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Effects of Forest Harvesting on Ecosystem Health in 
the Headwaters of the New York City Water Supply, 
Catskill Mountains, New York

By Michael R. McHale, Peter S. Murdoch, Douglas A. Burns, and Barry P. Baldigo

Abstract 
The effects of forest clearcutting and selective harvesting 

on forest soils, soil and stream water chemistry, forest 
regrowth, and aquatic communities were studied in four 
small headwater catchments. This research was conducted 
to identify the sensitivity of forested ecosystems to forest 
disturbance in the northeastern United States. The study area 
was in the headwaters of the Neversink Reservoir watershed, 
part of the New York City water supply system, in the Catskill 
Mountains of southeastern New York. Two sub-catchments 
of the Shelter Creek watershed were selectively harvested, 
one in its northern half and one more heavily in its southern 
half in 1995–96, the Dry Creek watershed was clearcut in the 
winter of 1996–97, and the Clear Creek watershed was left 
undisturbed and monitored as a control site. Monitoring was 
conducted from 4 years before the harvests until 4 years after 
the harvests. Clearcutting caused a large release of nitrate 
(NO

3
-) from watershed soils and a concurrent release of 

inorganic monomeric aluminum (Al
im

), which is toxic to some 
aquatic biota. The increased soil NO

3
- concentrations measured 

after the harvest could be completely accounted for by the 
decrease in nitrogen (N) uptake by watershed trees, rather 
than an increase in N mineralization and nitrification. The 
large increase in stream water NO

3
- and Al

im
 concentrations 

caused 100-percent mortality of caged brook trout (Salvelinus 
fontinalis) during the first year after the clearcut and adversely 
affected macroinvertebrate communities for 2 years after the 
harvest. Nutrient uptake and biomass accumulation increased 
in uncut mature trees after the two selective harvests. There 
was no increase in stream-water NO

3
- or Al

im
 concentrations, 

and so there were no adverse affects on macroinvertebrate or 
trout communities. The amount of tree biomass that can be 
removed without causing a sharp increase in stream-water 
NO

3
- and Al

im
 stream-water concentrations is unknown, but 

probably depends on the history of forest-disturbance and 
acid deposition and the level of soil acidification. Results of 
this study indicate that macroinvertebrate and brook trout 
communities were sensitive to clearcutting and that deer 
browsing may affect water quality by suppressing forest 

regeneration and nutrient uptake. Further studies of selective 
harvests could identify the harvesting threshold below which 
changes in water quality and soil chemistry are minimized, 
and nutrient retention is maximized, thus reducing the damage 
that logging can inflict on stream and aquatic communities.

Introduction
Forest-harvesting studies have indentified several 

variables that are directly affected by forest harvesting 
including:  vegetation, soil chemistry, soil physical properties, 
soil microbial communities, and ground-water and stream-
water quantity and quality (Vitousek, 1981; Hornbeck and 
Kropelin, 1982; Dahlgren and Driscoll, 1994). Furthermore, 
changes in these components can adversely affect forest 
regeneration and aquatic communities in surface waters that 
receive drainage from harvested areas. The Catskill Mountain 
region of southeastern New York (fig. 1) is about 85 percent 
forested and contains six reservoirs that are the principal 
drinking-water supply for New York City. Land-use managers 
in the region need forest-harvesting guidelines that will ensure 
the continued vigor of the forest-products industry while 
preventing water-quality degradation. The effects of harvesting 
on the sustainability and health of forest and aquatic 
ecosystems have been the subject of research for many years 
(Likens and others, 1969; Vitousek and others, 1979; Bormann 
and Likens, 1994; Reynolds and others, 1995); of particular 
interest have been the effects of harvesting on the nitrogen (N) 
cycle in forest soils and adjacent surface waters (Vitousek, 
1981; Hornbeck and Kropelin, 1982).

Since 1982 the U.S. Geological Survey (USGS) has been 
studying stream-water quality in forested Catskill watersheds 
in relation to acid rain (Murdoch and Stoddard, 1992, 1993; 
Murdoch and Shanley, 2006), climate change (Murdoch and 
others, 1998; Murdoch and others, 2000; Burns and others, 
2007), nitrogen cycling (Burns, 1998; Welsch and others, 
2001), hillslope hydrology (Brown and others, 1999), and 
logging (Baldigo and Murdoch, 1997; Baldigo and others, 
2005; Burns and Murdoch, 2005; McHale and others, 2007). 
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In 1992, the USGS, in cooperation with the New York City 
Department of Environmental Protection, began a 9-year study 
of the ecological effects of two forest-harvesting methods—a 
clearcut and a selective harvest (timber stand improvement) 
in the headwaters of the Neversink Reservoir watershed in 
the Catskill Mountains of southeastern New York (fig. 1). 
The harvests were conducted during the winters of 1995–96 
and 1996–97; stream-water and soil-water chemistry were 
monitored for 4 years before and after the harvests, and tree 
regrowth, macroinvertebrate communities, and brook-trout 
(Salvelinus fontinalis) mortality were used as indicators of the 
ecological effects of forest harvesting. This report describes 
the harvesting and monitoring methods used and summarizes 
the effects of the harvests on soil chemistry, soil- and stream-
water chemistry, macroinvertebrate communities, and brook-
trout mortality. More detailed findings from this study, 
published in peer-reviewed scientific journals, are referenced 
throughout this report.

