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DESCRIPTION OF MAP UNITS
NONGLACIAL DEPOSITS

Beach deposits (Holocene)—Locally well-sorted 
sand, pebbles, silt, and shells; deposited or 
reworked by wave action. Includes upper-beach 
deposits above mean high water line and local 
thin veneer of modern beach sediment that 
overlies older deposits. At stream mouths, grades 
into unit Qal; in intertidal zone, grades into unit 
Qtf

Wetland deposits (Holocene)—Peat and alluvium; 
poorly drained and intermittently wet 

Landslide deposits (Holocene)—Diamictons 
composed of broken to internally coherent 
surficial deposits that are derived from upslope. 
Numerous unmapped areas of both landslide and 
related mass-wastage deposits also are found  
elsewhere in quadrangle, particularly where 
coarse deposits (units Qva and Qpogc) overlie fine 
deposits (particularly units Qvlc, Qpogf, and Qpfn).  
Shown by arrows on bluff sketches

Mass-wastage deposits (Holocene)—Colluvium, soil, 
and landslide debris that has indistinct 
morphology; mapped where sufficiently thick and 
continuous enough to obscure underlying 
material.  Numerous unmapped areas of mass-
wastage deposits are found elsewhere in 
quadrangle along coastal bluffs of Puget Sound.  
Deposits, both mapped and unmapped, may 
include discrete landslides 1 to 10 m in lateral 
extent

Alluvium (Holocene)—Moderately well sorted 
deposits of cobble gravel, pebbly sand, and sandy 
silt; found along floodplains of lowland streams.  
Unit is gradational with, and locally includes, 
sediment equivalent to units Qf and Qb 

Fan deposits (Holocene)—Boulders, cobbles, 
pebbles, and sand; deposited in lobate form where 
streams emerge from confining valleys and where 
reduced gradients cause sediment loads to be 
deposited

Tideflat deposits (Holocene)—Silt, sand, and organic 
sediment and detritus; exposed in broad coastal 
benches at low tide

YOUNGER GLACIAL DEPOSITS

Deposits of the Vashon stade of the Fraser 
glaciation of Armstrong and others (1965) 
(Pleistocene)—Consists of:

Recessional outwash deposits—Stratified sand and 
gravel, moderately well sorted to well sorted;  
less common silty sand and silt.  Exposed 
primarily on floors of broad outwash channels 
that trend south-southwest between flutes molded 
by glacial flow; also exposed as irregular upland 
bodies having no obvious channelized form. 
Deposits less than about 1 m thick commonly 
overlie till but are not mapped

Ice-contact deposits—Deposits similar in texture to 
unit Qvr but locally containing much higher 
percentage of silt intermixed with granular 
sediments; also includes lenses and pods of till.  
Locally characterized by hummocky topography 
and (or) closed depressions

Till—Compact diamicton containing subrounded to 
well-rounded clasts; glacially transported and 
deposited.  Generally forms undulating surface a 
few meters to a few tens of meters thick.  Also 
found sporadically within areas mapped as unit 
Qvi

Advance outwash deposits—Well-bedded sand and 
gravel; deposited by streams and rivers that 
issued from front of advancing ice sheet.  
Generally unoxidized; almost devoid of silt or 
clay, except near base of unit.  Includes deposits 
previously mapped by others as Colvos Sand or 
the Esperance Sand Member of the Vashon Drift

Lawton Clay—Laminated to massive silt, clayey 
silt, and silty clay; deposited in proglacial or 
lowland lakes.  Unequivocal evidence for glacial 
or nonglacial origin rarely present.  Mapped 
deposits are assigned to this unit primarily on the 
basis of stratigraphic position, but only some 
localities have nearby absolute age control

OLDER GLACIAL AND NONGLACIAL
DEPOSITS

Sedimentary deposits of pre-Fraser glaciation age 
(Pleistocene)—Weakly to moderately well 
oxidized sand and gravel; lacustrine sediments 
containing local peat layers; and moderately well 
to strongly oxidized diamicton composed of silty 
matrix and rounded gravel clasts. Locally mapped 
as:

