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Flow rate
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Vertical coordinate information is referenced to the North American Vertical Datum of 1988
(NAVD 88).

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).

Altitude, as used in this report, refers to distance above the vertical datum.



Regional Curves for Bankfull Channel Characteristics in
the Appalachian Plateaus, West Virginia

By Terence Messinger

Abstract

Streams in the Appalachian Plateaus Physiographic Prov-
ince in West Virginia were classified as a single region on the
basis of bankfull characteristics. Regression lines for annual
peak flow and drainage area measured at streamgages in the
study area at recurrence intervals between 1.2 and 1.7 years
fell within the 99-percent confidence interval of the regression
line for bankfull flow. Channel characteristics were intermedi-
ate among those from surrounding states and regions where
comparable studies have been done.

The stream reaches that were surveyed were selected
for apparent stability, and to represent gradients of drainage
area, elevation, and mean annual precipitation. Profiles of
high-water marks left by bankfull and near-bankfull peaks
were surveyed, either as part of slope-area flow measurements
at ungaged reaches, or to transfer known flow information to
cross sections for gaged reaches. The slope-area measurements
made it possible to include ungaged sites in the study, but still
relate bankfull dimensions to peak flow and frequency.

Introduction

Regional curves (Dunne and Leopold, 1978) are regres-
sion equations that quantify relations within a region between
bankfull channel characteristics and drainage area, and in
some cases, other basin characteristics. They are used in natu-
ral channel design (NCD), which is a set of methods for restor-
ing, rebuilding, or rerouting stream channels (Rosgen, 1996).
Natural channel design practitioners use regional curves to
design channels or to verify identification of bankfull features
in reference reaches.

Stream restoration, of which NCD is a subset, is impor-
tant in environmental management and policy and has become
a growing business (Bernhardt and others, 2005). The National
River Restoration Science Synthesis (NRRSS) project esti-
mated that at least $14 to $15 billion was spent on restoration
of streams and rivers within the continental United States
between 1990 and 2005 (Bernhardt, 2006; Bernhardt and

others, 2005). Channel reconfiguration projects, a category
which includes NCD, accounted for more than $1.3 billion of
the overall total.

The concept of bankfull flow is central to NCD (Leopold,
1994; Rosgen, 1996). Dimension, pattern, and profile of chan-
nels are considered to be maintained by bankfull flow, which
is considered to be the effective flow or the flow that trans-
ports the most cumulative sediment over time (Rosgen, 1996).
Bankfull flow, regardless of whether or not it is the effective
flow, usually has a return period between 1 and 2 years when
calculated from the annual-peak series, with 1.5 years close
to average (Leopold and others, 1964). Stable channels, by
definition, are changed little by flows of magnitudes that recur
frequently, but channel instability can result from land-use and
other changes that alter the magnitude of frequent peak flows.

The West Virginia Conservation Agency and the Division
of Highways of the West Virginia Department of Transporta-
tion cooperated with the U.S. Geological Survey (USGS) in
this project, one of a series of studies done in and near West
Virginia, intended to provide information for NCD (Wiley and
others, 2002; Messinger and Wiley, 2004; Keaton and others,
2005). The Canaan Valley Institute facilitated the task force
that identified the need for this series of studies.

The purpose of this report is to provide regional equa-
tions (regional curves) for bankfull characteristics of stable
stream channels within the part of the Appalachian Plateaus
Physiographic Province in West Virginia. Supporting informa-
tion is provided on the development of the regional curves.
Bankfull stream-channel characteristics are compared to those
of adjacent regions.

Description of Study Area

The study area was defined as the part of West Virginia
within the Appalachian Plateaus Physiographic Province
(fig. 1). The Appalachian Plateaus Physiographic Province is
an area of flat-lying or gently folded rocks that formed when
a peneplain was uplifted during the Appalachian Orogeny,
and then was dissected by stream erosion in the ensuing
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Figure 1.

300 million years (Fenneman, 1938). Elevation is highest in
the east, where some peaks are higher than 4,000 ft (NAVD
88), and lowest in the west, near the Ohio River, where the
valley is lower than 600 ft (fig. 2). Relief is generally greatest
at highest elevations. The Ohio River drains most of the study
area (19,631 mi?), and the rest (329 mi?) is drained by the
Potomac River.

Mean annual precipitation and maximum storm precipita-
tion are not closely correlated. Maximum storm precipitation,
as measured by any of several frequencies for storm intensity,
is greatest in the southern and eastern parts of the study area
and least in the northern and western parts of the study area
(Hydrometeorological Design Studies Center, 2006a, 2006b).

80° 78°

PENNSYLYANIA

VIRGINIA

Physiography from Fenneman and Johnson, 1949, 1:7,000,000
Streams from U.S. Geological Survey, 1991, 1:2,000,000
Towns from U.S. Census Bureau, 2001, 1:2,000,000

West Virginia and surrounding states, their physiography, and selected cities and rivers. The study area is the part of the
Appalachian Plateaus Physiographic Province within West Virginia.

The eastern part of the study area is more frequently affected
by Atlantic hurricanes than is the west, which accounts, in
part, for the difference. Distribution of mean annual precipita-
tion is related closely to elevation, and the greatest annual pre-
cipitation is received in the highest parts of the study area. The
lowest mean annual precipitation in the study area is in the
Northern Panhandle and the southern Greenbrier River Basin
in the southeastern part of the study area, which is behind a
pronounced rain shadow (fig. 2).

