Annual Peak-Flow Frequency Analysis

For more information on the contents of this documentation, see Kessler and others (2013).

Streamgage number and name:

05317500 Minnesota River at Judson, Minn.

12	
1939	
1969	
31	
19	
2	1965, 1969
90	
1903	
1992	
	Correlation with streamgage 05325000
	$12 \\1939 \\1969 \\31 \\19 \\2 \\90 \\1903 \\1992$

Frequency analysis options:

Method	Bulletin 17B
Skew option	STATION SKEW
Low-outlier method	Bulletin 17B Grubbs-Beck test

Bulletin 17B systematic record analysis results:

Moments of the common logarithms of the peak flows:

	Standard	
Mean	deviation	Skewness
3.8868	0.2602	-0.180

Outlier criteria and number of peak flows exceeding:

Low 2146.0 0High 27673.7 2

Bulletin 17B Final analysis results:

Moments of the common logarithms of the peak flows:

	Standard	
Mean	deviation	Skewness
3.9068	0.2812	0.422

Annual frequency curve at selected exceedance probabilities:

Exceedance	Peak	Lower-95	Upper-95
probability	estimate	level	level
0.9950	$1,\!970$	839	$3,\!100$
0.9900	$2,\!190$	985	$3,\!380$
0.9500	$3,\!020$	$1,\!580$	$4,\!390$
0.9000	$3,\!640$	2,060	$5,\!150$
0.8000	$4,\!640$	$2,\!890$	$6,\!380$
0.6667	$5,\!900$	$3,\!970$	8,020
0.5000	7,710	$5,\!510$	$10,\!600$
0.4292	8,660	$6,\!290$	$12,\!200$
0.2000	13,700	$9,\!970$	$21,\!800$
0.1000	$18,\!900$	$13,\!300$	$34,\!300$
0.0400	27,400	18,000	$58,\!600$
0.0200	35,100	22,000	84,700
0.0100	$44,\!300$	26,400	120,000
0.0050	$55,\!200$	$31,\!300$	167,000
0.0020	$72,\!600$	$38,\!600$	$252,\!000$

Peak-flow data used in the analysis:

Explanation of symbols and codes

___ none Η Historic, outside of systematic record Peak Peak-flow Water flow code year 1939 $3,\!150$ ___ Gap in systematic record 1940 $3,\!460$ ___ 19414,690 ___ 19424,240 ___ 1943 11,300 ___ 194416,100 ___ 19456,860 ___ 19467,070 ___ 194714,000 ___ 194814,000 ___ 194915,400___ 19507,600 ___ 58,000 Η 19651969 64,000 Η