Introduction

Beginning in the 1940s, the Wichita well field was developed in the Equus Beds aquifer in southwestern Harvey County and northwestern Sedgwick County to supply water to the city of Wichita (Williams and Lohman, 1949). In addition to supplying drinking water to the largest city in Kansas, the other primary use of water from the *Equus* Beds aquifer is to irrigate crops in this agriculture-dominated part of south-central Kansas (Rich Eubank, Kansas Department of Agriculture, Division of Water Resources, oral commun., 2008). The decline of water levels in the aquifer were noted soon after the development of the Wichita well field began (Williams and Lohman, 1949). As water levels in the aquifer decline, the volume of water stored in the aquifer decreases and less water is available to supply future needs. For many years the U.S. Geological Survey (USGS), in cooperation with the city of Wichita, has monitored these changes in water levels and the resulting changes in storage volume in the *Equus* Beds aquifer as part of Wichita's effort to effectively manage this resource. In 2007, the city of Wichita began large-scale artificial recharge of the Equus Beds aquifer using water from the Little Arkansas River—either pumped from the river directly or from wells in the riverbank that obtain most of their water from the river by induced infiltration (City of Wichita, 2009).

Hydrogeology of the Study Area

The study area (fig. 1) includes about 165 square miles (mi²) and is located in Harvey and Sedgwick Counties northwest of Wichita, Kansas. The study area is bounded on the southwest by the Arkansas River and on the northeast by the Little Arkansas River. There is little topographic relief in the study area. For the most part, the land surface slopes gently toward the major streams in the study area. The Wichita well field is in the central part of the study area (fig. 1). The central part of the study area is the historic center of pumping in the study area and includes wells used to supply water to the city of Wichita and for irrigation.

Quaternary deposits occur throughout the study area primarily as alluvial depos its. These alluvial deposits, known locally as the *Equus* beds, are as much as 250 feet (ft) thick in the study area (Leonard and Kleinschmidt, 1976). The Equus beds primarily consist of sand and gravel interbedded with clay or silt, but locally may primarily consist of clay with thin sand and gravel layers (Lane and Miller, 1965a; Myers and others, 1996). The middle part of the deposits generally has more finegrained material than the lower and upper parts (Lane and Miller, 1965b, Myers and others, 1996). The Wellington Formation of Permian age underlies the Quaternary deposits in the study area and forms the bedrock confining unit below these deposits; it is about 700 ft thick (Bayne, 1956).

The Equus Beds aquifer is the easternmost extension of the High Plains aquifer

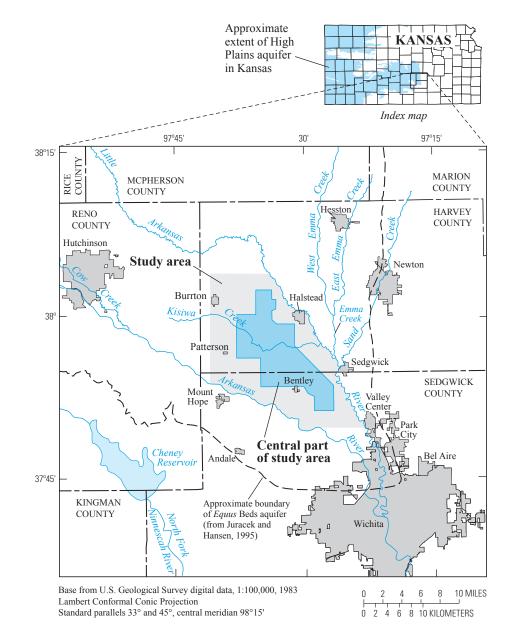


Figure 1. Location of study area near Wichita, south-central Kansas (modified from Aucott and Myers, 1998).

in Kansas (Stulken and others, 1985; Hansen and Aucott, 2001). The Equus beds are an important source of ground water because of the generally shallow depth to the water table, the large saturated thickness, and generally good water quality. Near the Arkansas River, the water table may be as little as 10 ft below land surface. Farther from the Arkansas River and near the Little Arkansas River, the water table is at a greater depth, depending on the altitude of the land surface and the amount of water-level decline that has been caused by ground-water withdrawals. The saturated thickness of the *Equus* Beds aquifer within the study area ranges from about 75 ft near the Little Arkansas River to almost 250 ft near the Arkansas River where the lowest areas of the underlying bedrock surface occur (Spinazola and others, 1985). The Equus Beds aquifer is considered to be an unconfined aquifer, but the presence of clay layers has resulted in semi-confined conditions in some areas (Spinazola and others, 1985; Stramel, 1967). Storage volume (the amount of water available for use) of the *Equus* Beds aquifer in the study area is estimated at about 2,100,000 acre-feet (acre-ft) (Hansen, 2007).

