GEOLOGY, GEOCHEMISTRY, AND GENESIS OF THE GREENS CREEK MASSIVE SULFIDE DEPOSIT, ADMIRALTY ISLAND, SOUTHEASTERN ALASKA By Cliff D. Taylor and Craig A. Johnson, editors 2010 Professional Paper 1763 ABSTRACT In 1996, a memorandum of understanding was signed by representatives of the U.S. Geological Survey and Kennecott Greens Creek Mining Company to initiate a cooperative applied research project focused on the Greens Creek massive sulfide deposit in southeastern Alaska. The goals of the project were consistent with the mandate of the U.S. Geological Survey Mineral Resources Program to maintain a leading role in national mineral deposits research and with the need of Kennecott Greens Creek Mining Company to further development of the Greens Creek deposit and similar deposits in Alaska and elsewhere. The memorandum enumerated four main research priorities: (1) characterization of protoliths for the wall rocks, and elucidation of their alteration histories, (2) determination of the ore mineralogy and paragenesis, including metal residences and metal zonation within the deposit, (3) determination of the ages of events important to ore formation using both geochronology and paleontology, and (4) development of computer models that would allow the deposit and its host rocks to be examined in detail in three dimensions. The work was carried out by numerous scientists of diverse expertise over a period of several years. The written results, which are contained in this Professional Paper, are presented by 21 authors: 13 from the U.S. Geological Survey, 4 from Kennecott Greens Creek Mining Company, 2 from academia, and 2 from consultants. The Greens Creek deposit (global resource of 24.2 million tons at an average grade of 13.9 percent zinc, 5.1 percent lead, 0.15 troy ounce per ton gold, and 19.2 troy ounces per ton silver at zero cutoff) formed in latest Triassic time during a brief period of rifting of the Alexander terrane. The deposit exhibits a range of syngenetic, diagenetic, and epigenetic features that are typical of volcanogenic (VMS), sedimentary exhalative (SEDEX), and Mississippi Valley-type (MVT) genetic models. In the earliest stages of rifting, formation of precious-metal-rich silica-barite-carbonate white ores began at low temperature in a shallow, subaqueous setting, probably a thin carbonate shelf on the flanks of the Alexander landmass. Epigenetic carbonate replacement textures in the footwall dolostones are overlain by stratiform silica-carbonate-barite-rich ores and indicate that early mineralization formed at and just beneath the paleo sea floor by mixing of a reduced, precious-metal-rich, base-metal-poor hydrothermal fluid with oxygenated seawater. As rifting intensified, the shelf was downfaulted and isolated as a graben. Isolation of the basin and onset of starved-basin shale sedimentation was concurrent with emplacement of mafic-ultramafic intrusives at shallow levels in the rift, resulting in an increasingly higher temperature and progressively more anoxic ore-forming environment. The formation of the main stage of massive sulfide ores began as the supply of bacterially reduced sulfur increased in the accumulating shales. As the main-stage mineralization intensified, shale sedimentation inundated the hydrothermal system, eventually forming a cap. Biogenic sulfate reduction supplied reduced sulfur to the base of the shales where mixing occurred with hot, base-metal-rich hydrothermal fluids. Ore deposition continued by destruction and epigenetic replacement of the early white ores in proximal areas and by inflation and diagenetic replacement of unlithified shale at the interface between the white ores and the base of the shale cap. Ore deposition waned as the shales became lithified and as the supply of bacterially reduced sulfur to the site of ore deposition ceased. The final stages of rifting resulted in the emplacement of mafic-ultramafic intrusive rocks into the Greens Creek system and extrusion of voluminous basaltic flows at the top of the Triassic section. Greenschist facies metamorphism during the Jurassic-Cretaceous accretion of the Alexander terrane to the continental margin resulted in recrystallization, remobilization, and significant upgrading of the Greens Creek orebody. Current ore-genetic models are inadequate to explain the diverse characteristics of the Greens Creek deposit. We suggest that Greens Creek represents a transitional type of deposit that formed as a result of its evolving metallogenic setting in a propagating intra-arc rift. It is therefore a hybrid deposit within a spectrum of exhalative to replacement-style deposits. DISCLAIMERS Although these data have been processed successfully on a computer system at the U.S. Geological Survey, no warranty, expressed or implied is made regarding the display or utility of the data on any other system, or for general or scientific purposes, nor shall the act of distribution constitute such warranty. The U.S.Geological Survey shall not be held liable for improper or incorrect use of the data described and/or contained herein. Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Geological Survey. Although this information product, for the most part, is in the public domain, it also contains copyrighted material as noted in the text. Permission to reproduce copyrighted items for other than personal use must be secured from the copyright owner. CONTENTS 00Readme.txt Chap2table1and2.xls Chap2table2.pdf Chap8table1.xls Chap8table1.pdf PP1763.pdf PP1763_plate4-1.pdf PP1763_plate7-1.pdf PP1763_plate7-2A.pdf PP1763_plate7-2B.pdf PP1763_plate7-3.pdf PP1763_plate7-4.pdf PP1763_plate7-5.pdf INSTRUCTIONS AND DOCUMENTATION FOR U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1763 To access the data: The files for this report can be downloaded via the web from: http://pubs.usgs.gov/pp/1763 The main product is a printed document that contains a CD of the map plates, tables, and the text portion of the report in a back pocket. The map plates, the electronic file of the report, and the tables are in Portable Document Format (.pdf) and require Adobe Reader version 9 for viewing. Adobe software runs on a variety of systems, and is available for download free of charge from Adobe at http://www.adobe.com. The tables are also presented in an Excel format (.xls) and require Excel Viewer for viewing. Excel Viewer software runs on a variety of systems, and is available for download free of charge from Microsoft at http://www.microsoft.com.