A Changing Approach to Forest Management

Traditionally, forest-management decisions have been 
based mainly on the observed physical condition of trees 
in a forest stand. A new, broader perspective on forest 
management has emerged in recent years from the field 
of watershed biogeochemistry, the study of biological and 
geochemical processes and element cycling within a given 
drainage basin (fig. 2). A biogeochemical approach to 
forest management takes into account a suite of interrelated 
indicators of ecosystem health. These include the rate of 
atmospheric deposition (wet and dry chemical deposition), 
climatic conditions, chemical and physical properties of 
the soil, stream-water and ground-water quality, and the 
possible effects of changes in these factors on stream biota 
in addition to traditional silvicultural considerations such as 
the physical condition of the forest. For example, if logging 
were conducted in an area where soils had been depleted of 

Forest
Floor

Fixation to Surfaces
Mineral
Soil

Soil Water

Wet and Dry Deposition

Nutrient and Base Cation Leaching

Litterfall

Cation Exchange

Organic Decomposition

Root Uptake

Figure 2. Interaction of biogeochemical components of a forested landscape. (Modified from Lawrence and Huntington, 1999, fig. 1.)
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base cations such as calcium (Ca2+) and magnesium (Mg2+), a 
biogeochemical assessment might indicate a lighter harvest to 
minimize the ecological effects of harvesting, than would be 
suggested by standard silvicultural methods.

Study Area

 The study area (fig. 1) is characterized by steep slopes 
interrupted by flat terraces. Thin soils overlie thin till (1–3 m 
or ~3–10 ft thick) that was deposited by glaciers about 
14,000 years ago on sandstone and conglomerate interbedded 
with siltstone and shale. Forests are mixed northern hardwoods 
of primarily Fagus grandifolia (American beech), Betula 
alleghaniensis (yellow birch), Acer saccharum (sugar maple), 
and Acer rubrum (red maple); Tsuga canadiensis (L.) Car. 
(eastern hemlock) dominates in many riparian zones. Mean 
annual air temperature is 5oC (41°F), and annual precipitation 
averages 1.6 m (63 inches).

Methods
Three watersheds were harvested during the study, and a 

fourth was used as a control in which no harvesting was done 
(fig. 1). The North Shelter Creek (NS25, 33 ha) and South 
Shelter Creek (SS20, 51 ha) catchments form the Shelter 
Creek watershed (109 ha), which is monitored at site SC40 
(fig. 1). The combined areas of the NS25 and SS20 catchments 
are less than the entire area of the Shelter Creek watershed at 
SC40 because the catchment gages are well upstream from 
the SC40 gage (fig. 1). The Dry Creek watershed (DC57, 
24 ha) lies just south of the Shelter Creek watershed; Dry 
Creek flows into Shelter Creek upstream from gaging station 
SC20 (161 ha). The Clear Creek watershed (CL25, 48 ha) was 
used as a control and is located just west of the Dry Creek 
watershed (fig. 1).

Several environmental indicators such as atmospheric-
deposition chemistry, soil chemistry, soil-water chemistry, 
stream-water and ground-water chemistry, tree biomass 
and leaf chemistry, and biological nitrogen transformations 
(mineralization, nitrification, and denitrification) were 
monitored during 1992–97 before the experimental harvests. 
A “Timber Stand Improvement” (selective removal of sick or 
unmarketable trees to increase the growth rate of remaining 
trees) was done in parts of the Shelter Creek watershed 
(SC40) in two phases. Phase 1, termed the “light selective 
harvest,” entailed selective logging of the North Shelter Creek 
catchment (NS25, fig. 1) during the winter of 1995–96 to 
provide a 7-percent decrease in tree basal area within the 
logged area; this resulted in a 2-percent decrease in basal area 
within the entire North Shelter Creek catchment. Phase 2, 
termed the “heavy selective harvest,” entailed logging of the 
South Shelter Creek catchment in the fall of 1996 to provide a 
29-percent decrease in tree basal area within the logged area; 

this resulted in an 8-percent decrease in basal area within the 
entire SS20 catchment. About 5.6-percent of the basal area 
was removed from the entire Shelter Creek watershed (SC40), 
68 ha of the Shelter Creek watershed was left untouched 
because it is part of the New York State forest preserve. 
During the following winter (1996–97), 18 ha of the 24-ha 
Dry Creek watershed (DC57, fig. 1) was clearcut, leaving only 
a few scattered seed trees for regeneration; 6 hectares in the 
southwestern portion of the watershed were left undisturbed 
because that area is also part of the New York State forest 
preserve (fig.1). Slash (branches and tree tops) was left on the 
ground and arranged along temporary skidder trails to create a 
“corduroy” surface to minimize soil disturbance. The clearcut 
decreased the basal area of the harvested area by 97 percent 
and amounted to an 80-percent decrease in the basal area of 
the entire watershed. The fourth watershed (CL25, 48 ha) was 
monitored as an untreated reference site. The heavy selective 
harvest in the South Shelter Creek watershed and the clearcut 
area of the Dry Creek watershed were enclosed with 2.5 m 
high game fence to prevent deer browsing which can inhibit 
forest regrowth. One additional 1-ha forest plot, adjacent 
to the Dry Creek watershed, was clearcut and left unfenced 
to assess the effect of deer browsing on forest regeneration 
(fig. 1). Monitoring at all sites continued from October 1, 1992 
through September 30, 2001 (water years 1993–2001).

Effects of Forest Harvesting on 
Ecosystem Health

The effects of forest harvesting on soils and soil 
microbial communities, soil-, stream-, and ground-water 
chemistry, and stream aquatic communities are often used as 
indicators of the effects of a tree harvest on ecosystem health. 
The following sections describe the effects of the experimental 
harvests on soils and soil-water chemistry, stream-water 
chemistry, macroinvertebrate communities, caged brook trout, 
and tree regrowth after the harvests.

