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Foreword

The U.S. Geological Survey (USGS) is committed to providing the Nation with reliable scientific informa-
tion that helps to enhance and protect the overall quality of life and that facilitates effective management
of water, biological, energy, and mineral resources (http.//www.usgs.gov/). Information on the Nation's
water resources is critical to ensuring long-term availability of water that is safe for drinking and
recreation and is suitable for industry, irrigation, and fish and wildlife. Population growth and increasing
demands for water make the availability of that water, measured in terms of quantity and quality, even
more essential to the long-term sustainability of our communities and ecosystems.

The USGS implemented the National Water-Quality Assessment (NAWQA) Program in 1991 to support
National, regional, State, and local information needs and decisions related to water-quality management
and policy (http.//water.usgs.gov/nawga). The NAWQA Program is designed to answer: What is the
quality of our Nation's streams and groundwater? How are conditions changing over time? How do natural
features and human activities affect the quality of streams and groundwater, and where are those effects
most pronounced? By combining information on water chemistry, physical characteristics, stream habitat,
and aquatic life, the NAWQA Program aims to provide science-based insights for current and emerging
water issues and priorities. From 1991 to 2001, the NAWQA Program completed interdisciplinary assess-
ments and established a baseline understanding of water-quality conditions in 51 of the Nation’s river
basins and aquifers, referred to as Study Units (http.//water.usgs.gov/nawgqa/studyu.html).

National and regional assessments are ongoing in the second decade (2001-2012) of the NAWQA
Program as 42 of the 51 Study Units are selectively reassessed. These assessments extend the findings
in the Study Units by determining water-quality status and trends at sites that have been consistently
monitored for more than a decade, and filling critical gaps in characterizing the quality of surface water
and groundwater. For example, increased emphasis has been placed on assessing the quality of source
water and finished water associated with many of the Nation's largest community water systems. During
the second decade, NAWQA is addressing five national priority topics that build an understanding of
how natural features and human activities affect water quality, and establish links between sources

of contaminants, the transport of those contaminants through the hydrologic system, and the potential
effects of contaminants on humans and aquatic ecosystems. Included are studies on the fate of
agricultural chemicals, effects of urbanization on stream ecosystems, bioaccumulation of mercury in
stream ecosystems, effects of nutrient enrichment on aquatic ecosystems, and transport of contaminants
to public-supply wells. In addition, national syntheses of information on pesticides, volatile organic
compounds (VOCs), nutrients, trace elements, and aquatic ecology are continuing.

The USGS aims to disseminate credible, timely, and relevant science information to address practical and
effective water-resource management and strategies that protect and restore water quality. We hope this
NAWAQA publication will provide you with insights and information to meet your needs, and will foster
increased citizen awareness and involvement in the protection and restoration of our Nation's waters.

The USGS recognizes that a national assessment by a single program cannot address all water-resource
issues of interest. External coordination at all levels is critical for cost-effective management, regulation,
and conservation of our Nation's water resources. The NAWQA Program, therefore, depends on advice
and information from other agencies — Federal, State, regional, interstate, Tribal, and local — as well as
nongovernmental organizations, industry, academia, and other stakeholder groups. Your assistance and
suggestions are greatly appreciated.

Matthew C. Larsen

Associate Director for Water
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Definitions

Term Definition
Benchmark Ratio of the concentration of a contaminant to its Maximum Contaminant
Quotient (BQ) Level (MCL) value for a regulated compound or to its Health-Based

Blended Water
BQmax

Community
Water System
(CWS)

Drinking-Water
Guidelines

Drinking-Water
Standards

Finished Water

Health-Based
Screening
Level (HBSL)

Human-Health
Benchmarks

Maximum
Contaminant
Level (MCL)

Source Water

Unregulated
Compound

Screening Level (HBSL) value for an unregulated compound. BQs greater
than 1 identify concentrations of potential human-health concern. BQs
greater than 0.1 identify compounds that may warrant inclusion in a low-
concentration, trends-monitoring program.

In this report, finished water that has been blended with one or more
different untreated groundwater sources.

Ratio of the maximum concentration of a contaminant to its MCL or HBSL
value.

A public water system with 15 or more connections and serving 25 or more
year-round residents, making it subject to U.S. Environmental Protection
Agency (USEPA) regulations that enforce the Safe Drinking Water Act. A
CWS serves a residential population, such as a municipality, mobile home
park, or nursing home.

As used in this report, a threshold concentration that has no regulatory
status, but is issued in an advisory capacity by the USEPA or State
agencies.

As used in this report, a threshold concentration that is legally enforceable
(such as MCLs) by the USEPA or State agencies.

Water is “finished” when it has passed through all the processes in a water
treatment plant and is ready to be delivered to consumers.

Benchmark concentrations of contaminants in water that may be

of potential concern for human health, if exceeded. HBSLs are non-
enforceable benchmarks that were developed by the U.S. Geological
Survey (USGS) in collaboration with the USEPA and others using USEPA
methodologies for establishing drinking-water guidelines and the most
current, USEPA peer-reviewed, publicly available human-health toxicity
information.

As used in this report, these include USEPA and Florida Department of
Environmental Protection maximum contaminant level values and HBSL
values developed collaboratively by the USGS, USEPA, New Jersey
Department of Environmental Protection, and Oregon Health & Science
University.

As used in this report, a USEPA drinking-water standard that is legally
enforceable, and that sets the maximum permissible level of a contaminant
in water that is delivered to any user of a public water system at which no
known or anticipated adverse effect on the health of persons occurs, and
which allows an adequate margin of safety.

Source water is the raw (ambient) water collected at the supply well or
surface-water intake prior to water treatment. Following water treatment,
source water is finished water.

As used in this report, a compound for which no Federal and (or) State
drinking-water standard has been established. Note that a compound that
is unregulated under the Safe Drinking Water Act may be regulated in other
contexts and under other statutes.










Anthropogenic Organic Compounds in Source and
Finished Groundwater of Community Water Systems

In the Piedmont Physiographic Province, Potomac River
Basin, Maryland and Virginia, 2003-04

By William S.L. Banks and Betzaida Reyes

Abstract

A source- and finished-water-quality assessment of
groundwater was conducted in the Piedmont Physiographic
Province of Maryland and Virginia in the Potomac River
Basin during 2003—04 as part of the U.S. Geological Survey’s
National Water-Quality Assessment Program. This assessment
used a two-phased approach to sampling that allowed inves-
tigators to evaluate the occurrence of more than 280 anthro-
pogenic organic compounds (volatile organic compounds,
pesticides and pesticide degradates, and other anthropogenic
organic compounds). Analysis of waters from 15 of the largest
community water systems in the study area were included in
the assessment. Source-water samples (raw-water samples
collected prior to treatment) were collected at the well head.
Finished-water samples (raw water that had been treated
and disinfected) were collected after treatment and prior to
distribution. Phase one samples, collected in August and
September 2003, focused on source water. Phase two analyzed
both source and finished water, and samples were collected in
August and October of 2004.

The results from phase one showed that samples
collected from the source water for 15 community water
systems contained 92 anthropogenic organic compounds
(41 volatile organic compounds, 37 pesticides and pesticide
degradates, and 14 other anthropogenic organic compounds).
The 5 most frequently occurring anthropogenic organic com-
pounds were detected in 11 of the 15 source-water samples.
Deethylatrazine, a degradate of atrazine, was present in all
15 samples and metolachlor ethanesulfonic acid, a degradate
of metolachlor, and chloroform were present in 13 samples.
Atrazine and metolachlor were present in 12 and 11 samples,
respectively. All samples contained a mixture of compounds
with an average of about 14 compounds per sample.

Phase two sampling focused on 10 of the 15 community
water systems that were selected for resampling on the basis
of occurrence of anthropogenic organic compounds detected

most frequently during the first phase. A total of 48 different
anthropogenic organic compounds were detected in samples
collected from source and finished water. There were a similar
number of compounds detected in finished water (41) and

in source water (39). The most commonly detected group

of anthropogenic organic compounds in finished water was
trihalomethanes — compounds associated with the disinfec-
tion of drinking water. This group of compounds accounted
for 30 percent of the detections in source water and 44
percent of the detections in finished water, and were generally
found in higher concentrations in finished water. Excluding
trihalomethanes, the number of total detections was about the
same in source-water samples (33) as it was in finished-water
samples (35).

