 
the water table. Superimposed on those processes is climate 
variability on annual to interdecadal timescales that can have 
major influences on the timing and rate of water and chemical 
movement from land surface to the water table. 

Once water recharges the High Plains aquifer it is 
transported in response to hydraulic gradients to downgradi-
ent receptors such as domestic, public-supply, and irrigation 
wells. During transport, the chemistry of recharge changes as 
a result of three primary processes—water/rock interactions, 
redox processes, and mixing of water from different sources 
(see Chapter 2). Water/rock interactions and redox processes 
in the High Plains aquifer are, for the most part, natural 
processes that result in small changes in the concentrations of 
dissolved constituents as water is transported along flow paths. 
Denitrification, the redox process that is perhaps most relevant 
to drinking-water quality in the aquifer because of relatively 
widespread nitrate contamination, generally cannot be relied 
upon to substantially attenuate nitrate contamination because 
electron donors are not available in most areas of the aquifer to 
support it. Locally, and in some cases over larger areas (Sand 
Hills eolian deposits and Plio-Pleistocene deposits), however, 
denitrification can be an important attenuating mechanism. 
Mixing of water from different sources occurs naturally in the 
aquifer, particularly in some river valleys that are major dis-
charge areas. In some of those discharge areas, brackish waters 
from underlying formations enter the aquifer and mix with 
fresh ground water. In other areas, leakage of poorer quality 
water from rivers, and possibly saline lakes, mixes with fresh 
ground water, thereby impairing water quality.

Mixing also is caused by leakage through long well 
screens and by long-term pumping of high capacity public-
supply and irrigation wells. Mixing caused by leakage and 
pumping is considered to be a major process for moving 
contaminants from near the water table to deeper zones more 
rapidly than would occur otherwise under natural hydrau-
lic gradients. Thus, anthropogenic activity not only can be 
a source of contaminants to the water table, but it also can 
enhance contaminant transport once the contaminants are in 
the aquifer. Pumping wells may also induce brackish water 
from underlying formations to move into the aquifer. In some 
areas of the High Plains, inputs of water with poor quality near 
the water table (primarily because of agricultural activities) 
and near the base of the aquifer (because of inflow of brackish 
water from below) have the effect of reducing the availability 
of high-quality water to a zone in the middle of the aquifer. 
Water availability could be further limited when high-capacity 
pumping wells vertically mix these zones, as described above. 
Over time, the operation of these wells can result in a reduc-
tion in the thickness of the zone of high-quality water. Of the 
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three primary processes that affect the quality of water as it 
is transported through the aquifer—water/rock interactions, 
redox processes, and mixing—mixing related to well design 
and operation is the only one that could practically be con-
trolled through management. 

The quality of water produced by domestic, public-
supply, and irrigation wells in the High Plains aquifer gener-
ally was acceptable for most uses, although differences in 
water quality between the assessed hydrogeologic units and 
between well types are observed (see Chapter 3). Evalua-
tion of domestic-well water quality on the basis of MCL and 
SMCL exceedances indicates that the SHP Ogallala Forma-
tion had the poorest water quality followed by water from 
the Quaternary and Plio-Pleistocene deposits. The Ogallala 
Formation in the CHP and NHP had the best water quality. 
The quality of water from some domestic, public-supply, and 
irrigation wells is affected by agricultural and urban contami-
nants in recent recharge (recharged within the past 50 years) 

and by mixing processes caused by leakage through long 
well screens and long-term pumping of high-capacity public-
supply and irrigation wells. The combination of those source 
and transport processes has resulted in small but measurable 
increases in concentrations of anthropogenic contaminants 
such as nitrate in High-Plains ground water when viewed in 
the context of a multidecadal timeframe (fig. 77). A statisti-
cal comparison of nitrate concentrations, by decade, in water 
from the High Plains aquifer indicated that median nitrate 
concentrations were similar from the 1930’s to the 1960s, sig-
nificantly larger in the 1970s, and larger yet in the 1980s and 
1990s (Litke, 2001) (fig. 77). The trend becomes even more 
apparent when viewed in the context of a millennial timeframe 
(fig. 55). Fogg and LaBolle (2006) pointed out that this type 
of long-term gradual increase in ground-water contaminant 
concentrations is generally difficult to separate from “noise” 
when viewed in the context of short timeframes, indicating the 
need for long-term monitoring. An important implication of 
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the trend data illustrated in figures 55 and 77 is that contami-
nant concentrations in the used resource will increase in the 
future as the fraction of post-1950 recharge captured by wells 
used to supply irrigation and drinking water increases. Once 
contaminated, deep zones in the aquifer in which those wells 
are screened are not likely to be remediated quickly because of 
slow recharge rates, long water residence times in the aquifer, 
and slow rates of contaminant degradation. Thus, this trend 
could limit water sustainability given current uses and land-
use practices, and therefore needs to be factored into future 
management strategies.

