Annual Peak-Flow Frequency Analysis

For more information on the contents of this documentation, see Kessler and others (2013).

Streamgage number and name:

06483210 Kanaranzi Creek tributary number 2 near Wilmont, Minn.

Peak-flow information:			
Number of systematic peak flows in	record 25		
Systematic period begins	1966		
Systematic period ends	1993		
Length of systematic record	28		
Years without information	3		
Number of historical peak flows in record		1993	
Length of historical period	41		
Historical period begins	1966		
Historical period ends	2006		
Historical period based on		Correlation with streamgage 06603530	
Frequency analysis options:			
Method	Expected moments algorithm (EMA)		
Cl	Weighted		

	1	0	(
Skew option	Weighted		
Generalized skew	-0.221		
Standard error of generalized skew	0.426		
Low-outlier method	Bulletin 17B Grubbs	-Beck tes	t

Bulletin 17B systematic record analysis results:

Moments of the common logarithms of the peak flows:

	Standard	
Mean	deviation	Skewness
1.9978	0.6180	-1.336

Outlier criteria and number of peak flows exceeding:

Low	2.9	1
High	585.0	1

Expected moments algorithm (EMA) Final analysis results:

Moments of the common logarithms of the peak flows:

Standard Mean deviation Skewness 1.9791 0.5960 -0.487

Annual frequency curve at selected exceedance probabilities:

[WIE, Weighted independent estimate; --, not computed]

Exceedance	Peak	Lower-95	Upper 95	WIE	Lower-95	Upper 95
probability	estimate	level	level	estimate	WIE level	WIE level
0.9950	NA	NA	NA			
0.9900	NA	NA	NA			
0.9500	8.4	1.1	19.2			
0.9000	15.5	3.7	31.6			
0.8000	31.4	11.8	57.6			
0.6667	58.1	27.6	99.6			
0.5000	106.0	57.7	175.0	105	74.9	146
0.4292	135.0	75.7	219.0			
0.2000	309.0	184.0	504.0	281	200.0	396
0.1000	507.0	305.0	894.0	460	314.0	673
0.0400	825.0	485.0	1,740.0	786	505.0	1,220
0.0200	$1,\!100.0$	620.0	2,750.0	$1,\!030$	614.0	1,740
0.0100	$1,\!410.0$	742.0	4,180.0	$1,\!410$	774.0	$2,\!570$
0.0050	1,750.0	849.0	$6,\!170.0$			
0.0020	$2,\!230.0$	964.0	$9,\!990.0$	$2,\!270$	$1,\!050.0$	$4,\!890$

Peak-flow data used in the analysis:

Explanation of symbols and codes

- H Historic, outside of systematic record
- * Less than low-outlier threshold

Water	Peak	Peak-flow
year	flow	code
1966	70.0	
1967	112.0	
1968	1.4	*
1969	1,230.0	
1970	135.0	
1971	283.0	
1972	133.0	
1973	79.0	
1974	20.0	
1975	46.0	
1976	104.0	
1977	142.0	
1978	145.0	
1979	197.0	
1980	430.0	
1981	400.0	
1982	110.0	
1983	270.0	
1984	240.0	
1985	160.0	
1986	268.0	
1987	128.0	
1988	6.0	
1989	69.0	
1990	15.0	
1993	585.0	Н