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Abstract 

Lattice Boltzmann Methods (LBMs) are relatively new and have not yet been widely applied to 
ground-water systems. LBMs are particularly attractive for numerical modeling of flow and solute 
transport in karst aquifers because they are able to: 

• Simulate inertial flows  

• Incorporate complex wall and conduit geometries 

• Solve adjacent Darcian and Navier-Stokes flow regimes 

• Solve the appropriate advection-diffusion equation in conduit zones characterized by laminar or 
eddy flow and solve a linked anisotropic advection-dispersion equation in porous media zones with 
Darcian flow  

Examples are provided for each of these capabilities.

INTRODUCTION  

Simulation of flow and transport in karst 
aquifers is widely recognized to be a remaining 
frontier in ground-water research. There are two 
primary reasons why this is the case: (1)  
characterization of karst aquifers is more 
challenging than characterization of aquifers 
composed of porous media because conduits that 
convey the bulk of the flow can be present and 
(2) within the conduits, the fundamental 
equations familiar to ground-water 
hydrologists—Darcy’s law-based ground-water 
flow equation and the Advection-Dispersion 
Equation (ADE)—are not applicable to inertial 
flows and resulting eddy mixing, which are 
commonly present.  

The Lattice Boltzmann Method (LBM) is 
capable of simultaneously solving for inertial 
flows and advection-diffusion needed to 
simulate flow and transport in conduits. The 
LBM is based on the ‘stream and collide’ 
paradigm of Boltzmann’s kinetic theory of 
gasses. It is the offspring of earlier lattice gas 
cellular automata, which were based on explicit 
particle collisions but often prove too 
cumbersome for practical flow calculation. To 
compute the inertial flows, LBM essentially 
solves the Navier-Stokes (N-S) equations. In 

hydrology, the LBM has most often been 
applied to pore-scale flow, transport, and 
reaction modeling [Zhang and Kang, 2004; Pan 
et al., 2006; Kang et al., 2006] and its value in 
that realm can not be disputed. Substantial gains 
in understanding pore-scale processes have been 
achieved. For field-scale problems however, 
pore-scale simulation is currently limited by 
computational resources and may always be 
limited by the availability of detailed input data 
required.  

Recent advances [Zhang et al., 2002a,b; 
Ginzburg, 2005] have demonstrated the viability 
of LBM for solving the traditional solute 
transport equations in simple ground-water flow 
systems. Earlier work [e.g., Dardis and 
McCloskey, 1998a,b; Kang, et al. 2002] 
demonstrated steady state adherence to Darcy’s 
law using similar macroscale LBM. This 
upscaling of LBM to the macroscopic equations 
obviates the scale problem and allows the use of 
traditional aquifer and solute transport 
parameterizations. The solute transport and 
heterogeneous flow solvers have generally not 
been linked in previous literature. Moreover, 
integration of such models with more common 
LBM flow and transport codes would enable 
solution of the full Navier-Stokes and 
appropriate advective-diffusive equations in 
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conduits, allowing for inertial flows and 
resulting eddy mixing while addressing matrix 
diffusion in the porous medium [Anwar et al., 
2008]. However, it remains for the components 
of such a model to be selected from among 
several variants, fully developed, tested, and 
integrated into a package that utilizes a 
conceptual and pragmatic framework accessible 
to the ground-water modeling community.  

Efforts to simulate karst and fracture 
hydrology using the pipe and slit flow models of 
hydraulic engineers have led to some advances, 
though representing complex aquifers with 
simple pipe elements is oversimplified for 
certain purposes [White, 2002]. For example, in 
one state-of-the-art model [Birk et al., 2003] the 
Darcy-Weisbach equation gives the average 
velocity in a pipe in terms of pipe diameter, head 
gradient, gravity, and a friction factor. For 
Reynolds numbers (Re) less than 2000 (often 
taken as the transition to fully developed 
turbulence) the friction factor is approximated as 
inversely proportional to Re. At higher Re, the 
implicit Colebrook-White equation is used 
iteratively to determine the friction factor in 
terms of the “roughness height” and hydraulic 
radius. Flow between conduits and surrounding 
porous media is assumed to be governed by a 
proportionality constant that relates the flow to 
the head difference. The proportionality constant 
has a complex dependence on numerous factors 
[Birk et al., 2003]. 