Methods

The July 2008 water-level measurements were collected during July 2 to 23, 2008, from 116 historic observation wells and 38 areal index wells. The historic observation wells have been used by the city of Wichita for monitoring water levels in the *Equus* Beds aquifer since the 1940s (Stramel, 1956). The areal index wells were installed in 2001 and 2002 to monitor the effects of artificial recharge on the water quality and water levels in the *Equus* Beds aquifer and to determine if there are water-quality differences between the shallow and deep parts of the aquifer (Andrew Ziegler, U.S. Geological Survey, oral commun., September 2003). Water levels in the historic observation wells were measured by city of Wichita personnel; water levels in the areal index wells were measured by *Equus* Beds Groundwater Management District No. 2 (GMD2) personnel. Both agencies used standard water-level measurement techniques that are similar to USGS methods described in Stallman (1971). The historic observation well data are on file in paper and electronic form with the city of Wichita Water and Sewer Department in Wichita, Kansas; the areal index well data collected by GMD2 are stored in the Kansas Geological Survey's (KGS's) Water Information and Storage and Retrieval Database (WIZARD) and are available at the following URL: http://www.kgs.ku.edu/Magellan/WaterLevels/index.html The waterlevel data used in this report from both the historic monitoring wells and the areal index wells also are stored by the USGS in the National Water Information System (NWIS) database and are available at the following URL: http://waterdata.usgs.gov/

The water-level change since August 1940 at a well was determined by subtracting the depth to water below land surface in July 2008 from the depth to water below land surface at the same well in August 1940. Of the 154 wells used in this report, 40 had measured water levels for August 1940 and 114 did not. If an August

1940 water-level measurement did not exist for a well in the study area, one was estimated from the August 1940 water-level altitude map of Stramel (1956) as modified by Aucott and Myers (1998). The August 1940 to July 2008 water-level change values were plotted on the map and manually contoured.

Change in storage volume for the purposes of this report is defined as the change in saturated aquifer volume multiplied by the specific yield of the aquifer. A specific yield of 0.2 has been used to compute the changes in storage volume in the Equus Beds aguifer since Stramel (1956) first computed storage volume for the aguifer. The use of a specific yield of 0.2 was retained in this report because, as noted by Hansen and Aucott (2001), it is within the range of most estimates of specific yield, and because there is no general agreement on an average value of specific yield for the *Equus* Beds aquifer in the study area.

The change in storage volume from August 1940 to July 2008 was computed using computer-generated Thiessen polygons (Thiessen, 1911) that were based on the measured water-level changes at wells and the manually drawn lines of equal water-level change. Theissen polygons apportion the water-level change at each well and at points representing the lines of equal water-level change to the area around the wells and points. The volume of storage change was computed by summing the area of each Theissen polygon multiplied by the actual water-level change associated with the Theissen polygon and then by the specific yield. To determine the storagevolume change since August 1940 in the entire study area and in the central part of the study area, the computation was done for the Theissen polygons within each of

Changes in storage volume for periods that do not begin with August 1940 were calculated as the difference between changes in storage volume for August 1940 to the beginning of the selected time period, and for August 1940 to the end of the selected time period. For example, the change in storage volume for January 1993 to July 2008 was calculated as the change in storage volume for August 1940 to July 2008 minus the change in storage volume for August 1940 to January 1993.

