Skip Links

USGS - science for a changing world

U.S. Geological Survey Professional Paper 1760-G

Studies by the U.S. Geological Survey in Alaska, 2007

Late Glacial-Holocene Pollen-Based Vegetation History from Pass Lake, Prince of Wales Island, Southeastern Alaska

By Thomas A. Ager and Joseph G. Rosenbaum

ABSTRACT

Thumbnail of and link to report PDF (17.7 MB)

A radiocarbon-dated history of vegetation development since late Wisconsin deglaciation has been reconstructed from pollen evidence preserved in a sediment core from Pass Lake on Prince of Wales Island, southeastern Alaska. The shallow lake is in the south-central part of the island and occupies a low pass that was filled by glacial ice of local origin during the late Wisconsin glaciation. The oldest pollen assemblages indicate that pine woodland (Pinus contorta) had developed in the area by ~13,715 cal yr B.P. An abrupt decline in the pine population, coinciding with expansion of alder (Alnus) and ferns (mostly Polypodiaceae) began ~12,875 yr B.P., and may have been a response to colder, drier climates during the Younger Dryas climatic interval. Mountain hemlock (Tsuga mertensiana) began to colonize central Prince of Wales Island by ~11,920 yr B.P. and was soon followed by Sitka spruce (Picea sitchensis). Pollen of western hemlock (Tsuga heterophylla) began to appear in Pass Lake sediments soon after 11,200 yr B.P. The abundance of western hemlock pollen in the Pass Lake core during most of the Holocene appears to be the result of wind transport from trees growing at lower altitudes on the island. The late Holocene pollen record from Pass Lake is incomplete because of one or more unconformities, but the available record suggests that a vegetation change occurred during the late Holocene. Increases in pollen percentages of pine, cedar (probably yellow cedar, Chamaecyparis nootkatensis), and heaths (Ericales) suggest an expansion of muskeg vegetation occurred in the area during the late Holocene. This vegetation change may be related to the onset of cooler, wetter climates that began as early as ~3,774 yr B.P. in the region. This vegetation history provides the first radiocarbon-dated Late Glacial–Holocene terrestrial paleoecological framework for Prince of Wales Island. An analysis of magnetic properties of core sediments from Pass Lake suggests that unconformities caused by low lake levels may be detectable where fine-grained ferrimagnets are concentrated in peaty sediments.

  • This report is available only on the Web.

For additional information contact:
Earth Surface Processes Team - Central Region staff

Alaska Science
U.S. Geological Survey
4210 University Dr.
Anchorage, AK 99508
Geologic Science of Alaska
Alaska Science Center

Back to Studies by the U.S. Geological Survey in Alaska, 2007

This report is presented in Portable Document Format (PDF); the latest version of Adobe Reader or similar software is required to view it. Download the latest version of Adobe Reader, free of charge.


Suggested citation:

Ager, T.A., and Rosenbaum, J.G., 2009, Late glacial-Holocene pollen-based vegetation history from Pass Lake, Prince of Wales Island, southeastern Alaska, in Haeussler, P.J., and Galloway, J.P., eds., Studies by the U.S. Geological Survey in Alaska, 2007: U.S. Geological Survey Professional Paper 1760-G, 19 p.



Contents

Abstract

Introduction

Methods

Local Setting

Results

Interpretations of Vegetation and Climate History

Summary

Acknowledgments

References


Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: http:// pubs.usgs.gov /pp/1760/g/index.html
Page Contact Information: USGS Publications Team
Page Last Modified: Monday, 14-Jan-2013 14:37:38 EST