Skip Links

USGS - science for a changing world

Scientific Investigations Report 2012–5201

Prepared in cooperation with the Hopi Tribe

Aquifer Test at Well SMW-1 near Moenkopi, Arizona

By Robert L. Carruth and Donald J. Bills

Thumbnail of and link to report PDF (3.2 MB)Abstract

The Hopi villages of Lower Moencopi and Upper Moenkopi are on the Hopi Indian Reservation south of Tuba City in northern Arizona. These adjacent Hopi villages, located west and north of the confluence of Pasture Canyon Wash and Moenkopi Wash, are dependent on groundwater withdrawals from three wells that penetrate the N aquifer and from two springs that discharge from the N aquifer. The N aquifer is the principal aquifer in this region of northern Arizona and is composed of thick beds of sandstone between less permeable layers of siltstone and mudstone. The fine-grained character of the N aquifer inhibits rapid movement of water and large yields to wells; however, the aquifer is moderately productive at yields generally less than 25 gallons per minute in the study area. In recent years, the water level has declined in the three public-supply wells and the flow from the springs has decreased, causing concern that the current water supply will not be able to accommodate peak demand and allow for residential and economic growth. In addition to the challenge imposed by declining groundwater levels, the water-supply wells and springs are located about 2 miles downgradient from the Tuba City Landfill site where studies are ongoing to determine if uranium and other metals in groundwater beneath the landfill are higher than regional concentrations in the N aquifer. In August 2008, the U.S. Geological Survey, in cooperation with the Hopi Tribe, conducted an aquifer test on well SMW-1, designed to help the Hopi Tribe determine the potential yield and water quality of the N aquifer south of Moenkopi Wash as a possible source of additional water supply.

Well SMW-1 was drilled south of Moenkopi Wash to a depth of 760 feet below land surface before being backfilled and cased to about 300 feet. The well penetrates, in descending order, the Navajo Sandstone and the Kayenta Formation, both units of the N aquifer. The pre-test water level in the well was 99.15 feet below land surface. A 9.25-hour step-drawdown test and a 72-hour constant-rate test followed by recovery tests were used to investigate the performance of the test well and to estimate the transmissivity and potential yield of the N aquifer south of Moenkopi Wash. The test data were analyzed using the Cooper-Jacob method adjusted for confined conditions, the Papadopulos-Cooper method that accounts for wellbore storage, and the Theis method on the recovery data. Results of the tests indicate that in the vicinity of the well, the N aquifer has a transmissivity of about 50 feet squared per day. The test well, as completed, should yield about 15 gallons per minute with about 75 feet of drawdown (less than half of the available saturated thickness of the aquifer at the well).

  • This report is available only on the Web.

For additional information contact:
Office information, Arizona Water Science Center
U.S. Geological Survey
520 N. Park Avenue
Tucson, AZ 85719
http://az.water.usgs.gov/

This report is presented in Portable Document Format (PDF); the latest version of Adobe Reader or similar software is required to view it. Download the latest version of Adobe Reader, free of charge.


Suggested citation:

Carruth, R.L., and Bills, D.J., 2012, Aquifer test at well SMW-1 near Moenkopi, Arizona: U.S. Geological Survey Scientific Investigations Report 2012–5201, 11 p., available at http://pubs.usgs.gov/sir/2012/5201/.



Contents

Abstract

Introduction

Hydrogeologic Setting

Description of Well SMW-1

Aquifer-Test Data and Evaluation

Water Quality

Summary

References Cited


Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: http://pubsdata.usgs.gov/pubs/sir/2012/5201/index.html
Page Contact Information: GS Pubs Web Contact
Page Last Modified: Thursday, 10-Jan-2013 20:00:32 EST