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Abstract
A regression model was developed for estimating dieldrin 

concentrations in whole fish from United States streams using 
watershed characteristics, including estimates of past agri-
cultural use intensity. Dieldrin concentrations were measured 
in composite whole-fish samples collected at about 650 sites 
nationwide during 1992–2001, as part of the U.S. Geological 
Survey’s National Water-Quality Assessment Program. 
Important explanatory variables in the model include (1) fish 
lipid content; (2) the estimated historical agricultural use 
intensity of aldrin and dieldrin (which was calculated from 
regional application rates developed using U.S. Department 
of Agriculture data on pesticide use by farmers in 1966 
and harvested acreage from the 1964 and 1969 Census of 
Agriculture); (3) a weighted termite-urban score (which 
represents past use for termite control and was developed 
from estimates of urban land use in the basin, combined with 
the national distribution of subterranean termite density); and 
(4) forested land in the basin (where past aldrin and dieldrin 
use was expected to be minimal). Other explanatory variables 
considered in developing the model included surrogates for 
past urban use (such as population density and percentage 
urban land use in the basin), taxon of the fish sampled, various 
watershed characteristics (including soil properties, hydrologic 
parameters, climatic variables, and agricultural management 
practices), and region of the country. Tobit regression methods 
were used for developing the model because about 60 percent 
of the dieldrin concentration values in the model-development 
data were reported as less than a detection threshold, resulting 
in censored data. The model explains 64 percent of the vari-
ability in dieldrin concentrations measured in whole fish. This 

model was used to predict dieldrin concentrations in whole 
fish in unmonitored streams throughout the United States us-
ing the U.S. Environmental Protection Agency’s River Reach 
File 1.

Introduction

Background

The organochlorine pesticide dieldrin is still frequently 
detected in soil, sediment, biota, and air in the United States 
(Nowell and others, 1999; Schmitt and others, 1999; Wong 
and others, 2000), even though its uses were discontinued 
15–30 years ago. Dieldrin residues in the environment may 
originate from past application of either aldrin, which degrades 
readily in the environment to dieldrin, or dieldrin itself. Aldrin 
and dieldrin (like DDT) are both organochlorine pesticides that 
were once used extensively, but were discontinued because of 
their persistence, tendency to bioaccumulate, carcinogenicity, 
and hazard to wildlife. Aldrin and dieldrin were applied in 
agriculture in the United States until the early 1970s, mainly 
on corn, but also on fruits and nuts, other vegetables, tobacco, 
and cotton. They also were used in nonagricultural applica-
tions—especially in termite control, which continued until at 
least the late 1980s. Dieldrin, like many organochlorine pesti-
cides, is hydrophobic (low in water solubility, with a tendency 
to sorb to soil and sediment and to partition to organic matter) 
and resistant to degradation in the environment.
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Three national studies have monitored dieldrin and 
other organochlorine pesticides in whole freshwater fish from 
rivers and streams across the United States. These are the 
Fish and Wildlife Service’s (FWS) National Contaminant 
Biomonitoring Program (NCBP, 1969–1986), the U.S. 
Environmental Protection Agency’s (EPA) National Study 
of Chemical Residues in Fish (1986–1987), and the U.S. 
Geological Survey’s (USGS) National Water-Quality 
Assessment (NAWQA) Program (1992–2001). Evidence 
from these programs indicates that, nationally, organochlorine 
pesticide levels have declined since the use of these com-
pounds was discontinued (Schmitt and others, 1999; Fuhrer 
and others, 1999), with the biggest declines occurring during 
the 1970s. Dieldrin residues in fish were highly variable dur-
ing the 1970s, but were markedly lower after 1976 than before 
1976; residues measured by the NCBP Program continued to 
decline during the 1980s (Schmitt and others, 1999; Nowell 
and others, 1999). NAWQA sampling data during 1992–2001 
indicates the continued presence of dieldrin at low levels in 
fish and bed sediment from many streams in the United States 
(Wong and others, 2000; Nowell and Crawford, 2003)—diel-
drin was detected in whole fish at over 50 percent of agricul-
tural and urban streams, and in over 40 percent of streams 
in mixed land use areas (Nowell and Crawford, 2003). This 
suggests that dieldrin-contaminated soil is still being carried 
into receiving waters from both agricultural and urban land use 
settings.

Organochlorine pesticides have been shown to adversely 
affect the survival of various organisms (including aquatic 
invertebrates, fish, birds, and mammals) in laboratory tests; 
to disrupt the reproduction of fish and birds in the field; and 
to accumulate to high levels in fish-eating mammals (U.S. 
Environmental Protection Agency, 1975; Nowell and oth-
ers, 1999). In addition, organochlorine pesticides (including 
dieldrin) induce the monooxygenase enzymes that hydrox-
ylate testosterone (Haake and others, 1987), and they have 
been associated with endocrine and reproductive changes 
and immunosuppressive effects (Amdur and others, 1991). 
The biological significance of the low-level organochlorine 
residues detected in the environment today is more difficult 
to assess. Although the linkage between body burdens and 
effects in fish is not well understood, body burdens provide at 
least a direct indicator of exposure (Black and others, 2000). 
Organochlorine pesticide contamination in the field also has 
been associated with fish kills (Hunt and Linn, 1970; Madhun 
and Freed, 1990) and fish diseases (Myers and others, 1993). 
A few organochlorine pesticides (especially DDT and chlor-
dane, and to a lesser extent dieldrin) are the subject  
of fish consumption advisories issued by the states for protec-
tion of human health from eating fish contaminated with  
bioaccumulative pollutants (U.S. Environmental Protection 
Agency, 2005).

Given the continued detection of low-level residues of  
organochlorine pesticides in fish, plus the uncertainty as to 
their potential effects on humans and wildlife from fish  

consumption, there is a need to ascertain the geographic extent 
and the degree of present-day exposure of aquatic populations 
to organochlorine pesticides. However, because of the high 
cost of monitoring and analysis, combined with decreasing 
interest in organochlorine pesticides as residues decline na-
tionally, it is unlikely that substantial investment in monitoring 
will be made, except in areas where there is a strong probabil-
ity of concern. An alternative to widespread direct monitoring 
is to predict concentrations using empirical regression models 
that relate measured concentrations in fish to watershed char-
acteristics and estimates of past use.

A few prior studies have investigated the relationship 
between large-scale land use practices and the presence of 
organochlorine pesticides in sediment or biota (Truhlar and 
Reed, 1976; Munn and Gruber, 1997; Black and others, 2000). 
Black and others (2000) used logistic regression to develop 
predictive models for estimating the probability of detect-
ing specific organochlorine pesticides in fish (sculpins) from 
streams in the Willamette and Puget Sound Basins of the 
Pacific Northwest. This regional-scale study predicted pres-
ence or absence, rather than specific concentration estimates. 
A number of studies have used linear regression or logistic 
regression models to predict concentrations of dissolved pesti-
cides in stream water (Krueger and Tornqvist, 1996; Battaglin 
and Goolsby, 1997, 1998; Larson and Gilliom, 2001; Larson 
and others, 2004). Predictor variables in these models included 
pesticide use in the watershed, physical and chemical proper-
ties of the pesticides, and (or) various watershed character-
istics. We are unaware of any studies that have developed 
models relating organochlorine pesticide concentrations in fish 
to land use and other watershed characteristics on a national 
scale.

Purpose and Scope

Assessment of risk to humans or wildlife from pesticides 
in the environment requires evaluation of both exposure and 
effects. The purpose of this report is to investigate the suit-
ability and effectiveness of a regression model for predicting, 
and explaining variability in, dieldrin concentrations in whole 
fish from United States streams on a national scale. Specific 
objectives are to:

• Develop a regression model to estimate dieldrin concen-
trations in whole fish on the basis of national data on 
watershed characteristics, including estimates of historical 
pesticide use;

• Assess how much variability in pesticide concentrations in 
whole fish can be explained by factors in the regression 
model;

• Predict dieldrin concentrations in whole fish in streams 
across the United States, as a function of lipid (fat) con-
tent, from the regression model on the basis of watershed 
characteristics and estimates of historical pesticide use.
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This model was developed using NAWQA data on 
dieldrin in whole fish at 648 stream sites sampled during 
1992–2001. These stream sites are located in most parts of 
the country and represent a variety of land uses. Ultimately, 
the method described in this report will be applied to other 
organochlorine pesticides detected in fish by NAWQA.

In this report, the following terms are used: 
Concentrations measured at NAWQA sites are “observed 
concentrations.” Application of the regression model using 
a given set of explanatory variables produces an “estimate” 
or “estimated concentration” for a site (in contrast to an 
observed, or measured, concentration). When the model is 
applied to an unmonitored site, the result is a “prediction” or 
“predicted concentration.” Finally, when predictions are made 
for unmonitored sites over a wide geographic area, this builds 
a “spatial extrapolation.”
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Methods
The methods used for this study included the use of 

appropriate data on dieldrin concentrations in whole fish in 
model development; estimating the past use of aldrin and diel-
drin in agriculture; developing surrogates for past use of aldrin 
and dieldrin in urban settings; obtaining ancillary data on 
watershed characteristics from nationally available databases; 
developing a regression model to estimate dieldrin concentra-
tions in whole fish; and using the model to predict dieldrin 
concentrations in whole fish in unmonitored streams across the 
United States.

Dieldrin Data Used for Model Development

Data on dieldrin in whole fish collected as part of the 
USGS’s NAWQA Program were used for model develop-
ment. The NAWQA Program collected samples from rivers 
and streams in 51 study areas (study units) across the United 
States. The study units are major hydrologic basins, which 
collectively encompass about 60 percent of the population and 
water use in the conterminous United States (Hirsch and oth-
ers, 1988; Fuhrer and others, 1999).

The NAWQA program sampled whole fish (as well as 
bed sediment) at NAWQA sites to identify important hydro-
phobic contaminants, including dieldrin, and to determine 
their geographic distribution within the basin. Typically, fish 
sampling sites within a NAWQA study unit included the fol-
lowing types of sites: mixed land-use sites representing the 
large streams in the study unit, including major nodes in the 
drainage system; sites representing the principal environmen-
tal settings (land areas characterized by a unique combination 
of natural and anthropogenic factors, such as row crop cultiva-
tion on glacial-till soils); additional sites with known contami-
nation (although point sources generally were avoided); and 
reference sites (generally forest or rangeland) where minimal 
occurrence of organochlorine compounds was expected.

Sample Collection

The NAWQA study design called for collecting at least 
one tissue sample (and one bed sediment sample) at each site. 
Whole-fish data were collected at 700 NAWQA sites. The dis-
tribution of sites does not quite cover the entire United States 
because clams were collected instead of fish at some sites 
(especially in the southeast), and appropriate fish and clam 
taxa were not available at some sites.