LBMs can directly simulate flows in the 
complex geometry of karst and fractured rock 
aquifers and automatically transition between 
laminar, inertial, and turbulent flow over a 
complete spectrum of behavior as appropriate 
for the geometry and imposed conditions. LBMs 
are also highly effective at simulating the 
coupled movement of contaminants in these 
flows. No substantial previous applications of 
LBMs to karst hydrology are known, though the 
potential was recognized some years ago 
[Watson et. al., 2003]. 

LBMs can be used to address solute 
retention due to entrapment in eddies, in porous 
media directly adjacent to conduits (“matrix 
diffusion”), and in low permeability formations 
where flow and transport are governed by the 

standard ground-water flow and solute transport 
equations.  

This paper reviews the current status of 
some potential components of this new 
approach, and is organized as follows. First, 
traditional pore-scale simulation of flow and 
transport is reviewed and an example involving 
non-Darcian flow in a macroporous limestone is 
presented. Two different methods of solving 
ground-water flow with LBMs are then 
introduced and demonstrated. Next, approaches 
for incorporating solute transport are discussed 
and an example of the capabilities of the model 
for solute transport in a conduit within a 
heterogeneous porous medium is presented. 
Finally, examples of available data and their 
utilization in the proposed model are presented.  

PORE-SCALE FLOW AND TRANSPORT 
SIMULATION USING LBM 

Pore-scale modeling of single-phase flow 
and reactive transport has advanced rapidly in 
the last few years [Zhang and Kang, 2004; Pan 
et al., 2006; Kang et al., 2006]. In this paper, we 
discuss only advective and diffusive/dispersive 
solute transport, though advances in density-
dependent flows are being made [Thorne and 
Sukop, 2004; Bardsley et al, 2006]. Inclusion of 
multiphase fluid capabilities [e.g., Pan et al., 
2004; Sukop and Or, 2004; Li et al. 2005] and 
reaction models that account for precipitation 
and dissolution [e.g., Kang, et al., 2006] would 
represent the ultimate foreseeable evolution of 
the model. 

The most common LBM for single-phase 
fluid flow is based on the gas collision model of 
Bhatnagar, et al. [1954] and is commonly 
referred to as the Bhatnagar-Gross-Krook 
(BGK) model. This model employs a single 
relaxation time, τ, for each component (fluid, 
solute, energy) that controls the viscosity of 
simulated fluids and the diffusion of solutes and 
heat.  

The fundamental collide-and-stream BGK 
LBM equation is   
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where the collision operator is the right-hand 
side of the equation. Here x is a position vector, 
‘a’ represents one of the principal directions on 
the particular lattice; a = 0 for zero-velocity rest 
particles. We use consistent LBM space and 
time units of “lu’ (lattice length units) and “ts” 
(lattice time steps). The term ea represents 
lattice-bound velocity vectors, t represents time, 
Δt is the time step (taken as 1 ts here), τ is the 
relaxation time (which determines viscosity), fa 
represents the density of particles in the a 
direction, and fa

eq represents the components of 
the equilibrium distribution function. The fa and 
fa

eq can be thought of as a directional histogram 
of densities (Figure 1).  
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Figure 1.  Unit velocity vectors, directional histogram 
of fa values at a node, and unrolled histogram for 
D3Q19 (3 dimensions, 19 velocities) model. 
The fa
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for a = 0, 1, 2, …, 18 on the D3Q19 lattice. The 
wa are direction-specific weights. The sound 
speed on the lattice is cs (1/√3 lu ts-1). The 
practical maximum macroscopic velocity is 
considerably smaller (|u| < ~0.1cs). The 
macroscopic fluid density, ρ, at x is the sum of 
the individual directional densities, ρ(x) = Σa 
fa(x), and the macroscopic velocity u at x is u = 
Σae0fa(x)/ρ(x). Following collision in (1), 
streaming completes momentum transfer by 
moving the fa to downstream nodes at t + Δt (by 
simply reassigning spatial subscripts for fa from 
x to x + ea Δt).   