Challenges and Opportunities for Sustaining the 
Water Supply

The High Plains aquifer is the most intensively used 
aquifer in the U.S., producing almost twice the volume 
of water than any other U.S. aquifer (Maupin and Barber, 
2005). Thus, it is important to understand how water quality 
may affect the sustainability of this ground-water resource. 
The water-quality assessment provided by the High Plains 
Regional Ground-Water study establishes a regional baseline 
against which water-quality conditions can be tracked over 
time and provides process understanding to help explain 
changes in those conditions. Although this study was not 
designed as a long-term monitoring program, results presented 
here (figs. 55 and 77) demonstrate the importance of collecting 
long-term monitoring data to detect gradual trends and to 
provide early warning of water-quality problems for which 
the aquifer may have limited natural-attenuation capacity 
(nitrate, for example). The need for long-term water-quality 
monitoring presents an opportunity for collaboration between 
local, state, and federal agencies whose goal it is to ensure the 
sustainability of the High Plains aquifer.

Long-term tracking of factors that control the timing 
of water-quality trends is needed to better understand the 
sustainability of the High Plains aquifer. Such factors include 
changes in chemical use, water use, land use/land cover, 
and natural factors, such as climate. Understanding changes 

in these factors is crucial for linking trends in chemical 
concentrations to processes. Without this process-level 
understanding to inform the decision-making process, effective 
best-management practices or remediation strategies are less 
likely to be developed to address water-quality problems.

Monitoring water quality in all areas of the High Plains 
aquifer is not possible because of its large area. Moreover, 
it may not be possible to simultaneously collect long-term 
water-quality data for numerous constituents such as arsenic, 
fluoride, nitrate, pesticide compounds, and VOCs. Thus, tools 
that can extrapolate monitoring data in space and time would 
represent valuable contributions to the overall goal of sustain-
ing the High Plains aquifer. The development of regional-scale 
predictive models with quantified uncertainty is increas-
ingly possible for ground-water flow and chemical transport. 
Expanding this capability is a critical step for assessment and 
cost-effective management of ground-water resources in the 
High Plains, because both require more information than can 
be directly measured under current technology and budget 
constraints. In addition, the models are critical to evaluate 
various resource development and management scenarios and 
the effectiveness of water decisions over time. Model simula-
tions can be used to identify locations that have the greatest 
likelihood of water-quality problems and therefore, may have 
the highest priority for continued monitoring and assessment 
and management strategies. Future success with the develop-
ment and application of vulnerability and other statistical 
models—as well as more complex simulation models—will 
depend upon the integration of monitoring and assessment 
data with the models. In other words, it is critical that credible, 
comparable, and comprehensive information continues to be 
generated—by means of “on-the-ground” monitoring, assess-
ment, and research—that can be used to validate the predic-
tions. This effort needs to be coupled with continued and 
improved collection of supporting ancillary data on irrigation 
pumpage, chemical use, land use/land cover, natural features 
such as climate and ground-water ages, and other explanatory 
factors needed to update and validate the models.
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Summary
Water quality of the High Plains aquifer was assessed for 

