Annual Peak-Flow Frequency Analysis

For more information on the contents of this documentation, see Kessler and others (2013).

Bulletin 17B Grubbs-Beck test

Streamgage number and name:

05242700 Little Sand Lake outlet near Dorset, Minn.

Peak-flow information:			
Number of systematic peak flows in	record 10		
Systematic period begins	1932		
Systematic period ends	1941		
Length of systematic record	10		
Years without information 0			
Number of historical peak flows in record 0			
Frequency analysis options:			
Method	Bulletin 17B		
Skew option	Weighted		
Generalized skew	-0.132		
Standard error of generalized skew	0.426		

Bulletin 17B systematic record analysis results:

Moments of the common logarithms of the peak flows:

	Standard	
Mean	deviation	Skewness
1.5797	0.1531	0.666

Outlier criteria and number of peak flows exceeding:

 $\begin{array}{cccc} {\rm Low} & 18.5 & 0 \\ {\rm High} & 77.9 & 0 \end{array}$

Low-outlier method

Bulletin 17B Final analysis results:

Moments of the common logarithms of the peak flows:

	Standard	
Mean	deviation	Skewness
1.5797	0.1531	0.072

Annual frequency curve at selected exceedance probabilities:

Exceedance	Peak	Lower-95	Upper-95
probability	estimate	level	level
0.9950	15.7	8.6	21.0
0.9900	17.0	9.8	22.4
0.9500	21.4	13.9	26.9
0.9000	24.3	16.8	29.8
0.8000	28.2	21.0	34.0
0.6667	32.5	25.6	39.1
0.5000	37.8	31.0	46.1
0.4292	40.3	33.3	49.8
0.2000	51.0	42.3	68.4
0.1000	59.8	48.7	86.4
0.0400	71.0	56.0	112.0
0.0200	79.4	61.2	134.0
0.0100	87.9	66.2	157.0
0.0050	96.4	71.1	182.0
0.0020	108.0	77.5	218.0

Peak-flow data used in the analysis:

Explanation of symbols and codes

-- none

Water	Peak	Peak-flow
year	flow	code
1932	24	
1933	42	
1934	74	
1935	43	
1936	27	
1937	58	
1938	42	
1939	30	
1940	30	
1941	33	