Forest Soils and Soil Water

 Soil samples and soil-water samples were collected in 
the Dry Creek watershed to evaluate the effects of harvesting 
on watershed soils. Soil samples were collected from several 
depths at each of 43 locations and were air-dried, sieved, and 
analyzed with standard soil-analysis methods. Soil-water 
samples were collected monthly from zero-tension lysimeters, 
also referred to as “gravity lysimeters,” because they collect 
water that drains through the soil by gravity (as opposed to 
suction lysimeters, which use negative pressure to collect soil 
water). Additional samples were collected during storms and 
spring snowmelt with sequential lysimeters. This technique 
linked zero-tension lysimeters to an automated sampler to 
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allow frequent sampling and provide more detailed data on 
changes in soil-water chemistry than would be possible with 
monthly, biweekly, or even weekly fixed-interval sampling.

Soil Chemistry
Soils provide the nutrients and water that trees and 

other vegetation require to survive and host the macro- and 
microorganisms that cycle those nutrients and make them 
available to plants. Soils are also the medium through which 
rain and snowmelt percolate and through which shallow 
ground water flows. Soil water is a significant component of 
stream flow and so changes in the chemistry of soil water can 
have a direct affect on stream-water chemistry. An assessment 
of soil chemistry prior to forest harvesting can indicate how 
harvesting may affect soil chemical pools, nutrient cycling, 
soil- and stream-water chemistry and ultimately the rate of 
forest regrowth. 

Forest harvesting typically results in soil acidification 
because tree removal decreases N uptake creating an excess 
of N in the soil; that N is then transformed to nitrate (NO

3
-) 

through a microbial process known as nitrification. The NO
3

- 
then passes through the soil as nitric acid (HNO

3
), which can 

deplete neutralizing cations such as Ca2+, Mg2+, sodium (Na+), 
and potassium, (K+) (collectively referred to as base cations). 
This leaching of soil base cations causes a decrease in soil 
pH and is often accompanied by a release of soil aluminum 
(as Al3+) (McHale and others, 2007), which is detrimental 
to tree growth and toxic to some fish and other aquatic biota 
(Schofield and Trojnar, 1980; Shortle and Smith, 1988; Cronan 
and Grigal, 1995; Baldigo and Murdoch, 1997; Baldigo and 
others, 2005).

Changes in soil chemistry can be difficult to detect 
at time scales shorter than a decade because the pool of 
chemicals held in the soil greatly exceeds the amount that 
is cycled by biota annually. Nonetheless, the clearcut was 
followed by a decrease in the amount of exchangeable 
base cations (positively charged ions attached to negatively 
charged soil particles) in the upper part of the forest floor 
(the Oi horizon), which is rich in organic matter (table 1) 
(McHale and others, 2007). This decrease was insignificant 
at greater depths. Percent base saturation—the amount of 
exchangeable base cations relative to the amount of all 
exchangeable cations (hydrogen and aluminum plus base 
cations)–decreased within the Oa horizon (the organic 
soil layer) after the clearcut. Exchangeable base cation 
concentrations and percent base saturation are important 
measures of the base cation pool available in the soil and base 
cations are essential nutrients for forest regrowth.

In general, the concentrations of exchangeable base 
cations in the study area were low, even before the clearcut, 
relative to those of forests elsewhere in the northeastern 
United States (David and Lawrence, 1996); this is because the 
sandstone bedrock from which Catskill soils are derived has 
a relatively slow weathering rate and consists largely of silica 

(Rich, 1934). These soils were highly acidic even before the 
forest harvest as a result of natural soil-forming processes and 
several decades of acidic atmospheric deposition (Lawrence 
and Huntington, 1999). The clearcut resulted in a further 
decrease in exchangeable base cations and a coincident 
increase in exchangeable Al concentration within the soil 
(table 1).

 Soil Microbial Processes

The N cycle in forest soils reflects the competition 
among plant roots and microbes for available ammonium 
(NH

4
+) and NO

3
-. Plants need soil microorganisms to convert 

N stored in organic matter into inorganic forms that they can 
assimilate through their roots (although recent research has 
shown that some plants take up organic forms of N directly). 
The effects of forest disturbances such as tree harvesting, 
soil freezing, and insect infestations can shift the balance 
between roots and microorganisms and thereby alter the rate 
of N accumulation and movement in soils (Likens and others, 
1969; Groffman and others, 2001; Lovett and others, 2002). 
Forest harvesting causes an increase in NO

3
- concentrations 

in soil water, stream water, and ground water. What is unclear 
is whether the increase is caused primarily by tree removal 
and the consequent decrease in N uptake or increased rates of 
microbial N cycling that result from higher soil moisture and 
temperature. To investigate this question, net N-mineralization 
and nitrification rates (the processes by which N is converted 
from organically bound N to NH

4
+ and NO

3
-) were measured 

before and after the clearcut and compared to estimates 
of N uptake by vegetation before the clearcut and stream-
water N export after the clearcut. Net N-mineralization and 
nitrification rates in Catskill soils before the clearcut were 
among the highest recorded in northeastern forests and did 
not change significantly as a result of the clearcut (Burns 
and Murdoch, 2005). Rather, the increase in stream-water N 
export in Dry Creek after the clearcut roughly equaled the 
preharvest uptake of N by trees in the watershed; therefore, 
the increase in stream-water N export is attributed mostly to 
a decrease in uptake by trees, rather than to a temperature- or 
moisture-stimulated increase in rates of N mineralization 
and nitrification. This conclusion may also apply to other 
forested watersheds that receive N deposition in amounts 
greater than required by watershed biota. Previous studies 
have documented significant increases in N-mineralization and 
nitrification rates after forest harvesting in other northeastern 
watersheds, however, those watersheds were leaching much 
less inorganic N to streams than the Dry Creek watershed 
was prior to harvesting (Matson and Vitousek, 1981; Gordon 
and Van Cleve, 1983; Vitousek and Matson, 1985; Frazer and 
others, 1990; Pierce and others, 1993).
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Soil-Water Chemistry

Water enters forest soils as dilute rainwater, snowmelt, 
or throughfall (precipitation that has passed through the 
forest canopy). Upon entering the soil, the water percolates 
downward where it can be taken up by plants, recharge ground 
water, or drain to streams. The chemistry of the water changes 
considerably as it interacts with the soil mainly through 
exchange reactions with ions bound to soil particles; as a result 
soil water chemistry reflects conditions in the soil. Soil water 
chemistry can be a more sensitive indicator of changes in soil 
chemistry than stream water or ground water because stream 
water is composed of soil water, groundwater, and (during 
storms) precipitation and changes in ground water chemistry 
occur over much longer time periods than soil water. Soil 
water was sampled as a part of this study to measure changes 
in the soil caused by the harvests.