the period 1999–2004 as part of the U.S. Geological Survey’s 
National Water-Quality Assessment (NAWQA) Program. 
This effort represents the first systematic regional assess-
ment of water quality in this nationally important aquifer. The 
assessment was based on results from a monitoring program 
designed in the context of a Source-Transport-Receptor 
(STR) conceptual model for ground-water quality. A strati-
fied, nested group of studies was designed to assess linkages 
between the quality of water recharging the aquifer, the effect 
of transport through the hydrologic system on water quality, 
and the quality of the resource used for human consumption 
and agricultural applications. For each component of the STR 
model, studies were designed to address the NAWQA goals 
of water-quality assessment (status or baseline) and process 
understanding. The process component included the study 
of critical processes or factors of regional importance like 
recharge, ground-water flow directions and ages, and gradi-
ents in land use/land cover and climate that helped to explain 
baseline conditions. The stratified, nested design facilitated 
upscaling of monitoring (assessment) results to unmonitored 
areas of the aquifer as well as upscaling of process understand-
ing from local to regional scales.

   The High Plains study was built around four types of 
studies: unsaturated-zone studies, land-use studies, regional 
transect studies, and major-aquifer studies. The purpose of 
the unsaturated-zone studies was to measure chemical storage 
and transit times in the unsaturated zone beneath rangeland 
and irrigated cropland. The purpose of the land-use studies 
was to assess the quality of recently recharged ground water 
(less than 50 years old) beneath major land-use settings by 
sampling networks of randomly distributed monitoring wells 
screened near the water table beneath those targeted land uses/
land covers. The purposes of the regional transect studies 
were to characterize vertical gradients in water chemistry and 
age and to identify major biogeochemical reactions affecting 
the quality of water along flow paths from recharge areas to 
downgradient wells. The purpose of the major-aquifer studies 
was to broadly assess water-quality conditions in the aquifer 
by sampling networks of randomly distributed domestic wells 
in the major hydrogeologic units. By monitoring water and 
chemical movement from the land surface to the water table 
and from the water table to the base of the aquifer along flow 
paths from recharge to discharge areas, the nested design 
not only facilitated extrapolation of assessment results, it 
also improved understanding of the timescales at which that 
movement occurred. Water samples collected from the well 
networks were sampled for various combinations of field 
properties, major ions, nutrients, trace elements, pesticides, 
volatile organic compounds, stable and radioactive isotopes, 
and dissolved gases.

Irrigated cropland was a direct or indirect source of salts, 
nitrate, and pesticides in recent recharge (less than 50 years 

old) to the High Plains aquifer. Urban land was also a source 
of those constituents, as well as volatile organic compounds, 
although urban land is much less widespread than agricultural 
land in the High Plains. Processes that promote recharge in 
this semiarid area, such as irrigation, increase the potential for 
ground-water contamination by increasing chemical fluxes and 
decreasing chemical transit times to the water table. Further-
more, conversion of rangeland to cropland has the potential to 
mobilize large natural salt deposits in the unsaturated zone that 
could eventually reach the water table.   

Systematic north-to-south regional variations existed in 
the quality of recently recharged ground water beneath range-
land and irrigated cropland. Those variations were controlled 
by several interrelated factors that included agricultural water 
and chemical use, climate gradients, depth to water, chemical 
transit time to the water table, chemical storage in the unsatu-
rated zone, and crop type. Transport of chemicals from land 
surface to the water table under irrigated cropland varied from 
months to decades along fast recharge paths versus decades to 
centuries along slow recharge paths. Fast recharge probably 
occurs by several mechanisms including focused recharge 
beneath topographic depressions in the land surface. However, 
areas of fast recharge are less extensive on the High Plains 
than areas where slow recharge occurs. Hence in many areas, 
despite irrigation, transport of anthropogenic chemicals to the 
water table has not yet been observed. Implications of these 
findings with respect to water quality in the aquifer are impor-
tant because they indicate that the amount of chemical mass 
reaching the aquifer could increase with time as chemicals 
beneath this larger area reach the water table because of ongo-
ing irrigation, because of conversion of rangeland to cropland, 
or because of climate change. Furthermore, long transit times 
in the unsaturated zone may delay future improvements in 
water quality that would result from implementation of best 
management practices.