During both phases of the study, two measurements for
human-health assessment were used. The first, the Maximum
Contaminant Level for drinking water, is set by the U.S.
Environmental Protection Agency and represents a legally
enforceable maximum concentration of a contaminant permit-
ted in drinking water. The second, the Health-Based Screening
Level, was developed by the U.S. Geological Survey, is not
legally enforceable, and represents a limit for more chronic
exposures. Maximum concentrations for each detected com-
pound were compared with either the Maximum Contaminant
Level or the Health-Based Screening Level when available.
More than half of the compounds detected had either a
Maximum Contaminant Level or a Health-Based Screening
Level. A benchmark quotient was set at 10 percent (greater
than or equal to 0.1) of the ratio of the detected concentra-
tion of a particular compound to its Maximum Contaminant
Level, or Health-Based Screening Level. This was considered
a threshold for further monitoring. During phase one, when
only source water was sampled, seven compounds (chloro-
form, benzene, acrylonitrile, methylene chloride, atrazine,
alachlor, and dieldrin) met or exceeded a benchmark quotient.
No detected compounds in source or finished water exceeded a
benchmark quotient during phase two.
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Introduction

Anthropogenic organic compounds (AOCs) are
chemicals that are associated with human activities that range
from manufacturing and agriculture to domestic-use products
discharged through the waste stream. Virtually all of these
compounds are manmade, and many are released into the
environment as a function of their use. Some AOCs are known
to affect human health. Recent research has focused on the
fate and transport (and in some instances, the human-health
effects) of many AOCs in shallow groundwater (Barbash and
Resek, 1996; Herberer, 2002; Ternes and others, 2002; and
Zogorski and others, 2006). Their occurrence and distribution
in source water and fate and transport through public
drinking-water systems is not clearly understood. Further
study would benefit the understanding of these processes. As
an example, in one sampling survey investigators showed that
AOCs were detected in the raw water of approximately one
quarter of the nearly 1,100 public water-supply wells sampled
(Herberer, 2002). Additionally, Loraine and Pettigrove (2006),

and Stackelberg and others (2004) have shown that AOCs
often occur in finished water at concentrations similar to those
found in source water, and that some compounds are created
through the source-water disinfection process.

The U.S. Geological Survey (USGS) has designed
Source-Water-Quality Assessment (SWQA) studies to
characterize the water quality of major rivers and aquifers
used as a source of drinking water for larger community water
systems (CWSs). These studies are intended to complement
the drinking-water monitoring currently performed by
public water suppliers and required by Federal, State, and
local programs. These programs tend to focus primarily on
post-treatment compliance monitoring. The SWQA studies
provide a mechanism for comparing the results obtained from
both regional NAWQA monitoring and required drinking-
water monitoring and can help determine whether water used
for human consumption is meeting appropriate human-health
guidelines (fig. 1). This study looks at three broad classes of
AOCs in 15 CWSs in the Piedmont Physiographic Province
of the Potomac River Basin (fig. 2) (U.S. Geological Survey,
2007a, 2007b, 2007c, and 2007d).

Potomac
River Basin
Groundwater
Source-
Water-Quality
Assessment
(SWQA)
Study

200

400 MILES
200 400 KILOMETERS

EXPLANATION

NAWQA STUDY UNITS-
Scheduled to begin in fiscal year:

[ ]2001 [ ]2004 [ ]2007

Figure 1.
water-quality assessment.

@ GROUNDWATER SOURCE-WATER-

QUALITY ASSESSMENT (SWQA)
STUDIES

Location of National Water-Quality Assessment (NAWQA) Program study units and groundwater source-
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Volatile organic compounds (VOCs) are organic chemi-
cals that have been produced and used in a variety of commer-
cial, industrial, and household applications for many decades,
and are major components or additives to gasoline, paints, var-
nishes, solvents, glues, dyes, and plastics. The second class of
AOC s, pesticides, are chemicals used extensively throughout
the United States to increase crop yields, enhance the aesthet-
ics of lawns, gardens, golf courses, and recreational areas, and
protect the public from insect-associated diseases. This class
also includes herbicides and insecticides, fungicides, and some
of the degradates (breakdown products) that form when pesti-
cides are exposed to the environment. Compounds in the last
class, other AOCs (OAOCs), are present in a wide range of
products commonly used in homes, industry, and agriculture,
including personal care and domestic-use products, plant- or
animal-derived biochemicals, and fumigants.

Purpose and Scope

This report describes the occurrence of AOCs in source
water obtained from 15 of the largest CWS wells serving small
and medium communities in the Piedmont Physiographic
Province in Maryland and Virginia. The report also describes
the occurrence of selected AOCs in samples from 10 of the
same 15 CWS wells and the associated AOCs in finished
water from each of the 10 selected sites. Concentrations of
detected compounds are compared to the U.S. Environmental
Protection Agency (USEPA) Maximum Contaminant Levels
(MCLs) or USGS Health-Based Screening Levels (HBSLs)
to evaluate the potential relevance of the findings to human
health.

Location and Description of Study Area

The Potomac River Basin drains 14,670 mi® (square
miles) within the states of Maryland, Virginia, West Virginia,
Pennsylvania, and Washington, D.C. Within the basin, the
Piedmont Physiographic Province is roughly oriented north-
east to southwest along the Atlantic coast and is the second
largest province in the study area, covering about 12 percent
of the Basin in Maryland, Pennsylvania, Virginia, and
Washington, D.C. The area is characterized by rolling topogra-
phy and low to moderate relief underlain by crystalline, meta-
morphic, and igneous rocks of Precambrian to Ordovician age
(Milici and others, 1963; Cardwell and others, 1968; Cleaves
and others, 1968; King and Beikman, 1974; Berg 1980).

Hydrologic Setting

Groundwater in the Piedmont Physiographic Province
is under water-table conditions in saprolitic material
(a chemically weathered, in-place rock material overlying
consolidated crystalline rock), and occurs in the joints and

fractures of the underlying crystalline rock. Water-supply
wells in the Piedmont region are generally designed to inter-
cept the fractures and joints of the crystalline bedrock below
the overlying unconsolidated material. Wells are drilled by
isolating the overburden and drilling into the bedrock until one
or multiple zones yielding satisfactory volumes of water are
encountered. Water-bearing fracture zones tend to be located
in topographic low areas where multiple fractures or joints
occur and where the overburden has higher hydraulic head and
permeability. Nutter and Otton (1969) noted that this localiza-
tion is partly because valleys in the Piedmont tend to develop
along fracture zones. The interconnected nature of joints

and fractures in the Piedmont Physiographic Province often
obscures the source and direction of groundwater flow and
thus, the ultimate source of contaminants (Cleaves and oth-
ers, 1968; Nutter and Otton, 1969; Heath, 1984; and Bolton,
1998).

Groundwater Withdrawals and Distribution

About 20 percent of public water used in the study area is
supplied through groundwater withdrawals, and the remaining
80 percent comes from various surface-water supplies (W.P
McPherson and J.P. Pope, USGS, written commun., 2006).
The ratio of groundwater to surface water used for public
supply remained consistent between 2000 and 2004 in the
four counties that comprise most of the study area (Fauquier
and Loudon Counties in Virginia and Carroll and Frederick
Counties in Maryland) (fig. 2). Although the proportions
of water used from different sources have remained fairly
constant, the volume of groundwater consumed in the study
area has risen dramatically. In Fauquier County, Virginia,
groundwater usage more than doubled between 2000 and
2004, from 0.69 to 1.66 Mgal/d (million gallons per day). In
Loudon County, Virginia (the second fastest growing county
in the United States between 2000 and 2005), groundwater
use increased from 0.92 to 1.38 Mgal/d, or nearly 50 per-
cent, from 2000 through 2004 (U.S. Census Bureau, 2006).
From 2000 through 2004, groundwater usage in Carroll and
Frederick Counties, Maryland, increased by 20 and 5 per-
cent, or 0.51 and 0.16 Mgal/d, respectively. This increase
in resource consumption is in response to a 10-year general
increase in population in the region as a result of a rapidly
expanding technology industry centered in Washington, D.C.
These new communities are served by over 3,600 public sup-
ply wells throughout the study area in Maryland and Virginia
(the Washington, D.C. area is supplied solely by surface water
from the Potomac River).

Water from CWS wells may be used for a variety of pur-
poses, including domestic, commercial, industrial, and agricul-
tural. These supply wells may be publicly or privately owned
and operated. Water from these community wells and all
CWS wells in the study area is treated before distribution by a
variety of methods including disinfection using chlorine gas,
coagulation and filtration, adsorption, lime softening, addition



of corrosion and pH control additives, and reverse osmosis
(Participating CWS managers, written commun., 2003). The
wells that were monitored as part of this SWQA represent a
cross section of the variety of CWS wells in the study area.