These equations form the basis of the single-
fluid LBM. In general, one begins with some 
initial distribution, fa, at all lattice nodes 
followed by incorporating the effects of 
boundaries and forcing. Equilibrium 
distributions are computed via (2), and densities 
and velocities—the moments of fa—at the next 
time step are computed using the summations 

above. Finally, streaming yields the fa at the new 
time step and the process begins again. 

“Bounce back” boundaries are easy to 
implement and account for much of the 
popularity of LBM among pore-scale modelers 
who must contend with highly irregular flow 
domain boundaries. Bounce back boundaries 
enforce no-slip conditions at the walls. The 
simplest forms have limitations, and new 
methods—for example, Multi-Reflection 
[Ginzburg and d’Humières, 2003; Pan et al., 
2006]—offer improvements. 

The detailed position of solid-fluid 
boundaries between model nodes is incorrectly 
computed as a function of viscosity in the BGK 
model, and Multi-Relaxation Time (MRT) 
models have been shown to provide more 
accurate solutions [Ginzburg and d’Humières, 
2003; Pan et al., 2006]. The emphasis here is on 
demonstrating the linked N-S, Darcy, ADE, and 
advection-diffusion models, and differences due 
to incorporation of a full MRT model are not 
likely to be substantial—especially for conduits 
represented by more than several nodes. 

This simple LBM yields transient solutions 
to complex flows including unstable flows at 
higher Reynolds numbers and has been shown to 
be capable of solving the N-S equations for fluid 
flow. Incorporating a second component allows 
simulation of coupled solute transport, and 
including an interaction force makes simulation 
of single component multiphase systems (such 
as water and its vapor) or multicomponent 
multiphase systems (such as oil and water) 
possible [Sukop and Thorne, 2006]. 

Solutes and heat in free-flowing fluid are 
transported by advection along with the fluid 
and by diffusion. Except in the case of density-
driven effects, which are treated separately along 
with gravitational forcing, solutes and heat are 
not considered to carry or impart momentum, 
but move instead as passive scalars. Thus, a 
truncated equilibrium distribution function 
applies to their transport:    

)31(, ue ⋅+= aa
eq

a wf σσ ρ , (3) 

where σ denotes the solute or heat component 
and the macroscopic velocity u is obtained 
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directly from the fluid flow solution. This yields 
solutions of the advection-diffusion equation 
(which also applies to heat transport, but 
henceforth only solutes are mentioned for 
brevity) 

CDC
dt
dC 2∇+∇−= u , (4) 

where C is the concentration, t is time, and D is 
the diffusion coefficient.  

The close coupling between the LBM N-S 
solver and the LBM approach to this advection-
diffusion equation allows the solution of 
problems not accessible to traditional ground-
water models. In particular, the entrapment of 
solutes in eddies, which can arise at quite low 
Reynolds numbers (Re ~1) in conduits and 
fractures, and mixing due to inertial eddies at 
moderate Re or full turbulence at high Re can 
not be simulated with traditional models. An 
example of inertial eddy mixing (Re ~900) in a 
conduit is presented below. 

Inertial Effects on Apparent Hydraulic 
Conductivity in a Complex Domain 

Despite the focus of LBM on pore-scale 
models in the past, there is no intrinsic limit to 
the size of conduits that can be simulated with 
LBM. Alvarez [2007] measured the hydraulic 

~91mm

 

Figure 2. Left: Macroporous limestone digitized with 
high-resolution computed tomography. Scale bar on 
far left shows centimeters and inches. (Photo by 
Michael Wacker, USGS). Right: The ~0.1-m cube 
extracted from the data set. (Data acquired at the 
High-Resolution X-ray Computed Tomography Facility 
of the University of Texas at Austin.) 
 
conductivity of karstic rocks from a stratiform 
macroporous unit of the Miami Limestone in the 
Biscayne aquifer using LBM applied to high-
resolution computed tomography data on 
samples up to almost 0.1 m on a side, with 

common 2-cm pores (Figure 2). The study 
demonstrated the reduction in apparent hydraulic 
conductivity caused by inertial flow with 
increasing hydraulic gradient. 