Ground-Water Levels and Storage Volume, July 2008

Ground-water-level declines can result from a combination of factors, with pumpage and decreased recharge resulting from less-than-average precipitation being the primary factors. Droughts tend to decrease the amount of recharge available and increase demand for and thus pumpage of ground water, resulting in increased water-level declines. Periods of greater-than-average rainfall tend to increase the amount of recharge available and decrease the demand for and thus pumpage of ground water, resulting in water-level rises. If the water-level declines or rises are large enough, they may locally alter the direction of ground-water flow. An annual cycle of water-level declines and rises generally occurs in the study area. Typically, the largest water-level declines occur during the summer or fall when agricultural-irrigation and city pumpage are greatest (Aucott and Myers, 1998). This cycle of annual water-level declines is reflected in the annual fluctuation in the water levels in wells shown in figure 2. The consistently large seasonal water-level variations in well 104, for example, probably are because of agricultural-irrigation pumpage.

Aucott and Myers (1998) pointed out that record to near-record low water levels occurred in the Equus Beds aquifer in January 1993. Recent reports have shown that since 1993, the *Equus* Beds aquifer has been experiencing higher water levels because of near-average to greater-than-average precipitation and decreased city pumpage (Aucott and Myers, 1998; Hansen and Aucott, 2001, 2004; Hansen, 2007). Pumpage for agricultural irrigation, which can vary as much as 40 percent from year to year, tended to decrease in years of greater-than-average precipitation and increase in years of average to less-than-average precipitation (Hansen, 2007); thus, decreased pumpage for agricultural irrigation likely contributed to the higher water levels only in years of greater-than-average precipitation. Water levels in wells in the study area have continued to remain relatively high, indicating this period of higher water levels that began in 1993 continued through July 2008 (fig. 2).

Water-level changes from August 1940 to July 2008 are shown in figure 3. Water levels were measured in the historic observation wells by city of Wichita personnel during July 2 to 17, 2008, and in the areal index wells by GMD2 personnel during July 21 to 23, 2008. Precipitation during July 2 to 17, 2008, ranged from 0.52 inch (in.) to 1.56 in. at five weather stations in and near the study area (Halstead, Hutchinson, Mount Hope, Newton, and Wichita); precipitation of 0 to 0.06 in. occurred at these stations during July 21 to 23, 2008 (National Oceanic and Atmospheric Administration, 2008). Water-level changes from August 1940 to July 2008 ranged from a decline of 23.41 ft at well IW-06 in the northwest part of the study area to a rise of 3.58 ft at well P27 just beyond the west edge of the study area. Water-level declines of 20 ft or more occurred in two small areas around wells 3 and IW-06 in the northern part of the study area. The decline centered around a non-pumping well (IW-06) is probably an artifact of changing pumping of well 1 in the 21 day period between the measurement of wells 1 and IW-06. Surrounding these two areas of declines of 20 ft or more is a large area of water-level declines of 10 or more ft that covers much of the central part of the study area (where Wichita city wells are located) and extends beyond it in the northern part of the study area. Another small area of declines of 10 ft or more occurs around well IW-04 in the northwest part of the study area. Small water-level rises of less than 2 ft occurred

