Annual Peak-Flow Frequency Analysis

For more information on the contents of this documentation, see Kessler and others (2013).

Streamgage number and name:

05305000 Chippewa River (TW) near Watson, Minn.

Peak-flow information:	
Number of systematic peak flows in record	24
Systematic period begins	1911
Systematic period ends	2011
Length of systematic record	101
Years without information	77
Number of historical peak flows in record	0

Frequency analysis options:

Method	Expected moments algorithm (EMA)
Skew option	STATION SKEW
Low-outlier method	Bulletin 17B Grubbs-Beck test

Bulletin 17B systematic record analysis results:

Moments of the common logarithms of the peak flows:

	Standard	
Mean	deviation	Skewness
2.9049	0.6339	-0.581

Outlier criteria and number of peak flows exceeding:

Low 21.9 1 High 20468.1 0

Expected moments algorithm (EMA) Final analysis results:

Moments of the common logarithms of the peak flows:

	Standard	
Mean	deviation	Skewness
2.9182	0.6015	-0.325

Annual frequency curve at selected exceedance probabilities:

Exceedance	Peak	Lower-95	Upper-95
probability	estimate	level	level
0.9950	NA	NA	NA
0.9900	NA	NA	NA
0.9500	75.2	5.4	165
0.9000	135.0	19.8	273
0.8000	265.0	97.9	509
0.6667	486.0	233.0	916
0.5000	893.0	469.0	$1,\!690$
0.4292	$1,\!140.0$	610.0	2,160
0.2000	2,700.0	$1,\!460.0$	$5,\!360$
0.1000	$4,\!620.0$	$2,\!480.0$	$12,\!600$
0.0400	$7,\!960.0$	$4,\!170.0$	42,000
0.0200	$11,\!100.0$	$5,\!330.0$	$83,\!200$
0.0100	$14,\!900.0$	6,210.0	148,000
0.0050	$19,\!200.0$	$6,\!810.0$	256,000
0.0020	$26,\!000.0$	$7,\!230.0$	$533,\!000$

Peak-flow data used in the analysis:

Explanation of symbols and codes

1		J.	
—— n	one		
	K Peak affected by regulation		
* I	less that	n low-outlier threshold	
Water	Peak	Peak-flow	
vear		code	
1911	110w 228		
1912	,		
1913			
1914	,		
	2,260		
	4,750		
	9,700		
Gap in systematic record			
1931	179		
1932	223		
1933	86		
1934	20	*	
1935	174		
1936	318		
Gap in systematic record			
2001	$4,\!600$	Κ	
2002	627	Κ	
2003	793	Κ	
2004	793	К	
2005	1,260	Κ	
2006	1,040	Κ	
2007	988	Κ	
2008	820	Κ	
2009		Κ	
2010	2,850	Κ	
	,	T F	

2011 2,970 K