Study Design and Methods

Study design was based on a two-phase site selection and
sampling process during 2003—04 to characterize the occur-
rence of anthropogenic compounds that may exist in publicly
supplied groundwater. In phase one, 15 of the largest CWSs
in the study area were identified and the owners and operators
were contacted and asked to participate in this study. Each
CWS received information on the objectives of the program
and was asked to grant USGS scientists permission to collect
samples from one randomly selected well in their system.
Selected wells were at least one km (kilometer) apart and pro-
duced between about 10 and 200 gal/min (gallons per minute)
(fig. 2).

During phase one, 15 CWS wells were initially sampled
before treatment (at the source) in August and September 2003
and analyzed for 284 VOCs, pesticides and pesticide degra-
dates (in this report, the term degradate refers to any herbicide
transformation product formed by biotic or abiotic processes),
and OAOCs. Source-water samples (water that is untreated or
raw), were collected at the well head, prior to any treatment.

During the second phase of the study, 10 of the original
15 wells were selected for resampling on the basis of occur-
rence of AOCs detected most frequently during the first phase
(during the 2003 sampling) (fig. 2). Source-water samples
were collected from each of the 10 public supply wells along
with samples of the associated finished water (treated source
water that is ready to be delivered to consumers) prior to entry
to transport pipelines. All systems were chlorinated, however;
other treatments prior to delivery were not documented. Each
of the 10 source-water samples collected during phase two
were associated with either a blended or non-blended finished-
water sample. Seven source-water samples were associated
with non-blended finished water and three were associated
with blended finished water. At sites where blending occurred,
the finished water was the product of mixing sampled source
water with water from one or more additional groundwater
sources. All samples for finished water were collected approxi-
mately 1 hour after the source-water sample was collected.
The suite of constituents for each well varied on the basis of
phase one results. During phase two, samples of both source
water and the associated finished water from 10 wells were
analyzed for VOCs, 6 wells were analyzed for pesticides, and
2 wells were analyzed for OAOCs.

Samples were collected using established USGS pro-
tocols described in Koterba and others (1995), and on-line
at http://pubs.usgs.gov/of/1995/0fr-95-399/. Water samples
were filtered at the time of collection to remove suspended
particulate matter. Organic chemicals were sorbed onto a

Study Design and Methods 5

polystyrene-divinylbenzene resin using a disposable solid-
phase cartridge. All samples were shipped overnight to the
USGS National Water-Quality Laboratory (NWQL) in Denver,
Colorado for analysis. Upon arrival in Denver, samples were
eluted and compounds were analyzed by capillary-column gas
chromatography/mass spectrometry. Analytical methods are
documented in Zaugg and others (1995), Lindley and others
(1996), Connor and others (1998), Furlong and others (2001),
Sandstrom and others (2001), Zaugg and others (2002), and
Madsen and others (2003).

Finished-water samples were treated with a dechlorina-
tion reagent (ascorbic acid) to remove free chlorine typically
introduced as part of the treatment process. Free chlorine has
been shown to be a potential interference in the analysis of
some organic compounds. pH buffers were added to finished-
water samples during sample collection to stabilize them prior
to shipment and analyses. Current research indicates that the
addition of these reagents in a laboratory setting does not
interfere with analytical performance (Mark Sandstrom, USGS
NWQL, oral commun., 2004).

Quality Assurance and Quality Control

Quality-assurance and quality-control (QA and QC) sam-
ples were periodically collected during sampling events using
the procedures described above. Samples included blanks,
replicates, and spikes. Blanks can be used to detect contamina-
tion that may be introduced during sampling, shipping, and
(or) the analytical process. Replicate samples measure vari-
ance within sampling groups and are used to control sample
collection, processing, and analysis. Sample spikes are used to
detect bias caused by analyte degradation or interference from
the sampling media. In keeping with the NAWQA Program’s
scope and scale, QA and QC efforts for each project were
focused at the national level. Thus, many individual NAWQA
studies did not collect a sufficient number of QA and QC
samples to adequately assess individual studies without being
combined with other QA and QC samples from other SWQA
studies. These samples were, however, aggregated nationally
and are reviewed annually to assess systemic contamination
from either sample-collection equipment or sampling proce-
dures and sample handling or shipping protocol. Any recurrent
detection (more than 10 percent of ambient concentrations)
of one or more analytes in QA and QC samples indicates that
there is a potential for bias for those compounds resulting
from one or more of the aforementioned sources. All samples
that were collected and analyzed for the uncontrolled analytes
are therefore considered suspect. Environmental sample data
for the affected analytes were removed from the database and
were not used in any comparative or quantitative analysis
(Greg Delzer, USGS, written commun., 2007).

Eight compounds were potentially biased nationwide
and were subsequently eliminated from the national project
data inventory. For this study, a sufficiently robust set of
QA and QC samples were collected so that only those
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compounds that showed systemic contamination at the project
and national levels were eliminated. Specifically, five of the
eight compounds were found to be biased in more than 5
percent of the source solution and field blanks nationally,
and in blank samples collected at the project level. This
pattern may indicate that contamination comes from point
sources such as sampling equipment, field personnel (insect
repellents and fragrances), field environment (dust), and (or)
sample handling procedures or sample containers rather than
from environmental, nonpoint sources. The five compounds
excluded from the data inventory were the common insect
repellent N,N diethyl-meta-toluamide (DEET), and all the
phenol-based compounds such as phenol, para-nonylphenol,
benzophenone, and bisphenol A. These compounds were not
included in the current study.

Anthropogenic Organic Compounds in
Source Water

Each source-water sample was analyzed for up to 284
AOCs, with a total of 92 AOCs detected among the 15 wells
(not every compound was analyzed at each site): 41 VOCs,

37 pesticides and pesticide degradates, and 14 OAOCs. All
samples contained a mixture of compounds. Two samples con-
tained over 30 compounds, another only 4, and all 15 samples
averaged about 14 AOCs per sample (table 1). The majority
of concentrations for all AOCs detected in source water were
generally low and ranged from 0.005 (estimated) pg/L
(micrograms per liter) for the fungicide propiconazole to 13.5
pg/L for chloroform, a naturally occurring chemical and a by-
product of disinfecting water through the use of chlorine (table
1). Two common industrial solvents, methyl ethyl ketone and
tetrahydrofuran, were detected at concentrations of 330 and
1,020 pg/L, respectively, and were higher than concentrations
found for other AOCs.

The five most frequently occurring AOCs were detected
in 11 (or 73 percent) of the 15 source waters sampled during
phase one. Deethylatrazine (an atrazine degradate) was
the only compound present in all 15 samples. Similarly,
metolachlor ethanesulfonic acid (metolachlor ESA), a
degradate of the herbicide metolachlor, and chloroform, a
VOC, were present in 13 of 15 wells, or 87 percent of the
samples. Atrazine and metolachlor were present in 12 (80
percent), and 11 (73 percent), respectively, of the 15 wells
sampled.

Different AOCs have different minimum reporting levels.
For the purposes of this report, comparisons of AOCs are

s

tional sources of information.

to compare contaminant monitoring results to HBSLs.

Consumer Confidence Reports and Source-Water-Quality Assessments

Since 1999, the U.S. Environmental Protection Agency (USEPA) has required water suppliers to provide annual drinking-
water-quality reports called Consumer Confidence Reports (CCRs) to their customers (see http;//www.epa.gov/safewater/
ccr/whereyoulive.html, accessed May 18, 2009). CCRs are the centerpiece of the right-to-know provisions of the 1996
Amendments to the Safe Drinking Water Act. Each CCR provides consumers with fundamental information about their drink-
ing water including (1) the source of the drinking water, (2) a brief summary of the susceptibility to contamination of the local
drinking-water source, (3) the concentrations (or range of concentrations) of any contaminants found in local drinking water,
as well as their USEPA Maximum Contaminant Levels (MCLs), which are legally enforceable drinking-water standards and
are the highest allowed concentrations of contaminants in drinking water, for comparison, and (4) phone numbers for addi-

Information in CCRs is specific to a particular water utility. Water utilities analyze finished-water samples primarily for
regulated contaminants (that is, those with MCLs) using USEPA analytical methods for the purpose of compliance monitor-
ing. In contrast, Source-Water-Quality Assessments (SWQAs) performed by the USGS are not conducted for compliance
monitoring and encompass data from multiple water utilities spatially distributed across the Nation. As part of SWQAs, both
source- and finished-water samples are analyzed using USGS analytical methods, where source water is the raw (ambient)
water collected at the surface-water intake or supply well prior to water treatment, and finished water is the treated water
sampled prior to entering the distribution system. USGS analytical methods used in SWQAs typically have lower analytical
reporting levels than those used in compliance monitoring; contaminant detection frequencies reported in SWQA reports may
therefore be higher than detection frequencies for the same contaminants reported in CCRs. In SWQAs, concentrations of
regulated and unregulated contaminants in source and finished water are compared to MCLs and Health-Based Screening
Levels (HBSLs), respectively. HBSLs are estimates of benchmark concentrations of contaminants in water that may be of
potential human-health concern, and are consistent with USEPA Office of Water methodologies for setting non-enforceable
drinking-water guideline values. HBSLs are not legally enforceable regulatory standards, and water utilities are not required