Land use, surface geology, and soils all covary with
elevation within the study area (Messinger and Hughes, 2000).
Generally, the highest population density and concentration of
urban land is in river valleys in the northern and western parts



of the study area. Commercial agriculture is limited in scope,
and most commercial farms are near the downstream sections
of the Ohio and Kanawha Rivers, and the Greenbrier River
Basin. Forest cover is most dense in the mountains in central
West Virginia. The largest cities in the study area, all with
populations less than 51,000, are Charleston on the Kanawha
River; Huntington, Parkersburg, and Wheeling on the Ohio
River; and Morgantown on the Monongahela River (U.S.
Census Bureau, 2009). Because the largest urban areas in the
study area are in the valleys of major rivers, increases in peak
storm runoff caused by impervious urban lands are generally
localized and most pronounced on a few small streams.
Principal economic activities include coal mining,
forestry, and oil and gas production, which are widespread
throughout most of the study area; manufacturing, which
is most common in areas near the Monongahela, Ohio, and
Kanawha Rivers; and agriculture, which is most important
commercially near the Ohio and Kanawha Rivers and in the

EXPLANATION
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38°

Site Selection 3

Greenbrier River Basin (Messinger and Hughes, 2000). Of
these, forestry and surface coal mining are widespread within
the study area and have well-established, strong effects on
storm hydrographs and peak flows.

Site Selection

Planning regions were developed for this study on the
basis of elevation and mean annual precipitation, which were
the basin characteristics that explained the most variation in
near-bankfull channel characteristics determined from analysis
of flow measurements made at streamgages (Messinger and
Wiley, 2004). The study area was divided into six planning
regions, each representing areas with generally homogeneous
elevation and mean annual precipitation (fig. 2). The site-
selection goal was to have equal numbers of wadable sites
draining small, medium, and large areas (less than 10, 10-100,

40 60 MILES

| J
T

60 KILOMETERS

40

Base from U.S. Geological Survey, National Elevation Data, 1:24,000, NAD 83.
Precipitation data from U.S. Department of Commerce, 1960

Figure 2. Regional curve planning regions, elevation, mean annual precipitation (shown in white contours), and recent streamgages

on unregulated streams in West Virginia.
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and greater than 100 mi®) from each planning region. Wad-
able sites were those where a detailed profile of the thalweg
could be measured while wading; a drainage area of 240 mi?
was adopted for planning, although several streams draining
larger areas were reconnoitered and probably could have been
surveyed during extreme low flows.

A competing goal for site selection was for all sites
to have stable banks and readily identifiable bankfull fea-
tures. Candidate reaches were excluded if banks were fail-
ing throughout most of their length, or if plausible bankfull
features were not present. Gaged reaches were evaluated and
included in the study if they met both these criteria.

Relatively few gaged reaches met these criteria, par-
ticularly when the streamgage was near a bridge or road. The
majority of active streamgages were on non-wadable streams,
although the majority of stream-restoration work is done on
wadable streams. In addition, because available streamgages
on wadable streams were disproportionately on the headwaters
of major rivers, they were clustered in the central and eastern
mountains of West Virginia (Messinger and Wiley, 2004).

Because not enough suitable gaged sites were available to
build a network that could adequately represent the study area,
ungaged sites were added. Two parts of the overall stream-
gaging record typically are used to develop regional curves:
the high part of the stage-flow rating is used to determine
bankfull flow, and the annual-peak series, based on 10 or more
years of data, is used to confirm that bankfull flow is equiva-
lent to a peak with an approximate recurrence interval of 1
to 2 years. Slope-area measurements, which define the high
end of the stage-flow rating at the great majority of USGS
streamgages, could be made for near-bankfull peaks during the
3-year duration of the project.

Determining the recurrence interval of a peak approxi-
mately equivalent to bankfull flow would normally be more
problematic than determining its flow and would preclude
using ungaged sites in a regional-curve network. However,
regional frequency relations for frequent, low-magnitude
annual peaks had already been developed for three regions in
West Virginia and were published with a series of regression
equations for estimating flows of frequencies ranging from
the 1.1-year flow through the 5-year flow (Wiley and others,
2002).

Streams that cross public land, including national parks,
national forests, state parks, and wildlife management areas,
were preferred in selecting ungaged reaches because these
reaches were less likely to undergo adverse change in stream
management and land use than were reaches on private land.

Not enough public lands were present in several planning
regions to fill the gaps in the planning-region matrix. When
suitable streams on public lands were not available, streams
identified as candidate sites for antidegradation protection
(West Virginia Department of Environmental Protection,
2005), draining appropriately sized areas, and in the desired
locations, were assessed for inclusion in the study. The
remaining reaches were identified in consultation with water
or public-service professionals who were familiar with the

area of interest. Only two suitable sites were identified in the

Northern Panhandle after an extended reconnaissance effort,

and this area remained underrepresented in the study (table 1;
fig. 3).

Channel Measurements

Channels were surveyed with a total-station instrument.
Second-order closure was achieved for all loops (Wolf and
Ghilani, 2002). Longitudinal profiles were surveyed through
a reach of at least 20 bankfull-channel widths. Reaches were
comprised of two or more repeated sequences of riffles and
pools. All profiles included thalwegs, water surface, plausible
bankfull features, and high-water marks from a peak at or near
apparent bankfull. Inner berms and point bars within the chan-
nel also were surveyed where they were present. Longitudinal
stationing in the profiles was measured along the thalweg; a
point in the thalweg was surveyed at the upstream and down-
stream bounds of the reach, at important changes in depth, and
everywhere in the reach that other features were surveyed.

Cross sections were surveyed in riffles, preferably at the
change in slope at the transition from pool to riffle. Two cross
sections were surveyed at most gaged sites, although three
were surveyed in reaches that included substantial changes
in character. Cross sections were extended to an elevation of
twice the maximum depth relative to the highest plausible
bankfull feature. At some sites with wide forested or brushy
flood plains (greater than 3 times bankfull width), the cross
sections were surveyed for a minimum distance of 3 times
bankfull width; the remaining distance to the edge of the flood
plain was paced and its elevation was estimated.

