Skip Links

USGS - science for a changing world

Scientific Investigations Report 2013–5036

Prepared in cooperation with the Beaufort-Jasper Water and Sewer Authority

Simulation of Salinity Intrusion Along the Georgia and South Carolina Coasts Using Climate-Change Scenarios

By Paul A. Conrads, Edwin A. Roehl, Jr., Ruby C. Daamen, and John B. Cook

Thumbnail of report PDF (10.9 MB)

Abstract

Potential changes in climate could alter interactions between environmental and societal systems and adversely affect the availability of water resources in many coastal communities. Changes in streamflow patterns in conjunction with sea-level rise may change the salinity-intrusion dynamics of coastal rivers. Several municipal water-supply intakes are located along the Georgia and South Carolina coast that are proximal to the present day saltwater-freshwater interface of tidal rivers. Increases in the extent of salinity intrusion resulting from climate change could threaten the availability of freshwater supplies in the vicinity of these intakes. To effectively manage these supplies, water-resource managers need estimates of potential changes in the frequency, duration, and magnitude of salinity intrusion near their water-supply intakes that may occur as a result of climate change. This study examines potential effects of climate change, including altered streamflow and sea-level rise, on the dynamics of saltwater intrusion near municipal water-supply intakes in two coastal areas. One area consists of the Atlantic Intracoastal Waterway (AIW) and the Waccamaw River near Myrtle Beach along the Grand Strand of the South Carolina Coast, and the second area is on or near the lower Savannah River near Savannah, Georgia. The study evaluated how future sea-level rise and a reduction in streamflows can potentially affect salinity intrusion and threaten municipal water supplies and the biodiversity of freshwater tidal marshes in these two areas.

Salinity intrusion occurs as a result of the interaction between three principal forces—streamflow, mean coastal water levels, and tidal range. To analyze and simulate salinity dynamics at critical coastal gaging stations near four municipal water-supply intakes, various data-mining techniques, including artificial neural network (ANN) models, were used to evaluate hourly streamflow, salinity, and coastal water-level data collected over a period exceeding 10 years. The ANN models were trained (calibrated) to learn the specific interactions that cause salinity intrusions, and resulting models were able to accurately simulate historical salinity dynamics in both study areas.

Changes in sea level and streamflow quantity and timing can be simulated by the salinity intrusion models to evaluate various climate-change scenarios. The salinity intrusion models for the study areas are deployed in a decision support system to facilitate the use of the models for management decisions by coastal water-resource managers. The report describes the use of the salinity-intrusion models decision support system to evaluate salinity-intrusion dynamics for various climate-change scenarios, including incremental increases in sea level in combination with incremental decreases in streamflow. Operation of municipal water-treatment plants is problematic when the specific-conductance values for source water are greater than 1,000 to 2,000 microsiemens per centimeter (µS/cm). High specific-conductance values contribute to taste problems that require treatment. Data from a gage downstream from a municipal water intake indicate specific conductance exceeded 1,000 µS/cm about 5.4 percent of the time over the 14-year period from August 1995 to August 2008. Simulations of specific conductance at this gaging station that incorporates sea-level rises resulted in a doubling of the exceedances to 11.0 percent for a 1-foot increase and 17.6 percent for a 2-foot increase. The frequency of intrusion of water with specific conductance values of 1,000 µS/cm was less sensitive to incremental reductions in streamflow than to incremental increases in sea level. Simulations of conditions associated with a 10-percent reduction in streamflow, in combination with a 1-foot rise in sea level, increased the percentage of time specific conductance exceeded 1,000 µS/cm at this site from 11.0 to 13.3 percent, and a 20-percent reduction in streamflow increased the percentage of time to 16.6 percent.

Precipitation and temperature data from a global circulation model were used, after scale adjustments, as input to a watershed model of the Yadkin-Pee Dee River basin, which flows into the Waccamaw River and Atlantic Intracoastal Waterway study area in South Carolina. The simulated streamflow for historical conditions and projected climate change in the future was used as input for the ANN model in decision support system. Results of simulations incorporating climate-change projections for alterations in streamflow indicate an increase in the frequency of salinity-intrusion events and a shift in the seasonal occurrence of the intrusion events from the summer to the fall.

Revised April 23, 2013

First posted March 29, 2013

For additional information contact:
Director, South Carolina Water Science Center
U.S. Geological Survey
720 Gracern Road, Suite 129
Columbia, SC 29210
(803) 750–6100
http://sc.water.usgs.gov

Part or all of this report is presented in Portable Document Format (PDF); the latest version of Adobe Reader or similar software is required to view it. Download the latest version of Adobe Reader, free of charge.


Suggested citation:

Conrads, P.A., Roehl, E.A., Jr., Daamen, R.C., and Cook, J.B., 2013, Simulation of salinity intrusion along the Georgia and South Carolina coasts using climate-change scenarios: U.S. Geological Survey Scientific Investigations Report 2013–5036, 92 p., and 5 apps, at http://pubs.usgs.gov/sir/2013/5036.



Contents

Acknowledgments

Abstract

Introduction

Data-Collection Networks

Characterization of Historical Streamflow, Water Level, and Specific Conductance Dynamics

Simulation of Specific Conductance

Development and Evaluation of Specific-Conductance Models

Development of the Decision Support Systems

Climate-Change Scenarios and Simulations Using the PRISM-2 and M2M-2 Decision Support Systems

Climate-Change Scenarios Using the M2M-2 DSS

Summary and Conclusions

Selected References


Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: http://pubs.usgs.gov/sir/2013/5036/
Page Contact Information: GS Pubs Web Contact
Page Last Modified: Tuesday, April 23, 2013, 02:05:12 PM