It is possible to directly probe the simulation 
results for the signatures of inertial flow—in 
particular, the presence of eddies. In Figure 3, 
stream-traces passing through 7 different points 
of a sample are plotted for cases of Re=0.31 and 
Re=152. For the very low Reynolds number the 
flow is a creeping flow: no vortices were 
observed in the flow field and the hydraulic 
conductivity is at a maximum.  For Re=152, the 
hydraulic conductivity is reduced and rich 
patterns of vortices are evident. 

 

Figure 3. Streamlines for Re=0.31 with K=34 m/s (top) 
and for Re=152 with K=20 m/s (bottom) in 336 lu sub-
sample ML-01.  
 

There is a substantial reduction in the 
apparent hydraulic conductivity as the applied 
gradient increases to realistic field gradients 
(Figure 4). This suggests that under field 
conditions in the Biscayne aquifer, inertial flows 
and departures from the linear gradient-flow 
relation assumed in Darcy’s law are likely to be 
common and important. Hydraulic conductivity 
and transmissivity measurements in such 
aquifers may commonly be reflective of inertial 
flow conditions and consequently are lower than 
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they would be if these properties corresponded 
to the intrinsic permeabilities. 
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Figure 4. Effect of increasing gradient on apparent 
hydraulic conductivity for macroporous sample. Fitted 
Darcy-Forcheimer curve (solid line) and LBM 
simulation results (points). 

SOLUTION OF TRANSIENT GROUND-
WATER FLOW EQUATION WITH LBM 

Although LBMs are effective pore-scale 
flow solvers, computation requirements make it 
unrealistic to consider solving aquifer-scale 
problems that involve matrix flow and transport 
through pore-scale simulation. Fortunately, there 
are two different approaches, briefly reviewed 
here, that can be adopted to simulate ground-
water flow with LBM that are based on the 
macroscopic perspective inherent in Darcy’s law 
and are not scale-dependent. One approach that 
utilizes a damping factor or force has been 
proposed in various forms and focuses on flow 
without considering solute transport. The 
literature describing these methods generally has 
not considered transient conditions nor internal 
source/sinks needed to simulate wells or 
recharge.  

The second approach, which has rarely been 
considered previously in the literature (an 
exception might be Serván Camas [2007]), 
solves the transient ground-water flow equation 
using the well-established heat or diffusive mass 
transport analogy. We develop and demonstrate 
source/sink incorporation for that approach here.  

The advantage of both of these methods for 
modeling flow and transport in karst comes from 
the linkage with the LBM’s ability to solve the 
N-S and advection-diffusion equations in 
conduits within the porous matrix.  

Damping Factor/Forcing Approach 

Numerous papers have demonstrated the 
ability of LBM to characterize Darcian flow 
using an approach that damps out the inertial 
components of flow arising from the LBM’s 
solution of the N-S equations with a damping 
factor or forcing related to the permeability of 
the domain [Dardis and McCloskey, 1998a,b; 
Freed, 1998; Martys, 2001; Kang et al, 2002; 
Guo and Zhao, 2002]. These approaches can 
solve a generalized N-S equation that includes 
the Brinkman-extended Darcy model (accounts 
for conduit/porous medium boundary 
conditions) and non-linear drag often 
represented by the Forchheimer equation. 
Following Freed [1998], Kang et al [2002] 
presented a similar model but also incorporated 
non-uniform grid spacing and used the model to 
draw conclusions about relative fracture/matrix 
permeabilities that justify the use of discrete 
fracture models that ignore matrix effects. The 
approach of Dardis and McCloskey [1998a,b] is 
described in more detail below; improved 
methods are in review.  