/
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made among AOCs and between sites regardless of varying
reporting levels in order to characterize general occurrence
rates and similarities, or the lack thereof, between these sites.
Human-health benchmarks are available for slightly
more than half (52 of 92) of the detected compounds (table
1). About 40 percent of these benchmarks are set by the
USEPA in the form of MCLs and are established for regulated
chemicals (U.S. Environmental Protection Agency, 2006).
The remaining compounds with benchmarks had HBSLs
developed by the USGS to place water-quality data in a
human-health context (Toccalino and others, 2004). In order to
determine whether the concentration of a detected compound
had potential adverse human-health effects, a benchmark
quotient (BQ) was calculated by creating a ratio between the
concentration of a compound and the appropriate human-
health benchmark (either the MCL for regulated compounds
or HBSL for unregulated compounds). When applied as a frac-
tion to the highest concentration of a contaminant in a group
or network of samples, the ratio is called the BQmax. This
ratio can be used as a conservative estimate of the potential
negative impact of water consumption on human health. In
general, a BQmax ratio greater than or equal to 0.1 identifies
concentrations of compounds that may warrant inclusion in
a low-concentration trends-monitoring program, whereas a
BQmax greater than or equal to 1.0 identifies concentrations of
potential human-health concern (Toccalino and others, 2004).
The concentration of compounds in source-water samples
that had human-health benchmarks were generally between
one and five orders of magnitude below the 0.1 benchmark.
Seven compounds (chloroform, benzene, acrylonitrile, methy-
lene chloride, atrazine, alachlor, and dieldrin), however, met or
were greater than the 0.1 benchmark in one or more source-
water samples. Without similar metrics for the remaining com-
pounds (compounds having neither an MCL nor an HBSL),
the potential human-health relevance is unknown. Two of the
most frequently occurring compounds, deethylatrazine and
metolachlor ESA, occurred in more than 80 percent of the
samples analyzed, and both lack a human-health benchmark
(table 1).

Volatile Organic Compounds

Forty-one different VOCs were detected in the source-
water samples with an average of about 5 compounds per
sample (table 1, fig. 3a). Chloroform, the most frequently
detected compound, was detected in 13 of 15 wells or 87
percent of the samples. Chloroform and several other com-
pounds are common disinfection by-products (DBPs) and are
produced when chlorine is added to either drinking or waste-
water. The detection of chloroform in groundwater can be an
indicator of chlorinated water entering the hydrologic system
and the input of other chloroform sources (such as direct
releases) to the environment (Ivahnenko and Barbash, 2004).
Chloroform can enter the hydrologic system in the form of
recharge from chlorinated water. Sources include chlorinated

Anthropogenic Organic Compounds in Source Water 1"

water used to irrigate, leaking distribution lines for finished
water and wastewater, and leakage from septic fields. The use
of sodium hypochlorite to disinfect wells, the dehalogenation
of tetrachloromethane, and a variety of natural sources can
also contribute to its occurrence in groundwater (Ivahnenko
and Barbash, 2004).

Two other compounds that are associated with the
chlorination of drinking water were detected — bromodichlo-
romethane at a detection frequency of 13 percent (2 of 15 sam-
ples), and bromoform at a detection frequency of 7 percent (1
of 15 samples). Chloroform occurred in 87 percent of sampled
wells (13 of 15 samples) and in all samples where 4 or fewer
compounds were detected (table 1, fig. 3a). The common use
of free chlorine in the drinking-water decontamination process
produces one or more trihalomethanes (THMs) in addition to
chloroform (Ivahnenko and Zogorski, 2006). Further, when a
naturally occurring bromide ion is present during chlorination,
the bromide forms halogenated DBPs. Therefore, in the pres-
ence of bromide, the detection frequency of the four principal
THMs (bromoform, dibromochloromethane, bromodichloro-
methane, and chloroform) will decrease sequentially, inversely
proportional to the concentration of bromide ion (Thiros,
2000; Grady and Casey, 2001; Moran and others, 2002). Thus,
the relatively high detection frequency of chloroform in the
study area and the relatively low occurrence of other DBPs
indicates the use of chlorination for the disinfection of drink-
ing water. Ivahnenko and Zogorski (2006) suggested that this
pattern is indicative of the use of chlorine to disinfect domestic
and, to a lesser degree, public groundwater supplies.

Other frequently detected VOCs were the gasoline addi-
tives methyl terz-butyl ether (MTBE) (10 of 15 samples, or 67
percent), and toluene (6 of 15 samples, or 40 percent) (table
1). Toluene is known to be toxic to a wide range of biota and
MTBE is classified as a potential human carcinogen (U.S.
Environmental Protection Agency, 1999). Both are relatively
hydrophilic and commonly co-occur in gasoline-contaminated
groundwater (Weaver and others, 1999). In a study of gaso-
line components in urban areas, Delzer and others (1996)
and Zogorski and others (2006) suggested that contaminated
stormwater could be a source for MTBE (and possibly
toluene) in shallow groundwater. These findings support the
results of a study by Grady (2003), which included a national
review of MTBE and other VOCs, and showed that MTBE
and chloroform were the most frequently detected compounds
in source-water supplies (groundwater and surface water)
nationwide.

Twenty-five of the VOCs detected had human-health
benchmarks (table 1). Three of these compounds (methylene
chloride, chloroform, and benzene) had BQmax values greater
than or equal to 0.1. One compound, acrylonitrile, had a
BQmax value (8.4) above the 1.0 level of potential human-
health concern (fig. 3b). All four compounds are listed by the
USEPA as high production volume (HPV) chemicals, which
means that their production in the United States exceeds
1 Mlbs/yr (million pounds per year); however, their use is not
restricted to manufacturing (U.S. Environmental Protection
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Agency, 1996). Benzene is used as an organic solvent and
dilution agent in many industries including the manufacturing
of insecticides and herbicides. Acrylonitrile is an acrylic fiber
(monomer) used in the production of nylon and synthetic rub-
ber. Chloroform, as previously described, is associated with
the disinfection of drinking water. In addition, all four com-
pounds appear on USEPA’s Comprehensive Environmental
Response, Compensation, and Liability Act (CERCLA)
Hazardous Substances list (U.S. Environmental Protection
Agency, 2001). The relatively high BQmax values for acry-
lonitrile, methylene chloride, and benzene, but relatively low
frequency of occurrence (one sample or 7 percent for acrylo-
nitrile and methylene chloride, and two samples or 13 percent
for benzene) indicates that there is a need for continued moni-
toring of these compounds. For VOCs that were detected, the
median concentration of all maximum concentrations of VOCs
was 0.51 pg/L (fig. 4).

Pesticides

Thirty-seven different pesticide and pesticide degradate
compounds were detected in the source water, which repre-
sents about 8 compounds per sample (with a maximum of 27
compounds in one sample and a minimum of 1 compound per
sample) (table 1, fig. 5a). Although the number of individual
pesticides and pesticide degradates detected (37) was roughly
the same as for VOCs (41), pesticides were detected more
frequently in comparison to VOCs (113 pesticide detections
compared to 79 VOC detections). The median value of
maximum concentrations of detected pesticides was 0.04 ug/L
(fig. 4). The majority of the pesticides that were found are
designated as “unrestricted” with respect to use and applica-
tion. The USEPA designates a pesticide as “restricted” for use
based on the compound’s acute (not chronic) toxicity (U.S.
Environmental Protection Agency, 2007).

Nearly half (about 45 percent) of the 113 pesticide detec-
tions resulted from the quantifiable presence of atrazine and
metolachlor — two common, unrestricted-use agricultural
herbicides and their degradates, deethylatrazine and
metolachlor ESA. Almost one quarter (27 detections) were
either from atrazine (12 detections) or its degradate deeth-
ylatrazine (15 detections). Metolachlor ESA and its parent
compound metolachlor accounted for 21 percent of the total
number of detections (13 and 11 detections, respectively). In
addition, when more than five compounds were detected at a
specific site, those compounds were likely to be one or more
of the six most common pesticides found, either atrazine or an
atrazine degradate (deethylatrazine), metolachlor or metola-
chlor degradates [metolachlor ESA or metolachlor OA (meto-
lachlor oxanilic acid)], or alachlor ESA (fig. 5a).