One fish taxon generally was sampled at each site, 
although multiple taxa were collected at about 10 percent of 
sites. Taxa were selected from a National Target Taxa List, 
and the same taxon was sampled at as many sites as possible 
within the study unit. Fish samples were composites of 5–8 
individual whole fish, all from a single taxon (Crawford and 
Luoma, 1994).

Sample Work-Up and Analysis

Details on sample processing and analysis of organochlo-
rine compounds in whole fish are published elsewhere (Leiker 
and others, 1995). Briefly, composite whole-fish samples were 
homogenized and a subsample was dried, Soxhlet-extracted 
with dichloromethane, and an aliquot was removed for lipid 
determination. The extract was cleaned up by gel permeation 
chromatography, solvent-exchanged to hexane, fractionated 
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using alumina/silica adsorption chromatography, then ana-
lyzed by gas chromatography with electron capture detection. 
Target analytes and their method detection limits in fish are 
listed at http://ca.water.usgs.gov/pnsp/rep/bst/table1.html.

Database Decisions for Model Development

Whole-fish data were collected at 700 NAWQA sites 
nationally. For model development, data for the Cook Inlet 
Basin (Alaska) and the Island of Oahu (Hawaii) study units, 
plus a few sites with watersheds extending into Canada or 
Mexico, were excluded because national ancillary databases 
are available only for the conterminous United States. Dieldrin 
data for the remaining 648 NAWQA sites were used in model 
development. A single fish sample from each site was used. At 
most sites, only one fish sample was collected. For sites where 
multiple fish samples were collected, preference was given to 
the fish sample(s) collected on the same date, or as close as 
possible in time, to bed sediment sampled at the same sites. 
(The availability of coincident sediment data was a priority 
because dieldrin concentrations in bed sediment were consid-
ered as potential explanatory variables in alternative regression 
models not discussed in this report.) If multiple fish samples 
were collected on the same date, preference was given to com-
mon carp samples (if available) or otherwise to the taxon with 
the highest lipid content.

In summary, the national data set used to develop the 
dieldrin fish model contains data for 648 sites, each with one 
composite fish sample collected during 1992–2001. The data 
represent 59 different fish taxa, of which the most common are 
common carp (29 percent of fish samples) and white sucker 
(26 percent). The 648 streams used in model development 
represent a variety of land use and  
environmental settings (table 1).

Table 1. The 648 NAWQA stream sites used in model develop-
ment, by major physiographic division and land use in the basin.

[Major physiographic division was determined by clipping the 
national physiographic region coverage (Fenneman and Johnson, 
1946) to the basin boundaries for each site. National land use 
classifications were based on the enhanced 1992 National Land 
Cover Data Set (unpublished data described in Nakagaki and 
Wolock, 2005) as follows: agricultural sites contained >50% agri-
cultural land use and ≤5% urban land use in the watershed;  
urban sites contained >25% urban and ≤25% agricultural land 
use; undeveloped sites contained ≤25% agricultural and ≤5% 
urban land use; mixed sites were all other combinations of agri-
cultural, urban, and undeveloped land. Land cover classifications 
used to designate sites as agricultural included pasture/hay, row 
crops, small grains, fallow, orchards/vineyards/other. Land cover 
classifications used to designate sites as urban included low inten-
sity residential, high intensity residential, commercial/industrial/
transportation, urban/recreational grasses, and forested residential. 
—, none; %, percent]

Physiographic  
division

Agricul-
tural land  
use (sites)

Mixed 
land use 
(sites)

Undeveloped 
land use 
(sites)

Urban 
land use 
(sites)

Total 
sites

Appalachian 
Highland

16 82 57 28 183

Atlantic Plain 51 32 10 9 102

Interior High-
lands

4 5 8 — 17

Interior Plains 79 49 21 9 158

Intermontane 
Plateaus

18 11 15 2 46

Laurentian 
Upland

1 1 10 — 12

Pacific Moun-
tain System

8 9 20 10 47

Rocky Moun-
tain System

— 16 63 4 83

Total sites 177 205 204 62 648
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Explanatory Variables

The dieldrin fish model developed in this study is an 
empirical regression model. A large number of variables that 
could reasonably affect, or indicate an influence on, the use 
or transport of aldrin and (or) dieldrin were considered as 
potential explanatory variables for estimating dieldrin concen-
trations in fish. Statistical procedures were used to select from 
among the potential variables on the basis of their ability to 
reproduce the observed dieldrin concentrations in fish.

Table 2 lists the potential explanatory variables consid-
ered for inclusion in the regression model. Values of source 
and watershed variables for individual fish sampling sites 
were determined by applying basin boundaries for that site to 
various national ancillary data sets. Some potential explana-
tory variables were based on characteristics of the fish sample; 
most potential variables were based on watershed characteris-
tics, including estimates of (or surrogates for) the use of aldrin 
and dieldrin in various applications. For ease of identification, 
potential explanatory variables are denoted in bold in the fol-
lowing section. 

Fish Sample Characteristics

Three types of explanatory variables are based on charac-
teristics of the fish sample.

• Fish lipid content: This is a measured parameter. Dieldrin 
concentrations in whole fish were significantly correlated 
with fish lipid content (p ≤ 0.0001), although lipid content 
explained a relatively small percentage of the variance  
(R2 = 0.12). This occurs because the sites sampled repre-
sented a wide variety of source conditions, ranging from 
reference streams (where pesticide use is expected to have 
been low) to streams in heavily agricultural or urbanized 
areas with histories of high pesticide use. Differences in 
source conditions (and therefore exposure) are likely to 
overwhelm differences in fish lipid content. Conversely, 
lipid content would be a confounding variable when 
investigating the relationship between dieldrin concentra-
tions and source conditions. Therefore, fish lipid content 

was considered as a potential explanatory variable in the 
regression model. Because lipid content was retained 
as a variable in the final dieldrin model, prediction for 
unmonitored streams using the model therefore requires 
the assumption of a specified lipid content (see the 
next section “Extrapolation to Unmonitored Streams”). 
Alternatively, the model could have been developed for 
lipid-normalized dieldrin concentrations. However, the 
latter approach would have the following drawbacks: (1) 
it would reduce the variability explained by the model by 
ignoring the role of lipid content; and (2) the response 
variable then would be in units of micrograms of dieldrin 
per gram of lipid, whereas most fish data are expressed on 
a wet weight basis.

• Taxon dummy variables: Differences in contaminant resi-
dues between different species of fish have been widely 
reported in the literature. These have been attributed in 
part to differences in age, body size, lipid content, feeding 
habitat, and trophic state of the different species; but in 
many cases, there was no clear-cut or single explanation 
for the observed differences (Nowell and others, 1999). 
The NAWQA fish data set contained multiple species 
of fish. Although the model includes lipid content as an 
explanatory variable, this may not be sufficient to account 
for differences in contaminant levels among species. 
Therefore, a dummy variable was created for each of 
the eight most commonly sampled taxa (for example, 
common carp), and these eight dummy variables were 
considered as potential explanatory variables. Each taxon 
dummy variable has a value of either “1” (if the sample 
belongs to that taxon) or “0” (if it does not). 

• Time: The elapsed time from 1966 (which represents peak 
historical agricultural use of aldrin and dieldrin) to the 
sampling year was considered as a potential explanatory 
variable. Because dieldrin trends in fish are declining 
nationally (Schmitt and others, 1999; Nowell and oth-
ers, 1999), it is possible that samples collected earlier in 
the ten-year NAWQA sampling period (1992–2001) may 
contain higher levels than those collected later. Therefore, 
elapsed time was considered as a potential explanatory 
variable.
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Phase I—Source Variables

Past agricultural use—from combining county pesticide use data (1966) with mapped agricultural land from 1970s GIRAS land use and land cover 
data, at the 100-m resolution.

• Aldrin + dieldrin use intensity in agriculture, as amount applied per basin area (pounds per square mile).
• Aldrin + dieldrin use intensity in agriculture, as amount applied per area of agricultural land in basin (pounds per square mile).

Land use—from 1970s GIRAS land use and land cover data (polygons converted to 100-m resolution grid cells).
 • Total agricultural land (percentage of basin area)—sum of cropland and pasture, orchards, groves, vineyards, nurseries, ornamental horticultural 

areas, confined feeding operations, other agricultural land.
• Cropland and pasture (percentage of basin area).
• Orchards, groves, vineyards, nurseries, ornamental horticultural areas (percentage of basin area).
• Total urban land (percentage of basin area)—sum of residential, commercial and services, industrial, transportation, communication, utilities, mixed 

urban and built-up land, other urban or built-up land.
• Residential land (percentage of basin area).
• Commercial-industrial land (percentage of basin area)—sum of commercial and services, industrial.
• Transportation land (percentage of basin area)—sum of transportation, communication, and utilities.
• Total forested land (percentage of basin area)—sum of deciduous, evergreen, and mixed forest land, and forested wetland.
• Total undeveloped land (percentage of basin area)—sum of deciduous, evergreen, and mixed forest land; forested wetland; nonforested wetland; her-

baceous, shrub and brush, and mixed rangeland; herbaceous, shrub and brush, wet, and mixed tundra; dry salt flats; beaches; sandy areas other than 
beaches; bare exposed rock; bare ground; mixed barren land; streams and canals; lakes; reservoirs; perennial snowfields; glaciers.

Other surrogates for past urban use
• Mean 1990 population density (people per square kilometer)—from 1990 Census Population and Housing at the block group level processed at the 

1-km resolution.
• Weighted termite-urban score, 1970s—urban land use (1970s GIRAS) weighted by termite density zone at the 100-m resolution.
• Weighted termite-urban score, adjusted to include new residential data from 1990s—urban land use (1970s–1990s GIRAS) weighted by termite 

density zone at the 100-m resolution.
• High termite-urban score, 1970s—urban land use (1970s GIRAS) in the very heavy plus moderate-to-heavy zones of termite growth at the 100-m 

resolution.
• High termite-urban score, adjusted to include new residential data from 1990s—urban land use (1970s–1990s GIRAS) in the very heavy plus moder-

ate-to-heavy zones of termite growth at the 100-m resolution.

Characteristics of Sample
• Lipid content (percent)
• Elapsed time since 1966 (years)

Phase II—Taxon Dummy Variables

Taxon
• White sucker
• Common carp
• Largemouth bass
• Largescale sucker
• Longear sunfish
• Rock bass
• Brown trout
• Sculpins

Phase III—Watershed Characteristics

Physical watershed characteristics—delineated from sources ranging in scale from 1:24,000 to 1:100,000.
• Basin area (square kilometers).
• Mean basin slope (percent)—derived from National Elevation Data (NED) at 100-m resolution.
• Mean basin aspect (degrees)—derived from NED at 100-m resolution.
• Site elevation (meters)—derived from NED at 100-m resolution.
• Mean basin elevation (meters)—derived from NED at 100-m resolution.
• Road density (kilometers per square kilometer)—derived from Census Bureau 2000 Topologically Integrated Geographic Encoding and Referencing 

(TIGER) roads.