In accordance with Darcy’s law, the flow of 
fluid in a porous medium is proportional to the 
medium’s permeability. Dardis and McCloskey 
[1998a,b] introduced a damping parameter 0 < ns 
< 1, along with a new step in the LBM 
procedure to damp momentum in proportion to 
ns. The ns term can be a function of x, ns = ns(x), 
which allows simulation of heterogeneous 
porous media. If ns = 0, the porous media step 
has no effect, and the process reduces to the 
usual free-fluid LBM. If ns = 1, however, then 
flow is completely eliminated. The porous 
media step is applied only to the fluid 
component, not solute or heat components. 

Dardis and McCloskey [1998a,b] indicated 
that the permeability k of a medium with 
damping factor ns could be computed as 

sn
k

2
ν

= , 
(5) 

where ν is the kinematic viscosity of the fluid 
phase. This has led to misunderstanding in the 
past because k is a medium property and should 
not depend on viscosity. In this particular 
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macroscopic porous media approach, the 
viscosity no longer retains it normal meaning 
but instead, along with ns, determines k in lattice 
units according to (5). Conversion to k in real 
units is straightforward: 

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

LBM

physicalLBMphysical

L
L

kk , (6) 

where the L terms are the lengths of any 
comparable feature in physical and LBM units. 
Subsequent conversion to hydraulic conductivity 
is accomplished by multiplying by the physical 
fluid density and gravitational acceleration and 
dividing by the physical viscosity. 

Figure 5 shows a simple conduit traversing a 
porous medium. A pressure gradient is applied 
across the domain from left to right. The conduit 
exerts a strong influence on the pressure field 
inside the domain. Dardis and McCloskey 
[1998a,b] and Kang et al. [2002] present similar 
results. 

 

Figure 5. Pressure field in porous medium with 
conduit (gray).  
 
Diffusion Equation Analogy Approach 

There is a long tradition of simulating 
diffusion with LBM. It has recently been 
recognized that a less computationally intensive 
and more expedient approach to solving the 
transient ground-water flow equation  

S
Rh

S
T

t
h

+∇=
∂
∂ 2  (7) 

(where h, T, S and R represent the hydraulic 
head, transmissivity, storativity, and recharge 
respectively) in the LBM context is to solve it 
directly by exploiting its similarity to the 
diffusion or “heat” equation. One apparent 
advantage over standard explicit numerical 
methods is that the time step is not limited by 
the normal stability criterion [Wolf-Gladrow, 
2000]. Also, unlike the damping methods, 
increasing T does not allow inertial effects, 
which can be considered a benefit in the context 
of a Darcy’s law solver. 

Other than specialized treatment of 
boundary conditions and source/sink terms, the 
only modification to the LBM technique 
involves truncating the equilibrium distribution 
function computation (3) (although models 
involving only 4 or 6 directions rather than 8 or 
18 in 2- and 3-D, respectively, are viable for this 
approach [Wolf-Gladrow, 2000] and lead to 
substantial computational savings).  

Below, we present two example LBM 
solutions of (7) that involve classic problems 
that have analytical solutions. The first is based 
on a 1-D problem that appears in Wang and 
Anderson [1982] and considers a confined 
aquifer bounded by two constant-head reservoirs 
(Figure 6). The aquifer is l=100-m long, has a T 
of 0.02 m2 min-1, and a storativity of 0.002. The 
head is initially uniform at 16 m (i.e., the initial 
condition is h|x,0 = 16 m) and drops to 11 m at x 
= 100 at time 0 (i.e., the boundary conditions are 
h1 = h|0,t = 16 m and h2 = h|100,t = 11 m). 

 

Figure 6.  Transient ground-water flow problem with 
two reservoirs (from Wang and Anderson, 1982). 
 
We solve the problem and present the results 
relative to the analytical solution in Figure 7 
below. The LBM results are excellent. 
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Figure 7. Comparison of LBM with analytical solution 
for transient reservoir problem. 

