

Geologic Map of Gunnison Gorge National Conservation Area, Delta and Montrose Counties, Colorado

 By Karl S. Kellogg,¹ Wallace R. Hansen,¹ Karen S. Tucker,² and D. Paco VanSistine¹
2004

Introduction The 57,725-acre Gunnison Gorge National Conservation Area (hereafter referred to as the NCA) was created by Congress in 1999 and is administered by the U.S. Bureau of Land Management (BLM). The NCA (figs. 1A and B) is the downstream continuation of the Colorado Plateau, which contains the most extensive and deepest depths of the Gunnison River canyon within the National Park. Several good hiking trails provide access to the canyon within the NCA. It is one of the most beautiful and accessible wild areas to be found in the United States. Every year the gorge attracts over 10,000 visitors, who explore its depths and the surrounding hills by foot, horseback, mountain bike, kayak, and raft. Rock cliffs, quiet riverside glens, cascading rapids, winding trails with spectacular canyon views—these are just a few of the features enjoyed by visitors to the NCA.

What attracted people to the NCA is due to the spectacular geologic formations, which document a geological history that extends to more than a third of the age of the Earth itself. This map shows not only some of these geological features, but highlights some of the more interesting ecological and human-interest aspects of the Gunnison River gorge.

Geology The fascinating geologic story of the Gunnison River gorge is too complicated to describe in detail on this map. However, this story is told in a separate, companion publication, "The Geologic Story of Gunnison Gorge National Conservation Area, Colorado" (Kellogg, in press). For the purposes of this map, the geology is briefly described here.

The Rocks of the Gorge Record Geologic History

The oldest rocks in the gorge are the ancient basement rocks that make up the mostly steep, dark-colored walls beneath horizontal layers of sedimentary rock. These basement rocks were formed by igneous and metamorphic processes deep in the Earth's crust during the Proterozoic Eon, approximately 1.7–1.4 billion years ago. Examples of metamorphic rocks in the gorge are quartzite gneiss, mica schist, amphibolite, and migmatite (figs. 2, 3 and 4). Within the NCA, coarse-grained Pits Meadow Granodiorite (figs. 3 and 5) intruded these ancient basement rocks, creating many light-colored dikes and irregular masses of coarse-grained pegmatite that form a conspicuous network of igneous intrusions throughout the canyon.

A tremendous period of time—over 1.5 billion years—transpired between the formation of the basement rocks and the deposition of the oldest sedimentary rocks that rest on them. We know that several periods of deposition occurred during this time, but the detailed geological record exists for the period of uplift that resulted in the ancestral Uncompahgre uplift, one of several mountainous areas that rose about 300 million years ago. Erosion that followed the uplift denuded the region of the 550–300-million-year-old Paleozoic rocks that had been deposited before uplift. The oldest sedimentary rocks that remain in the gorge are the Wankah Shale, which was deposited during a longer period of uplift and major mountain building, called the Laramide orogeny, occurred about 70–50 million years ago and formed the pattern of ranges of the present Rocky Mountains.

The oldest sedimentary rocks in the NCA form the Middle Jurassic Entrada Sandstone (fig. 6), which is composed of pink to yellowish-orange, cross-bedded sandstone, sandstone, and gypsum of the Middle Jurassic Wanakah Formation, which were deposited in a closed, shallow inland sea. With time, the land was slowly uplifted and the sea retreated. The sea-floor sediments were then buried by sandy and muddy sediments deposited in coastal lakes and rivers, and those sediments now form the multicolored sandstone and shale beds of the Upper Jurassic Morrison Formation. The basal part of the Morrison Formation is characterized by the presence of the "Dakota" Member, which contains thin, bedded, yellowish-green gypsum beds, indicating that shallow, endorheic basins periodically covered the land during deposition of the Tidwell. The Tidwell Member closely resembles the underlying Wanakah Formation, and on older maps (for example, Hansen, 1968, 1971) it was included with the Wanakah. The Tidwell Member of the Morrison Formation is the most abundant in the NCA, and these are combined on this geologic map because they are so similar in this area; however, they are differentiated in figure 7.

The overlying Morrison Formation is the Salt Wash Member of the Morrison Formation, which contains cross-bedded, red-stained sand (from the overlying reddish shale), mudstone, and interbedded sandstone and interbedded shale.