Table 2. Potential explanatory variables considered in developing the regression model for dieldrin in whole fish.  

[Data sources are cited in text. km, kilometer; lb/mi2, pound per square mile; m, meter]
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Soil Properties—from the State Soil Geographic (STATSGO) data (polygons converted to 1-km resolution grid cells) unless noted otherwise.
• Mean available water capacity (inches per inch).
• Mean sand, silt, and clay composition (percent).
• Mean percent of soils classified as soil hydrologic groups A and B (indicator of well-drained soil).
• Mean percent of soils classified as soil hydrologic groups C, D, or C/D (indicator of poorly drained soil).
• Mean soil organic matter content (percent).
• Mean soil permeability (inchs per hour).
• Mean R factor from the Universal Soil Loss Equation, mean annual rainfall erosivity, 1971–2000 (from NOAA station data analyzed and interpolated 

to 1-km cells).
• Mean K factor for the uppermost soil horizon from the Universal Soil Loss Equation, soil erodability.

Hydrologic parameters
• Dunne overland flow—percentage of stream flow derived from runoff resulting from precipitation on saturated soil, generated from TOPMODEL 

(Wolock, 1993).
• Horton overland flow—percentage of stream flow derived from runoff resulting from precipitation exceeding soil infiltration rate, generated from 

TOPMODEL (Wolock, 1993).
• Soil contact time—Time required for precipitation to travel through subsurface flow paths before entering stream (years).
• Topographic wetness index, expressed as “ln(m)” (natural log of meters), derived from a 1-km resolution representation of the U.S. Geological 

Survey’s Digital Elevation Model (U.S. Geological Survey, 1993).
• Mean annual runoff, 1951–1980 (millimeters).

Weather and Climate—estimated using the Parameter-elevation Regressions on Independent Slopes Model (PRISM) (Daly and others, 1997).
• Mean annual precipitation, 1961–1990 (millimeters).
• Mean annual temperature, 1961–1990 ( degrees Celsius).
• Mean annual potential evapotranspiration—estimated using the PRISM temperature with the Hamon PET equation (Hamon, 1961).

Agricultural Management Practices—from 1992 Natural Resources Inventory (NRI) and agricultural land classifications from the National Land 
Cover Dataset 1992.

• Irrigation (percentage of agricultural land in watershed).
• Artificial drainage (percentage of agricultural land in watershed).
• Conservation tillage (percentage of agricultural land in watershed).

Phase IV—Regional Dummy Variables

USDA Farm Production Region—Each site was assigned to whichever region contained the largest percentage of the basin area.
Appalachians
Corn Belt
Delta
Lake States
Mountain States
Northeast
Northern Plains
Pacific States
Southern Plains
Southeast

Table 2. Potential explanatory variables considered in developing the regression model for dieldrin in whole fish—Continued.  

[Data sources are cited in text. km, kilometer; lb/mi2, pound per square mile; m, meter]
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Past Sources of Aldrin and Dieldrin

Several variables representing past sources of aldrin and 
dieldrin to the basin were considered. Because it is impos-
sible to distinguish dieldrin residues that originated from 
application of aldrin from those originally applied as dieldrin, 
agricultural use estimates were calculated for the sum of aldrin 
plus dieldrin. Because quantitative estimates of urban pesticide 
use are not available, various urban-use surrogates were used 
as potential explanatory variables, as described below.

• Agricultural use intensity: The historical agricultural use 
intensity of aldrin plus dieldrin in the basin was estimated 
from regional application rates developed using U.S. 
Department of Agriculture (USDA) data on pesticide use 
by farmers in 1966, and harvested crop acreage from the 
1964 and 1969 Census of Agriculture (Gail P. Thelin, 
U.S. Geological Survey, written commun., July 13, 2004). 
Briefly, regional pesticide-use-by-crop coefficients were 
developed for aldrin and dieldrin on 13 crops in each of 
the 10 USDA farm production regions using national 

and regional estimates of pesticide use in 1966 (Eich-
ers and others, 1970) and total harvested crop acreage 
from the 1964 or 1969 (depending on the crop) Census 
of Agriculture (Economic Research Service, 1999). Next, 
these regional pesticide-use-by-crop coefficients were 
used to calculate use estimates for aldrin plus dieldrin in 
all counties in the conterminous United States that have 
agricultural land. The resulting estimated historical use 
of aldrin plus dieldrin in agriculture is shown in figure 
1 for the conterminous United States. Finally, historical 
agricultural estimates of aldrin and dieldrin use within 
the basin (watershed) were calculated for each sampling 
site by combining the basin boundaries for the site with 
county-based use estimates of pesticide use and 1970s 
Geographic Information Retrieval and Analysis System 
(GIRAS) land-use information for the basin (described 
further in the next paragraph). Two agricultural use inten-
sity variables were calculated and considered in model 
development: one was computed per area of agricultural 
land in the basin and one per total basin area.

0.001 – 0.337

none

0.338 – 0.951

0.952 – 2.705

2.706 – 6.261

6.262

Pounds of active ingredient per square mile

EXPLANATION

Figure 1. Estimated historical use of aldrin plus dieldrin in agriculture (1966) in the conterminous United 
States (from Gail P. Thelin, U.S. Geological Survey, unpub. data, 2005).  
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• Other agricultural source variables: The general agricul-
tural source variables considered were the percentage of 
cropland and pasture in the basin, and the percentage of 
total agricultural land in the basin (including cropland, 
pasture, orchards, vineyards, and miscellaneous agricul-
ture), both about 1970. These percentages were derived 
from the USGS’s Land Use and Land Cover (LULC) data, 
which are based on aerial photography taken in the 1970s 
to mid-1980s (Fegeas and others, 1983; data from U.S. 
Geological Survey, 1998, as enhanced by Price and oth-
ers, 2003). The LULC data are also known as Geographic 
Information Retrieval and Analysis System (GIRAS) data, 
which refers to the digital file storage format and software 
system used to develop the LULC data set (Mitchell and 
others, 1977). (In the remainder of this report, this data 
set will be referred to as the GIRAS data set.) Polygons 
of land use and land cover in the GIRAS data set were 
converted to grid cells at the 100-m resolution. (In this 
report, the term “grid” refers to a raster-based geodata set 
consisting of rows and columns of cells, each of which 
is referenced by its geographic x- and y-coordinates and 
has an associated data value.) The land use and land cover 
categories are based on a classification system developed 
by Anderson and others (1976).

• Weighted termite-urban score: Aldrin and dieldrin were 
used in subterranean termite control through the late 
1980s (this use was voluntarily canceled by industry in 
1987). Although EPA published national-scale estimates 
of pesticides used in subterranean termite control in 1980 
and 1985 (U.S. Environmental Protection Agency, 1983; 
Esworthy, 1987), historical data on termiticide use at the 
county or even regional scale are not available. There-
fore, a weighted termite-urban score was developed as 
a surrogate variable to represent the relative probability 
of past aldrin and dieldrin use in subterranean termite 
control. This score was calculated from the percentage of 
urban land use in the basin (1970s GIRAS data) and the 
relative hazard of subterranean termite infestations (Beal 
and others, 1994). Combined, these factors are expected 
to reflect the extent of past termiticide use, because 
termiticides were most likely applied to buildings in parts 
of the country where termites occurred. The national 
distributions of these two factors are shown in figure 2. 
The surrogate variable was calculated as follows: the 
urban land (as a percentage of basin area) located within 
each of four zones of termite density (none-to-slight, 
slight-to-moderate, moderate-to-heavy, and very heavy) 
was determined; the percentage of urban land within each 
zone was multiplied by a weighting factor for that zone (1 
for none-to-slight, 2 for slight-to-moderate, 3 for moder-
ate-to-heavy, and 4 for very heavy); and the four weighted 
percentages were summed to get a weighted termite-
urban score. Alternative types of termite-urban scores 

were tried, including summing urban land in only the two 
highest zones of termite growth, and (or) calculating a 
termite-urban score using a version of the 1970s GIRAS 
land use data in which new residential areas were reclassi-
fied using 1990 census information (Hitt, 1994). However, 
the weighted termite-urban score that was based on the 
original 1970s GIRAS data had the strongest correlation 
with the response variable.

• Other urban source variables: Besides termite control, 
aldrin and dieldrin were used in other urban applications 
such as moth proofing, wood preservation, and control of 
disease vectors (such as mosquitoes) (U.S. Environmental 
Protection Agency, 1992a). Because quantitative use data 
are not available for such urban applications, two general 
urban-use surrogate variables were considered in model 
development: the percentage of urban land use in the 
basin and population density (people per square kilome-
ter). The percentage of urban land use in the basin (which 
included residential, commercial, industrial, transporta-
tion, communication, and utilities) was determined from 
1970s GIRAS data, as described above for agricultural 
land use variables. Population density data were derived 
from a 100-m resolution grid of the census block group 
boundaries and population counts (Price, 2003) derived 
from the 1990 Census of Population and Housing data 
files (U.S. Bureau of the Census, 1991). 

• Minimal use variables: Additional source variables con-
sidered were the percentage of total forested land and 
the percentage of total undeveloped land in the basin, 
both about 1970, which each represent areas where past 
use of aldrin and dieldrin is expected to be minimal. Total 
forested land included deciduous, evergreen, and mixed 
forest land, and forested wetland. Total undeveloped land 
included total forested land, rangeland (herbaceous, shrub 
and brush, and mixed), water (streams, canals, lakes, res-
ervoirs), nonforested wetland, tundra (herbaceous, shrub 
and brush, mixed, wet), barren land, beaches, other sandy 
areas, dry salt flats, bare rock, glaciers, and perennial 
snowfields. These land use percentages were determined 
from the 1970s GIRAS land use data.

Other Watershed Characteristics

Numerous watershed-based explanatory variables were 
considered, including soil characteristics, hydrologic param-
eters, climate variables, and agricultural management practices 
in the basin. Only those variables that were available for the 
entire conterminous United States were used. In addition, 
regional dummy variables were used to represent any regional 
differences not accounted for by the source- and watershed-
based variables considered in the model.
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• Physical watershed characteristics included watershed 
drainage area (square kilometers), site elevation 
(meters), mean basin elevation (meters), mean water-
shed slope (fraction), mean watershed aspect (degrees), 
and mean road density (kilometer per square kilometer). 
Mean basin elevation, slope, and aspect were computed 
from USGS digital elevation model data (U.S. Geologi-
cal Survey, 2000). Road density was derived from Census 
Bureau 2000 Topologically Integrated Geographic Encod-
ing and Referencing (TIGER) roads (Geolytics, Inc., 
2004).