After it is applied to crops (usually corn to control
weeds), atrazine can pass through the soil zone and into the
shallow groundwater. As it moves, it undergoes microbial
degradation, forming deethylatrazine, among other
compounds. In a study of commonly used pesticides, Gilliom
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Figure 4. Distribution of maximum concentrations of detected

anthropogenic organic compounds in source water from 15
community water-supply wells, Maryland and Virginia, 2003.

and others (2006) determined that atrazine was the single most
used pesticide nationwide — 75 Mlbs/yr. This same study
noted that atrazine and deethylatrazine were the most com-
monly detected compounds in groundwater nationwide — up
to about 44 percent for deethylatrazine and 42 percent for atra-
zine, with detection frequency dependent on the surrounding
land use. Atrazine is water-soluble and relatively persistent in
soil with a half life (the time needed for one half of the applied
compound to degrade or metabolize into one or multiple

other compounds) of 146 days. This high-intensity use and
relatively long half life may contribute to the high detection
frequency among the 15 CWSs sampled in this study. Adams
and Thurman (1991), in attempting to quantify the source term
of atrazine and its degradates in groundwater, determined that
deethylatrazine was the major degradate of atrazine and that it
could enter the aquifer at higher concentrations than the parent
compound. Other independent research has indicated that the
half life for atrazine in soils can be more than 100 days, and
that detectable concentrations of atrazine and deethylatrazine
can persist for up to 6 years and more than 25 years, respec-
tively (Barbash and others, 1999; Denver and Sandstrom,
1991; Gaus, 2000).



14 Anthropogenic Organic Compounds in Groundwater, Piedmont Physiographic Province, Potomac River Basin, MD and VA, 200304

(A)

Terbacil
Tebuthiuron
Simazine
Siduron
Propiconazole
Prometon
Picloram
Oryzalin
Myclobutanil
Metribuzin
Metolachlor 0A
Metolachlor ESA
Metolachlor
Metalaxyl
Hexazinone
Flumetsulam
Fipronil sulfone
Fipronil sulfide
Fipronil

Dieldrin
Deisopropylatrazine
Deethylatrazine
Clopyralid
Chlorpyrifos, oxygen analog
Carbofuran

Carbaryl

Bentazon

Atrazine

Aldicarb sulfone
Alachlor 0A

Alachlor ESA

Alachlor

Acetochlor 0A
Acetochlor ESA
Acetochlor
3,4-dichloroaniline
2-Hydroxyatrazine

PESTICIDES

* 60

» o

X 2

* ¢

*

2

4 SITES WITH FIVE OR FEWER
COMPOUNDS DETECTED

@ SITES WITH MORE THAN FIVE
COMPOUNDS DETECTED

0.001

2
4

V'S
v

2

0.1

CONCENTRATION, IN MICROGRAMS PER LITER

Terbacil
Tebuthiuron [<>
Simazine
Siduron
Propiconazole
Prometon
Picloram
Oryzalin
Myclobutanil
Metribuzin
Metolachlor 0A
Metolachlor ESA
Metolachlor
Metalaxyl

Hexazinone
Flumetsulam

Fipronil sulfone
Fipronil sulfide
Fipronil

Dieldrin
Deisopropylatrazine
Deethylatrazine
Clopyralid
Chlorpyrifos, oxygen analog
Carbofuran
Carbaryl

Bentazon

Atrazine

Aldicarb sulfone
Alachlor OA
Alachlor ESA
Alachlor
Acetochlor 0A
Acetochlor ESA
Acetochlor
3,4-dichloroaniline

PESTICIDES

VANVAN

A

<> SITES WITH FIVE OR FEWER
COMPOUNDS DETECTED

<> SITES WITH MORE THAN FIVE
COMPOUNDS DETECTED

= BENCHMARK QUOTIENT RATIO
EQUAL TO 0.1 (Ratios greater than
0.1 may warrant further monitoring.)

= BENCHMARK QUOTIENT RATIO
EQUAL TO 1.0 (Ratios greater than
1.0 may indicate potential human
health concern.)

<&

2-Hydroxyatrazine

VAl
~

T

VN

VAR
~

T

T

0.00001 0.0001 0.001 0.01 0.1 1

BENCHMARK QUOTIENT RATIO

Figure 5.
benchmark quotient values, Maryland and Virginia, 2003. [ESA, ethanesulfonic acid; OA, oxanilic acid]

10 100

1,000

Pesticides detected in source water from 15 community water-supply wells: (A) concentrations and occurrence, and (B)



Metolachlor is a common pre-emergent herbicide used
extensively to control weeds in corn and soybeans. Its esti-
mated usage in the United States in 1997 was 67 million lbs/yr
(Gianessi and Marcelli, 2000) — the second most used herbi-
cide after atrazine. Like atrazine, metolachlor is water soluble
and persistent in the environment with a half life of 114 days
(Kollman and Segawa, 2000). Metolachlor was detected in
groundwater nationwide at a frequency of up to 17 percent,
depending on surrounding land use (Gilliom and others, 2006).
Detection frequency in the current study indicates a substan-
tially higher frequency of occurrence — about 73 percent.
Once applied, metolachlor metabolizes; the two most com-
mon degradates of metolachlor are metolachlor OA and ESA.
Eckhardt and others (1999) and Phillips and others (1999)
found that these degradates are more soluble than their parent
compounds. Both studies also indicated that the degradates are
more persistent, found at higher concentrations, and detected
more frequently in groundwater and surface water than the
parent compounds. Similarly, Phillips and others (1999) found
that the ratio of metolachlor ESA to metolachlor was higher
in groundwater when compared to surface water. In a study of
groundwater on the Delmarva Peninsula, Debrewer and others
(2007) detected the ESA degradate of metolachlor in as many
as 88 percent of shallow (less than 100 feet) wells sampled,
and metolachlor OA was detected in 49 percent of the wells
sampled. The current study found higher detection frequencies
for both pesticides and their degradates than those found by
Debrewer and others (2007). Deethylatrazine had a 100-per-
cent detection frequency and atrazine had an 80-percent
(12 out of 15) detection frequency. The detection frequency
for metolachlor was 73 percent (11 out of 15) whereas meto-
lachlor ESA and metolachlor OA were detected at 87 percent
(13 out of 15) and 47 percent (7 out of 15), respectively, in
source water. Other pesticides and degradates occurring in
more than one third of the source-water samples collected
were metolachlor OA (47 percent, or 7 of 15 samples), ala-
chlor ESA (alachlor ethanesulfonic acid) — a degradate of the
unrestricted herbicide alachlor (47 percent), and simazine
(33 percent, or 5 of 15 samples). Maximum concentrations
of pesticides detected in source water ranged from 0.005
(estimated) pg/L for propiconazole, an unrestricted fungicide,
to 3.58 pg/L for metolachlor, a common unrestricted herbicide
(table 1, fig. 5b).

Human-health benchmarks were available for 22 of the
37 pesticide compounds detected (fig. 5b). The BQmax values
for these 22 compounds were generally one to several orders
of magnitude below the benchmark quotient value of 0.1.
Three compounds had BQmax values greater than or equal
to the 0.1 threshold, however. Atrazine and alachlor, both
unrestricted, widely used herbicides, had a BQmax value of
about 0.1, indicating that further monitoring in a low-concen-
tration trends-monitoring program may be warranted. Dieldrin
had a BQmax greater than 1.0. The BQmax for dieldrin, an
unregulated insecticide and known carcinogen, was 12.1 based
on an HBSL of 0.002. Dieldrin is an organochlorine pesti-
cide, is hydrophobic, tends to bioaccumulate, and was used
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extensively throughout the United States in the agricultural
and building industries from the 1940s until it was completely
banned in 1987 (Agency for Toxic Substances and Disease
Registry, 1993).

Other Anthropogenic Organic Compounds

The most frequently detected OAOCs in source water
were 4-octylphenol diethoxylate and 4-octylphenol monoe-
thoxylate, both with a detection frequency of 13 percent (2 out
of 15). The maximum concentrations were 0.120 (estimated)
pg/L for 4-octylphenol diethoxylate, and 0.590 (estimated)
pg/L for 4-octylphenol monoethoxylate (table 1, fig. 6a).

The median concentration of all maximum concentrations of
OAOCs was approximately 0.10 pg/L (fig. 4). Only one occur-
rence of each of the remaining 12 compounds was detected in
the 15 samples. Of these 12 compounds, 2-methylnaphthalene
had the highest concentration, 0.23 (estimated) pg/L, and
I-methylnaphthalene had a concentration of 0.12 (estimated)
pg/L. Both 2-methylnaphthalene and 1-methylnaphthalene are
HPV chemicals used in industrial manufacturing. Five of the
14 OAOCs had human-health benchmarks — none generated
a BQmax value that exceeded 0.1 (fig. 6b).