Nonglacial deposits—Abundant organic debris or 
pumice indicating nonglacial origin

Olympia beds of Minard and Booth (1988) 
(Pleistocene)—Sand and silt thinly interbedded 
with some gravel layers and, locally, with 
abundant organic material; deposited by lowland 
streams or in floodplain and (or) lacustrine 
environments

Deposits of pre-Olympia age (Pleistocene)—Locally 
mapped as:

Coarse-grained deposits—Predominantly gravel 
and sand

Fine-grained deposits—Predominantly silt and clay 

Glacial deposits—Weakly to strongly oxidized silt, 
sand, and rare gravel of glacial origin. Underlies 
all Vashon-age deposits and thus must be of pre-
Olympia age 

Coarse-grained deposits—Predominantly gravel 
and sand

Fine-grained deposits—Predominantly silt and 
clay

Till deposits—Predominantly till or other diamict

Nonglacial deposits—Abundant organic debris or 
pumiceous deposits indicating nonglacial origin

Coarse-grained deposits—Predominantly gravel 
and sand

Fine-grained deposits—Predominantly silt and 
clay

Reversely magnetized deposits (Pleistocene)—

Glacial deposits—

Fine-grained deposits—Fine silt that contains 
dropstones, and so of likely glacial origin. 
Reversely magnetized and thus presumably more 
than 774,000 years old

Nonglacial deposits—Interbedded silt, sand and 
gravel, and local pumice clasts suggesting likely 
nonglacial origin. Reversely magnetized and thus 
presumably more than 774,000 years old

Contact—Dotted where concealed; queried where 
uncertain (in bluff sketch)

Fault—Dotted where concealed; queried where 
uncertain.  U, upthrown block; D, downthrown 
block.  Arrows (in bluff sketch) show relative 
motion

Strike and dip of beds
Inclined 

Horizontal

Pre-Vashon till—Mapped within units Qpo, Qpog, and 
Qrg where exposed on valley walls or coastal 
bluffs.  Queried where uncertain (in bluff sketch)    

Peat bed or other organic-rich layer

Paleomagnetic sample localities

Normal magnetization

Transitional magnetization

Reversed magnetization

14C age locality—See table 1 for ages

Infrared-stimulated luminescence (IRSL) age 
localities—See table 2 for ages

NONGLACIAL DEPOSITS

OLDER GLACIAL AND NONGLACIAL DEPOSITS

CORRELATION OF MAP UNITS
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GEOLOGIC SUMMARY
INTRODUCTION

The Olalla 7.5' quadrangle, which lies almost exactly in the 
center of the Puget Lowland, displays the broad range of geologic 
environments typical of the region.  The upland plain is fluted by 
the passage of the great continental ice sheet that last covered the 
area about 17,000 (14,000 radiocarbon) years ago.  The plain is 
cut by channel deposits, both late-glacial and postglacial in age, 
and it is cleaved even more deeply by one of the major arms of 
Puget Sound, the Colvos Passage, which here separates the west 
coast of Vashon Island from the Kitsap Peninsula.

Beneath the deposits of the last ice sheet is a complex 
sequence of older Quaternary-age sediments that extends about 
400 meters below the modern ground surface (Jones, 1996).  
These older sediments are best exposed along the shorelines and 
beach cliffs of Puget Sound, where wave action and landslides 
maintain relatively fresh exposures.  The older sediments 
typically are compact, having been weighted down by one or 
more episodes of glaciation subsequent to their deposition.  Some 
also are cemented by iron and manganese oxides and hydroxides, 
a consequence of many tens or hundreds of thousands of years of 
weathering and groundwater movement.