At ungaged sites, cross sections were surveyed at major
changes in the slope of the high-water profile for use in com-
puting the slope-area measurement. At least four and as many
as eight cross sections were surveyed at ungaged sites. At least
two of the cross sections were surveyed according the same
procedure used at gaged sites. The additional cross sections at
ungaged sites were surveyed, at a minimum, to the higher of
the high-water mark or the top of the bank.

Bankfull Features

For this study, the bankfull channel was defined as that
part of the stream channel below the most distinct feature
between the estimated elevations of the 1.1-year peak flow
and the 2.0-year peak flow. Features used as indicators of the
bankfull channel include, in order of preference and frequency
used, rounded, vegetated, convex slope changes; bank sub-
strate changes, particularly the edge of topsoil; sharp convex
slope changes or those that showed other signs of instability;
concave slope changes; and the elevation of an apparent flood
plain. Each surveyed feature on a bank was described in writ-
ten notes and assessed as to apparent quality (table 2 at end of
report).
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Figure 3. Regional curve sites in the Appalachian Plateaus Physiographic Province, West Virginia.



Extra consideration was given to features when more
than one was present at the same spot; for example, combina-
tions of a distinct rounded convex slope change from the bank
to the flood plain with mature plant growth, or a convex slope
change at the edge of topsoil were regarded as especially good
bankfull indicators.

In most reaches assessed in this study, there were one or
more reaches with more than one feature on the bank at the
same longitudinal station that could plausibly be regarded as
the bankfull feature. In these cases, all the plausible bankfull
features at the station of interest were surveyed, and the final
determination of which to use was made with the profile plot
used as a supplement to field notes.

High-Water-Mark Profiles

At all sites, a profile of high-water marks was flagged for
a peak greater than half of apparent average bankfull depth,
but inside the bank. At ungaged sites, the high-water marks
were used to measure peak flow by the slope-area method
(Dalrymple and Benson, 1967). Slope-area measurements
were computed using the Slope-Area Computation program
(Fulford, 1994) and checked using the HEC-RAS model (U.S.
Army Corps of Engineers, 2009). At gaged sites, flow was
determined for the flagged peak using the station rating or
the stage-flow relation defined by current-meter and indirect-
flow measurements (Rantz and others, 1982). The peak flow
measured at the streamgage was used to verify roughness in
the reach.

High-water marks were flagged as soon as practical
after flow peaked or, in two cases, the high-water surface was
flagged while still at near-bankfull flow (table 3). If distinct,
continuous high-water-marks were present, high-water marks
were flagged at minimum longitudinal distances equivalent to
estimated bankfull width, and closer together in parts of the
reach where slope appeared to change. If only a few high-
water marks were distinct, all the distinct marks were flagged.
The date and the type and quality of the mark were written on
a strip of plastic survey flagging, then pinned to the mark with
a nail. Once flagged, sites were surveyed when convenient.

The most commonly used high-water marks were wash
lines in leaf litter on the bank. Other fairly common high-
water marks were deposits of ground-up tree leaves, hemlock
or spruce needles, and depending on season, seed lines. Mud
stains on plants or fallen leaves were generally indistinct and
used at only two or three sites, but at those sites, they were
the predominant high-water mark. Roughness values for the
ungaged sites were determined by comparing sections of
stream channel to sections of stream channel from gaged sites
with verified roughness values and to published photographs
of reaches with verified roughness values (Barnes, 1967), then
were compared with roughness values computed using two
different formulas (Jarrett, 1984; Limerinos, 1970). Rough-
ness values exceeding those calculated from the formulas were
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used when field notes and photographs supported the higher
values, for example, when a cross section was affected by
backwater from a log or boulder downstream.

The high-water-mark profiles were used to supplement,
or at most sites, replace the use of estimated channel dimen-
sions from flow measurements at streamgages as a means
of choosing among plausible bankfull features at the same
longitudinal station. Instead of referring to estimated bankfull
elevations and dimensions derived from flow measurements,
the elevation of a plausible bankfull feature was compared
to that of the high-water-mark profile, while considering the
frequency of the peak. At gaged sites, the magnitude and
frequency of the peak that left the marks was known. The
frequency of peak flow at ungaged sites was estimated by
comparison to flow at index streamgages, taking into account
the differences in storm precipitation among basins.

For example, at Cranberry River near Richwood, flow
peaked on the night of November 16, 2006, at 3,010 ft¥/s, just
less than the 1.2-year flow for the site and about the 2.0-year
flow for the Southern Region (Wiley and others, 2002). The
profile was flagged the next morning. Nine high-water marks,
all wash lines, were flagged; seven were good, and two were
fair. Identification of bankfull features was relatively simple at
this site. All the bankfull features surveyed were points where
a convex slope change from the narrow flood plain to the bank
coincided with the edge of the topsoil. Because the bed and
banks were dominated by large boulders (D84 (84th percentile
of particle size) = 2.12 ft at one cross section and greater than
6.00 ft at the other), the bankfull features were not continu-
ous for extended lengths in the reach, and in fact, identifiable
bankfull features were not present in segments of the profile
where they would have been useful to measure. Through most
of the reach, flow peaked at or just above bankfull features,
although the bankfull features in the riffles were lower relative
to the high-water marks than were the features in the pools
(fig. 4). At XS2, the upstream cross section, the primary bank-
full feature was the edge of topsoil, which collected among
jagged, poorly eroded rocks, coincident with a convex slope
change on the left bank, and it was rated as fair. An additional
bankfull feature on the right bank was only 0.17 ft higher
and was described as a rounded convex slope change formed
of topsoil and anchored by tree and mountain laurel roots.