• Soil characteristics included mean values within the basin 
of soil organic matter content (percent by weight); clay, 
silt, and sand content (percent) in the soil; soil perme-
ability (inches per hour); and available water capacity 
(inches per inch). In addition, two soil type variables, 
well-drained and poorly drained (percent), were based 

on soil hydrologic groups (HG) A, B, C, and D (U.S. 
Department of Agriculture, 1999) by combining them into 
two groups (HGA+HGB and HGC+HGD) to differenti-
ate the watersheds in terms of soil type. Higher values of 
HGA+HGB imply that soils in the watershed are gener-
ally well drained, with a relatively low potential for sur-
face runoff, whereas higher values of HGC+HGD imply 
poorer drainage and generally more surface runoff. The 
previous soil characteristics were based on national 1-km 
resolution geodata sets produced by Wolock (1997) from 
data in the State Soil Geographic (STATSGO) database 
(National Resources Conservation Service, 1994). Two 
additional soil-related variables were the mean R factor 
(rainfall erosivity) and mean K factor (soil erodibility) 
values for the uppermost soil horizon from the Universal 
Soil Loss Equation. Mean R factors were estimated from 
mean annual (1971–2000) R factor values at the 1-km 

Termite zones

EXPLANATION

Very heavy

Moderate to heavy

Slight to moderate

None to slight

NAWQA study unit boundary

Urban area

Figure 2. Urban areas in the United States (U.S. Geological Survey, 1986) shown superimposed on the relative hazard of subterranean termite 
infestations (Beal and others, 1994).  [For urban areas to be visible on the map, the 100-m resolution urban areas were generalized to the 3-km 
resolution; only those 3-km grid cells consisting of at least 10 percent urban land use are colored on the map. km, kilometer; m, meter]  
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grid cell resolution. The mean annual R factor values 
were estimated by the Illinois State Water Survey and 
interpolated to a 2.5 min resolution grid by the Spatial 
Climate Analysis Service at Oregon State University 
using the Parameter-elevation Regressions on Independent 
Slopes Model (PRISM) methodology (Greg Johnson, U.S. 
Department of Agriculture, written commun., May 12, 
2003). K factor values were averaged for each State Soil 
Geographic (STATSGO) soil map unit for the uppermost 
soil horizon, and then spatially represented in a 1-km 
resolution grid (David M. Wolock, U.S. Geological Sur-
vey, written commun., May 9, 2003).

• Hydrologic parameters included percent Dunne overland 
flow (the percentage of total streamflow contributed by 
overland flow resulting from precipitation falling on 
saturated soil) and percent Horton overland flow (the 
percentage of total streamflow contributed by overland 
flow resulting from precipitation falling at a rate exceed-
ing the infiltration rate of the soil), topographic wetness 
index (natural log of meters), index of subsurface flow 
contact time (days) and 1951–1980 mean annual runoff 
(inches). The Dunne and Horton overland flow parameters 
at the 5-km resolution (Wolock, 2003a,b) were gener-
ated using a national-scale application of the topography 
model, TOPMODEL rainfall-runoff model (Wolock, 
1993). The topographic wetness index was derived from 
the U.S. Geological Survey’s Digital Elevation Model 
(U.S. Geological Survey, 1993; Verdin and Greenlee, 
1996) at the 1-km resolution using the single flow direc-
tion algorithm method developed by Wolock and McCabe 
(1995). Subsurface contact time was developed from the 
100-m resolution Digital Elevation Model (U.S. Geo-
logical Survey, 1993) combined with soil characteristics 
(Wolock, 1997) using methods described in Wolock and 
others (1997). Mean annual runoff was created from 
Gebert and others (1987).

• Climatic variables include mean annual temperature 
(degrees Celsius) and precipitation (millimeters) (1961–
1990), and potential evapotranspiration (millimeters). 
Mean annual temperature and precipitation are from cli-
mate data developed by the Spatial Climate Analysis Ser-
vice at Oregon State University (Daly and others, 2002) 
using PRISM, which is an analytical model that uses point 
measurements and a Digital Elevation Model (DEM) to 
generate gridded estimates of monthly and annual pre-
cipitation, as well as other climatic parameters. Potential 
evapotranspiration was estimated using temperature data 
from PRISM with Hamon’s equation for potential evapo-
transpiration (Hamon, 1961). All climatic data variables 
were processed as grid cells at the 1-km resolution.

• Agricultural management practice variables included the 
mean percentage of the basin under selected agricultural 
management practices. These variables were derived from 
a digital map of the basin overlaid with a national geodata 
set of agricultural practices integrated with mapped 

agricultural land. The selected agricultural practices 
consisted of conservation tillage (Wieczorek, 2004a), 
irrigation practices (Wieczorek, 2004b,c,d), and artificial 
drainage (Wieczorek, 2004e,f). The data sources used by 
Wieczorek in these publications were the 1992 National 
Resources Inventory (U.S. Department of Agriculture, 
1995) and the U.S. Geological Survey’s National Land 
Cover Dataset 1992 (Vogelman and others, 2001).

• Ten regional dummy variables were used, which cor-
respond to the ten USDA farm production regions, as 
defined for 1971 agricultural pesticide use (Andrilenas, 
1974). Each site was assigned to one primary region, 
defined as the region containing the largest percentage of 
the watershed area for that site. Each region is represented 
by a 1/0 dummy variable; for example, a site with most of 
its basin in the Corn Belt region will have a value of “1” 
assigned to the ‘Corn Belt’ dummy variable and a value of 
“0” assigned to the nine remaining regional dummy vari-
ables. These regional dummy variables were considered 
in case there were regional influences on pesticide use or 
transport that were not represented by the pesticide use 
estimates and surrogates and the watershed characteristics 
previously added to the model.

Development of Regression Model

The response variable in the regression model is the log-
transformed concentration of dieldrin in one whole-fish com-
posite sample from each NAWQA site. Because each sample 
is a composite of 5–8 individual fish from a given site, the 
measured concentration represents an approximate “average” 
for that site. Explanatory variables were tested in four phases: 
those representing (phase I) sources of the pesticide, fish lipid 
content, and time; (phase II) taxon of the fish sample; (phase 
III) characteristics of the watershed; and (phase IV) geo-
graphic region. Statistical methods were used for selecting and 
transforming variables (as needed) for inclusion in the model 
and in estimating coefficients of the regression equation.

Regression Models

Many of the dieldrin concentration values used as the re-
sponse variable (62 percent of samples) were reported as less 
than a detection threshold (that is, dieldrin was not detected), 
resulting in censored data. With censored data, conventional 
least-squares regression methods will yield biased and incon-
sistent estimates (Judge and others, 1985, p. 780). Therefore, 
Tobit regression methods (also called maximum likelihood 
methods) were used for developing the model. These can be 
used to obtain parameter estimates of a censored linear model 
when the regression residual errors are independent, identi-
cally and normally distributed, and with a mean of zero and 
finite variance (Maddala, 1983). Maximum likelihood methods 
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implemented in the survreg procedure (Therneau, 1999) in the 
statistical analysis program S-PLUS (Insightful Corporation, 
1999) were used to estimate the parameters of the regression 
models.

Measures of goodness of fit used in conventional least 
squares analysis—such as the standard deviation of the 
residual error, or the coefficient of multiple determination 
(R2)—cannot be computed for the Tobit regression model. The 
standard deviation of the residual error is alternatively referred 
to as the scale parameter in maximum likelihood estimation. 
Estimates of the scale parameter from the maximum likelihood 
procedure provide only asymptotically unbiased estimates of 
the standard deviation of the residual error when estimated 
from sample data (Aitkin, 1981). These estimates, on aver-
age, underestimate the true standard deviation. The bias is a 
function of the sample size and the degree of censoring. In 
this report, biased estimates of the standard deviation of the 
residual error are referred to as “scale” in tables and figures. 
As an alternative to a conventional R2, a pseudo-R2 (pR2)  
suitable for use in Tobit regression model was calculated using 
the method of Laitila (1993). As with conventional R2, this pR2 
ranges from 0 to 1 and is an estimate of the proportion of the 
variation in the response variable explained by the regression 
model (“0” indicates no variation is explained; “1” indicates 
all variation is explained).

Transformation of Response and Explanatory 
Variables

The maximum likelihood methods used for estimating 
the parameters of the models require several assumptions. The 
relation between the variables must be linear in the param-
eters, and the residual error must be identically and normally 
distributed. Departures from these assumptions can result in 
estimates of model coefficients with considerable error. One 
means of addressing departures from model assumptions is 
through transformations of the response and (or) explana-
tory variables. Various transformations were considered to 
minimize departures from the assumptions of the maximum 
likelihood methods used. For the response variable, a logarith-
mic transformation was used. For explanatory variables, the 
logarithmic, square-root, and square transformations of each 
variable were considered, as well as the untransformed  
value. (For variables that have zero as a possible value, 1 
was added to variable values before applying the logarithmic 
transformation.)

Because the response variable is a logarithmic transfor-
mation, concentrations predicted by the model (after retrans-
formation) are the median concentrations expected for sites 
that have a given set of explanatory values, rather than mean 
concentrations. For example, for 10 basins with identical 
explanatory variables, the model will predict the same dieldrin 
concentration for all 10 basins. In actuality, the true concentra-
tions are expected to be less than the predicted value at half of 

the 10 basins and greater than the predicted value at the other 
half. Thus, the “median” response refers to the distribution of 
concentrations among sites. In this study, predicted concentra-
tions were not adjusted for transformation bias (Bradu and 
Mundlak, 1970; Duan, 1983) because estimates of site medi-
ans were considered appropriate for the study objectives.

Selection of Explanatory Variables

Potential explanatory variables were considered and 
added to the model in four phases, as described below.

• Phase I: Source variables, lipid content, time—Estimates 
of historical pesticide use in agriculture, various sur-
rogates for agricultural and urban pesticide use, and 
surrogates for minimal use were added to represent past 
pesticide use in the basin. In addition, fish lipid content 
(a measured parameter) was included in phase I because 
of its significant correlation with dieldrin residues in fish 
(p ≤ 0.0001). Elapsed time was also considered during 
this phase. These variables were considered first because 
they were expected to be the most important in terms of  
explaining the variance in concentrations among sites.

• Phase II: Taxon—Dummy variables representing the most 
commonly sampled fish taxa were considered as explana-
tory variables, in case lipid content (added to the model 
during phase I) did not completely account for differences 
in contaminant bioaccumulation among fish taxa.

• Phase III: Watershed variables—Additional watershed 
characteristics (soil properties, hydrologic parameters, 
climate variables, and agricultural management prac-
tices) were considered. These variables have potential to 
affect contaminant fate and transport and, therefore, may 
contribute to differences in contaminant concentrations 
measured in fish from different watersheds, once differ-
ences between sources and fish taxa have been taken into 
account.