Logistic regression models were used to extrapolate 
results from the study of recently recharged ground water to 
unmonitored parts of the aquifer. Results from the model indi-
cate that 53 percent of the aquifer area has less than a 40-per-
cent predicted probability of containing recently recharged 
ground water with nitrate concentrations greater than 4 mg/L 
as nitrogen (the maximum observed background nitrate 
concentration). Twenty-one percent of the aquifer area has a 
greater than 60-percent predicted probability of containing 
recently recharged ground water with nitrate concentrations 
greater than 4 mg/L as nitrogen. Output from this types of 
predictive model can be used to identify potentially vulnerable 
areas for enhanced monitoring and protection. 

Once water recharges the aquifer, it is transported in 
response to hydraulic gradients to downgradient receptors 
such as domestic, public-supply, and irrigation wells. Dur-
ing transport, the chemistry of recharge changes as a result 
of three primary processes––water/rock interactions, redox 
processes, and mixing of water from different sources. Water/
rock interactions and redox processes in the High Plains 
aquifer are, for the most part, natural processes that result in 
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small changes in the concentrations of dissolved constituents. 
Denitrification, the redox process that is perhaps most relevant 
to drinking-water quality in the aquifer because of relatively 
widespread nitrate contamination, generally cannot be relied 
upon to substantially attenuate nitrate contamination because 
it occurs very slowly in most areas of the aquifer. Locally, and 
in some cases in larger areas, however, denitrification was an 
important attenuating mechanism because of the presence of 
electron donors in the sediment to support this redox process. 
Mixing occurs naturally in the aquifer, particularly in some 
river valleys that are major discharge areas. In some of those 
discharge areas, brackish waters from underlying formations 
enter the aquifer and mix with fresh ground water. Mixing also 
is caused by leakage through long well screens and by long-
term pumping of high-capacity public-supply and irrigation 
wells. Mixing caused by leakage and pumping is considered 
to be a major process for moving contaminants from near the 
water table to deeper zones more rapidly than would occur 
otherwise under natural hydraulic gradients. Thus, anthro-
pogenic activity not only can be a source of contaminants to 
the water table, but it can also enhance their transport once 
they are in the aquifer. Pumping wells may also induce the 
movement of brackish water from underlying formations into 
the aquifer. Those shallow and deep mixing processes could 
eventually limit the availability of high-quality water to zones 
near the middle of the aquifer.

Measured ground-water ages in the aquifer ranged from 
less than 25 years to more than 15,000 years. That age distri-
bution allowed for the reconstruction of long-terms trends in 
concentrations of nitrate in recharge. During the past ~12,000 
years (late Pleistocene and Holocene), nitrate concentra-
tions in recharge ranged from 0.8 to 4.2 mg/L as N, with a 
median concentration of 2.2 mg/L as N. During the past 50 
to 60 years, nitrate concentrations in recharge have increased 
compared to concentrations in paleorecharge. An analysis of 
existing data collected from 1930 to 1999 confirms the rela-
tively recent increase in nitrate concentrations. The increase 
in recharge nitrate concentrations during the past 50 years 
appears to be related to the increased use of agricultural fertil-
izer during that period, although contributions of nitrate from 
other anthropogenic sources such as human and animal waste 
may also be important.

The quality of water produced by domestic, public-sup-
ply, and irrigation wells in the High Plains aquifer generally 
was acceptable for most uses, although differences in water 
quality among the assessed hydrogeologic units and among 
well types were observed. Evaluation of domestic-well water 

quality on the basis of exceedances of national primary and 
secondary drinking-water standards indicates that the Ogal-
lala Formation in the southern High Plains had the poorest 
water quality followed by the Quaternary and Plio-Pleistocene 
deposits. The Ogallala Formation in the central and north-
ern High Plains had the best water quality on the basis of 
this analysis.  Most exceedances of primary and secondary 
drinking-water standards were for arsenic, dissolved solids, 
fluoride, iron, manganese, and nitrate. The most frequently 
detected pesticide compounds were atrazine and deethylatra-
zine, whereas the most frequently detected volatile organic 
compound was chloroform. None of the pesticide compounds 
or volatile organic compounds exceeded a primary drinking-
water standard. 