At XS1, the downstream cross section, the primary bankfull
feature, on the left bank, was a lumpy, convex slope change
from a depositional shelf to the bank that coincided with the
edge of topsoil and was rated as good. The bankfull feature
on the right bank also was surveyed; it was only 0.36 ft lower
and was a rounded, distinct convex slope change from a gently
sloping section of bank to a steeper section of bank, coincided
with the edge of topsoil, and was covered with well-estab-
lished moss. Bankfull flow was calculated to be 1,380 ft3/s

at XS2, the upstream cross section, and 2,070 ft*/s at XS1,

the downstream cross section, for an average of 1,720 ft¥/s

for the reach. Although the calculated bankfull flow was less
than expected and inconsistent between the cross sections, the
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features at the cross sections were good, consistent on both
banks, and comparable to the high-water-mark profile, and so
were used for computing bankfull dimensions.

At another site, West Fork Little Kanawha River near
Rocksdale, on April 15,2007, flow peaked at 5,880 ft’/s,
corresponding to the 1.8-year flow for the Southern Region
of West Virginia or the 1.4-year flow calculated for that site
(Wiley and others, 2002; table 1). The peak was flagged 2 days
later, and the marks, mostly mud stains on grass, were gener-
ally fair, although a few were good. In contrast to Cranberry
River near Richwood, identifying bankfull features at West
Fork Little Kanawha River near Rocksdale was problem-
atic. The channel was incised; through most of the reach, the
banks were complex, and several depositional features, any
of which might plausibly have been bankfull features, were
present (fig. 4; table 2). The most distinct bankfull features
were in the pools, which made up most of the reach, but these
features were not continuous into the riffles. Throughout most
of the reach, the top of the bank was noted to be an exception-
ally distinct convex slope change from a wide, generally flat
wooded area to a steep bank; this feature was judged to be a
terrace because it was several feet above the high-water-mark
profile. At both cross sections, several plausible bankfull fea-
tures were present. At the upstream cross section, four features
were surveyed and described, but three of them were judged
to be poor. The most distinct of them, a convex slope change
on the left bank, anchored by tree roots and rated as fair, was
chosen as the bankfull feature to determine cross-sectional
dimensions, although it was higher than the trend line for
bankfull features through the reach. At the downstream cross
section, three plausible bankfull features were surveyed and
described. Two of the three were judged to be poor; both were
abrupt convex slope changes. The feature which best fit the
trendline of bankfull features was at the top of a recent slump
and was judged to be poor. The feature chosen to determine
cross-sectional dimensions was at the top of the left bank—a
sharp convex slope change from flood plain to a steeply slop-
ing bank. Established weed growth was noted, and the feature
was judged to be fair.

Bankfull features were compared to high-water-mark
profiles at all sites, even if, as at East Fork Twelvepole Creek
near Dunlow (fig. 4, table 3), the high-water-mark profile was
left by a storm peak that was substantially lower than expected
for bankfull flow. The high-water-mark profile was used in
generally the same way at ungaged sites. At Manilla Creek
near Poca, for instance, the top of the bank was judged as the
apparent bankfull feature during site reconnaissance. Flow
peaked at 669 ft*/s on January 21, 2006, which corresponded
to about the 2.5-year flow for West Virginia’s Southern Region
(Wiley and others, 2002). The feature at the top of the bank
was at the high-water-mark profile through the upstream part
of the reach but about a foot higher than the high-water-mark
profile for the downstream part of the reach (fig. 5). That
feature was judged to be a terrace, and a different, lower set
of features identified in reconnaissance as the inner berm was
chosen as the bankfull feature. At Laurel Fork near Hacker
Valley, at least two plausible bankfull features were present
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through most of the reach. The high-water-mark profile was
left by a peak of 340 ft¥/s, about the 1.1-year flow for the
Southern Region of West Virginia (Wiley and others, 2002),
and the peak was near the lower of the two features (fig. 5). At
sites like Big Draft near Anthony, where, similar to Cranberry
River near Richwood, the flagged peak was very near bank-
full and only one set of plausible features was present (fig. 5),
identification of bankfull features would probably have been
straightforward using any procedure.

Relation of Profiles to Streamgages

In addition to this difference in confirming the identi-
fication of bankfull features, the other major departure from
methods described by Leopold (1994) and Rosgen (1996)
was a difference in the way data collected at the streamgage
were used to determine bankfull flow. Typically, a profile of
bankfull features is surveyed upstream and downstream from
a streamgage, a line is fit through a plot of the profile, and
the elevation of the line at the streamgage is compared to the
stage-flow rating. However, this approach can give inaccurate
results under common, predictable conditions.

First, the use of a fitted line assumes that bankfull eleva-
tion falls through the reach in a more or less linear manner.
Although this is true in some streams—particularly low-
gradient, meandering streams—a common pattern in riffle-
pool streams is for profiles to be stepped, with relatively little
fall in pools and most of the fall in riffles (fig. 6; Leopold,
1994). Plots of bankfull features are nearly parallel to plots of
high-water marks. Steps are less pronounced at bankfull flow
than at lower flows but are still clear. High-water-mark pro-
files show the stepped pattern more clearly than do bankfull
profiles because, in most streams, bankfull features form at
a greater range of elevations through a reach than do marks
left by a single peak. In addition, bankfull features are more
difficult to identify precisely than high-water marks left by
bankfull flow. (Exceptions might include high-water marks
in steep streams with turbulent flow and a substrate of mobile
boulders, where standing waves move through the reach as the
boulders they form over move downstream.)