PREVIOUS MAPPING

In the Olalla quadrangle, the mapping shown on the Kitsap 
Peninsula was based entirely on original field work and published 
radiocarbon dates.  On Vashon Island, however, preexisting map 
data of Booth (1991) largely was used.  The locations of some 
geologic contacts were refined by reference to newly available 
LIDAR (LIght Distance And Ranging) topography from the Puget 
Sound LIDAR Consortium (see http://pugetsoundlidar.org/).  
Previously published geologic maps by Sceva (1957), Garling and 
others (1965), and Deeter (1979) included much or all of the 
quadrangle at smaller scales; although not used on this map, their 
data represent significant contributions for their time and have 
been valuable resources for establishing the general geologic 
context. 

STRATIGRAPHIC FRAMEWORK

Multiple invasions of glacial ice into the Puget Lowland have 
left a discontinuous record of Pleistocene glacial and nonglacial 
periods.  Originating in the mountains of British Columbia, the 
ice was part of the Cordilleran ice sheet of northwestern North 
America.  During each successive glaciation, ice advanced into 
the lowland as a broad tongue, first called the Puget lobe by Bretz 
(1913).  Willis (1898) first presented evidence for multiple 
glaciations in the Puget Lowland.

Past mapping in the Olalla quadrangle reflected many of the 
uncertainties that have accompanied regional efforts to identify 
and to correlate the various glacial and nonglacial deposits.  
Garling and others (1965) correlated the older glacial deposits 
exposed along the shores of Puget Sound with the Salmon Springs 
Drift (Crandell and others, 1958), and Deeter (1979) called these 
same deposits "Possession" by virtue of stratigraphic position and 
presumed correlation with the Possession Drift of Easterbrook 
and others (1967); neither, however, had any numerical age 
determinations with which to guide their judgment.  Also  
problematic for making stratigraphic assignments are the fine-
grained lacustrine sediments that both overlie and underlie these 
older glacial deposits.  Early mappers named them the Kitsap 
Formation, and subsequent mappers have used this name as well; 
however, Deeter (1979) correctly noted that the deposits assigned 
to the Kitsap Formation span multiple depositional periods that 
likely are separated by multiple glacial intervals.  Indeed, the 
term as used does not refer unequivocally to strictly glacial or 
strictly nonglacial deposits.  As a result, this name is abandoned 
in the current mapping, even though both the original type 
locality (Sceva, 1957) and its proposed redefinition (Garling and 
others, 1965) are located in the quadrangle, on the west side of 
Colvos Passage near the south map boundary.

Deposits predating the Vashon stade of the Fraser glaciation 
of Armstrong and others (1965)

The oldest exposed sediment in the quadrangle is reversely 
magnetized, and so it is probably more than 774,000 years old.  
This age determination is based on direct paleomagnetic 
measurement of lacustrine silt and clay at three localities on the 
north Kitsap Peninsula coastline (samples T8197, T8200, and 
T9058).  Near the mouth of Fragaria Creek, at View Park, and to 
the north past Wilson Creek (Hagstrum and others, 2002), these 
older deposits are mapped as unit Qrg.  At Sandford Point, 
texturally similar sediment has a transitional polarity (sample 
T1321), suggesting a more precise 774 ka age; here the deposits 
are mapped in unit Qpog.

Where paleomagnetic determinations are absent, deposits 
whose ages predate the Fraser glaciation of Armstrong and others 
(1965), mapped as units Qpf and Qpo, are subdivided on the map, 
if at all, by their presumed depositional environment; scattered 
localities of normal-polarity sediment (samples T7001, T7004, 
T7007, T7010, T7277, and T8203) suggest that these mapped 
deposits are younger than 774 ka.  Where organic material or 
volcanic sediment is abundant, we infer a likely nonglacial origin 
(units Qpfn and Qpon).  Those deposits displaying a suite of sand 
and (or) gravel lithologies indicative of southward transport from 
the North Cascades or British Columbia (presumably by a 
continental ice sheet), or sedimentary features characteristic of 
glacial or proglacial environments, are of presumed glacial origin.  
Because all pre-Fraser glacial periods also precede the Olympia 
nonglacial interval (Mullineaux and others, 1965), these deposits 
are mapped as unit Qpog because the designation "Qpfg" (in other 
words, "Quaternary pre-Fraser glacial") is unnecessarily broad.  
We make no effort to assign stratigraphic names to these pre-
Fraser-age deposits, however, because absolute age control is 
very sparse at present.