The second test problem involves a pumping 
well in an infinite domain that is governed by 
the Theis well function. This test problem can be 
used to verify the LBM solution of the transient 
equipotential field (drawdown curve) in a 2-D 
aquifer with recharge/discharge. We use 
consistent LBM space and time units of “lu” 
(lattice length units) and “ts” (lattice time steps) 
in this case. Figure 8 shows drawdown as a 
function of time for a confined aquifer with 
T=1.0 lu2/ts and relaxation parameter equal to 
0.95 ts, which gives the hydraulic diffusivity 
equal to 0.15 lu2/ts. The 50 lu × 50 lu domain is 
initialized with uniform head of 1 lu. The 
pumping well is set in the center (25, 25) and 
was pumped at a constant rate of 0.003 lu3/ts. 
Drawdown is measured 7 lu from the pumping 
well. 
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Figure 8. Well drawdown as a function of time; 
consistent LBM units. 

There is a rich variety of possibilities for 
development of this method that need to be 
investigated. In particular, we have considered 
only quasi-3-D models and isotropic hydraulic 
conductivity so far. 

The benefits of these macroscopic porous 
media approaches for karst ground-water flow 
simulation are substantial. First, they raise LBM 
from primarily a pore-scale N-S solver with 
computational limitations when field- and 
regional-scale simulations are required, to a 
standard ground-water flow solver applicable at 
any scale. Second, the spatial transition between 
the Darcy’s law simulation and the full N-S 
solution in conduits is more straightforward than 
it is in other conduit/matrix models because the 
same algorithm underlies all of the 
computational domain, and switching between 
the different solutions involves only switching 
between ns = 0 or ns > 0 or between the two 
forms ((2) and (3)) of the equilibrium 
distribution function. 

SOLUTE TRANSPORT FOR 
MACROSCOPIC POROUS MEDIA USING 
LBMs 

The combination of the solute transport and 
Darcy’s law capabilities of LBM discussed so 
far makes many types of simulations possible. 
One important characteristic of solute and heat 
transport in porous media is not addressed by 
simply combining these capabilities; unlike 
diffusion, dispersion under flow conditions in a 
porous medium is anisotropic. Zhang et al 
[2002a,b] and Ginzburg [2005] have introduced 
LBMs to simulate anisotropic dispersion. The 
approach of Zhang et al. [2002a,b] is described 
more fully and used in the examples below.  

The dispersion tensor, Dαβ, is given by 
Zhang et al [2002a,b] 

( )
22
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uu

uu
uuD

+

Γ−Γ
++Γ= βα

αβαβ δ
, 

(8) 

where δαβ is the Kronecker Delta, ΓL and ΓT are 
the longitudinal and transverse dispersivities, 
respectively, (δαβ = 1 for α = β), and uα and uβ 
are the are the α and β components, 
respectively, of the velocities. This equation is 
solved at each node. The dispersion tensor 
components Dxx, Dyy, Dxy and Dyx in terms of 
directional relaxation parameters, τa, are 
expressed as [Zhang et al, 2002a,b]: 
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Given the dispersion tensor, these equations 
are inverted to solve for relaxation times that are 
subsequently used at each node in the model. To 
ensure mass conservation, Zhang et al [2002a,b] 
used a weighted summation of the particle 
distribution function as shown below to compute 
the density (concentration), ρσ, of species 
subjected to the anisotropic dispersion:  

1−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑∑

i a

a

a a

a wf
ττ

ρσ
, 

(10) 

where the weighting factors are represented by 
wa and i represents a summation index.  

Anisotropic dispersion of a solute plume 
moving at an angle to the main coordinate axes 
is shown in Figure 9. The longitudinal to 
transverse dispersivity ratio is 5:1 and the results 
compare well to the analytical solution.  

 

Figure 9. Anisotropic dispersion of 2-D solute plume 
(dashed contours) compared to the analytical solution 
(solid). ΓL = 0.5, ΓT = 0.1 lu. Flow unaligned with 
coordinate axes. 
 