If all the pools and riffles in a reach had approximately
the same slopes and lengths, then the principal source of error
in profile-rating relations in a stepped profile with correctly
identified features would be the position of a streamgage on its
pool relative to the positions within the reach of the features
selected for identification. If features are identified at equal
intervals through a stepped reach, a line fit through them will
pass through features near the center of pools and riffles. Fea-
tures at the upstream end of a pool will fall below the line, and
features near the downstream end of a pool will fall above the
line. This idea is confirmed by field observations of high-water
marks left by a pair of near-bankfull peak flows. The Middle
Fork at Audra streamgage is near the upstream end of its pool,
and an observed peak gage height confirmed by a good high-
water mark at the streamgage structure was 0.91 ft below a
trendline fit through the profile of high-water marks (fig. 6a).
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Figure 4. Profiles of selected gaged stream channels in the Appalachian Plateaus Physiographic Province of West Virginia.
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Figure 5. Profiles of selected ungaged stream channels in the Appalachian Plateaus Physiographic Province of West Virginia.
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Figure 6. Selected profiles of high-water marks from near-bankfull peaks,

Stage = 10.03 ft
Flow = 6,620 ft3/s
Frequency =2.5yr

Stage =9.12 ft
Flow = 5,400 ft¥/s
Frequency = 1.7 yr

bankfull features, low-water surface, and thalwegs

for reaches at streamgages at (A) Middle Fork at Audra and (B) Panther Creek near Panther, West Virginia. High-water marks,
bankfull features, and low-water surface all have slope changes at approximately the same location. Differences in stage, flow, and
frequency are shown between water-surface elevation of a measured high-water mark and a line fit through the high-water-mark

profile.
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profile. —Continued
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The Panther Creek at Panther streamgage is at the downstream
end of its pool, and an observed peak gage height confirmed
by a good high-water mark at the streamgage structure was
0.52 ft above a trendline fit through the profile of high-water
marks (fig. 6b). Errors of these magnitudes in the near-bank-
full part of ratings correspond to large errors in flow esti-
mates. At Middle Fork at Audra, a 0.91 ft difference in gage
height (between an estimate of 10.03 ft and an observation

of 9.12 ft) corresponds to an overestimation of peak flow of
1,220 ft¥/s (estimating 6,620 ft*/s when the measured flow was
5,400 ft*/s, or 23 percent). The frequency for the estimated
peak is about 2.5 years, but 1.7 years for the measured peak.
At Panther Creek at Panther, a 0.52 ft difference in gage height
(between an estimate of 6.16 ft and an observation of 6.68 ft)
corresponds to an underestimation of peak flow of 243 ft*/s
(estimating 757 ft/s when the measured flow was 1,000 ft*/s,
or about 24 percent). However, the frequency of this estimated
peak is about 1.2 years and, for the measured peak, 1.4 years.

If features are identified primarily at the same position
in pools and riffles as the streamgage is located, then a line fit
through them will accurately reflect the profile elevation at the
streamgage. If more features are identified near the upstream
ends of pools and riffles than near the downstream ends, then
the profile will be shifted artificially upward, and the pro-
file will be shifted artificially downward if disproportionate
numbers of features are identified near the downstream ends of
pools and riffles.

In the field, the investigator may have little choice as
to where to identify features along a profile, especially in
problematic reaches with few identifiable features or features
that are not continuous through the reach. Selecting additional,
poorly defined features because they are at a position in the
profile where they would be convenient is unlikely to increase
the accuracy of estimated flow.

Another major source of variation in the relation between
the profile and rating is the effect of bridges and culverts on
ratings. Streamgages are built where a stable feature controls
the stage-flow rating throughout the range of stages. The high-
water control is typically a constriction in the channel, and a
box culvert or bridge with piers at mid-channel often makes an
ideal high-water control. Furthermore, streamgages are delib-
erately installed near roads because easy access not only saves
effort and money but improves the quality of the flow record
by making it faster and easier to reach the site to measure flow
and service instruments. If a streamgage can be built where the
stream can be measured from a bridge, then the expense and
risk of building a cableway is spared. Often, streamgages are
attached to bridges.

Locating streamgages upstream from bridges that control
water-surface elevation puts the streamgage in backwater at
bankfull, or lower, flow. This means that depth is artificially
greater at the streamgage than elsewhere in the reach. Bridges
also may cause streambeds to scour and banks to erode, so
banks near bridges and culverts are frequently armored with
riprap or gabions (fig. 7). In these cases, natural bankfull
features at the streamgage no longer exist, the channel at the

streamgage may be unrepresentative of the rest of the reach,
and bankfull elevations from elsewhere in the reach are unre-
lated to elevations at the streamgage.

At gaged sites, slope and roughness values were calcu-
lated from the high-water-mark profile using the flow mea-
sured at the streamgage. At ungaged sites, the slope and rough-
ness values determined in the slope-area flow measurement
were used to calculate bankfull flow. For all reaches, rough-
ness values were adjusted for differences in depth between the
high-water-mark and the bankfull profile before computing
bankfull flow. The adjustment for depth was made by calcu-
lating a theoretical roughness value for each cross section in
the high-water-mark and bankfull profiles using the formula
of Jarrett (1984). The ratio of these two roughness values was
computed, then multiplied by the roughness values determined
for the high-water-mark profiles to obtain bankfull roughness.
These bankfull roughness values were used in Manning’s
equation to compute bankfull flow for each cross section. The
bankfull flows were then averaged for the reach.

Figure 7. Crest-stage streamgage at Marsh Fork at Maben,
West Virginia.



Bankfull Flow Frequencies

Regional peak-flow magnitudes with frequencies between
1.1 and 3.0 years had been previously computed for West
Virginia (Wiley and others, 2002), which was split into three
regions, the Northern, Southern, and Eastern Regions, on
the basis of geographic analysis of regression residuals. The
Northern and Southern Regions are entirely within the study
area for this project, as is part of the Eastern Region.