Nitrate and Sulfate

Previous studies of forest harvesting have documented 
a large increase in soil-water NO

3
- concentrations and have 

attributed that change to decreased uptake by trees and to 
increased rates of N mineralization and nitrification (Vitousek 
and Melillo, 1979; Matson and Vitousek, 1981; Vitousek, 
1981; Hornbeck and Kropelin, 1982). Within a few years 
soil-water NO

3
- concentrations typically decrease to preharvest 

concentrations or lower as the demand for N by vegetation 
increases during the early stages of forest regrowth. Soil 
water in the Dry Creek watershed before the 1996–97 clearcut 
was acidic and contained measurable amounts of sulfate 
(SO

4
2-) and NO

3
- throughout the year. Soil-water chemistry 

did not change immediately after the clearcut, which was 
completed in April 1997; rather, it remained at preharvest 
levels for 3 months until mid-July, when it changed sharply 
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Figure 3. Concentrations of (A) nitrate, (B) sulfate, and (C) calcium plus 
Magnesium in O- and B-horizon soil water in the Dry Creek watershed 
(DC57) in response to the clearcut of 1996–97. (Location is shown in fig. 1.)
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(fig. 3). During the fall of 1997 NO
3
- concentrations exceeded 

1,100 µmol/L in O horizon soil water, 1,600 µmol/L in B 
horizon soil water, and were as high as 1,390 µmol/L in 
stream water (McHale and others, 2007). Those concentrations 
were much higher than NO

3
- concentrations measured after 

clearcuts in other northeastern watersheds with lower rates of 
atmospheric N deposition, for example the whole-tree harvest 
at Hubbard Brook, N.H. in 1983–84 produced maximum 
soil-water NO

3
- concentrations of ~825 µmol/L (Dahlgren 

and Driscoll, 1994). In contrast to the Hubbard Brook study 
there was still measurable NO

3
- in soil water during the 

growing season as long as 4 years after the Dry Creek clearcut. 
Sulfate concentrations in B-horizon soil water decreased from 
45 µmol/L to 20 µmol/L during the first 8 months after the 
clearcut because a decrease in soil pH increased the adsorption 
of sulfate onto soil particles (fig. 3) (Welsch and others, 2004).

After the clearcut, soil-water samples from the sequential 
lysimeters often showed 2 peaks in NO

3
- concentration during 

storms, the first peak typically occurred early in the storm, 
the second after the storm hydrograph peak. Water table 
elevation data collected at a shallow well located adjacent 
to the sequential lysimeters revealed that the first peak in 
NO

3
- occurred when the water table was below the lysimeters 

as soil water was percolating down through the soil column. 
The second peak in NO

3
- concentration occurred when the 

water table had risen above the elevation of the lysimeters and 
shallow ground water was flowing laterally into the lysimeters. 
This dual peak in NO

3
- concentrations only occurred during 

storms in which the water table overtopped the lysimeters. 
Storms that occurred after long, dry periods resulted in high 
NO

3
- and NH

4
+ concentrations because, in the absence of 

vegetative uptake, those dry periods allowed NO
3

- to buildup 
in the soil through N mineralization and nitrification. When 
storms occurred in rapid succession there was a dilution of 
NO

3
- and NH

4
+ in soil water from one storm to the next. Thus, 

the moisture conditions in the watershed before storms had a 
large effect on the release of NO

3
- from watershed soils.

Calcium and Magnesium

Concentrations of Ca2+ and Mg2+ in soil water increased 
sharply after the clearcut and returned to preharvest levels 
within 4 years (fig. 3). Clearcutting in these Ca-poor soils 
resulted in a decrease in the exchangeable-base-cation pool 
and the percent base saturation, both of which are indicators of 
the amount of base cations available to support forest regrowth 
(table 1). Continued monitoring of soil-water chemistry and 
tree regrowth is expected to reveal the long-term effect of 
decreased exchangeable Ca2+ and Mg2+ on forest regeneration 
in these Catskill watersheds.

Stream-Water Chemistry

Stream-water chemistry reflects all of the watershed 
processes discussed thus far and is often used to represent the 
response of an entire watershed to natural disturbances as well 

as to forest-management activities. The study was divided 
into three time periods for water-quality comparisons among 
watersheds—the preharvest period (1993–96), the harvest 
period (1997–99), and the postharvest period (2000–01). The 
NO

3
- and base-cation concentrations in Dry Creek increased 

sharply after the clearcut, but there was only a small response 
in Shelter Creek after the two selective harvests (fig. 4). This 
is consistent with results of previous studies, which have 
also documented the leaching of NO

3
- and base cations after 

forest harvests (Vitousek and Melillo, 1979; Hornbeck and 
Kropelin, 1982; Dahlgren and Driscoll, 1994). As NO