• Phase IV: Region—Dummy variables representing USDA 
farm production regions were considered in case there 
were regional differences not accounted for by source 
estimates and watershed characteristics.
During each phase, a stepwise procedure that was based 

on the Akaike Information Criterion (AIC) was applied 
(Venables and Ripley, 1999, p. 186–188). This procedure is 
similar to stepwise regression, except that the AIC was used to 
select variables for inclusion in the model. AIC is a function of 
the maximized likelihood and the number of parameters in the 
model; it balances model goodness of fit with the number of 
parameters needed to achieve that fit. AIC attempts to quantify 
the concept of model parsimony, in that simpler models are 
favored over complex ones unless a complex one substantially 
improves the fit. During each phase of model development, 
a stepwise Akaike-based procedure (stepAIC) was used that 
computed the AIC for multiple (alternative) models and 
selected the one that best described the response variable data. 
Candidate variables not selected by the stepAIC procedure 
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were eliminated, and the stepAIC procedure was rerun until 
no further variables were eliminated from the model. This pro-
cess, described below in more detail for phase I, was repeated 
during each of the four phases of model development.

To select variables during phase I: (1) The stepAIC 
procedure was run to identify candidate phase I variables that 
best describe the response variable data. (2) For each variable 
identified as important by the stepAIC procedure, that vari-
able and three alternate transformations (the logarithm, square, 
and square root of the variable) were each plotted against the 
response variable and examined to see if the relation was ap-
proximately linear, and if the variance was relatively con-
stant across the range of values of the variable. The stepAIC 
procedure also was run on all four versions of the variable 
(untransformed and the three transformations) to determine 
whether transformation(s) improved the fit. For each untrans-
formed explanatory variable that was selected by the stepAIC 
procedure, the following was performed: (a) if the relationship 
between the response variable and that untransformed explana-
tory variable showed non-normality or nonconstant variance, 
but the problem was corrected by one or more transforma-
tions of that explanatory variable, then that transformation 
was substituted for the original, untransformed variable in 
the model; (b) if the relationship between the response vari-
able and that untransformed explanatory variable was highly 
skewed, showed non-normality or nonconstant variance, and 
these problems were not improved by transformation, then that 
variable was dropped from consideration in the model. (3) The 
stepAIC procedure was run again on the revised list of candi-
date variables. (4) Any variables that were not selected by the 
stepAIC procedure were eliminated and the stepAIC proce-
dure was run again. (5) Step 4 was repeated until no further 
phase I variables were eliminated by the stepAIC procedure. 
(6) Any variables that were selected by the stepAIC procedure, 
but had p-values greater than 0.05, were dropped from the 
model. Prior to this step, some variables with p-values greater 
than 0.05 may have been selected, and some variables with p-
values less than 0.05 excluded, by the stepAIC procedure be-
cause this procedure relies on AIC (not on p-values) to select 
variables. During this step, any variables with p-values greater 
than 0.05 were dropped to simplify the model and to limit the 
overall number of variables in the model. (7) Occasionally the 
stepAIC procedure selected two or more redundant variables, 
such as two transformations of the same variable, or two vari-
ables that represented the same or overlapping ancillary data 
(such as total forested land and total undeveloped land, or two 
termite-urban score variables calculated in different ways); 
in such cases, the variable with the strongest correlation was 
selected, and the redundant variable(s) were eliminated. At 
this point, phase I ended and phase II began.

Beginning with phase II, each phase started with the 
best model from the preceding phase, and then the new set of 
variables was added and tested. The seven steps listed above 
were repeated during each of phases II through IV (except that 
dummy variables in phases II and IV were not transformed). 
During the later stages of model development, sometimes  

variables selected during previous phases were no longer 
retained (selected) by the stepAIC procedure; that is, addition 
of new explanatory variables to the model caused some previ-
ously selected variables to be eliminated from the model.

After phase IV, a subsampling technique was used to re-
duce the number of variables and to eliminate overfitting. The 
AIC-based selection procedure was run on a random subset of 
50 percent of the dieldrin data, and a record was made of any 
variables dropped from the model (that is, no longer selected 
by stepAIC). This random subsampling procedure was re-
peated 50 times, and any variables that were routinely dropped 
(that is, dropped in at least 20 percent of replicate runs) were 
eliminated from the model. This subsampling approach was 
repeated with the abbreviated model, and again variables were 
eliminated if they were dropped in 20 percent or more of the 
replicates. The subsampling approach was repeated until no 
variables were routinely dropped. The subsampling routines 
reduced the final dieldrin model from 13 to 6 variables.

Analysis of Model Fit

Condition indices and variance decomposition propor-
tions were used to detect colinearity among variables. One 
variable was eliminated from the dieldrin model because of 
colinearity. Diagnostics for censored regression (Escobar 
and Meeker, 1992) available in the survreg procedure in the 
S-PLUS program (Insightful Corporation, 1999) were used to 
identify influential observations and to aid in variable selec-
tion. These diagnostics included case-weight perturbations 
(a measure of the effect that dropping an observation has on 
the inference), response perturbations (a measure of the ef-
fect that errors in the observed response variable has on the 
inference), shape parameter perturbations (a measure of the 
effect that unequal variances of the response variable have on 
the inference), deviance residuals (a residual transformed to a 
log-likelihood scale—the sum of the squared deviance residu-
als totals to the deviance), and leverage (a measure of how 
much influence an observation has on the overall regression). 
For individual observations identified as high values for any 
of these diagnostics, the regression was rerun excluding this 
observation to determine the effect of the observation on the 
regression; however, in all cases, the Akaike selection proce-
dure retained (that is, selected) all variables in the regression 
model, there was no change in the sign of the coefficients, and 
the pR2 and scale values did not change markedly. Therefore, 
all observations were retained for model development.

Model Validation

The final model was cross-validated as follows: The 
NAWQA fish data used in model development were randomly 
divided into two subsets, a calibration data set (containing 70 
percent of the data) and a validation data set (30 percent of 
the data). The model was first fit to the calibration data subset, 
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Figure 3. (A) Residual error developed from calibration data.   
Dashed lines are reference lines at y values of 1 and –1. Dieldrin  
concentrations are in units of micrograms per kilogram, wet weight.

Figure 3. (B) Continued. Residual error developed from validation data. 

and predicted values and residuals were computed for both the 
calibration data and validation data subsets. Then the process 
was reversed, and the model was fit to the validation data 
subset. There was little difference in the predicted and residual 
errors obtained from the two fitted models that were based on 
the different data subsets (fig. 3).

Extrapolation to Unmonitored Streams

The regression model was used to predict the dieldrin 
concentration in whole fish in all streams in the conterminous 
United States, using national data sources to estimate values 
of model variables for unmonitored streams. Unlike the other 
explanatory variables, lipid content is not available from a 
nationwide data set; therefore, the extrapolation must assume a 
specified lipid content value that is appropriate to the objec-
tives of the extrapolation.

Data Sources for Unmonitored Streams  
Nationwide

The U.S. streams were defined by the EPA River Reach 
File 1 (Nolan and others, 2003), which includes over 600,000 
mi of streams and more than 60,000 watersheds, at a scale 
of approximately 1:500,000. For every watershed, values of 
the explanatory variables required by the regression models 
were computed from nationwide data sources using geospa-
tial analysis tools. This step required delineation of the entire 
watershed area draining to the downstream end of each stream 
reach and then computing area-weighted average values for 
each explanatory variable. The regression model then was 
used to predict the concentration of dieldrin in whole fish for 
the stream at the outlet of each watershed.

Lipid Content

Nationwide extrapolations were made at two differ-
ent values for fish lipid content: (a) 4.2 percent and (b) 6.2 
percent. These correspond to the average lipid content of (a) 
whole-body largemouth bass and (b) all whole fish that were 
sampled by the NCBP (1969–1986, from U.S. Geological 
Survey, 2004) and the NAWQA Program (1992–2001) 
combined, respectively. The 4.2 percent value is intended 
to represent the average lipid content of whole largemouth 
bass (a nationally distributed sport fish that is popular with 
recreational fishers), and the 6.2 percent value is intended to 
represent the average lipid content of all whole fish, in United 
States streams.
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Uncertainty Analysis

A regression model provides an estimate of the response 
variable conditional for a given a set of values of the explana-
tory variables. If the form of the regression model reasonably 
describes the relation between the response and explanatory 
variables and the sample data are representative of the popula-
tion of all data, then the model can be used to predict values 
of the response variable for additional sets of explanatory vari-
able values not included among the sample data. In this study, 
each prediction represents the median, or “mid-point” estimate 
of the response variable (logarithm of dieldrin concentration 
in whole fish) for all unmonitored sites with an identical set 
of explanatory variable values. Thus, for a group of sites with 
identical explanatory variable values, there is a 50 percent 
probability that the measured concentration at any site exceeds 
the predicted concentration for that site; the actual value is 
expected to be lower than the model prediction at 50 percent 
of these sites and higher than the predicted concentration at 
50 percent of these sites. Moreover, because the model was 
developed using measured concentrations in composite whole-
fish samples, the model predictions also represent composite 
whole-fish samples. Finally, because the response variable is 
the logarithm of dieldrin concentration, the antilogarithm of 
the estimate from the regression model must be computed to 
obtain the median estimate of dieldrin concentration.

If the assumptions of the maximum likelihood method 
used to fit the model parameters pertaining to the residual 
error distribution are valid, then uncertainty in the estimated 
response variable values can be assessed by calculating predic-
tion intervals. Upper and lower prediction limits are construct-
ed around the estimated concentration from the model error 
(scale). Specifically, a prediction interval (PI) is computed as 
follows:

		  (1)

where log(C
est

) is the logarithm of the estimated dieldrin con-
centration, t(α/2) is the point on student’s t-distribution with 
a probability of exceedance of α/2, and SD

est
 is the standard 

error of the estimated logarithm of concentration.
This means of assessing uncertainty is only approximate 

because it doesn’t fully take into account the effect of censor-
ing of the observed concentration data. A prediction interval 
represents the likelihood that the actual unknown concen-
tration for an individual unmonitored stream falls within a 
specified interval of the predicted concentration. For a 90th 
percentile prediction interval, for example, only 10 percent of 
measured concentrations in fish samples (with the appropriate 
lipid content) collected from a given stream would be expected 
to fall outside that interval—5 percent would fall below the 
lower limit, and 5 percent above the upper limit. (That is, there 
is only a 5 percent probability that the measured concentration 

at any site exceeds the upper 90th percentile prediction inter-
val limit and a 95 percent probability that it exceeds the lower 
prediction interval limit.) The wider the prediction interval, the 
greater the uncertainty in the estimated concentration.