The quality of water produced by some domestic and 
public-supply wells was adversely affected by agricultural 
and urban contaminants in recent recharge and by mixing 
processes caused by leakage through long well screens and 
long-term pumping of high-capacity public-supply and irriga-
tion wells. The combination of those processes resulted in 
small but measurable increases in concentrations of anthro-
pogenic contaminants such as nitrate in High Plains ground 
water when viewed in the context of decadal and millennial 
timeframes. One consequence of gradual upward trends in 
contaminant concentrations is that the contamination problem 
may go undetected because of a lack of long-term monitoring 
data. Once contaminated, deep zones in the aquifer in which 
production wells are screened are not likely to be remediated 
quickly because of slow recharge rates, long water residence 
times in the aquifer, and slow rates of contaminant degra-
dation. An important implication of the time-series data is 
that contaminant concentrations in water from domestic and 
public-supply wells will increase in the future as the fraction 
of post-1950s recharge captured by those wells increases.

The availability and sustainability of water supplies 
in the High Plains aquifer are influenced by many factors, 
one of which is water quality. This water-quality assessment 
establishes a regional baseline against which water-quality 
conditions can be tracked over time and provides process-level 
understanding to help explain changes. Without process-level 
understanding to inform the decision-making process,  
effective best-management practices or remediation strate-
gies are less likely to be developed to address water-quality 
problems.
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Appendix 1—Reports published as part of, or in cooperation with, the High 
Plains Regional Ground-Water study.
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component

Report Region
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Southern High 
Plains

Pope, L.M., Bruce, B.W., and Hansen, C.V., 2001, Ground-water quality in Quaternary deposits of the central High Plains 
aquifer, south-central Kansas, 1999: U.S. Geological Survey Water-Resources Investigations Report, 00–4259, 44 p.
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Plains
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Land-use 
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Plains
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1655–1686.
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Southern High 
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cal Survey Water-Resources Investigations Report 03–4171, 30 p.
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Water Resources Research, v. 42, W03413, doi:10.1029/2005WR004417.
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Scanlon, B.R., Reedy, R.C., Stonestrom, D.A., Prudic, D.E., and Dennehy, K.F., 2005, Impact of land use and land cover 
change on groundwater recharge and quality in the southwestern US: Global Change Biology, v. 11, p. 1577–1593.

Southern High 
Plains

Walvoord, M. A., F. M. Phillips, D. A. Stonestrom, R. D. Evans, P. C. Hartsough, B. D. Newman, and R. G. Striegl, 2003, 
A reservoir of nitrate beneath desert soils: Science, v. 302, p. 1021–1024.

All regions

Weeks, E.P., and McMahon, P.B., 2007, Nitrous oxide fluxes from cultivated areas and rangeland–U.S. High Plains: 
Vadose Zone Journal, v. 6, p. 496–510.

All regions

Special 
studies

Bruce, B.W., and Oelsner, G.P., 2001, Contrasting water quality from paired domestic/public supply wells, central High 
Plains: Journal of the American Water Resources Association, v. 37, p. 1389–1403.

Central High 
Plains
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Study 
component

Report Region

Special 
studies, 
continued

Clark, B.R., Landon, M.K., Kauffman, L.J., and Hornberger, G.Z., 2007, Simulations of ground-water flow, transport, 
age, and particle tracking at the local scale near York, Nebraska for a study of the transport of anthropogenic and natural 
contaminants (TANC) to public supply wells: U.S. Geological Survey Scientific Investigations Report,  
2007–5068, 50 p. 

Northern High 
Plains

Dennehy, K.F., Litke, D.W., and McMahon, P.B., 2002, The High Plains aquifer; USA – Ground-water development and 
sustainability, in Hiscock, K.M., Rivett, M.O., and Davison, R.M., eds., Sustainable ground-water development: London 
Geological Society, Special Publication 193, p. 99–119.

All regions

Dennehy, K.F., 2000, High Plains regional ground-water study: U.S. Geological Survey Fact Sheet FS–091–00, 6 p. All regions

Gurdak, J.J., and Qi, S.L., 2006, Vulnerability of recently recharged ground water in the High Plains aquifer to nitrate 
contamination: U.S. Geological Survey Scientific Investigations Report 2006–5050, 39 p.

All regions

Gurdak, J.J., Hanson, R.T., McMahon, P.B., Bruce, B.W., McCray, J.E., Thyne, G.D., and Reedy, R.C., 2007, Climate 
variability controls on unsaturated-zone water and chemical movement, High Plains aquifer: Vadose Zone Journal, doi: 
10.2136/vzj/2006.0087.