Incorporating this modification and 
combining it with the ground-water flow solvers 
discussed above yields an LBM ground-water 
flow simulator and a tightly coupled anisotropic 
dispersion ADE solver comparable to a number 
of available finite difference/finite element 
models. The new LBM ground-water/transport 
model inherits at least one exceptional capability 
from its foundation however—it can accurately 
simulate flow and transport in large conduits or 

fractures that may involve higher Reynolds 
number flows and associated eddy mixing. 

We present one example that illustrates the 
power of the combination of processes that can 
be simulated. In Figure 10, a heterogeneous 
porous medium is cut by a conduit. A solute 
pulse is applied at the left boundary that quickly 
fills the conduit and begins invading the porous 
medium, particularly in zones of higher 
hydraulic conductivity such as the light colored 
areas above and left of center and at the lower 
right. The domain is then flushed with solute-
free water. Clear “mushroom cap” plumes of 
solute-free water develop in the conduit 
illustrating the eddy-mixing phenomenon. 
Flushing of the conduit will be complete long 
before the adjacent porous medium is flushed. 
We expect this type of behavior in karstic 
aquifers and existing models offer less 
appropriate approximations.  
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Figure 10. Model domain (left) showing conduit 
(white) in porous medium of variable permeability 
(proportional to whiteness), solute invasion into 
porous medium, and eddy mixing in conduit (center). 
Periodic top and bottom boundaries account for 
appearance of solute in upper right. Breakthrough 
curve for domain (right) is complex and cannot be 
well-fitted with standard advection-dispersion model. 

FUTURE APPLICATIONS 

One of the main challenges in karst 
hydrology is characterizing/modeling the 
complex geometry present at many scales within 
karst aquifers and their macropore and conduit 
systems. Data for use in models proposed here 
can be obtained at different scales through thin 
sectioning of rock, imaging of hand- to body-
sized specimens via digital photography or 
tomography, borehole televiewers or cross-hole 
tomography, ground penetrating radar, and 
traditional aquifer tests. Identification and 
characterization of macropore and conduit zones 
are logical next steps for enhancing 
understanding of karst aquifers and are active 
research areas [e.g., Cunningham et al., 2006].  
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We have competed preliminary work at the 
1-m scale, based on borehole imagery from the 
Biscayne aquifer. In our approach, a borehole 
image is subject to thresholding to separate it 
into macropores and rock. Then the 3-D 
information available from the image is 
reconstituted by extracting the coordinates and 
presence or absence of rock at each pixel on the 
borehole wall. Variograms for the 3-D data are 
computed and simulation of 3-D rock is 
possible. Figure 11 shows a preliminary 
example of the potential of this method.  

 

Figure 11. Left: Borehole televiewer image from 8-
inch (~20 cm) diameter USGS borehole (G-3849) and 
thresholded 3-D data. (Photo by Michael Wacker, 
USGS). Right: Two simulations of 3-D rock based on 
borehole image variogram. 
 

Suitable data from large caves are also 
available. Highly specialized dive teams have 
collected geometrical data from karst aquifers 
near Talahassee, Florida. Figure 12 shows a 
portion of the cave system that discharges to 
Wakulla Spring based on these data. Such data 
would be combined with traditional data on the 
properties of the surrounding aquifer to provide 
input for the combined LBM aquifer-conduit 
model.  

CONCLUSION 

LBMs offer solutions to challenges facing 
modelers of karst aquifer hydraulics and solute 
transport. Inertial flows expected when the 
Reynolds number is high enough and their effect 
on apparent hydraulic properties and solute 
transport can be simulated. Integration with 
LBM-based transient ground-water flow and 

anisotropic dispersion solvers may offer better 
solutions for karst problems.  

  

Figure 12. Geometry of Wakulla Spring viewed from 
below ground surface. Digital Wall Mapper data 
(courtesy Dr. Barbara Am Ende). 
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