Sometimes it is useful to be able to determine the prob-
ability that an estimated concentration exceeds a certain con-
centration, such as a guideline for protection of human health 
or wildlife. This probability is a function of the estimated 
concentration for a site and the overall model error, and it can 
be approximated by algebraically rearranging the formula for 
computing prediction interval limits (equation 1). The prob-
ability of exceedance (P

exc
) is thus equal to

	
P

C C

SDexc
g est

est

=
−



log( ) log( )

	 (2)

where C
g
 is the guideline concentration. This concept is il-

lustrated in figure 4. Figure 4A shows a hypothetical regres-
sion line that represents the estimated values of the response 
variable for the explanatory variable shown on the x-axis. For 
four selected values of the explanatory variable, figure 4A also 
shows the error distribution about the regression line and the 
90th percentile prediction interval limits. When the regression 
residual error is normally distributed, the error distribution 
about an estimated value of the response variable follows the 
student’s t-distribution, as shown. The probability that the es-
timated response value will exceed the guideline is thus repre-
sented by the area under the error distribution curve above the 
point where the guideline intersects the curve. In the example 
shown in figure 4, the exceedance probabilities for the four se-
lected values of the explanatory variable are (from left to right) 
0.02, 2.3, 31, and 84 percent. (Figure 4 is a 2-dimensional 
representation of a 3-dimensional figure. In three dimensions, 
the error distribution curve would be perpendicular to the pa-
per and the prediction interval limits would lie on the curve.) 
Figure 4B shows the same regression and error relation after 
antilogarithms have been computed. Once this has been done, 
the error distribution around the regression line is no longer 
symmetric, nor does it have constant variance. Because the 
error distribution is no longer symmetric, the magnitude of the 
uncertainty is greater above the estimated concentration than it 
is below it. Likewise, because the error distribution no longer 
has constant variance, the magnitude of the uncertainty about 
the estimated dieldrin concentrations is much greater for larger 
concentrations than for smaller ones.

In this report, for both human health and wildlife guide-
lines, the probability that an unmonitored stream would exceed 
a given guideline was calculated and the national distribution 
of probabilities was mapped for unmonitored streams across 
the United States. This entailed assuming a default lipid con-
tent appropriate for each type of guideline, as discussed further 
in the next section.

PI C SD test est= ( )± ×
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Figure 4. (A) A hypothetical regression for which the response variable is log-transformed, showing the regression line; the error distribution 
and the upper and lower 90th percentile prediction interval limits for four selected estimated values of the response variable; and a hypothetical 
guideline value. (B) Same as A, after taking the antilogarithm of the response variable.
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Predicting the Potential Effects of Fish  
Consumption on Human Health and Wildlife

Potential Effects on Human Health

Potential effects on human health from fish consumption 
were assessed by (1) assuming a lipid content of 4.2 percent, 
and then (2) comparing predicted dieldrin concentrations in 
whole fish for unmonitored streams across the United States 
with the EPA recommended screening values for dieldrin in 
edible fish (U.S. Environmental Protection Agency, 2000). As 
noted above, the lipid content of 4.2 percent was chosen be-
cause it is the average lipid content of whole-body largemouth 
bass sampled by the NCBP and NAWQA Programs. This 
choice of taxon was considered appropriate from a human 
health perspective because largemouth bass is a common sport 
fish with a national distribution. This choice of tissue type 
(whole-body fish) is not optimal from a human health perspec-
tive because people tend to consume only the edible portion 
(fillets)—however, it is necessary because the model was 
developed from whole-body fish data, and it cannot be used 
to predict concentrations in fish fillets. Therefore, comparison 
with human-health guidelines (EPA screening values) is con-
sidered a screening-level assessment (discussed further in the 
section on “Significance to Human Health”).

The EPA screening value for a contaminant in edible 
fish tissue is defined as the concentration of that contaminant 
in edible fish or shellfish that is of public health concern and 
that is used as a threshold value against which tissue residue 
levels of that contaminant in edible fish and shellfish can be 
compared (U.S. Environmental Protection Agency, 2000). For 
potential carcinogens such as dieldrin, EPA uses a conserva-
tive (protective) model of carcinogenesis that assumes there is 
no safe level of a carcinogen; instead, EPA calculates a screen-
ing value that corresponds to a maximum acceptable cancer 
risk (such as 1 in 100,000). If the maximum acceptable cancer 
risk decreases, the allowable dieldrin concentration also will 
decrease accordingly. The EPA screening values (SV) can be 
adjusted for different acceptable risk levels, as for example:

	 SV SV( : , ) ( : , )1 10 000 1 100 00010= × 	 (3)

where SV
(1:10,000)

 is the screening value at a maximum accept-
able cancer risk of 1 in 10,000, and SV

(1:100,000)
 is the screening 

value at a cancer risk of 1 in 100,000.
For dieldrin, the screening value is 25 µg/kg for a cancer 

risk level of 1 in 10,000, and 2.5 µg/kg for a cancer risk 
level of 1 in 100,000. Both of these screening values (at the 
1:10,000 and 1:100,000 cancer risk levels) are used in the 
extrapolation for human health (see “Significance to Human 
Health”).

Potential Effects on Fish-Eating Wildlife

Potential effects on fish-eating wildlife were assessed 
by (1) assuming a default lipid content of 6.2 percent and (2) 
comparing predicted dieldrin concentrations in whole fish 
for unmonitored streams across the U.S. with the New York 
guideline for protection of fish-eating wildlife (Newell and 
others, 1987). As noted above, the default lipid content of 6.2 
percent was chosen because it is the average lipid content of 
all whole fish sampled by the NCBP and NAWQA Programs. 
This assumption is appropriate because wildlife will eat a 
variety of fish taxa and they tend to consume the whole fish. 
The New York wildlife guideline of 120 µg/kg is intended to 
protect fish-eating birds and mammals from adverse effects 
other than cancer, such as mortality, reproductive impairment, 
and organ damage (Newell and others, 1987).

Dieldrin is a potential carcinogen (U.S. Environmental 
Protection Agency, 1992b), and the 120-µg/kg guideline does 
not address the potential incidence of cancer in wildlife popu-
lations from dieldrin exposure. Although Newell and others 
(1987) also determined a cancer risk guideline for dieldrin, 
this guideline assumes a maximum acceptable cancer risk of 
1 in 100—that is, it assumes that a 1:100 cancer risk would 
result in virtually no reduction in a population from contami-
nant-induced cancer, an assumption that could not be fully  
justified at the time (Newell and others, 1987). Because it is 
not clear what effect this level of contamination and cancer 
risk would have on wildlife populations, the New York cancer-
risk guideline was not used as a benchmark in this report.

Results and Discussion
The model development data set contains data for 59 

different fish taxa at 648 stream sites. Site locations and 
measured dieldrin concentrations in whole fish are shown in 
figure 5. However, sites with the highest and lowest 10 percent 
of lipid levels were excluded from figure 5 so that the range of 
lipid levels shown (2.3–10.4 percent, for n = 514 sites) more 
closely approximates the lipid levels used in the nationwide 
extrapolations.

Regression Model for Dieldrin in Whole Fish

The explanatory variables included in the dieldrin fish 
model, as well as their transformations and coefficients, are 
summarized in table 3 .
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Figure 5. Measured dieldrin concentrations in fish at NAWQA sites, excluding sites with 
the highest and lowest 10 percent of lipid levels. The 514 sites plotted have 2.3–10.4 
percent lipid content. µg/kg, microgram per kilogram.

Explanatory variable Transformation Coefficient p-value
Fish lipid content (%) Logarithmic 1.0542 1.32E–21
Aldrin–dieldrin use in agriculture, per basin area (lb/mi2) — 0.0733 7.91E–26
Forest land (% of basin) Square root –0.0829 5.18E–16
Urban-termite score Logarithmic(x + 1) 0.5406 2.91E–27
Organic matter content of basin soils (average %) Logarithmic –0.4838 2.94E–10
Southern Plains region Binary group variable (1/0) 0.2714 0.0146
(Intercept) — –0.1674 0.132

Table 3. Explanatory variables and coefficients for the regression model for dieldrin in whole fish.  

[—, none; lb/mi2, pound per square mile]
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Analysis of Significant Explanatory Variables

The first four and most important explanatory variables in 
the model have reasonable relations to dieldrin concentrations 
in fish, in terms of their relative importance and the direction 
of their influence. The measured lipid content is positively 
related to dieldrin concentration in fish, which is consistent 
with the tendency of organochlorine pesticides to accumulate 
in fat tissue. Coefficients are positive for agricultural use of 
aldrin and dieldrin and the urban-termite score (representing 
historical use in agriculture and termite control, respectively), 
and negative for the variable representing forested land in the 
basin (where use would have been minimal). Together these 
four variables explain 58 percent of the variability in dieldrin 
concentrations measured in fish (fig. 6).

The addition of two more variables, soil organic mat-
ter and the Southern Plains regional variable, made a modest 
improvement in model performance. The final model explains 
64 percent of the variability in dieldrin concentrations in 
whole fish, and the scale parameter (standard deviation of the 
residual error) for the final regression is 0.485 (fig. 6). The last 
two variables are significantly, though weakly, correlated with 
the response variable. Because these variables explain relative-
ly little of the variability, possible reasons for their influence 
on the response variable are speculative. The soil organic mat-
ter variable has a negative coefficient, and multiple explana-
tions are possible. High values for soil organic matter may be 

associated with either or both (1) reduced transport of con-
taminated soil to streams and (or) (2) a higher organic carbon 
content in stream sediment, which would tend to have a higher 
fraction of dieldrin sorbed to sediment and a correspondingly 
lower fraction in water, which could in turn decrease uptake by 
fish. The first possible explanation is supported by the obser-
vation that, in data from the STATSGO database for NAWQA 
fish sampling sites, mean soil organic matter is positively cor-
related with mean soil permeability. In support of the  
second possible explanation, the logarithm of the dieldrin  
concentration measured in fish is also negatively correlated 
(p < 0.05) with the logarithm of the measured organic carbon 
content of streambed sediment collected at the same sites.

The Southern Plains regional variable has a positive 
coefficient, indicating that without this variable, the regression 
model would tend to underestimate dieldrin concentrations in 
fish in the Southern Plains region (Texas and Oklahoma). The 
reason for this underestimation is not known. However, in this 
region, aldrin and dieldrin were used in agriculture (especially 
on cotton), as well as in urban applications (the eastern parts 
of Texas and Oklahoma are in the zone of heaviest termite 
density). Of the NAWQA sites sampled in the Southern Plains 
region, the highest dieldrin residues in fish were from the 
Trinity River Basin study unit in eastern Texas—especially at 
sites in large basins with mixed (agricultural and urban) land 
use—whereas dieldrin was low or not detected at strictly  
agricultural sites in this study unit. Although not conclusive, 
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Figure 6. Effect of adding explanatory variables to the regression model for dieldrin 
in whole fish on the model’s pseudo-R2 and scale values.
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this suggests that urban use (rather than agricultural use) of 
aldrin and dieldrin in this area may have been underestimated 
by the use terms in the regression model. In fact, most urban 
sites in the Trinity River Basin are located in the moderate-
to-heavy zone of termite density, but very near (just outside) 
the boundary of the very-heavy termite zone (fig. 2); so, it is 
possible that the weighted termite-urban score may under-rep-
resent past termiticide use in these urban areas. Because this 
regional variable explains very little of the variability (about 1 
percent), the apparent regional bias is slight and the explana-
tion for it is speculative.