The regression equations were developed with the goal of
providing information to be used in NCD and related studies.
The equations for each of the regions are significantly different
(p < 0.05; Wiley and others, 2002) from those of the other two
regions. However, for the purposes of this study, new regres-
sion equations were developed by combining annual-peak
flow data from all the streamgages within the Appalachian Pla-
teaus on streams draining less than 240 mi®. Regional regres-
sion equations from the previous study were not used because
of four reasons. First, among the smaller streams, a group of
short-term streamgages operated approximately from 1966

Channel Measurements 17

through 1977, a period that included a major drought, are clus-
tered closely together on a plot of 1.5-year annual peak flow as
a function of drainage area and are among the stations with the
lowest 1.5-year annual peak flow (fig. 8). Although stations in
all three regions are in this cluster, there are fewer long-term
streamgages in the Southern Region than in the other regions,
so the streamgages from this cluster had an exaggerated effect
on the Southern Region’s regression equation. Second, the
regional equations appear to have been strongly influenced by
larger streams, which both accounted for most of the avail-
able data and were much more likely to have long periods

of record and, therefore, to have data collected through wet
and dry climatic periods. Third, R? and standard error for the
regional equations were only slightly different than for the
aggregated equation. Fourth, and most important, geographic
analysis of bankfull characteristics, as discussed later in this
report, showed no regional difference within the Appalachian
Plateaus, and a comparison of bankfull characteristics from

a single region to a single peak-flow frequency relation was
simpler and more relevant.
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Bankfull Characteristics and Regional
Curves

Bankfull flow and dimensions were determined from
cross sections surveyed at riffles (table 4 at end of report).
A single set of regional curves was developed, on the basis
of simple linear regression of bankfull characteristics as a
function of drainage area. All the bankfull characteristics that
were determined were strongly correlated with drainage area.
Enough of the variation was explained by that single indepen-
dent variable that exploring finer regional variation, or effects
of other basin characteristics, was unlikely to provide mean-
ingful results.

Flow

At the 10 active streamgages with more than 10 years of
record, bankfull flows ranged from less than the 1.1-year flow
to greater than the 2.0-year flow. The other streamgages that
were available were one continuous streamgage with less than
10 years of data; crest-stage streamgages, which had rela-
tively short periods of record; and discontinued streamgages.
Furthermore, the periods of record were not concurrent among
short-term stations. These factors complicate direct compari-
son of peak-flow frequencies among the sites, so an approach
was adopted of comparing bankfull flow to peak flows of
specific frequencies from all the streamgages in the study area
in the comparable size range.

Drainage area accounted for slightly more of the varia-
tion for bankfull flows (R* = 0.9592; Standard error (SE) =
13.7 percent) than it did for the variation in 1.5-year peak
flows measured at streamgages on wadable streams in the
Appalachian Plateaus (R* = 0.9326; SE = 19.5 percent; table 5;
figs. 9, 10). The regression lines for flows at the 1.2-, 1.3-,
1.4-, 1.5-, 1.6-, and 1.7-year recurrence intervals, computed for
streamgages on wadable streams in the Appalachian Plateaus
(fig. 11), all fell within the 99-percent confidence interval of
the regression line for bankfull flow (for legibility, the lines
for the 1.3- and 1.6-year flows are not depicted on fig. 11). The
closest match to the regression line for bankfull flows is the
line for the 1.4-year peak flow for the Appalachian Plateaus.

Dimensions

Bankfull area strongly (R* = 0.9768; SE = 8.5 percent)
and significantly (P < 0.001) correlated with drainage area
(table 4; fig. 12). An R? value of 0.9768 for bankfull area
indicates that little additional variation can be explained by
subdividing the study area by region, stream type, geology,
or other characteristics. West Fork Little Kanawha River near
Rocksdale, the site with the greatest positive residual value for
bankfull area, was initially selected as a candidate site for a
possible subregion, the Western Foothills. However, the banks
at this site were among the least stable, and bankfull features
at this site were among the least distinct included in the study,
both of which increase the possibility that bankfull dimensions
for this site might be wrong. Because the other sites in this
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Figure 10. Bankfull flows
compared to 1.5-year
peak flows measured

at streamgages on
wadable streams in the
Appalachian Plateaus
Physiographic Province in
West Virginia.

Figure 11. Bankfull flows
compared to regression
lines for 1.2-, 1.4-, 1.5-,
and 1.7-year peak flows
measured at streamgages
on wadable streams in
the Appalachian Plateaus
Physiographic Province in
West Virginia.
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Table 5. Average bankfull characteristics of streams in the Appalachian Plateaus Physiographic Province in West Virginia.

[ft, feet; ft2, square feet; ft*/s, cubic feet per second; SF, State Forest; SP, State Park; WMA, Wildlife Management Area]