Comparison of Source Water and
Finished Groundwater

The source and finished water from 10 of the original
15 CWS wells was resampled in August and October 2004.
For the 10 finished-water samples, 3 were blended with
groundwater from other CWS wells and 7 were not blended.
Since these CWSs were sampled only for those AOCs that
occurred most frequently during the first phase of sampling,
not all pairs of CWS wells and associated finished water were
sampled for the same AOCs. That is, 10 pairs of source water
and the associated finished water were analyzed for VOCs, 6
for pesticides, and 1 for OAOCs. Concentrations of each AOC
detected in either source water and (or) the associated blended
or non-blended finished water are presented in Appendix A.

Volatile Organic Compounds

Samples from 10 CWS sites and the associated finished
water were analyzed for a suite of 85 VOCs. Three of the
finished-water samples were blended with other sources of
groundwater prior to treatment. Samples from the remaining
seven CWSs were non-blended and came from a single well.
A total of 21 different VOCs were detected in either the source
water and (or) the finished water — 16 in source water, and 19
in finished water (table 2, fig. 7a). All BQmax values in source
and finished water were well below the benchmark quotient
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Figure 7. Volatile organic compounds detected in source water from 10 community water-supply wells and associated finished water
(non-blended and blended): (A) concentrations and occurrence, and (B) benchmark quotient values, Maryland and Virginia, 2004.
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value of 0.1. The compound with the highest BQmax values
in source and finished water was chloroform, with a BQmax
value of 0.02. In many instances, a compound’s BQmax value
was several (and, in the case of 0-Xylene, four) orders of
magnitude below the threshold (table 2, fig. 7b).

As a group, the THMs contributed about 30 percent
and 44 percent of all detections in source and finished water,
respectively. This group of compounds (chloroform, bromodi-
chloromethane, bromoform, and dibromochloromethane — all
of which were found in both source and finished water) can be
formed when chlorine, used to disinfect drinking water, reacts
with organic and inorganic matter in the source water. As
previously discussed, these compounds are collectively known
as DBPs and are regulated by the USEPA at a maximum
allowable, annual average of 80 pg/L for the sum of the four
compounds (U.S. Environmental Protection Agency, 20006).
The differences in median concentrations of chloroform and
bromodichloromethane between finished and source water,
when these compounds were detected above their minimum
reporting levels, were 0.15 pg/L and 0.25 pg/L, respectively
(fig. 8). Collectively, there were 28 detections of DBPs in
finished water compared to half that number in source water
(table 2, Appendix A). Chloroform had some of the highest
concentrations of DBPs found, and was detected in 9 of the
source-water samples and all 10 of the finished-water samples
(Appendix A). If the maximum concentrations of all four
THMs are added together, however, the total concentration
of 3.9 pg/L is still well below the 80 ng/L MCL set by the
USEPA.

The next most commonly occurring compounds were
1,4-dichlorobenzene and MTBE. 1,4-dichlorobenzene is
one of three common dichlorobenzene isomers and does not
occur naturally. As a class of chemicals, dichlorobenzenes
are hydrophobic, and tend to volatize easily. 1,4-dichloroben-
zene is a HPV industrial chemical and a white solid that will
sublimate at room temperature and is commonly used in toilet
deodorizer products, thus finding its way into the wastewater
stream. It was detected in eight of the source- and finished-
water samples. The gasoline oxygenate MTBE was found in
seven source-water and eight finished-water samples (table 2,
Appendix A).

Overall, there were 16 fewer VOC detections in source
water than in finished water (47 and 63, respectively).
However, DBPs account for most of the additional detections
in finished water, and the difference is reduced to two when
the DBPs are excluded. Concentrations of detected non-DBP
VOCs were very similar in source water and in finished water
(table 2, fig. 9).

Pesticides

Source- and finished-water samples for pesticides were
collected from one to six CWS wells and analyzed for a suite
of 141 common pesticides. Not all compounds were analyzed
in all samples. Twenty-five pesticides were detected among the
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Figure 8. Concentrations of bromodichloromethane and
chloroform detected in source water from 10 community water-
supply wells and associated finished water (non-blended and
blended), Maryland and Virginia, 2004.

CWS samples in either the source or finished water, or both.
Two of the six sites had blended finished water, indicating that
those sites received water from groundwater sources other
than the one analyzed (table 2, fig. 10a).

The most commonly detected pesticides in both source
and finished water were atrazine and its degradate,
deethylatrazine. These two compounds were detected in six
of six source-water samples and five of six finished-water
samples. When detections from two other atrazine degradates,
deisopropylatrazine and 2-hydroxyatrazine are included,
atrazine and its degradates account for about 42 percent of the
detections in source-water samples and 36 percent of all detec-
tions in finished-water samples. If detected in source water,
these four compounds often were detected in the associated
finished-water product, whether it was blended or non-blended
(fig. 10a).

The next most commonly detected pesticides were the
OA and ESA degradates of alachlor and metolachlor. Five
samples were collected and analyzed for each of the four
compounds. One sample was analyzed for the parent com-
pound metolachlor. Finished-water detection frequencies were
80 percent for metolachlor ESA and 60 percent for alachlor
ESA and both metolachlor OA and alachlor OA. When taken
collectively, metolachlor and its degradates and the degradates
of alachlor accounted for about 32 percent of the detections in
source water and 28 percent of the detections in finished water.
The two metolachlor degradates were detected at the highest
concentrations of all pesticides detected in source water (meto-
lachlor ESA, 3.950 pg/L, and metolachlor OA, 3.770 pg/L)
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Figure 9. Comparison of concentrations of pesticides, volatile organic compounds, and
other anthropogenic compounds in source water from 10 community water-supply wells and
associated finished water (non-blended and blended), Maryland and Virginia, 2004

— concentrations almost four orders of magnitude greater than
that of the parent compound (metolachlor) in source water,
0.004 (estimated) pg/L (table 2, fig. 10a).

Detection frequencies for the remaining 16 compounds
were two or fewer detections in the well(s) sampled for
both source and finished water. Concentrations in source
water ranged from 0.006 (estimated) pg/L for nicosulfuron
to 0.748 (estimated) pg/L for bentazon — both herbicides.
Finished-water concentrations ranged from 0.018 (estimated)
pg/L for tebuthiuron (a herbicide) to 0.370 (estimated) pg/L
for bentazon (table 2, fig. 10a). The herbicide metsulfuron
methyl occurred only in finished water at three CWSs. One
of these sites blended the sampled source water with other
sources. Other compounds that were detected only in fin-
ished water were picloram (one detection), imazethapyr (one
detection), and acetochlor/metolachlor ESA—second amide
(one detection). The picloram and imazethapyr came from a
single CWS that was not blending multiple sources for the fin-
ished product. Acetochlor/metolachlor ESA — second amide

(a degradate common to both acetochlor and metolachlor)
occurred in separate, non-blended CWSs (Appendix A).

Although no BQmax value equaled or exceeded 0.1,
atrazine neared the threshold with a BQmax of 0.08 in source
water and about 0.07 in finished water. All other BQmax
values were between 0.000001 for nicosulfuron (in source
water) and 0.01 for simazine (in source water and finished
water) (fig. 10b).

The detection frequency and concentrations of pesticides
in source water can indicate the potential for certain pesticides
to be present in some finished waters, but not all (fig. 9). In
addition, the introduction of multiple unquantifiable source
terms (blended finished water) can decrease the concentration
of a given compound in the finished product (dilution).
However, blending with contaminated source waters may
have actually increased the concentration of five pesticides
(metolachlor ESA, atrazine, 2-hydroxyatrazine, metsulfuron
methyl, and flumetsulam) at two different sites
(Appendix A).
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[ESA, ethanesulfonic acid; OA, oxanilic acid]
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Other Anthropogenic Organic Compounds

Samples from a single CWS well and the associated
blended finished water were analyzed for OAOCs. Only two
OAOC:s, 4-octylphenol monoethoxylate and 4-octylphenol
diethoxylate, were detected in the source water, and none were
detected in finished water (table 2, fig. 9). Both are degradates
of common detergents. The highest detected concentration
of 4-octylphenol monoethoxylate was 0.32 (estimated) pg/L.
The absence of the compound in the finished product may
be attributed to dilution as the analyzed source water was
blended with water from one or more other wells. Conversely,
chlorination (as part of the disinfection process) may alter
some compounds so that they may be present, but are in a
chlorinated form that is not quantifiable (Appendix A). Due
to the lack of health guidelines (MCLs or HBSLs) for these
OAOCs, no BQmax values were obtained (table 2).