In the eastern part of the quadrangle, we recognize two, and 
possibly three, separate pre-Fraser-age tills.  The two younger 
tills overlie normally polarized sediment and so are younger than 
774,000 years old; the age of the oldest pre-Fraser-age till is 
indeterminant.  To the west, exposures are poorer, and only one 
pre-Fraser-age till has been identified.  Diamictons of presumed 
glacial origin whose deposition predates the Fraser glaciation are 
shown as discrete units (Qpogt); layers or lenses are shown as 
triangle-dash lines on the map.  The absence of mapped 
diamictons elsewhere on the quadrangle reflects not only the 
likely discontinuity of these deposits but also the typically poor 
exposures across the map area, even under relatively favorable 
conditions of steep topography and sparse vegetation.

The Olympia nonglacial interval immediately preceded the 
most recent ice-sheet advance into the Puget Lowland 
(Mullineaux and others, 1965; Armstrong and others, 1965; 
Troost, 1999).  Deposits formed during this time, mapped as unit 
Qob, have been identified by radiocarbon dating at several 
localities in the Olalla quadrangle (table 1).  Deposition of these 
sediments may have been more widespread during this time than 
is indicated by the distribution of unit Qob on the map because 
some Olympia-age sediments are probably lumped less precisely 
into the lithostratigraphic units Qpf or Qpfn.  Conversely, deposits 
mapped as pre-Olympia in age (and so assigned to unit Qpo) are 
separated from either Fraser-age or radiocarbon-dated Olympia-
age deposits by at least one pre-Fraser-age glacial unit.

Deposits of the Vashon stade of the Fraser glaciation 
of Armstrong and others (1965)

Most deposits at or near the constructional land surface are 
readily assigned to the youngest regionally recognized glacial 
advance, the Vashon stade of the Fraser glaciation (Armstrong 
and others, 1965).  During this time an ice sheet advanced along 
the axis of the lowland from the north (Clague, 1981), reaching 
its maximum extent about 17,000 (14,000 radiocarbon) yr B.P. 
and covering the Puget Lowland to a maximum depth of about 
1,500 m (Booth, 1987; Porter and Swanson, 1998).  As the ice 
first advanced, it blocked northward lowland drainage out the 
Strait of Juan de Fuca, which now connects Puget Sound with the 
Pacific Ocean.  In the impounded lakes that formed in the course 
of establishing southerly drainage out of the Puget Lowland, 
laminated silt and clay were deposited broadly across the Puget 
Lowland.  We have tentatively assigned such lacustrine deposits 
flanking Olalla Valley and Colvos Passage to unit Qvlc on the 
basis of their texture and their stratigraphic position relative to 
the underlying dated deposits of the Olympia nonglacial interval 
(unit Qob).

Advance outwash deposits (Qva), deposited by streams derived 
from the advancing ice sheet, marks the subsequent depositional 
interval.  Sandy advance outwash deposits at least a few tens of 
meters thick (and locally as thick as 100 meters) underlies the 
broad uplands in the central part of the quadrangle.  This deposit 
inundated the pre-Vashon topography of the lowland and resulted 
in a gently south-sloping landform (Booth, 1994), whose upper 
surface is as high as 120 m (400 ft) in the center of the 
quadrangle but locally has been scoured by the overriding ice 
down to as low as about 30 m (100 ft).  The base of the unit is 
exposed along most of the deep valleys and coastal bluffs; its 
elevation varies between about 30 and 60 m (100-200 ft).