3
- passes 

through the soil th   cidity it produces is neutralized first by 
base cations and then by inorganic monomeric Al (Al

im
), 

as a result Al
im

 concentrations in Dry Creek also increased 
markedly after the clearcut, but not in Shelter Creek after the 
selective harvests (gaging stations NS25, SS20, or SC40) 
(fig. 4, table 2). In general, NO

3
- and Al

im
 concentrations 

in Dry Creek were much higher than those reported for the 
whole-tree harvest at Hubbard Brook (Hornbeck and Kropelin, 
1982; Lawrence and others, 1987; Dahlgren and Driscoll, 
1994). High Al

im
 concentrations are toxic to some fish species, 

including brook trout (Schofield and Trojnar, 1980; Baker 
and Schofield, 1982; Baldigo and Murdoch, 1997; Kaeser 
and Sharpe, 2001; Baldigo and others, 2005); they also can 
inhibit the uptake of calcium by tree roots (Shortle and Smith, 
1988; Cronan and Grigal, 1995) and thereby increase forest 
vulnerability to disease, insect infestation, and mortality from 
other stresses such as drought.

Ground-water seepage into Dry Creek mitigated the 
effect of the clearcut on stream-water chemistry to a degree, 
in that the high base-cation concentrations in ground water 
neutralized some of the stream acidity produced by soil-
water HNO

3.
 Nonetheless, the large amount of NO

3
- released 

from watershed soils after the clearcut overwhelmed the 
neutralizing capacity of the ground water and the sharp 
decrease in soil-water and stream-water pH coincided with a 
large release of Al

im
 from O- and especially B-horizon soils to 

the stream (fig. 4, table 2) (McHale and others, 2007). Forest 
regeneration began during the first year after the clearcut 
(fencing around the clearcut area prevented deer browsing 
on young trees), and stream-water NO

3
-, Al

im
, and base-

cation concentrations returned to or fell below pre-harvest 
concentrations by the fifth year after the clearcut. 

The large release of NO
3

- and the coincident release of 
Al

im
 from watershed soils after the clearcut, produced stream-

water Al
im

 concentrations well above the 3.7 µmol/L threshold 
that is considered toxic to some aquatic biota (fig. 4, table 2). 
In contrast, the selective harvests in the north and south 
Shelter Creek catchments did not cause an increase in the 
concentrations of stream-water NO

3
- or Al

im 
(fig. 4, table 2). 

Further research is needed, however, to define the harvesting 
threshold above which nutrient and base-cation losses greatly 
increase, and below which nutrient retention is maximized, to 
ensure minimal effects on stream-water quality and aquatic 
biota (fig. 5).
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Forest Regrowth and Aquatic Communities after 
the Harvests

Soil chemistry and microbial processes are the principal 
factors that affect the rate of forest regrowth while stream-
water quality and flow conditions are the principal factors 
that affect the health of stream aquatic communities. As 
discussed in the previous section, stream water quality 
integrates the effects of soil chemistry, soil microbial activity, 
and soil-water chemistry as well as other factors such as 
atmospheric deposition, soil- and ground-water flowpaths, 
and the effects of vegetation and, therefore, is often used to 
represent the response of the entire watershed to an ecosystem 
disturbance such as forest harvesting. An increase in stream-
water acidity and Al concentrations can affect the survival of 
individual organisms, species distribution, and the structure 
and function of aquatic communities. Many of these factors 

can be represented by biological indicators which are used to 
quantify the severity of a disturbance within an affected stream 
ecosystem. Therefore, part of this study entailed monitoring of 
forest regrowth, macroinvertebrate communities, and mortality 
of brook trout as indicators of the effects of forest harvesting 
on biological communities.

Nutrient Uptake and Tree Regrowth
From a forest management perspective the critical 

question regarding forest regrowth is whether the physical, 
chemical, and hydrologic conditions in the watershed after the 
harvest will sustain healthy regeneration. Those conditions 
determine the rate and vigor of forest regrowth and they 
depend on the pre-harvest state of the watershed and the 
severity of the disturbance. For this study forest regrowth 
was assessed by measuring nutrient uptake and biomass 

N
IT

RA
TE

 C
ON

CE
N

TR
AT

IO
N

,
IN

 M
IC

RO
M

OL
ES

 P
ER

 L
IT

ER

0

200

400

600

800

1,000

1,200

1,400

1,600

Clearcut (DC57)
Selective cut (SC40)

Date

1992  1993  1994  1995  1996  1997  1998  1999  2000  2001  2002 

IN
OR

GA
N

IC
 M

ON
OM

ER
IC

AL
UM

IN
UM

 C
ON

CE
N

TR
AT

IO
N

,
IN

 M
IC

RO
M

OL
ES

 P
ER

 L
IT

ER
 

0

20

40

60

80

100

He
av

y 
Se

le
ct

iv
e 

Ha
rv

es
t C

om
pl

et
ed

 (S
S2

0)

 C
le

ar
cu

t C
om

pl
et

ed
 (D

C5
7)

 

Li
gh

t S
el

ec
tiv

e 
Ha

rv
es

t C
om

pl
et

ed
  (

N
S2

5)

He
av

y 
Se

le
ct

iv
e 

Ha
rv

es
t C

om
pl

et
ed

 (S
S2

0)

 C
le

ar
cu

t C
om

pl
et

ed
 (D

C5
7)

 

Li
gh

t S
el

ec
tiv

e 
Ha

rv
es

t C
om

pl
et

ed
  (

N
S2

5)

A  Nitrate

B  Inorganic monomeric
     aluminum 

Figure 4. (A) Nitrate and (B) inorganic monomeric aluminum concentrations in stream 
water before, during, and after the harvests in the Dry Creek - DC57 (clearcut) and 
Shelter Creek - SC40 (selectively harvested) watersheds in southeastern New York, 
1992–2001. (Locations are shown in fig. 1.)