All regions

Gurdak, J.J., McCray, J.E., Thyne, G., and Qi, S.L., 2007, Latin hypercube approach to estimate uncertainty in ground 
water vulnerability: Ground Water, v. 45, p. 348–361.

All regions

Litke, D.W., 2001, Historical water-quality data for the High Plains Regional Ground-Water study area in Colorado, Kan-
sas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, 1930-98: U.S. Geological Survey Water-
Resources Investigations Report, 00–4254, 65 p.

All regions

McMahon, P.B., Bruce, B.W., Becker, M.F., Pope, L.M., and Dennehy, K.F., 2000, Occurrence of nitrous oxide in the 
central High Plains aquifer, 1999:  Environmental Science & Technology, v. 34, p. 4873–4877.

Central High 
Plains

McMahon, P.B., 2000,  A reconnaissance study of the effect of irrigated agriculture on water quality in the Ogallala For-
mation, central High Plains aquifer:  U.S. Geological Survey Fact Sheet FS–009–00, 6 p.

Central High 
Plains

Qi, S.L., Konduris, A., Litke, D.W., and Dupree, J., 2002, Classification of irrigated land using satellite imagery, the High 
Plains aquifer, nominal date 1992: U.S. Geological Survey Water-Resources Investigations Report, 02–4236, 35 p.

All regions

Qi, S.L., Konduris, A., Litke, D.W., and Dupree, J., 2002, HPIRRLND_92–Location of irrigated land classified from 
satellite imagery-High Plains area, nominal date 1992: U.S. Geological Survey Open-File Report 02–441 (GIS dataset).

All regions

Qi, S.L., and Gurdak, J.J., 2006, Percentage of probability of nonpoint-source nitrate contamination of recently recharged 
ground water in the High Plains aquifer: U.S. Geological Survey Data Series DS–192 (GIS dataset).

All regions

Rajagopalan, S., Anderson, T.A., Fahlquist, L., Rainwater, K.A., Ridley, M., and Jackson, W.A., 2006, Widespread  
presence of naturally occurring perchlorate in High Plains of Texas and New Mexico: Environmental Science &  
Technology, v. 40, p. 3156–3162.

Southern High 
Plains

Torres, J.M., Litke, D.W., and Qi, S.L., 1999, HPBEDROCK--bedrock formations underlying the High Plains aquifer: 
U.S. Geological Survey Open-File Report 99–214 (GIS dataset).

All regions
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Appendix 2—Water Quality of the High 
Plains Aquifer in a National Context

This appendix includes graphical comparisons of chemi-
cal concentrations for some of the most commonly detected 
inorganic and organic constituents in principal aquifers of the 
United States (Nolan and Stoner, 2000; Lapham and others, 
20051; Gilliom and others, 2006; Zogorski and others, 2006), 
including the High Plains aquifer. For each constituent, the 
concentration data are grouped according to four well types: 
shallow agricultural monitoring wells (agricultural land-use 
study wells), domestic wells (major-aquifer study wells), shal-
low urban monitoring wells (urban land-use study wells), and 
public-supply wells.  For each well type, the aquifers also are 
grouped according to aquifer lithology: basalt and volcanics, 
carbonate/crystalline, carbonate/sandstone, sand and gravel, 
and semiconsolidated sand. For organic compounds, graphs 
show only concentrations detected above a common assess-
ment level and data for a particular compound were not plotted 
if there were fewer than five detections of the compound.  
Note that analytical detection limits varied among the constitu-
ents; thus, detection frequencies are not comparable between 
constituents.  For a given constituent, however, detection 
frequencies are comparable between aquifers. The data used 
in this report for the High Plains are available at URL: http://
co.water.usgs.gov/nawqa/hpgw/index.html.

1Lapham, W.W., Hamilton, P.A., and Myers, D.N., 2005, 
National Water-Quality Assessment Program—Cycle II 
regional Assessments of aquifers: U.S. Geological Survey 
Fact Sheet 2005–3013, 4 p.
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SMCL = 250 mg/L
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