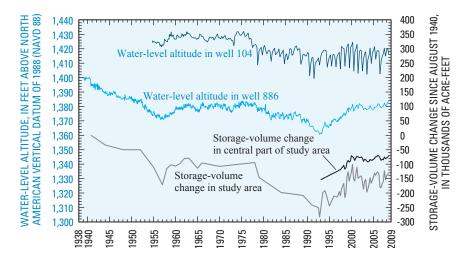
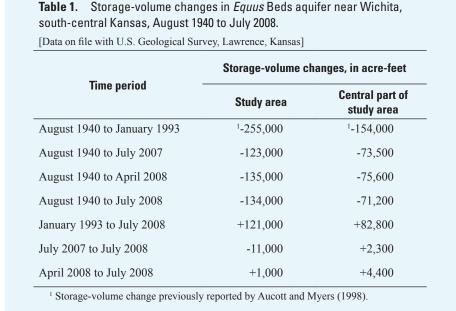
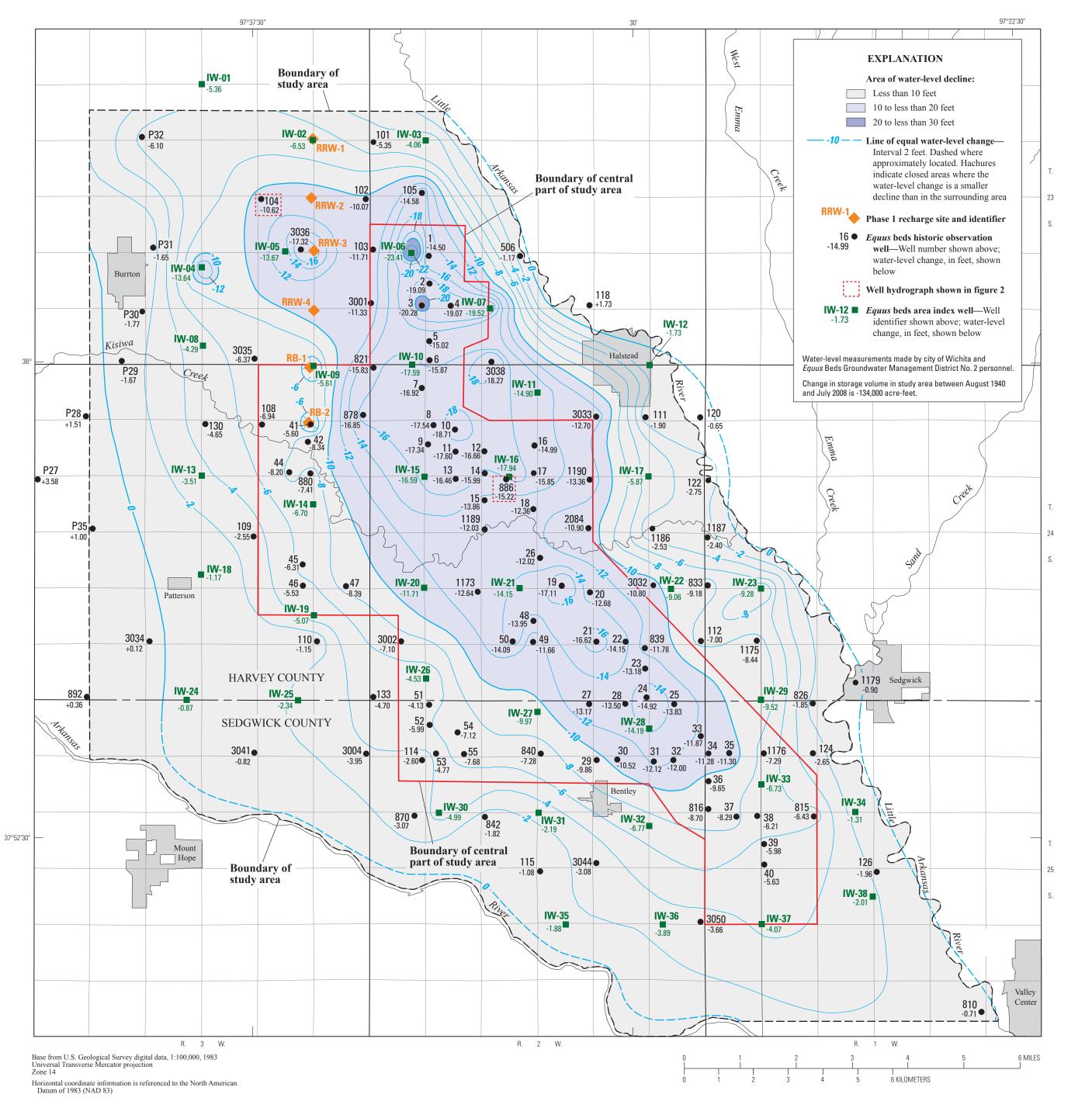