Summary

A source-water-quality assessment was performed in the
Piedmont Physiographic Province of the Potomac River Basin
in 2003 and 2004. The assessment included two sampling
phases. The first phase focused on determining the occurrence
of 284 anthropogenic organic compounds in the source water
of some of the highest-producing community water systems in
the study area. The anthropogenic organic compounds moni-
tored included volatile organic compounds, pesticides and
pesticide degradates, and other anthropogenic organic com-
pounds. The second phase of the program focused on those
anthropogenic organic compounds that were detected most
frequently during the first phase of sampling, and character-
ized their occurrence in source water as well as associated
finished water prior to distribution.

During phase one, 92 of the 284 anthropogenic organic
compounds were detected (41 volatile organic compounds,

37 pesticides and pesticide degradates, and 14 other
anthropogenic organic compounds) in source-water samples
collected in August and September 2003. The five most
frequently occurring anthropogenic organic compounds were
detected in more than 70 percent of the 15 source-water
samples. Deethylatrazine (an atrazine degradate) was present
in all 15 samples. Metolachlor ethanesulfonic acid, a degra-
date of the herbicide metolachlor, and chloroform, a volatile
organic compound and known disinfection by-product, were
present in 87 percent of the samples. Atrazine and metolachlor
were present in 80 percent and 73 percent of the samples,
respectively. All samples contained a mixture of compounds
with an average of about 14 compounds per sample.

Concentrations for compounds detected in source water
were generally low, ranging from 0.005 (estimated)
micrograms per liter for the fungicide propiconazole to 13.51
micrograms per liter for chloroform. Two industrial solvents,
methyl ethyl ketone and tetrahydrofuran, were detected at

concentrations that exceeded the next highest concentration by
an order of magnitude. Chloroform and methyl fert-butyl ether
were the most frequently detected volatile organic compounds
(87 and 67 percent, respectively). They were most often found
at sites that contained at least four other volatile organic com-
pounds, which is consistent with other studies that indicate
that these are the two most frequently detected volatile organic
compounds nationwide.

Two measurements for human-health assessment — the
Maximum Contaminant Levels set by the U.S. Environmental
Protection Agency and Health-Based Screening Levels
developed by the U.S. Geological Survey — were used to
place water-quality data in a human-health context. Slightly
more than half (56 percent) of the detected compounds had
either a Maximum Contaminant Level or a Health-Based
Screening Level that was used to create a ratio of the maxi-
mum detected concentration of a compound to one of these
two human-health standards; this unitless ratio is called
the benchmark quotient or BQmax. One tenth of this ratio
(BQmax greater than or equal to 0.1), was used as a threshold
value, allowing investigators to determine which compounds
may warrant further investigation. Samples collected in
phase one yielded concentrations for some compounds
that had BQmax values between one and five orders of
magnitude below a BQmax of 0.1. Seven compounds (chlo-
roform, benzene, acrylonitrile, methylene chloride, atrazine,
alachlor, and dieldrin) met or exceeded a BQmax of 0.1,
however. Benchmark quotient values were not calculated for
compounds that had neither Maximum Contaminant Levels
nor Health-Based Screening Levels.

Pesticides were detected more frequently but at lower
median concentrations than volatile organic compounds.
Nearly half of the detections (51 of 113) resulted from the
presence of the herbicides atrazine and metolachlor and
two degradates of these compounds (deethylatrazine and
metolachlor ethanesulfonic acid). Maximum concentrations
of pesticides detected in source water ranged from 0.005
(estimated) micrograms per liter for propiconazole to 3.58
micrograms per liter for metolachlor. Benchmark quotient
values were available for 22 pesticides and were generally
one to several orders of magnitude below the 0.1 threshold
that would warrant further monitoring. Three compounds
— atrazine, alachlor, and dieldrin — were at or significantly
above the threshold in one or more samples. Dieldrin had a
BQmax of 12.1 — the maximum concentration of dieldrin was
12 times higher than the health standard for that compound in
one sample.

In August and October 2004, 10 of the 15 community
water supply wells, along with their associated finished
water, were selectively resampled for the anthropogenic
organic compounds that occurred most frequently during
phase one. Three of the 10 sites blended source water with
other sources of groundwater or surface water. Seven sites
were non-blended. Ten sample pairs (source and finished
water) were analyzed for volatile organic compounds, six
pairs for pesticides, and one pair for other anthropogenic



organic compounds. In total, 21 volatile organic compounds,
25 pesticides and pesticide degradates, and two other
anthropogenic organic compounds were detected. Overall,
there were 113 anthropogenic organic compounds detected in
finished water and 102 detected in source water.

The most common group of volatile organic compounds
that were detected was the trihalomethanes, a group of
disinfection by-products. Trihalomethanes accounted for about
30 percent of the detections in source water and 44 percent
of the detections in finished water. Other commonly detected
volatile organic compounds included 1,4-dichlorobenzene,
detected in 8 of 10 source-water and finished-water samples,
and the gasoline oxygenate methyl fert-butyl ether, found in
7 source-water samples and 8 finished-water samples. This
indicates that blended finished water may introduce additional
contaminant sources or the creation of compounds through the
disinfection process. No volatile organic compound exceeded
the 0.1 BQmax threshold.

Twenty-five pesticides were detected in either source
water, finished water, or both among the community water
systems sampled in phase two. In total, there were slightly
more pesticide detections in source water (53) than in
finished water (50). The most commonly detected pesticide
compounds in both source water and finished water were
atrazine and its degradate, deethylatrazine. With the inclusion
of deisopropylatrazine and 2-hydroxyatrazine, atrazine and its
degradates accounted for about 42 percent of the detections
in source-water samples and 36 percent of all detections in
finished-water samples. The next most commonly detected
pesticide compounds were the parent compounds and
degradates of alachlor and metolachlor. These compounds
accounted for about 32 percent of detections in source
water and 28 percent of the detections in finished water.
Three degradates (metolachlor ethanesulfonic acid, alachlor
ethanesulfonic acid, and metolachlor oxanilic acid) were found
more often in source-water than finished-water samples. Two
of the metolachlor degradates were detected at the highest
concentrations of all pesticides detected in source water —
metolachlor ethanesulfonic acid at 3.950 micrograms per
liter, and metolachlor oxanilic acid at 3.770 micrograms per
liter. Metolachlor ethanesulfonic acid and oxanilic acid were
detected at frequencies of 100 and 80 percent, respectively, in
source water, and 80 and 60 percent in finished water.
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Appendix A. Comparison between source water and associated finished water (non-blended and blended) for detected
anthropogenic organic compounds in community water-supply systems in the Piedmont Physiographic Province, Potomac River
Basin, Maryland and Virginia, 2004.

[E, estimated value; --; no detection; pg/L, micrograms per liter; red type indicates blended water; Bold type under compound heading indicates
“unregulated,” a compound that has no Federal and (or) State drinking-water standard; ESA, ethanesulfonic acid; OA, oxanilic acid.]

o Compound Source-wa.ter Finished-water concentration
Well identifier (Regulated or unregulated) concentration (non-blended and blended)
(pg/L) (pg/L)
Volatile Organic Compounds
49X 10 1,1,1-Trichloroethane E 0.027 E 0.029
CLBd 179 1,1,1-Trichloroethane 0.105 0.106
FR Dc 62 1,1,1-Trichloroethane E 0.032 E 0.030
49X 10 1,1-Dichloroethane 0.240 0.238
49X 10 1,1-Dichloroethene 0.112 E 0.096
CLBd 179 1,1-Dichloroethene E 0.044 E 0.044
49X 10 1,4-Dichlorobenzene E .040 -
49X 11 1,4-Dichlorobenzene E 0.038 E 0.056
CLBd 179 1,4-Dichlorobenzene E 0.025 E 0.053
CL Bd 180 1,4-Dichlorobenzene E 0.044 E 0.024
FR Dc 62 1,4-Dichlorobenzene E 0.048 E 0.039
FR Ec 43 1,4-Dichlorobenzene - E 0.047
FR Ef 54 1,4-Dichlorobenzene E 0.026 E 0.029
FR Eg 36 1,4-Dichlorobenzene E 0.039 E 0.041
FR Eg 37 1,4-Dichlorobenzene E 0.042 E 0.033
49X 10 Bromodichloromethane -- 0.725
49X 11 Bromodichloromethane -- E 0.062
CLBd 179 Bromodichloromethane 0.109 0.167
FR Dc 69 Bromodichloromethane -- 0.454
FR Ef 54 Bromodichloromethane -- 0.569
FR Eg 36 Bromodichloromethane 0.204 0.187
FR Eg 37 Bromodichloromethane E 0.059 0.358
49X 10 Bromoform -- 0.520
FR Dc 69 Bromoform -- E 0.150
FR Ef 54 Bromoform -- 0.121
FR Eg 36 Bromoform 0.396 0.417
FR Eg 37 Bromoform -- E 0.085
49X 10 Carbon tetrachloride -- E 0.025
49X 10 Chloroform E 0.028 0.236
49X 11 Chloroform -- 0.141
CLBd 179 Chloroform 1.569 1.574
CLBd 180 Chloroform E 0.090 0.107
FR Dc 62 Chloroform 1.058 1.085
FR Dc 69 Chloroform E0.018 0.245
FR Ec 43 Chloroform E 0.027 E 0.048
FR Ef 54 Chloroform E 0.043 0.573
FR Eg 36 Chloroform 0.144 E 0.079
FR Eg 37 Chloroform 0.415 0.871