As ice covered the region, till (Qvt) was deposited by the melt-
out of debris at the base of the glacier.  This heterogeneous and 
generally compact sediment blankets the area to depths that are 
of, at most, a few tens of meters but, more typically, are only one 
or two meters.  In the northwestern part of the quadrangle, the 
ground surface underlain by this deposit is strongly fluted to the 
south-southwest; elsewhere, it displays a modest grain that is 
recognizable but not nearly as pronounced.

Shortly after 17,000 (14,000 radiocarbon) years ago, the ice 
margin, which by this time had advanced about 70 km south of 
the quadrangle, began to melt back.  Recession of the ice sheet 
was accompanied by both outwash streams and ice-dammed lakes, 
analogous to those formed during the ice advance.  When the 
Olalla quadrangle was uncovered by the retreating glacier, a 
proglacial lake already had inundated much of the central and 
southern Puget Lowland because water was impounded by the 
more than one thousand meters of ice that still filled the Strait of 
Juan de Fuca.   This water body, Glacial Lake Russell, drained 
out through the Black Hills into the Chehalis River many tens of 
kilometers to the south of the quadrangle (Thorson, 1980).  
Although the elevation of the Black Hills spillway was only about 
40 m, the ancient level of Glacial Lake Russell is now higher 
because the land surface of the entire Puget Lowland has 
rebounded since the subsequent removal of the ice sheet.  More 
rebounding occurred in the north than in the south because the ice 
was thicker to the north.  Rebound in the Olalla quadrangle 
ranges from about 40 m (in the south) to 50 m (in the north), and 
so the level of Puget Sound during earliest deposition of 
recessional outwash deposits (Qvr) was at about 80 to 90 m (260-
300 ft) elevation.  Recessional outwash deposits are scattered 
across the upland areas, notably south and west of Long Lake, 
above Wilson Creek and Fragaria Creek in the northeast corner of 
the map, and on the upland areas of Vashon Island.

Other recessional outwash deposits, however, are present in 
valleys that have lower elevations than the level of Glacial Lake 
Russell, most notably in Olalla Valley, Crescent Valley, and the 
valley of Purdy Creek.  These deposits must have been deposited 
either during drainage of Glacial Lake Russell or during the 
subsequent regional lake stage, that of Glacial Lake Bretz (Waitt 
and Thorson, 1983).  Glacial Lake Bretz, which had a water-
surface elevation of about 10 to 20 m across the quadrangle, 70 m 
lower than that of Glacial Lake Russell, was impounded by a 
spillway 50 km north of the quadrangle, at Leland Creek on the 
northeastern Olympic Peninsula.  Continued ice retreat ultimately 
exposed sea-level channels that drained Glacial Lake Bretz, 
permitting the first postglacial access of Puget Sound drainages to 
the Strait of Juan de Fuca.  With the ice margin so far north at the 
time, the area of the Olalla map must have been largely ice-free, 
and so fluvial activity could have consisted of only small creeks 
draining off of the local uplands, similar to that of the present 
day.  Erosion of these large valleys, therefore, must be a result of 
subglacial activity, almost certainly subglacial fluvial erosion, 
because these landforms partly crosscut the upland indicators of 
ice-flow direction.  As such, these large valleys are the central-
lowland equivalents of the "channelways" previously mapped 
along the eastern margin of the Puget Lowland (Booth and Hallet, 
1993).

 STRUCTURE
The Olalla quadrangle occupies a region of known Holocene 

seismicity and surface faulting (Bucknam and others, 1992; 
Johnson and others, 1996; Brocher and others, 2001).   Most 
apparent displacements and truncations, however, likely are the 
result of Holocene landsliding, depositional unconformities, or 
glacial overriding, instead of tectonic movement.  One fault of 
likely tectonic origin is mapped in the beach cliff near Sandford 
Point, where pre-Fraser-age silt abuts sand along a vertical, 
extensively sheared (presumably faulted) contact.  Bedding is 
strongly distorted along this (presumed) fault; the deformation 
extends about 2 m into the adjacent silt.