Figure 2. Water-level altitudes in observation wells 104 and 886 and Equus Beds aquifer storage-volume change in the study area and the central part of the study area (waterlevel-altitude data from Stramel (1956, 1967), and from data collected by city of Wichita, Equus Beds Groundwater Management District No. 2, and on file with U.S. Geological Survey. Location of observation wells is shown in figure 3. Storage-volume changes from Stramel (1956, 1967), Aucott and Myers (1998), Aucott and others (1998), Hansen and Aucott (2001, 2004), Hansen (2007), and data on file with U.S. Geological Survey in

along the western edge of the study area and near the Little Arkansas River. Of special note are the two hachured contours around the two southern recharge sites RB-1 and RB-2 in T. 24 S., R. 3 W. (fig. 3). These hachured contours indicate areas of lesser decline around areas where the city of Wichita is artificially recharging the Equus Beds aquifer. Since March 2007, when Wichita began large-scale artificial recharge, 1,933 acre-ft of water have been artificially recharged into the aquifer through the six recharge sites shown in figure 3 (Wichita Water Utilities, written commun., 2008). Areas of lesser declines are not shown around the four northern recharge sites despite as much or more water being artificially recharged in 2008 at RRW-1 than at RB-1 and at each of RRW-2, RRW-3, and RRW-4 than at RB-2 (Wichita Water Utilities, written commun., 2008). Possible reasons for the lack of lesser decline areas around the four northern recharge sites include different hydrogeologic conditions in the northern part of the study area or ground-water pumpage that was greater near the northern artificial recharge sites than near the southern sites. Declines around the four northern artificial recharge sites probably would have been larger if the artificial recharge had not taken place.

The change in storage volume in the study area from August 1940 to July 2008 was a decrease of about 134,000 acre-ft (fig. 2, table 1). The storage-volume in the study area in July 2008 was about 11,000 acre-ft less than in July 2007 and about 1,000 acre-ft more than in April 2008 (table 1). From August 1940 (which is just before Wichita began pumping water from the study area), to January 1993, when near-record low water levels and storage-volumes occurred in the study area because of a combination of drought conditions and increased usage, storage volume decreased by about 255,000 acre-ft in the study area (Aucott and Myers, 1998). The

Figure 3. Water-level changes in the Equus Beds aquifer in the study area, August 1940 to July 2008. change in storage volume from January 1993 to July 2008 represents a recovery of about 121,000 acre-ft (table 1) or about 47 percent of the storage volume previously lost from August 1940 to January 1993. Precipitation in the study area during January to July, 2008, tended to be near normal except for May when precipitation was more than 3 in. above normal in much of the study area (http://www.srh.noaa.gov/ rfcshare/precip analysis new.php, accessed September 25, 2008), which probably contributed to the relatively high water levels and thus maintenance of the substansome years (Hansen, 2007).


tial storage-volume recovery following the low levels in January 1993. The change in storage volume in the central part of the study area (where Wichita city wells are located) from August 1940 to July 2008 was a decrease of about 71,200 acre-ft (fig. 2, table 1). Storage volume in the central part of the study area in July 2008 was about 2,300 acre-ft more than in July 2007 and about 4,400 acre-ft more than in April 2008 (table 1). From January 1993 to July 2008, storage volume in the central part of the study area increased by about 82,800 acre-ft (table 1) or about 54 percent of the storage volume previously lost from August 1940 to January 1993; this is a slightly larger percentage recovery than occurred in the study area as a whole. In addition, a comparison of the changes in storage

volume for the central part of the study area to those for the study area as a whole indicates that in recent years the recovery has been maintained more consistently in the central part of the study area than in the study area as a whole (fig. 2). This probably is because city pumpage, which occurs in the central part of the study area, has remained less than pre-1993 levels, whereas agricultural-irrigation pumpage, which occurs throughout the study area, has been as much or more than pre-1993 levels in