Site Area Width p‘:r’f"f:ti ) Depth Bankfull flow
(fe2) (ft) (ft) (ft) (fe/s)
Anglins Creek near Nallen 267 58.7 62.5 4.54 831
Anthony Creek near Anthony 610 136 139 4.50 6,220
Barrenshe Run near Woodbine 50.3 30.8 345 1.63 180
Big Draft near Anthony 43.7 34.1 37.5 1.28 187
Big Sandy Creek near Rockville 871 164 174 5.30 7,430
Blackwater River at Davis 612 109 114 5.61 1,630
Buck Run at Leopold 46.8 35.8 37.8 1.31 101
Camp Creek near Camp Creek 233 90.9 96.0 2.56 2,260
Clear Fork at Clear Fork 582 110 113 5.28 4,250
Cranberry River near Richwood 390 108 115 3.60 1,720
East Fork Twelvepole Creek near Dunlow 238 68.0 71.3 3.50 962
Goose Creek near Petroleum 404 78.3 83.1 5.17 2,330
Hurricane Branch at Panther SF 34.7 323 352 1.08 244
Kings Creek at Weirton 326 94.5 98.6 3.45 1,960
Knob Creek near Wade 120 48.6 50.7 2.47 402
Laurel Fork near Hacker Valley 103 514 554 2.00 595
Left Fork Clover Run near St. George 203 62.6 69.7 3.23 837
Little Kanawha River near Wildcat 681 160 162 4.27 3,240
Manilla Creek at Amherst-Plymouth WMA 121 46.7 48.9 2.60 365
Marsh Fork of Mash Fork at Camp Creek SF 40.6 29.2 339 1.39 142
Middle Fork at Audra 644 147 161 4.37 3,600
Morgan Run near Cheat Lake 36.3 24.0 26.4 1.51 199
North Fork Cherry River near Richwood 140 57.2 61.6 2.44 426
Panther Creek near Panther 173 56.3 61.2 3.07 1,200
Payne Branch near Oakvale 62.3 383 42.1 1.63 326
Piney Creek near McCreery 557 131 142 4.26 4,850
Polly Hollow at Kanawha SF 13.6 12.4 13.7 1.10 31.6
Rock Creek near Danville 162 41.4 43.7 3.91 718
Sand Run near Buckhannon 923 51.3 54.4 1.80 400
Second Creek near Second Creek 337 114 117 2.94 2,620
Spruce Fork at Cabwaylingo SF 25.9 19.7 222 1.31 83
Unnamed Tributary to Hughes River at North Bend SP 20.5 23.5 24.5 0.87 50.0
Upper Nineteenmile Creek at Chief Cornstalk WMA 24.1 19.8 20.6 1.22 48.4
West Fork Greenbrier River above Durbin 208 74.9 78.2 2.78 703
West Fork Little Kanawha River near Rocksdale 1410 154 160 9.16 4,520
Williams River at Dyer 743 148 153 5.02 3,960
Yellow Creek near Davis 335 222 25.0 1.51 73.1




planning region fit the regression equation well, West Fork
Little Kanawha River near Rocksdale was considered more
likely to be an outlier or an artifact than to be representative
of another region. Payne Branch near Oakvale, the site with
the greatest negative residual value, is near the boundary of
the Appalachian Plateaus and Valley and Ridge Physiographic
Provinces and is in the rain shadow; it plots closer to the
regional curve for the Valley and Ridge than it does to the
regional curve for the Appalachian Plateaus.

The relation between bankfull width and drainage area
varied more than the relation between bankfull flow and drain-
age area (R?=0.9492; SE = 7.1 percent; fig. 13). The relation
between bankfull depth and drainage area varied the most
of the bankfull dimensions (R? = 0.8783; SE = 8.9 percent;
fig. 14).

Pattern and Profile

Near-bankfull high-water-surface slopes ranged from
0.0004 ft/ft (West Fork Little Kanawha River near Rocks-
dale) to 0.0544 ft/ft (Barrenshe Run near Woodbine) (table 6).
Generally, mountain streams are steeper than lowland streams,
and headwater streams are steeper than higher-order streams.
Among the streams that were surveyed, smaller streams were
generally steeper than larger streams. This rule had excep-
tions, such as Piney Creek near McCreery, which is among
both the largest and steepest reaches in the study. Some of

Bankfull Characteristics and Regional Curves 21

the flattest reaches in the study (Blackwater River at Davis,
Anglins Creek near Nallen, and Williams River at Dyer) are in
the most mountainous parts of the study region, and one of the
steepest reaches in the study (Polly Hollow at Kanawha State
Forest) is at a relatively low elevation.

Sinuosity, the percentage of the reach as either pool or
riffle, and near-bankfull high-water-surface slope, at most,
weakly correlated between each other. R? values ranged from
0.02 for the relation between sinuosity and percentage of the
reach as riffle to 0.25 for the relation between slope and per-
centage of reach as riffle.

High-water-mark profiles greatly clarified identification
of bankfull features in the field. Because the flagged marks
were associated with either a known flow and frequency, or
an estimated flow and frequency based on data from nearby
streamgages, they provided a second elevation with a known
flow, along with the low-water surface, to compare to plausi-
ble bankfull characteristics. Although differences in elevation
between a feature and the low-water surface can be measured
quickly during a survey, the elevation difference alone fails to
take into account changes in the other geometric and hydraulic
characteristics of the channel, such as width and slope.

Requiring high-water-mark profiles before surveying a
site also greatly increased logistic complexity in the study. All
sites were visited at least two times. Because peak flows at
many sites were uncorrelated with peak flows at gaged index
sites, many of the sites were visited three or four times before
a near-bankfull peak could be flagged.
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Figure 13. Relation
between bankfull width and
drainage area for wadable
streams in the Appalachian
Plateaus Physiographic
Province in West Virginia.

Figure 14. Relation
between bankfull depth and
drainage area for wadable
streams in the Appalachian
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Stream Types

Rosgen (1985, 1996) has published a set of criteria for
classifying streams into types, on the basis of, in order of
priority: (1) the entrenchment ratio, or the ratio of the flood-
prone area to bankfull width; (2) the ratio of bankfull width
to bankfull mean depth; (3) sinuosity, or the ratio of stream
length to valley distance; (4) slope; and (5) channel material.
Of the stream reaches surveyed in this study, 27 met criteria
of type B, 5 of type C, and 1 of type E (table 6). Three reaches
had characteristics that met some criteria for type B and some
of type F, and one met some criteria of type C and of type E.