Extrapolation to Unmonitored Streams

The regression model developed here can be used for 
spatial extrapolation to streams that have not yet been assessed 
by direct measurements, because the model is based on certain 
characteristics of each hydrologic system, such as estimated 
historical pesticide use and soil characteristics within the 
basin, for which data or estimates are available for the entire 
nation. This approach to extrapolation is fundamental to 
extending the targeted local and regional studies of NAWQA 
to a comprehensive national assessment (Gilliom and others, 
2006).

The results of spatial extrapolation to all United States 
streams are shown in figure 7, which maps the dieldrin con-
centration in composite whole fish predicted by the model, 
for whole fish with a lipid content of (A) 4.2 percent and (B) 
6.2 percent. As noted previously, lipid content is not avail-
able from a nationwide data set, as are the other explanatory 
variables, and therefore default lipid values have been assumed 
that are appropriate to the objectives of the extrapolations. 
These maps show the spatial distribution of the best or most 
likely concentrations of dieldrin in composite whole-fish 
samples (for each of the specified lipid contents).

In figure 7, unmonitored streams are color coded to cor-
respond to different concentration ranges for the predicted 
dieldrin concentration in whole fish (at the lipid content speci-
fied in the figure). A single set of color-coded dieldrin concen-
tration ranges is used in both maps, and the boundary concen-
trations defining these ranges correspond to specific dieldrin 
guidelines for either human health or wildlife. The highest 
concentration category (>120 µg/kg) is defined by the New 
York guideline for protection of fish-eating wildlife (Newell 
and others, 1987). The lowest category consists of streams pre-
dicted to have dieldrin whole-fish residues below the reporting 
limit (<5 µg/kg), and the two middle categories are defined 
in relation to EPA screening values for consumption of ed-
ible fish or shellfish (U.S. Environmental Protection Agency, 
2000). Specifically, the 5–25 µg/kg category is defined at the 

lower end by the reporting limit (5 µg/kg), which is associated 
with a cancer risk of 2 in 100,000 (or 1:50,000). (Note that the 
EPA recommended screening value at a 1:100,000 cancer risk 
is 2.5 µg/kg, which is lower than NAWQA was able to reliably 
quantitate in fish.) For the 25–120 µg/kg category, all sites 
have predicted values greater than the EPA screening value 
at a 1:10,000 cancer risk (25 µg/kg). These predictions are 
discussed further below in relation to potential significance to 
human health and wildlife.

Because the response variable is a logarithmic transfor-
mation, concentrations predicted by the model (after retrans-
formation) are median concentrations expected for a given set 
of explanatory values. This means that, for sites with the iden-
tical predicted dieldrin concentration, the actual concentrations 
are expected to be greater than the predicted value (for a given 
lipid content) at half of the sites, and lower than predicted 
at half of the sites. In figure 7, therefore, actual concentra-
tions (for composite whole-fish samples) at half the sites are 
expected to exceed the predicted values. Uncertainty in model 
predictions is discussed below in the context of human health 
and wildlife guidelines.

Because fish lipid content (a measured parameter) is a 
variable in the model and has a positive coefficient, predicted 
dieldrin concentrations will increase as fish lipid content 
increases. This is illustrated by comparing predictions for 
6.2 percent lipid (fig. 7B) with predictions for 4.2 percent lipid 
(fig. 7A). The extrapolation at 6.2 percent lipid (fig. 7B) has 
fewer blue streams, and more yellow, orange, and red streams 
than the extrapolation at 4.2 percent lipid (fig. 7A). Whole fish 
with a lipid content greater than 6.2 percent would be pre-
dicted to have still higher dieldrin concentrations than those 
shown in figure 7B, and whole fish with a lipid content less 
than 4.2 percent would be expected to have lower concentra-
tions than those shown in figure 7A. As a point of reference, 
the average whole-fish lipid content in NAWQA and NCBP 
fish samples for some additional species are lake trout,  
15 percent; channel catfish, 7.5 percent; common carp, 6.5 
percent; smallmouth buffalo, 6.5 percent; white sucker, 5.8 
percent; yellow perch, 4.3 percent; sculpins, 3.8 percent; and 
bluegill, 3.1 percent.

Significance to Human Health

NAWQA fish data were not collected with the intention 
of assessing potential effects on human health from consump-
tion of contaminated fish. Instead, NAWQA’s primary fish 
sampling objective was to assess the occurrence and geo-
graphic distribution of hydrophobic contaminants in streams, 
and the fish sampling methods were designed accordingly. 
Two aspects of the NAWQA study design detract from the 
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Figure 7. Predicted dieldrin concentrations in whole fish for U.S. streams at (A) 4.2 percent lipid 
content (largemouth bass) and (B) 6.2 percent lipid content (all fish taxa).  
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usefulness of NAWQA fish data in the assessment of human 
exposure and health risk. First, NAWQA analyzed whole-body 
residues, whereas people generally consume only the edible 
portion (fillet or muscle tissue), and second, many of the fish 
taxa collected are bottom feeders that are not commonly con-
sumed by people. Nonetheless, careful data analysis will allow 
some inference with respect to potential human health effects.

It is not necessarily straightforward to predict how resi-
dues of organochlorine pesticides will compare in a whole-
body bottom feeder versus a game-fish fillet, because two 
factors (fish taxon and fish tissue type) have changed. In its 
National Study of Chemical Residues in Fish, EPA measured 
bioaccumulative chemicals in whole-body bottom-feeders 
and game-fish fillets, and found that the relative magnitude 
of residues in each depended on the specific chemical being 
measured (U.S. Environmental Protection Agency, 1992b). 
Of the organochlorine pesticide chemicals measured, some 
(including dieldrin, oxychlordane, and DDE) were present in 
roughly the same average concentrations in game-fish fillets 
as in whole-body bottom-feeders, whereas others (including 
chlordane, nonachlor, and heptachlor epoxide) had higher 
average concentrations in whole-body bottom feeders than in 
game-fish fillets.

These findings suggest that, with caveats, NAWQA 
whole-fish data can be compared with EPA screening values 
for edible fish consumption in a screening-level assessment—
such as in deciding whether and where to conduct future diel-
drin monitoring in game-fish fillets. For example, in streams 
where dieldrin residues in whole fish are found (or predicted) 
to be high, there exists some potential for concentrations in 
edible game fish to be high as well. Therefore, if such streams 
are frequented by sport or subsistence fishermen, this suggests 
that additional sampling and analysis of game-fish fillets from 
these streams may be warranted. Conversely, where dieldrin 
residues in whole fish are low or undetected, concentrations in 
edible fish tissue are also likely to be low—allowing for differ-
ences that are due to species and (or) lipid content. 

To assess relevance to human health, the regression mod-
el was used to predict dieldrin concentrations in whole fish, 
assuming a 4.2 percent lipid content (to represent the average 
lipid content of whole-body largemouth bass), in unmonitored 
streams. As noted previously, the 4.2 percent lipid value per-
tains to whole-body largemouth bass, whereas the EPA screen-
ing values for fish consumption apply to the edible portion of 
the fish, which tends to have a lower lipid content. Data from 
EPA’s National Study for Chemical Residues in Fish indicate 
that lipid levels in bass fillets average 0.84 percent, or about 
one fifth the content of whole-body largemouth bass sampled 
by the NCBP and NAWQA programs (U.S. Environmental 
Protection Agency, 1992b). Therefore, the comparison shown 

in figure 7A represents a worst-case assessment at the 4.2 per-
cent lipid level from the perspective of human health. For fish 
with a higher lipid level, such as lake trout (with an average 
whole-body lipid content of 15 percent), whole-body dieldrin 
concentrations would likely be much higher than the whole-
body concentrations calculated at the 4.2 percent lipid level 
(and shown in fig. 7A). We cannot make specific predictions 
about dieldrin concentrations in edible fish tissues for large-
mouth bass, lake trout, or any other taxon because the data 
required to make such predictions were not collected. 

In figure 7A, dieldrin concentrations in whole fish from 
the dark-blue streams are predicted to be less than the report-
ing limit (5 µg/kg) for the method NAWQA used to analyze 
for dieldrin in fish. In edible fish tissue, a concentration less 
than 5 µg/kg would correspond to a cancer risk level of less 
than 1 in 50,000. Because dieldrin concentrations in edible 
fish are expected to be even lower than those in whole fish, the 
dark blue streams are likely to have median dieldrin concen-
trations in edible fish tissue that are below the EPA screening 
value at 1:50,000 cancer risk. 

In figure 7A, streams with predicted dieldrin concentra-
tions greater than 25 µg/kg (red and orange shaded streams) 
are mostly concentrated in the Corn Belt, with scattered  
patches in Texas, the southeast, urbanized parts of the north-
east, and California. If measured in edible fish tissue, diel-
drin concentrations greater than 25 µg/kg would exceed the 
EPA recommended screening value for 1 in 10,000 cancer 
risk, and concentrations in the range of 5–25 µg/kg (yellow 
shaded streams) would exceed the EPA screening value for 
1 in 50,000 cancer risk. Exactly what constitutes an accept-
able maximum level of cancer risk is not clearly defined by 
EPA. Many state and EPA programs use a cancer risk level of 
between 1 in 100,000 and 1 in 1,000,000. Certainly, cancer 
risks exceeding 1:10,000 are higher than the maximum accept-
able cancer risk levels used by most state and EPA programs 
(Nowell and Resek, 1994). Again, this comparison must be 
qualified because predicted dieldrin concentrations in whole 
fish probably overestimate concentrations in edible fish. In 
streams where whole-fish dieldrin concentrations are predicted 
by the model to exceed EPA screening values at 1:10,000 
(red and orange streams) or 1:50,000 (yellow streams), it is 
not clear that concentrations in edible fish also would exceed 
screening values. However, for such streams that are actively 
fished, the extrapolation results can be used to guide future 
monitoring and assessment priorities for measuring dieldrin in 
the edible tissues of game fish.

22    Regression Model for Explaining and Predicting Concentrations of Dieldrin in Whole Fish from United States Streams



Significance to Fish-Eating Wildlife

The extrapolation shown in figure 7B assumes a fish 
lipid content of 6.2 percent lipid (to represent the average 
lipid content of all whole fish, regardless of species). Because 
wildlife consume many fish species and typically eat the entire 
fish, it is appropriate to directly compare model predictions at 
6.2 percent lipid with whole-fish guidelines for protection of 
wildlife.

The New York wildlife guideline used in this analysis 
(120 µg/kg dieldrin) is intended to protect fish-eating birds and 
mammals from adverse effects other than cancer, as noted pre-
viously. Relatively few streams are predicted to have median 
concentrations that exceed this dieldrin guideline (mapped in 
red in fig. 7B) and these few are in the Corn Belt, where past 
use of aldrin and dieldrin in agriculture was highest.