10  Effects of Forest Harvesting on Ecosystem Health in the Headwaters of the New York City Water Supply

Ta
bl

e 
2.

 
St

re
am

-w
at

er
 c

he
m

is
try

 in
 D

ry
 C

re
ek

 (c
le

ar
cu

t, 
DC

57
), 

Sh
el

te
r C

re
ek

 (s
el

ec
tiv

el
y 

ha
rv

es
te

d 
w

at
er

sh
ed

s,
 S

C4
0)

, a
nd

 C
le

ar
 C

re
ek

 (t
he

 c
on

tro
l w

at
er

sh
ed

, C
L2

5)
 b

ef
or

e,
 

du
rin

g,
 a

nd
 a

fte
r f

or
es

t h
ar

ve
st

s 
co

nd
uc

te
d 

fro
m

 1
99

5–
97

.

[C
on

ce
nt

ra
tio

ns
 a

re
 m

ea
ns

, i
n 

m
ic

ro
m

ol
es

 p
er

 li
te

r. 
pH

 is
 g

iv
en

 in
 p

H
 u

ni
ts

, A
N

C
 g

iv
en

 in
 m

ic
ro

eq
ui

va
le

nt
s 

pe
r 

lit
er

. A
N

C
, a

ci
d-

ne
ut

ra
liz

in
g 

ca
pa

ci
ty

; C
a,

 c
al

ci
um

; M
g,

 m
ag

ne
si

um
; K

, p
ot

as
si

um
; N

a,
 

so
di

um
; C

l, 
ch

lo
ri

de
; N

O
3, 

ni
tr

at
e;

 S
O

4, 
su

lf
at

e;
 D

O
C

, d
is

so
lv

ed
 in

or
ga

ni
c 

ca
rb

on
; S

iO
4, 

si
lic

a;
 A

l m
on

, m
on

om
er

ic
 a

lu
m

in
um

; A
l or

g, 
or

ga
ni

c 
m

om
om

er
ic

 a
lu

m
in

um
, A

l im
, i

no
rg

an
ic

 m
on

om
er

ic
 a

lu
m

in
um

,  
N

D
 =

 n
ot

 d
et

ec
te

d.
 W

at
er

sh
ed

 lo
ca

tio
ns

 a
re

 s
ho

w
n 

in
 f

ig
. 1

]

W
at

er
sh

ed
pH

A
N

C
Ca

M
g

K
N

a
Cl

N
O

3
SO

4
D

O
C

Si
O

2
A

l m
on

A
l or

g
A

l im

Pr
eh

ar
ve

st
 (1

99
3–

96
)

C
le

ar
cu

t
5.

91
28

.2
2

55
.8

6
25

.8
7

8.
48

16
.2

9
15

.8
3

22
.8

5
55

.2
3

19
2.

77
35

.9
5

1.
97

0.
79

1.
18

Se
le

ct
iv

e 
cu

t
5.

40
2.

75
41

.4
9

24
.9

5
6.

97
13

.8
4

16
.0

9
12

.3
3

55
.2

0
29

9.
93

40
.3

1
3.

00
1.

58
1.

40

C
on

tr
ol

5.
97

20
.0

2
47

.8
1

29
.2

8
6.

50
13

.5
7

16
.0

5
12

.2
4

60
.3

7
15

0.
66

44
.9

4
1.

34
.6

1
0.

74

Ha
rv

es
t (

19
97

–9
9)

C
le

ar
cu

t
5.

59
6.

34
85

.4
7

53
.1

7
17

.3
7

17
.2

0
16

.0
7

20
6.

85
41

.7
3

16
2.

81
35

.2
6

7.
76

.7
1

6.
99

Se
le

ct
iv

e 
cu

t
5.

46
6.

52
41

.0
3

24
.0

6
7.

36
12

.6
3

12
.7

7
13

.7
3

49
.6

3
31

2.
66

36
.1

6
2.

88
1.

63
1.

25

C
on

tr
ol

6.
04

20
.1

4
49

.2
9

29
.9

2
6.

53
14

.3
3

13
.5

4
27

.2
7

53
.6

6
14

6.
76

39
.5

7
1.

17
.3

7
.7

2

Po
st

ha
rv

es
t (

20
00

–0
1)

 

C
le

ar
cu

t
6.

17
42

.3
4

56
.4

8
26

.5
2

13
.6

2
15

.7
2

13
.0

3
24

.9
7

52
.2

8
20

2.
84

37
.3

4
0.

88
.1

5
.5

6

Se
le

ct
iv

e 
cu

t
5.

63
11

.6
5

40
.0

5
24

.3
2

6.
29

15
.2

4
15

.5
3

13
.9

5
51

.0
0

18
4.

77
38

.4
7

1.
22

.3
9

.7
9

C
on

tr
ol

6.
14

27
.6

7
47

.0
5

29
.0

3
6.

24
14

.5
5

14
.5

4
16

.4
5

53
.2

8
14

1.
43

40
.2

7
.4

5
N

D
.3

8



Effects of Forest Harvesting on Ecosystem Health  11

accumulation in 20 x 20-m plots established throughout 
the clearcut watershed (DC57), the selectively harvested 
watersheds (SS20 and NS25), and the reference watershed 
(CL25) (Yorks, 2001; Yorks and others, 2003) (fig. 1). 
In addition, the effects of deer browsing on vegetation 
regrowth was assessed by comparing regrowth in a 1-ha 
unfenced clearcut area established outside of the Dry Creek 
watershed to the fenced 18-ha clearcut area within the Dry 
Creek watershed.