West Virginia Regional Curves Compared to
Regional Curves from Surrounding Areas

Comparisons with regional curves from previous studies
and surrounding areas showed general consistency. Bankfull
channel characteristics from West Virginia were intermediate
between those from Ohio and Virginia.

Differences in results from among a group of studies
are likely to reflect real differences among the study areas
when methods and implementation are identical. However,
identification of bankfull characteristics is somewhat subjec-
tive, and differences have been documented among observers
(Roper and others, 2008). Leopold (1994) considered bankfull
width to be the most conservative bankfull characteristic, in
the sense that when bankfull features are misidentified, the
incorrect bankfull width is still likely to be close to the correct
value in most streams. Therefore, as the characteristic that
is least prone to observer bias, bankfull width is probably
the most robust indicator of differences among study areas
assessed by different investigators.

Channel Dimensions from Flow Measurements at
Streamgages in West Virginia

Channel dimensions for the 1.5-year flow were deter-
mined from current-meter flow measurements made at
streamgages in West Virginia to provide an estimate of bank-
full dimensions (Messinger and Wiley, 2004). Bankfull flow
was not determined in this study. Dimensions were determined
for the cross section at each streamgage where high flows were
measured, and regional regression equations were developed
for the relation between channel dimensions and drainage
area. The regression line for the relations between cross-
sectional area at the 1.5-year flow and drainage area for the
Appalachian Plateaus Physiographic Province are within the
99-percent confidence interval of the regional curve for bank-
full area for drainage areas less than about 10 mi? (figs.15-17).
The areas for the 1.5-year flow were smaller than bankfull
areas for the smallest drainage areas considered, but larger for
the larger drainage areas, with the greatest difference at the
largest drainage areas. Many, if not most, of the cross sections
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used to develop the estimated areas were in pools, which
generally are greater in area than adjacent riffle cross sections.
Regional curves were developed from measurements made at
riffle cross sections.

Width for the 1.5-year flow at streamgages is slightly less
than bankfull width, but the regression line for the width at
the 1.5-year flow is within the 99-percent confidence interval
for the regional curve for bankfull width (fig. 16). Depth for
the 1.5-year flow at streamgages was greater than bankfull
depth, and the regression line for depth at the 1.5-year flow
was outside the 99-percent confidence interval for the regional
curve for bankfull depth in the Appalachian Plateaus (fig.17).
Both these relations would be expected when comparing data
exclusively from riffles to data predominantly from pools in
the same streams.

Valley and Ridge

Bankfull flow, area, and depth were greater in the Appa-
lachian Plateaus Physiographic Province in West Virginia than
in the Valley and Ridge Physiographic Province in Maryland,
Virginia, and West Virginia (figs. 15—-18; Keaton and others,
2005). The Valley and Ridge receives less mean annual pre-
cipitation than does the Appalachian Plateaus in West Virginia,
although storm intensity in the Valley and Ridge is greater,
as measured by, for example, the 2-year [-hour maximum
precipitation (Hydrometeorological Design Studies Center,
2006a, 2006b).

The Valley and Ridge Physiographic Province in Mary-
land, Virginia, and West Virginia was to have been studied
simultaneously with the Appalachian Plateaus Province in
those three states. As a principal study goal, regions were to be
determined empirically, based on analysis of bankfull chan-
nel characteristics. However, while ongoing, the study was
reduced in scope to only the Valley and Ridge Physiographic
Province, effectively but arbitrarily setting the boundary
between bankfull-channel regions at the boundary between
physiographic provinces (Keaton and others, 2005). The pres-
ent study was undertaken to fill the gap in spatial coverage of
bankfull-channel characteristics and, while it concentrated on
characterizing the area that had not been studied, offered the
opportunity to revisit the previous study’s goal of determining
regional boundaries. Comparison of bankfull channel char-
acteristics determined in the Valley and Ridge study to those
from the present study shows no compelling reason to redraw
the existing arbitrary bankfull-channel regional boundary.

Evidence had already been available to suggest that
the arbitrary boundary was reasonable; channel dimensions
determined for the 1.5-year flow at streamgages in West Vir-
ginia were different in the Valley and Ridge and Appalachian
Plateaus (Messinger and Wiley, 2004). Bankfull channel char-
acteristics determined in the present study compared to those
from the Valley and Ridge regional curve study (Keaton and
others, 2005) are clearly different, considering the two areas
broadly, but appear to show a transition area between them.
Two streams in the Greenbrier or Bluestone River Basins at
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Figure 15. Regional curve (shown in black) and 99-percent confidence interval (shown as gray fill) for bankfull area of wadable

streams in the Appalachian Plateaus Province in West Virginia, compared to curves developed for adjacent areas.

the southeastern edge of the study area—Second Creek near
Second Creek and Payne Branch near Oakvale—are within the
Appalachian Plateaus Province but have bankfull flow, area,
width, and depth similar to streams in the Valley and Ridge.
However, Anthony Creek near Anthony, which drains parts of
both the Appalachian Plateaus and Valley and Ridge, plots at
the edge of the main body of values for the Appalachian Pla-
teaus. In contrast, the West Fork of the Greenbrier River above
Durbin and Big Draft near Anthony, both in the Greenbrier
River Basin, and Marsh Fork at Camp Creek State Forest and
Camp Creek near Camp Creek, both in the Bluestone River
Basin, all plot well within the main body of bankfull area and
depth values for the Appalachian Plateaus. This is not par-
ticularly strong support for redrawing the boundary between
bankfull channel regions. Parts of the Greenbrier River Basin

and the eastern part of the Bluestone River Basin appear to
be a transition zone between the two provinces and bankfull-
channel regions, where average bankfull channel chara