In contrast, the relatively gentle deformation that is 
widespread throughout the quadrangle almost certainly reflects 
long-term crustal deformation during the Quaternary period.  Pre-
Vashon-age deposits in and around the map area define a regional 
pattern of fold axes striking west to west-northwest (Booth and 
others, 2004b); the axis of an anticline is expressed by opposing 
dips just north of Sandford Point on Vashon Island, and a 
synclinal axis is suggested by dips just south of Fragaria Creek.  
No deformation has been observed in sediments of Vashon age, 
but deposits of Olympia age and older exhibit deformation here 
and throughout the southern Puget Sound region.
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Table 2. Infrared-stimulated luminescent (IRSL) ages from the Olalla quadrangle

Lab No. Location Elevation (ft) Material  Average IRSL Age,
in 1000 yrs

Map Unit 

Sandford Point

 
20 Fine sand 127±6 

 
Qpoc

25 Silt Qpof

WA-25

WA-26 185±9 Sandford Point

Dates from S. Mahan, U.S. Geological Survey, Denver, CO, and Mahan and others, 2003.  Samples collected in 2002.  Ages reflect average of 10-minute bleach (minimum age) 
and 60-minute bleach (maximum age) using CS-3-67 orange filter

Table 1. 14C ages from the Olalla quadrangle 

Site Name Sample No.Location
Approx

Elevation
(ft)

Sample
Type 

Lab. No. Reference
Map
Unit Pretreatment

"Maplewood
south" 

DB-212-98,
KT-13-98

47.3940 N
122.5531 W 70 peat >41,420 -25.03 Troost (1999) Qpon acid/alkali/acid

"Crescent
coast" 

47.3872 N
122.5488 W

80 peatW-1515 >38,000 Deeter (1979) Qpon unknown

47.3872 N
122.5488 W

?80 peaty siltW-2028 >42,000 Deeter (1979) Qpon unknown

"Fragaria
road" DB-235-97

47.4617 N
122.5372 W

80 peat 40,660±970 Troost (1999) Qob acid/alkali/acid

"Crescent
driveway 
(upper)" 

KT-170-99,
S-5

47.3870 N
122.5489 W

140
organic

sediment 
38,790±790 Troost (1999) Qob

47.3870 N
122.5489 W

133 peat >44,290 Troost (1999) Qob acid/alkali/acid

"Maplewood
coast"  

47.3989 N
122.5533 W

125 peatUW-25 ---4 Dorn and others
(1962)

Qob unknown

47.3989 N
122.5533 W

1255 peatW-1982 >42,000 Yount and others
(1980) 

Qob unknown

"Olalla Creek
quarry"

KT-11-98,
DB-78-98

47.4265 N
122.5542 W

70 peat 39,050±940 Troost (1999) Qob acid/alkali/acid

Beta-131069

Beta-128806

Beta-131071

Beta-131072

Beta-128805

13C/12C
Ratio
(o/oo)

"Crescent
coast"

"Crescent
driveway 
(lower)" 

"Maplewood
coast" 

KT-170-99,
S-7

-25.03

-25.03

-25.03

-25.03

not
avail.

acid/alkali/acid
(low C required

special handling)

1 Present is considered to be 1950 A.D.
2 Calibrated radiocarbon age (2-sigma range)
3 Estimated 13C/12C ratio
4 Originally reported finite date probably tritium-contaminated (Fairhall and others, 1966) and so not reported here; stratigraphic assignment based on field relationships
5 Elevation based on presumed duplication of site UW-25 (Deeter, 1979, p. 62-63) 

not
avail.

not
avail.

not
avail.

>41,420

>38,000

>42,000

42,950-
38,850 

40,650-
37,250 

>44,290

>42,000

---4

41,250-
37,250 

Conventional
Age, in 14C yr

B.P.1

Calibrated
14C Age,

in yr B.P.2