Biomass and nutrient accumulation were greater in the 
Shelter Creek selectively harvested catchments than in the 
Dry Creek clearcut during the first 2 years after the harvests, 
but this pattern reversed during the next 2 years (Yorks, 
2001). Trees with a diameter-at-breast-height greater than 
5 cm showed the greatest amount of nutrient and biomass 
accumulation in the selectively harvested areas, whereas in 
the Dry Creek clearcut the greatest amount of nutrient and 
biomass accumulation initially occurred in woody stems 
less than 1.4 m tall, and later in saplings, as regeneration 
progressed (Yorks, 2001). Biomass accumulation and nutrient 
uptake increased after the harvests in uncut mature trees in the 
selectively harvested watersheds and stream-water chemistry 
indicated that light tree thinning can be done without adversely 
affecting stream-water quality (Yorks, 2001).

The two selectively harvested areas showed minimal new 
growth of striped maple (Acer pensylvanicum) and American 
beech (Fagus grandifolia), whereas the clearcut watershed 
showed substantial regeneration of pin cherry (Prunus 
pensylvanica), sugar maple (Acer sacharum), yellow birch 
(Betula alleghaniensis), and several shrub species (Yorks, 
2001). Deer browsing suppressed regeneration, biomass 

accumulation, and nutrient uptake by vegetation in the 1-ha 
unfenced clearcut area; N uptake in the unfenced area 4 
years after the clearcut was only 6.3 kg/ha—one-fifth of 
that measured in the fenced clearcut where N uptake totaled 
30.4 kg/ha (Yorks, 2001). These results confirm that deer 
browsing suppresses forest regeneration and nutrient uptake in 
Catskill forests and imply that deer browsing may affect soil- 
and stream-water quality.

Macroinvertebrate Communities
Benthic macroinvertebrates are reliable indicators of 

stream-water quality because many species are fairly immobile 
and vary widely in their sensitivity to common toxins; also 
their moderately long life span generally allows exposure to 
rare or episodic toxic disturbances (Bode and others, 1991, 
1996; Lazorchak and others, 2003). Nevertheless, no recent 
studies have documented the effects of forest harvesting on 
macroinvertebrate communities despite evidence that it can 
alter the chemistry of soil and stream water (Driscoll and 
others, 1989; Dahlgren and Driscoll, 1994; Burns and others, 
1997). For this study macroinvertebrate communities were 
sampled at four sites—the Dry Creek gage (DC57) at the 
outlet of the clearcut watershed, the upper Shelter Creek gage 
(SC40) at the confluence of the two streams that drain the 
selectively harvested catchments, the lower Shelter Creek gage 
(SC20) downstream from the confluence of Dry Creek and 
Shelter Creek, and the outlet of the control watershed (CL25) 
(fig. 1).

Sampling was done in the late summer 1 or 2 years 
before and 4 or 5 years after each harvest to evaluate the 
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resulting changes in macroinvertebrate communities. 
Macroinvertebrates were sampled by the method of Surber 
(1970). Six indices were used to represent the response of 
macroinvertebrates to the effects of forest harvesting:  

Total species richness, the total number of species or taxa 1. 
found in the sample. 

EPT richness, the number of species of mayflies 2. 
(Ephemeroptera), stoneflies (Plecoptera), and caddisflies 
(Tricoptera) found in an average 100 organism subsample; 
these are considered clean-water organisms. 

The Hilsenhoff Biotic Index (HBI), a measure of the 3. 
tolerance of organisms in a sample to organic pollution 
such as sewage effluent or animal waste. 

Percent gatherer feeding groups, the percentage of 4. 
macroinvertebrate species that feed on items found on 
surface deposits. Percent gatherer feeding groups are 
sometimes lower in toxic conditions. 

Percent shredder feeding groups, the percentage of 5. 
macroinvertebrate species that shred organic material. The 
percentage of shredder feeding groups usually increases 
when organic matter in the water increases which would 
be typical immediately after a clearcut. 

MTI, the metals-tolerance index which is an index of the 6. 
number of species present that are tolerant of high metals 
concentrations in water (Bode and others, 2002).

Three of these indices—total species richness, EPT 
richness, and HBI—exceeded the New York State Department 
of Environmental Conservation thresholds that denote “slight 
impairment” of the site after the clearcut during 1998 or 1999 
(fig. 6) (Bode and others, 1996; Smith and Bode, 2004). In 
addition, there was a decrease in the HBI and the percent 
of gatherer feeding groups and an increase in the percent 
of shredder feeding groups and the MTI after the clearcut 
(figs. 6, 7). None of the indices were affected by the selective 
harvests at Shelter Creek (SC40) or downstream from the 
clearcut and selective harvests at lower Shelter Creek (SC20) 
(fig. 6). The low index values for Clear Creek (CL25) during 
1996 were probably caused by a highly acidic snowmelt 
during a thaw in January. The decrease in the HBI and the 
increase in the MTI, at Dry Creek after the clearcut reflect a 
large decrease in the numbers of metal-sensitive Microspectra 
sp. and an increase in the numbers of other metals-tolerant 
species (figs. 6, 7). Most of the indices at Dry Creek had 
returned to near preharvest conditions by August 2000 
(figs. 6, 7).

Fish Communities
While other studies have shown that forest harvesting can 

affect the chemical quality of stream water (Likens and others, 
1970; Dahlgren and Driscoll, 1994; Burns and others, 1997), 
the effects of forest harvesting on fish survival (or mortality) 

and fish communities in acid-sensitive streams have not been 
well documented. For this study young-of-the-year brook 
trout from the New York State Department of Environmental 
Conservation hatchery in Rome, N.Y., were exposed (in cages) 
to stream water in Dry Creek (DC57), Shelter Creek (at the 
SC40 gage), lower Shelter Creek (at the SC20 gage), and 
the reference stream (CL25) for 30-day periods during each 
spring from 1995 through 2000 to evaluate the effects of the 
selective harvests and the clearcut on this acid-tolerant species 
(Baldigo and Lawrence, 2001). As discussed previously the 
clearcut in the Dry Creek watershed caused a sharp increase 
in stream-water Al

im
 concentrations to levels that are toxic to 

brook trout and many other fish species (fig. 4, table 2) (Baker 
and others, 1990; Baker and Christensen, 1991; Baldigo and 
Murdoch, 1997). 