Overlying the Morrison Formation is the Brushy Basin Member of the Morrison Formation, which contains thick, bedded, light-brown, quartz sandstone with interbedded shale and chert-pebble conglomerate. Above the Brushy Basin Formation, thin beds of quartz sandstone, shale, and coal in the Lower Cretaceous Dakota Formation record a time when rivers and swamps deposited sand, mud, and decaying plant material along the riverbank.

Once again, the sea-level dropped, and the sand and silt of sandstone and mudstone of the Upper Cretaceous Mancos Shale, which now forms a gray badlands landscape of weathered shale and mudstone in the southwestern and western parts of the NCA. The Mancos Shale is the youngest consolidated bedrock formation exposed in the NCA. Much younger, mostly unconsolidated Quaternary surface deposits, such as alluvium, terrace gravels, landside deposits, and talus, cover large areas of the NCA.

Ute Indian fault: A Spectacular Laramide Fault The Gunnison River gorge contains one of the most spectacularly exposed faults in Colorado—the Ute Indian fault. It is a north-trending, east-directed thrust fault that dips (is inclined) about 10° west. During the Laramide orogeny, Proterozoic basement rocks were shoved up to the east and the fault along the dip as much as 1,150 feet (350 meters) vertically above Jurassic sedimentary rocks.

Such a break in the geologic record is called an unconformity. The rocks above the unconformity are fluvial deposits of the Lower Cretaceous Burro Canyon Formation, which form thick beds of cliff-forming, light-brown, quartz sandstone with interbedded shale and chert-pebble conglomerate. Above the Burro Canyon Formation, thin beds of quartz sandstone, shale, and coal in the Lower Cretaceous Dakota Formation record a time when rivers and swamps deposited sand, mud, and decaying plant material along the riverbank.

Once again, the sea-level dropped, and the sand and silt of sandstone and mudstone of the Upper Cretaceous Mancos Shale, which now forms a gray badlands landscape of weathered shale and mudstone in the southwestern and western parts of the NCA. The Mancos Shale is the youngest consolidated bedrock formation exposed in the NCA. Much younger, mostly unconsolidated Quaternary surface deposits, such as alluvium, terrace gravels, landside deposits, and talus, cover large areas of the NCA.

The Gunnison Gorge National Conservation Area and Black Canyon of the Gunnison National Park Major roads are shown in brown. A (left) Index map showing location of the Gunnison Gorge National Conservation Area and Black Canyon of the Gunnison National Park. Major roads are shown in brown. B (below) Landsat image showing the area of the geologic map and surrounding region.

Figure 1 (left). Index map showing location of the Gunnison Gorge National Conservation Area and Black Canyon of the Gunnison National Park. Major roads are shown in brown.
B (below). Landsat image showing the area of the geologic map and surrounding region.

Figure 2 (left). Running the river just below the Chukar Canyon launch site. The light-colored rocks are dikes of coarse-grained pegmatite (Xg) cutting layered quartzite gneiss (Xq). View is toward the northwest.

Figure 3 (above). Outcrop along the Gunnison River, about 0.8 mile (1 km) upstream from Smith Fork, of dark, layered amphibolite (Xa), intruded by Pits Meadow Granodiorite (Xm) in turn intruded by light-colored, coarse-grained pegmatite (Xg) and fine-grained aplite (not shown separately on map). Klippe is about 3.5 inches (9 cm) long.

Figure 4 (left). Two lizards sunning themselves on an outcrop of amphibole gneiss (Xq) in the canyon of Smith Fork. The distance between the lizards is about one foot (30 cm).

Figure 5 (left). The Boulders Garden, a class III–IV rapids, contains large blocks of dark Pits Meadow Granodiorite (Xm).

Figure 6 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 7 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 8 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 9 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 10 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 11 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 12 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 13 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 14 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 15 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 16 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 17 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 18 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 19 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 20 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 21 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 22 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 23 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 24 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 25 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 26 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 27 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 28 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 29 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 30 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 31 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 32 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 33 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 34 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 35 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 36 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 37 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 38 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 39 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 40 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 41 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 42 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 43 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.

Figure 44 (left). View to the south along the Ute Indian fault, about 0.8 mile (1 km) south of Ute Park. The hikers are standing on a large, light-colored, irregular block of Entrada Sandstone. The light-colored rocks in the distance, on the left side of the picture, are slates of Entrada Sandstone that are offset along the Ute Indian fault.