- Aucott, W.R., and Myers, N.C., 1998, Changes in ground-water levels and storage in the Wichita well field area, south-central Kansas, 1940–98: U.S. Geological Survey Water-Resources Investigations Report 98–4141, 20 p.
- Aucott, W.R., Myers, N.C., and Dague, B.J., 1998, Status of ground-water levels and storage in the Wichita well field area, south-central Kansas, 1997: U.S. Geological Survey Water-Resources Investigations Report 98–4095, 15 p.
- Bayne, C.K., 1956, Geology and ground-water resources of Reno County, Kansas: Kansas Geological Survey Bulletin 120, 130 p.
- City of Wichita, 2009, Wichita area future water supply—a model program for other municipalities: Wichita, Kansas, accessed March 24, 2009, at http://www.wichitagov.org/CityOffices/WaterAndSewer/ProductionAndPumping/FutureWaterSupply.
- Hansen, C.V., and Aucott, W.R., 2001, Status of ground-water levels and storage volume in the Wichita well field area, south-central Kansas, 1998–2000: U.S. Geological Survey Water-Resources Investigations Report 00–4267, 27 p.
- Hansen, C.V., and Aucott, W.R., 2004, Status of ground-water levels and storage volume in the *Equus* Beds aquifer near Wichita, Kansas, January 2000–January 2003: U.S. Geological Survey Water-Resources Investigations Report 03–4298, 36 p.
- Hansen, C.V., 2007, Status of ground-water levels and storage volume in the Equus Beds aquifer near Wichita, Kansas, January 2003-January 2006: U.S. Geological Survey Scientific Investigations Report 2006–5321, 34 p.
- Juracek, K.E., and Hansen, C.V., 1995, Digital maps of the extent, base, top, and 1991 potentiometric surface of the High Plains aquifer in Kansas: U.S. Geological Survey Open-File Report 95–758, map scales 1:500,000 and 1:1,000,000.

- Lane, C.W., and Miller, D.E., 1965a, Geohydrology of Sedgwick County, Kansas: Kansas Geological Survey Bulletin 176, 100 p.
- Lane, C.W., and Miller, D.E., 1965b, Logs of wells and test holes in Sedgwick County, Kansas: Kansas Geological Survey Special Distribution Publication 22,
- Leonard, R.B., and Kleinschmidt, M.K., 1976, Saline water in the Little Arkansas River Basin area, south-central Kansas: Kansas Geological Survey Chemical Quality Series 3, 24 p.
- Myers, N.C., Hargadine, G.D., and Gillespie, J.D., 1996, Hydrologic and chemical interaction of the Arkansas River and the Equus Beds aquifer between Hutchinson and Wichita, south-central Kansas: U.S. Geological Survey Water-Resources Investigations Report 95–4191, 100 p.
- National Oceanic and Atmospheric Administration, 2008, Climatological data, Kansas, July 2008: Asheville, North Carolina, v. 122, no. 7, 41 p.
- Spinazola, J.M., Gillespie, J.B., and Hart, R.J., 1985, Ground-water flow and solute transport in the *Equus* beds area, south-central Kansas: U.S. Geological Survey Water-Resources Investigations Report 85–4336, 68 p.
- Stallman, R.W., 1971, Aquifer-test design, observation and data analysis: U.S. Geological Survey Techniques of Water-Resources Investigations, book 3, chap. B-1,
- Stramel, G.J., 1956, Progress report on the ground-water hydrology of the *Equus* beds area, Kansas: Kansas Geological Survey Bulletin 119, part 1, 59 p.
- Stramel, G.J., 1967, Progress report on the ground-water hydrology of the Equus beds area, Kansas 1966: Kansas Geological Survey Bulletin 187, part 2, 27 p.
- Stullken, L.E., Watts, K.R., and Lindgren, R.J., 1985, Geohydrology of the High Plains aquifer, western Kansas: U.S. Geological Survey Water-Resources Investigations Report 85–4198, 86 p.
- Theissen, A.H., 1911, Precipitation averages for large areas: Monthly Weather Review, v. 39, p. 1,082–1,084.
- Williams, C.C., and Lohman, S.W., 1949, Geology and ground-water resources of a part of south-central Kansas, with special reference to the Wichita municipal water supply: Kansas Geological Survey Bulletin 79, 455 p.

Equus Beds Aquifer Near Wichita, Kansas, July 2008

Hansen, C.V., 2009, Status of ground-water levels and storage volume in the Equus Beds aquifer near Wichita, Kansas, July 2008: U.S. Geological Survey For more information about USGS and its products: Telephone: 1-888-ASK-USGS World Wide Web: http://www.usgs.gov

Publishing support provided by: Rolla Publishing Service Center For additional information concerning this publication, contact: Director, USGS Kansas Water Science Center 4821 Quail Crest Place, Lawrence, KS (785) 842–9909 Or visit the Kansas Water Science Center Web Site at:

Cristi V. Hansen