A small percentage of brook trout mortality was 
measured at Dry Creek (DC57), Shelter Creek (SC40), and 
Clear Creek (CL25) during the spring of 1996 (fig. 8) as a 
result of unusually high and acidic stream flow during spring 
melt that mobilized some Al

im
, however, that was the only 

year mortality occurred at the control watershed. Dry Creek 
(DC57) was the only site where there was mortality of brook 
trout as a result of the forest harvest (fig. 8). Trout mortality 
at this site ranged from 0 to 15 percent in the spring of 1995 
and 1996 (before the clearcut) and during the first spring after 
the clearcut (1997), but all caged brook trout died during the 
first 7 days of the test in the spring of 1998, and 85 percent 
died during the 30-day test in 1999. No mortality occurred 
during the 30-day test in 2000. Although exposure tests were 
not conducted during the fall, stream water Al

im
 concentrations 

in Dry Creek during the fall of 1997 indicate that toxicity was 
greater and trout mortality would have occurred sooner than 
in the spring test of 1998 (fig. 4). The brook-trout mortality 
appears to have been caused by the Al

im
 concentrations that 

reached toxic levels during the first year after the clearcut as 
the lack of N uptake by trees allowed excess N to become 
nitrified and increase the soil-water acidity, which in turn 
mobilized soil Al

im
 which was transported to the stream (Burns 

and Murdoch, 2005; McHale and others, 2007).
Findings from this study and related investigations in 

the Northeast (Gagen and others, 1993; Simonin and others, 
1993; Van Sickle and others, 1996; Baldigo and Murdoch, 
1997) confirm that Al

im
 in stream water is acutely toxic to 

juvenile brook trout when concentrations exceed 3.7 µmol/L. 
Several laboratory and field investigations have found brook 
trout to be more tolerant of acidic, high-Al

im
 conditions than 

many other fish species that inhabit headwater streams of the 
Northeast (Johnson and others, 1987; Baker and Christensen, 
1991; Gagen and others, 1993; Simonin and others, 1993; 
Baldigo and Lawrence, 2001). Therefore, the toxic conditions 
produced by the clearcut would probably have killed other 
fish species that may have been present, such as slimy sculpin 
(Cottus cognatus), and the brook-trout mortality reported 
here may represent only some of the detrimental effects 
that clearcutting could have on fish communities and the 
downstream ecosystem.
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Conclusions

This study evaluated the effects of clearcutting and 
selective harvesting on nutrient retention, soil chemistry, 
soil-water chemistry, stream-water quality, fish and 
macroinvertebrate communities, and forest regrowth in three  
small, forested watersheds in the Catskill Mountains of 
southeastern New York. All of these factors were included to 
evaluate the effect of harvesting on the health of the ecosystem 
rather than focusing on one component. Several general 
conclusions can be drawn from this research:

Soil chemical pools are large relative to the changes •	
in soil chemistry that resulted from clearcutting so 
significant long-term changes in soil chemistry are 
unlikely. Nevertheless, a reduction in the base cation 
pool in the upper soil horizons could inhibit forest 
regrowth since that is where vegetation gets the 
majority of the nutrients it needs for growth.

The clearcut resulted in a large release of NO•	
3

- from 
watershed soils and a coincident release of Al

im
, 

which was toxic to brook trout and adversely affected 
macroinvertebrate communities. 

The selective harvests, which removed far fewer •	
trees than the clearcut, did not cause an increase in 
stream-water NO

3
- or Al

im
 concentrations. Nutrient 

uptake and biomass accumulation in the uncut mature 
trees increased after the selective harvest, and stream 
water quality changed little—an indication that 
tree thinning can be done with minimal effect on 
stream-water quality. 

Deer browsing severely limited tree regrowth in the •	
1-ha unfenced clearcut area; a lack of regrowth can 
limit nutrient uptake and lead to prolonged soil N 
leaching and the resultant adverse effects on stream 
water quality.

Selective harvesting of about 5 percent of the basal area •	
had little effect on stream-water chemistry or on brook-
trout survival. 

The percentage of tree basal area that can be harvested •	
without a large release of NO

3
- and Al

im
 is unknown 

but probably is variable, depending on the amount of 
previous forest disturbance, the acidity of the soil, and 
the history of acid deposition at the site.

Results of this study indicate that brook trout and 
macroinvertebrates in many Catskill streams, particularly 
in the highly acidic Neversink River basin, are likely to be 
adversely affected by clearcutting. Further research is needed 
to define the harvesting threshold below which soil nutrient 
loss is minimized to limit the adverse effects of logging on 
stream-water quality and aquatic biota.
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Appendix 1. Selected Photographs of the Dry Creek and 
Shelter Creek Forest Harvesting Study
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1. The Dry Creek clearcut during October, 1998—18 months after the clearcut was completed.

2. The Dry Creek and Shelter Creek watersheds and the approximate locations of the NS25, SS20, DC57, 
SC40, and SC20 gaging stations.
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3. View of the clearcut facing east about halfway up the Dry Creek watershed, fall 1998.

4. View of the clearcut facing east 
just outside the deer fence from the 
southwest corner of the Dry Creek 
watershed, fall 1998.
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5. Clearcut facing north, fall 1998. 6. Clearcut facing northeast, fall 1998.

7. Clearcut facing northwest, fall 1998.
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