Annual Peak-Flow Frequency Analysis

For more information on the contents of this documentation, see Kessler and others (2013).

Streamgage number and name:

05201500 Mississippi River at Winnibigoshish Dam, Minn.

Peak-flow information:	
Number of systematic peak flows in record	13
Systematic period begins	1982
Systematic period ends	1994
Length of systematic record	13
Years without information	0
Number of historical peak flows in record	0

Frequency analysis options:

Method	Expected moments algorithm (EMA)
Skew option	Streamgage
Low-outlier method	Single Grubbs-Beck test

EMA systematic record analysis results:

Moments of the common logarithms of the peak flows:

	Standard	
Mean	deviation	Skewness
3.0639	0.0926	-1.410

Low-outlier information:

Number of low outliers1Low-outlier threshold847

Final analysis results:

Moments of the common logarithms of the peak flows:

	Standard	
Mean	deviation	Skewness
3.0639	0.0926	-1.410

Annual frequency curve at selected exceedance probabilities:

Exceedance	Peak	Lower-95	Upper-95
probability	estimate	level	level
0.9950	511	63.8	729
0.9900	576	99.2	779
0.9500	766	262.0	931
0.9000	871	387.0	1,030
0.8000	997	553.0	$1,\!170$
0.6667	$1,\!110$	854.0	$1,\!370$
0.5000	1,220	$1,\!040.0$	1,460
0.4292	1,260	$1,\!090.0$	$1,\!460$
0.2000	$1,\!380$	$1,\!090.0$	1,520
0.1000	$1,\!450$	$1,\!340.0$	$1,\!600$
0.0400	$1,\!490$	$1,\!340.0$	$1,\!660$
0.0200	1,520	$1,\!340.0$	1,760
0.0100	$1,\!530$	$1,\!340.0$	1,900
0.0050	$1,\!540$	$1,\!340.0$	$2,\!150$
0.0020	$1,\!550$	$1,\!340.0$	2,800

Peak-flow data used in the analysis:

Explanation of symbols and codes

- K Peak affected by regulation
- * Less than low-outlier threshold

Water	Peak	Peak-flow
year	flow	code
1982	$1,\!440$	Κ
1983	1,200	Κ
1984	986	Κ
1985	1,410	Κ
1986	1,270	Κ
1987	1,210	Κ
1988	1,210	Κ
1989	1,460	Κ
1990	1,260	Κ
1991	700	K *
1992	847	Κ
1993	1,100	Κ
1994	1,250	Κ