Annual Peak-Flow Frequency Analysis

For more information on the contents of this documentation, see Kessler and others (2013).

Streamgage number and name:

05218000 Mississippi River above Sandy River near Libby, Minn.

Peak-flow information:		
Number of systematic peak flows in record	19	
Systematic period begins 18	897	
Systematic period ends 19	927	
Length of systematic record	31	
Years without information	12	
Number of historical peak flows in record	1	1927

Frequency analysis options:

Method	Expected moments algorithm (EMA)
Skew option	Streamgage
Low-outlier method	Multiple Grubbs-Beck test

EMA systematic record analysis results:

Moments of the common logarithms of the peak flows:

	Standard	
Mean	deviation	Skewness
3.6653	0.1708	0.154

Low-outlier information:

Number of low outliers	0
Low-outlier threshold	Not determined

Final analysis results:

Moments of the common logarithms of the peak flows:

	Standard	
Mean	deviation	Skewness
3.6653	0.1708	0.154

Annual frequency curve at selected exceedance probabilities:

Exceedance	Peak	Lower-95	Upper-95
probability	estimate	level	level
0.9950	1,780	650	$2,\!460$
0.9900	$1,\!940$	811	2,570
0.9500	$2,\!470$	$1,\!370$	3,010
0.9000	$2,\!810$	$1,\!900$	3,360
0.8000	$3,\!310$	$2,\!600$	3,900
0.6667	$3,\!870$	$3,\!190$	4,520
0.5000	$4,\!580$	$3,\!830$	$5,\!350$
0.4292	4,910	$4,\!120$	5,760
0.2000	$6,\!420$	$5,\!440$	$7,\!910$
0.1000	7,710	$6,\!460$	10,700
0.0400	9,400	7,670	17,500
0.0200	10,700	8,500	$22,\!800$
0.0100	12,100	$9,\!270$	$29,\!600$
0.0050	13,500	$9,\!970$	38,300
0.0020	15,500	$10,\!800$	$53,\!800$

Peak-flow data used in the analysis:

Explanation of symbols and codes

- H Historic, outside of systematic record
- K Peak affected by regulation

Water	Peak	Peak-flow
year	flow	code
1897	7,790	Κ
1898	$4,\!630$	Κ
1899	8,160	Κ
1900	$9,\!570$	Κ
1901	8,820	Κ
1902	$6,\!290$	Κ
1903	$7,\!080$	Κ
1904	$5,\!040$	Κ
1905	8,300	Κ
1906	$7,\!580$	Κ
1907	$5,\!350$	Κ
1908	4,200	Κ
1909	$5,\!000$	Κ
1910	3,790	Κ
1911	$2,\!900$	Κ
1912	$2,\!540$	Κ
1913	$3,\!450$	Κ
1914	2,960	Κ
1915	$4,\!980$	Κ
Gap in systematic record		
1927	$5,\!180$	КН