49X 11 cis-1,2-Dichloroethene 0.506 2.188
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Appendix A. Comparison between source water and associated finished water (non-blended and blended) for detected
anthropogenic organic compounds in community water-supply systems in the Piedmont Physiographic Province, Potomac River
Basin, Maryland and Virginia, 2004.—Continued

[E, estimated value; --; no detection; pg/L, micrograms per liter; red type indicates blended water; Bold type under compound heading indicates
“unregulated,” a compound that has no Federal and (or) State drinking-water standard; ESA, ethanesulfonic acid; OA, oxanilic acid.]
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o Compound Source-wa.ter Finished-water concentration
Well identifier (Regulated or unregulated) concentration (non-blended and blended)
(pg/L) (pg/L)
49X 10 Dibromochloromomethane -- 1.109
CLBd 179 Dibromochloromomethane -- 0.183
FR Dc 69 Dibromochloromomethane -- 0.511
FR Ef 54 Dibromochloromomethane -- 0.431
FR Eg 36 Dibromochloromomethane 0.433 0.397
FR Eg 37 Dibromochloromomethane -- 0.206
49X 10 Deisopropyl ether 0.165 0.148
CL Bd 180 Deisopropyl ether E 0.044 E 0.051
FR Ef 54 Ethylbenzene -- E 0.023
FR Ef 54 Isopropylbenzene E 0.007 --
FR Ef 54 m- and p-Xylene -- E 0.085
49X 10 Methyl zert-butyl ether 0.583 0.540
49X 11 Methyl fert-butyl ether 0.752 1.076
CLBd 179 Methyl fert-butyl ether 0.329 0.292
CL Bd 180 Methyl zert-butyl ether 2.671 2.565
FR Dc 62 Methyl fert-butyl ether -- E 0.084
FR Dc 69 Methyl fert-butyl ether E 0.058 E 0.058
FR Eg 36 Methyl zert-butyl ether E0.161 E 0.152
FR Eg 37 Methyl tert-butyl ether 0.193 0.193
CLBd 179 Methylene chloride -- E 0.019
FR Ef 54 o0-Xylene -- E 0.027
49X 10 tert-Amyl methyl ether E 0.087 E 0.081
CL Bd 180 tert-Amyl methyl ether 0.231 0.212
49X 10 Tetrachloroethene E 0.020 E 0.020
CLBd 179 Tetrachloroethene E 0.015 E0.013
FR Dc 62 Tetrachloroethene E 0.037 --
FR Dc 69 Tetrahydrofuran E 1.096 -
49X 10 Trichloroethene E 0.041 E 0.035
49X 11 Trichloroethene E 0.094 -
Pesticides
49X 10 2-Hydroxyatrazine E 0.017 E 0.021
FR Dc 62 2-Hydroxyatrazine E 0.005 E 0.005
FR Dc 69 2-Hydroxyatrazine E0.015 E0.014
FR Ef 54 2-Hydroxyatrazine E 0.016 E 0.020
49X 10 Acetochlor ESA 0.090 0.080
49X 10 Acetochlor/Metolachlor ESA—second amide -- 0.120
49X 10 Actochlor OA 0.140 0.120
FR Ef 54 Alachlor ESA-second Amide 0.070 0.040
FR Eg 36 Alachlor ESA-second Amide -- 0.020

49X 10 Alachlor OA 0.120 0.100
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Appendix A. Comparison between source water and associated finished water (non-blended and blended) for detected
anthropogenic organic compounds in community water-supply systems in the Piedmont Physiographic Province, Potomac River
Basin, Maryland and Virginia, 2004.—Continued

[E, estimated value; --; no detection; pg/L, micrograms per liter; red type indicates blended water; Bold type under compound heading indicates
“unregulated,” a compound that has no Federal and (or) State drinking-water standard; ESA, ethanesulfonic acid; OA, oxanilic acid.]

o Compound Source-wa.ter Finished-water concentration
Well identifier (Regulated or unregulated) concentration (non-blended and blended)
(pg/L) (pg/L)
FR Ef 54 Alachlor OA 0.020 0.020
FR Eg 36 Alachlor OA 0.840 0.750
49X 10 Alachlor ESA 0.060 0.050
49X 11 Alachlor ESA 0.030 -
FR Ef 54 Alachlor ESA 0.680 0.470
FR Eg 36 Alachlor ESA 0.330 0.290
49X 10 Atrazine 0.230 0.203
49X 11 Atrazine 0.013 --
FR Dc 62 Atrazine 0.053 0.050
FR Dc 69 Atrazine 0.074 0.060
FR Ef 54 Atrazine 0.106 0.108
FR Eg 36 Atrazine 0.066 0.060
49X 10 Benomyl E 0.026 E 0.026
FR Eg 36 Benomyl E 0.005 E 0.008
49X 10 Bentazon E 0.748 E 0.370
49X 10 Deethylatrazine 0.048 0.040
49X 11 Deethylatrazine 0.049 -
FR Dc 62 Deethylatrazine 0.129 0.111
FR Dc 69 Deethylatrazine E 0.129 E 0.087
FR Ef 54 Deethylatrazine E 0.146 E 0.073
FR Eg 36 Deethylatrazine E 0.024 0.078
FR Dc 62 Deethyldeisopropylatrazine E 0.027 --
FR Dc 69 Deethyldeisopropylatrazine E 0.029 -
49X 10 Deisopropylatrazine E 0.053 E .042
49X 11 Deisopropylatrazine E 0.010 -
FR Dc 62 Deisopropylatrazine E 0.022 E 0.016
FR Dc 69 Deisopropylatrazine E 0.009 -
FR Ef 54 Deisopropylatrazine E 0.138 E 0.058
FR Eg 36 Deisopropylatrazine E0.016 E 0.030
49X 10 Flumetsulam E 0.122 E 0.098
FR Ef 54 Flumetsulam -- E 0.046
FR Eg 36 Imazethapyr -- E 0.042
FR Ef 54 Metolachlor E 0.004 E 0.005
49X 10 Metolachlor ESA 2.570 2.150
49X 11 Metolachlor ESA 0.960 -
FR Dc 62 Metolachlor ESA 0.230 0.250
FR Ef 54 Metolachlor ESA 3.950 2.890
FR Eg 36 Metolachlor ESA 1.040 0.860
49X 10 Metolachlor OA 3.770 2.990

49X 11 Metolachlor OA 0.020 --
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Appendix A. Comparison between source water and associated finished water (non-blended and blended) for detected
anthropogenic organic compounds in community water-supply systems in the Piedmont Physiographic Province, Potomac River

Basin, Maryland and Virginia, 2004.—Continued

[E, estimated value; --; no detection; pg/L, micrograms per liter; red type indicates blended water; Bold type under compound heading indicates
“unregulated,” a compound that has no Federal and (or) State drinking-water standard; ESA, ethanesulfonic acid; OA, oxanilic acid.]
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Source-water

Finished-water concentration

Well identifier (Regulatgg“c:‘r"::ll::gulated) concentration (non-blended and blended)
(pg/L) (pg/L)
FR Ef 54 Metolachlor OA 0.460 0.450
FR Eg 36 Metolachlor OA 0.720 0.630
49X 10 Metsulfuron methyl -- E 0.053
FR Ef 54 Metsulfuron methyl -- E 0.105
FR Eg 36 Metsulfuron methyl -- E 0.031
FR Dc 69 Nicosulfuron E 0.006 --
FR Eg 36 Picloram -- 0.151
FR Ef 54 Simazine 0.047 0.044
49X 10 Tebuthiuron E 0.020 E 0.018
49X 10 Terbacil E 0.023 -
FR Eg 36 Triclopyr 0.032 0.026
Other Anthropogenic Organic Compounds
FR Ef 54 4-octylphenol diethoxylate E 0.070 --

FR Ef 54 4-octylphenol monoethoxylate E 0.320
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