Uncertainty in Model Predictions

In the preceding model predictions, it is important to 
consider uncertainty, especially when comparing predicted 
concentrations with human-health or aquatic-life guidelines. 
In figures 7A and B, measured fish samples (at the appropriate 
lipid content) will have a 50 percent probability of exceeding 
the predicted concentration. For example, even for dark blue 
streams in figure 7A, where the predicted median concentra-
tion is <5 µg/kg, this means that 50 percent of streams are 
expected to have whole-fish concentrations greater than this 
predicted concentration, and some may in fact be greater than 
EPA screening values of 2.5 or even 25 µg/kg, which are as-
sociated with cancer risk levels of 1:100,000 and 1:10,000, 
respectively.

The maps in figures 8A and 8B and 9 help put this 
uncertainty into perspective by showing the probability 
of streams having whole-fish concentrations that exceed a 

5, 186,010 mi

5–25, 186,001 mi

25–50, 164,778 mi

50–75, 68,070 mi

75, 45,078 mi

Probability class, with river miles

EXPLANATION

A

Figure 8. Probability of streams having whole-fish samples that exceed (A) 5 µg/kg (which 
is the reporting level for dieldrin in whole fish and also corresponds to an EPA screening 
value at a cancer risk of 1:50,000) and (B) 25 µg/kg (which corresponds to the EPA screen-
ing value at a cancer risk of 1:10,000). In both maps, whole-fish samples are assumed to 
have 4.2 percent lipid content (the mean value for largemouth bass sampled by the NCBP 
and NAWQA programs combined). The EPA screening values apply to edible fish tissue. 
mi, mile; µg/kg, microgram per kilogram. 
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specific guideline concentration. The maps in figure 8A and 
8B assume a lipid content of 4.2 percent and relate to human 
health guidelines, whereas the map in figure 9 assumes a lipid 
content of 6.2 percent and relates to potential effects on fish-
eating wildlife.

The maps in figure 8 show the probability of streams  
having whole-fish concentrations (at 4.2 percent lipid content) 
that exceed 5 µg/kg (fig. 8A) and 25 µg/kg for dieldrin (fig. 
8B). For dark blue streams in figure 8A, whole-fish samples 
(with 4.2 percent lipid) have less than a 5 percent probability 
of exceeding 5 µg/kg; in other words, fewer than 1 out of 20  
dark blue streams are expected to have whole-fish dieldrin 
concentrations greater than 5 µg/kg. In edible fish, a 5-µg/kg 
concentration would correspond to a maximum acceptable 
cancer risk of 1 in 50,000. Dark blue streams account for 
only 29 percent of total stream miles in the United States. 
The remaining 71 percent of total stream miles have at least 
a 5 percent probability of whole-fish concentrations exceed-
ing 5 µg/kg. Of these streams, whole-fish concentrations are 
expected to exceed 5 µg/kg in more than 1 out of 20 light blue 
streams (>5 percent probability), more than 1 out of 4 yellow 
streams (>25 percent probability), more than half of orange 
streams (>50 percent probability), and more than 3 out of 4 
red streams (>75 percent probability). Orange and red streams, 

which have at least a 50 percent probability of whole-fish 
concentrations exceeding 5 µg/kg, make up 17 percent of total 
river miles and are located mostly in the Corn Belt, parts of 
Texas and California, and scattered urban areas.

Far fewer streams are likely to have whole-fish samples 
(at 4.2 percent lipid) with dieldrin concentrations exceeding 
25 µg/kg, as shown in figure 8B. In edible fish tissue, a  
concentration of 25 µg/kg would correspond to the EPA 
screening value at a cancer risk of 1:10,000. Here, most 
streams (75 percent of stream miles) are shaded dark blue and 
have less than a 5 percent probability of whole-fish concentra-
tions exceeding 25 µg/kg. Of the remaining streams, more than 
1 out of 20 light blue streams (>5 percent probability), more 
than 1 out of 4 yellow streams (>25 percent probability), more 
than half of orange streams (>50 percent probability), and 
more than 3 out of 4 red streams (>75 percent probability) are 
expected to have whole-fish concentrations that exceed  
25 µg/kg. Orange and red streams account for only about 
2 percent of total stream miles, and they are located mostly 
in the Corn Belt. Again, these maps show the probability of 
whole-fish samples exceeding the predicted concentrations—
edible fish tissue is likely to have lower lipid levels and lower 
dieldrin concentrations than in the whole fish.

Figure 8. Continued.
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Figure 9 relates to potential effects on fish-eating wild-
life. This map shows the probability of streams that have 
whole-fish concentrations (at 6.2 percent lipid content) greater 
than the New York wildlife guideline of 120 µg/kg. Most 
streams (about 94 percent of total stream miles) are shaded 
dark blue and have less than a 5 percent probability of whole-
fish samples (at 6.2 percent lipid) exceeding 120 µg/kg—in 
other words, fewer than 1 out of 20 dark blue streams are 
expected to exceed the wildlife guideline. More than 1 out of 
20 light blue streams (> 5 percent probability), more than 1 
out of 4 yellow streams (>25 percent probability), more than 
half of orange streams (>50 percent probability), and 3 out of 
4 red streams (>75 percent probability) are expected to exceed 
the New York wildlife guideline. Orange and red streams—for 
the most part located in the Corn Belt—account for less than 
1 percent of total stream miles. Fish with a lipid content 
greater than 6.2 percent would likely have higher dieldrin 
concentrations than those predicted by the model; conversely, 

fish with a lower lipid content would likely have lower dieldrin 
concentrations than predicted by the model.

Although dieldrin residues in fish have declined substan-
tially since the 1960s (Schmitt and others, 1999; Nowell and 
others, 1999), the recent NAWQA data and results of these 
extrapolations suggest that detectable residues are present in 
some streams across the country at levels sufficient to be of 
potential human health or wildlife concern. A number of fish 
consumption advisories for dieldrin have been rescinded in re-
cent years, consistent with the national declining trends. As of 
2004, there were still 22 active fish consumption advisories for 
dieldrin affecting seven states within the United States (U.S. 
Environmental Protection Agency, 2005). Models such as the 
one described here for dieldrin may assist in planning future 
monitoring efforts to support the setting or rescinding of fish 
consumption advisories.

5, 609,715 mi

5–25, 33,290 mi

25–50, 6,305 mi

50–75, 602 mi

75, 25 mi

Probability class, with river miles

EXPLANATION

Figure 9. Probability of streams having whole-fish concentrations greater than  
120 µg/kg, which is the New York criterion for protection of fish-eating wildlife (noncancer 
effects) from Newell and others (1987). Whole-fish samples are assumed to have 6.2 per-
cent lipid content (the mean value for all whole fish sampled by the NCBP and NAWQA 
programs combined). mi, mile; µg/kg, microgram per kilogram.
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Summary and Conclusions
A regression model was developed for estimation of 

dieldrin concentrations in whole fish in United States streams, 
using nationally available data on watershed characteristics 
and estimates of (or surrogates for) the past uses of aldrin and 
dieldrin. The model also included lipid content (a measured 
parameter) as an explanatory variable. The model accounts 
for 64 percent of the variability in dieldrin concentrations in 
whole fish from the 648 streams used for model development. 
Four variables were the most important and together account-
ed for 58 percent of the variability. Three of these variables 
have positive coefficients: lipid content, the estimated agricul-
tural use intensity of aldrin and dieldrin per basin area, and a 
weighted termite-urban score (which is a surrogate for past use 
of aldrin and dieldrin in termite control). The fourth important 
variable, total forested land (where past use was probably 
minimal), has a negative coefficient.

The regression model performed well when cross-valida-
tion procedures were conducted, in which the NAWQA fish 
data were randomly divided into two subsets (calibration and 
validation data sets); the model was fit to both data sets, and 
there was little difference between predicted and residual er-
rors obtained from the two fitted models that were based on 
the different data subsets.

The regression model was used to predict the median 
dieldrin concentrations in whole fish from unmonitored 
streams across the United States. Because lipid content is 
an explanatory variable in the model, these predictions were 
made by assuming a specific lipid content value. Two nation-
wide spatial extrapolations were done—at lipid content values 
of 4.2 and 6.2 percent lipid—to assess potential effects on 
human health and wildlife, respectively, from consumption 
of dieldrin-contaminated fish. These lipid values represent 
the average lipid content of whole-body largemouth bass (4.2 
percent) and all species of whole fish (6.2 percent) sampled by 
the NCBP and NAWQA programs, combined.

The extrapolation at 4.2 percent lipid was used to predict 
dieldrin concentrations in whole-body largemouth bass, which 
is a nationally distributed sport fish popular with recreational 
fishers, in unmonitored streams across the U.S. For fish with a 
higher lipid content (such as lake trout, which has an average 

lipid content of 15 percent), whole-fish dieldrin concentra-
tions are likely to be much higher than those predicted for a 
4.2 percent lipid content. On the other hand, people generally 
consume only the edible fish tissue (fillets), which is expected 
to have a lower lipid content and lower dieldrin concentrations 
than in the whole fish. The model should not be used to predict 
specific dieldrin concentrations in edible fish tissue. However, 
it can be a useful screening tool in identifying streams where 
dieldrin contamination may be of potential human health con-
cern. For streams that are actively fished and where predicted 
whole-body dieldrin concentrations are greater than EPA 
screening values for human consumption of edible fish, it may 
be worthwhile to monitor dieldrin residues in game-fish fillets 
from these streams. A substantial fraction of streams have at 
least a 5 percent probability (1 in 20) of whole-fish concentra-
tions exceeding EPA screening values for edible fish con-
sumption that are based on potential carcinogenic effects of 
dieldrin—for 71 percent of total stream miles, 1 in 20 streams 
are expected to have whole-fish concentrations greater than 5 
µg/kg (which has a cancer risk of 1:50,000); and for about 25 
percent of total stream miles, 1 in 20 streams are expected to 
have whole-fish concentrations greater than 25 µg/kg (which 
has a cancer risk of 1:10,000). The streams with the highest 
probability of exceeding EPA screening values are located pri-
marily in the Corn Belt, where aldrin and dieldrin were used 
in the past on corn, and in scattered areas across the United 
States, especially in the urbanized northeast, the southeast, 
Texas, and California.

The extrapolation at 6.2 percent lipid was used to predict 
dieldrin concentrations in whole fish from unmonitored 
streams across the United States, to represent fish that may be 
consumed by wildlife. Predicted concentrations were com-
pared with the fish flesh criterion for protection of fish-eating 
wildlife (protective of noncancer effects) from the State of 
New York. Relatively few streams—located predominantly 
in the Corn Belt—were predicted to have median dieldrin 
concentrations that exceeded the New York wildlife guideline 
of 120 µg/kg. For most unmonitored streams in the United 
States (94 percent of total stream miles), fewer than 1 out of 
20 streams are expected to exceed the wildlife guideline for 
dieldrin.
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